2 * SGI RTC clock/timer routines.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved.
19 * Copyright (c) Dimitri Sivanich
21 #include <linux/clockchips.h>
22 #include <linux/slab.h>
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27 #include <asm/uv/uv.h>
31 #define RTC_NAME "sgi_rtc"
33 static cycle_t
uv_read_rtc(struct clocksource
*cs
);
34 static int uv_rtc_next_event(unsigned long, struct clock_event_device
*);
35 static void uv_rtc_timer_setup(enum clock_event_mode
,
36 struct clock_event_device
*);
38 static struct clocksource clocksource_uv
= {
42 .mask
= (cycle_t
)UVH_RTC_REAL_TIME_CLOCK_MASK
,
44 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
47 static struct clock_event_device clock_event_device_uv
= {
49 .features
= CLOCK_EVT_FEAT_ONESHOT
,
53 .set_next_event
= uv_rtc_next_event
,
54 .set_mode
= uv_rtc_timer_setup
,
55 .event_handler
= NULL
,
58 static DEFINE_PER_CPU(struct clock_event_device
, cpu_ced
);
60 /* There is one of these allocated per node */
61 struct uv_rtc_timer_head
{
63 /* next cpu waiting for timer, local node relative: */
65 /* number of cpus on this node: */
68 int lcpu
; /* systemwide logical cpu number */
69 u64 expires
; /* next timer expiration for this cpu */
74 * Access to uv_rtc_timer_head via blade id.
76 static struct uv_rtc_timer_head
**blade_info __read_mostly
;
78 static int uv_rtc_evt_enable
;
81 * Hardware interface routines
84 /* Send IPIs to another node */
85 static void uv_rtc_send_IPI(int cpu
)
87 unsigned long apicid
, val
;
90 apicid
= cpu_physical_id(cpu
);
91 pnode
= uv_apicid_to_pnode(apicid
);
92 val
= (1UL << UVH_IPI_INT_SEND_SHFT
) |
93 (apicid
<< UVH_IPI_INT_APIC_ID_SHFT
) |
94 (X86_PLATFORM_IPI_VECTOR
<< UVH_IPI_INT_VECTOR_SHFT
);
96 uv_write_global_mmr64(pnode
, UVH_IPI_INT
, val
);
99 /* Check for an RTC interrupt pending */
100 static int uv_intr_pending(int pnode
)
102 return uv_read_global_mmr64(pnode
, UVH_EVENT_OCCURRED0
) &
103 UVH_EVENT_OCCURRED0_RTC1_MASK
;
106 /* Setup interrupt and return non-zero if early expiration occurred. */
107 static int uv_setup_intr(int cpu
, u64 expires
)
110 int pnode
= uv_cpu_to_pnode(cpu
);
112 uv_write_global_mmr64(pnode
, UVH_RTC1_INT_CONFIG
,
113 UVH_RTC1_INT_CONFIG_M_MASK
);
114 uv_write_global_mmr64(pnode
, UVH_INT_CMPB
, -1L);
116 uv_write_global_mmr64(pnode
, UVH_EVENT_OCCURRED0_ALIAS
,
117 UVH_EVENT_OCCURRED0_RTC1_MASK
);
119 val
= (X86_PLATFORM_IPI_VECTOR
<< UVH_RTC1_INT_CONFIG_VECTOR_SHFT
) |
120 ((u64
)cpu_physical_id(cpu
) << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT
);
122 /* Set configuration */
123 uv_write_global_mmr64(pnode
, UVH_RTC1_INT_CONFIG
, val
);
124 /* Initialize comparator value */
125 uv_write_global_mmr64(pnode
, UVH_INT_CMPB
, expires
);
127 if (uv_read_rtc(NULL
) <= expires
)
130 return !uv_intr_pending(pnode
);
134 * Per-cpu timer tracking routines
137 static __init
void uv_rtc_deallocate_timers(void)
141 for_each_possible_blade(bid
) {
142 kfree(blade_info
[bid
]);
147 /* Allocate per-node list of cpu timer expiration times. */
148 static __init
int uv_rtc_allocate_timers(void)
152 blade_info
= kmalloc(uv_possible_blades
* sizeof(void *), GFP_KERNEL
);
155 memset(blade_info
, 0, uv_possible_blades
* sizeof(void *));
157 for_each_present_cpu(cpu
) {
158 int nid
= cpu_to_node(cpu
);
159 int bid
= uv_cpu_to_blade_id(cpu
);
160 int bcpu
= uv_cpu_hub_info(cpu
)->blade_processor_id
;
161 struct uv_rtc_timer_head
*head
= blade_info
[bid
];
164 head
= kmalloc_node(sizeof(struct uv_rtc_timer_head
) +
165 (uv_blade_nr_possible_cpus(bid
) *
169 uv_rtc_deallocate_timers();
172 spin_lock_init(&head
->lock
);
173 head
->ncpus
= uv_blade_nr_possible_cpus(bid
);
175 blade_info
[bid
] = head
;
178 head
->cpu
[bcpu
].lcpu
= cpu
;
179 head
->cpu
[bcpu
].expires
= ULLONG_MAX
;
185 /* Find and set the next expiring timer. */
186 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head
*head
, int pnode
)
188 u64 lowest
= ULLONG_MAX
;
192 for (c
= 0; c
< head
->ncpus
; c
++) {
193 u64 exp
= head
->cpu
[c
].expires
;
200 head
->next_cpu
= bcpu
;
201 c
= head
->cpu
[bcpu
].lcpu
;
202 if (uv_setup_intr(c
, lowest
))
203 /* If we didn't set it up in time, trigger */
206 uv_write_global_mmr64(pnode
, UVH_RTC1_INT_CONFIG
,
207 UVH_RTC1_INT_CONFIG_M_MASK
);
212 * Set expiration time for current cpu.
214 * Returns 1 if we missed the expiration time.
216 static int uv_rtc_set_timer(int cpu
, u64 expires
)
218 int pnode
= uv_cpu_to_pnode(cpu
);
219 int bid
= uv_cpu_to_blade_id(cpu
);
220 struct uv_rtc_timer_head
*head
= blade_info
[bid
];
221 int bcpu
= uv_cpu_hub_info(cpu
)->blade_processor_id
;
222 u64
*t
= &head
->cpu
[bcpu
].expires
;
226 spin_lock_irqsave(&head
->lock
, flags
);
228 next_cpu
= head
->next_cpu
;
231 /* Will this one be next to go off? */
232 if (next_cpu
< 0 || bcpu
== next_cpu
||
233 expires
< head
->cpu
[next_cpu
].expires
) {
234 head
->next_cpu
= bcpu
;
235 if (uv_setup_intr(cpu
, expires
)) {
237 uv_rtc_find_next_timer(head
, pnode
);
238 spin_unlock_irqrestore(&head
->lock
, flags
);
243 spin_unlock_irqrestore(&head
->lock
, flags
);
248 * Unset expiration time for current cpu.
250 * Returns 1 if this timer was pending.
252 static int uv_rtc_unset_timer(int cpu
, int force
)
254 int pnode
= uv_cpu_to_pnode(cpu
);
255 int bid
= uv_cpu_to_blade_id(cpu
);
256 struct uv_rtc_timer_head
*head
= blade_info
[bid
];
257 int bcpu
= uv_cpu_hub_info(cpu
)->blade_processor_id
;
258 u64
*t
= &head
->cpu
[bcpu
].expires
;
262 spin_lock_irqsave(&head
->lock
, flags
);
264 if ((head
->next_cpu
== bcpu
&& uv_read_rtc(NULL
) >= *t
) || force
)
269 /* Was the hardware setup for this timer? */
270 if (head
->next_cpu
== bcpu
)
271 uv_rtc_find_next_timer(head
, pnode
);
274 spin_unlock_irqrestore(&head
->lock
, flags
);
281 * Kernel interface routines.
287 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
288 * cachelines of it's own page. This allows faster simultaneous reads
289 * from a given socket.
291 static cycle_t
uv_read_rtc(struct clocksource
*cs
)
293 unsigned long offset
;
295 if (uv_get_min_hub_revision_id() == 1)
298 offset
= (uv_blade_processor_id() * L1_CACHE_BYTES
) % PAGE_SIZE
;
300 return (cycle_t
)uv_read_local_mmr(UVH_RTC
| offset
);
304 * Program the next event, relative to now
306 static int uv_rtc_next_event(unsigned long delta
,
307 struct clock_event_device
*ced
)
309 int ced_cpu
= cpumask_first(ced
->cpumask
);
311 return uv_rtc_set_timer(ced_cpu
, delta
+ uv_read_rtc(NULL
));
315 * Setup the RTC timer in oneshot mode
317 static void uv_rtc_timer_setup(enum clock_event_mode mode
,
318 struct clock_event_device
*evt
)
320 int ced_cpu
= cpumask_first(evt
->cpumask
);
323 case CLOCK_EVT_MODE_PERIODIC
:
324 case CLOCK_EVT_MODE_ONESHOT
:
325 case CLOCK_EVT_MODE_RESUME
:
326 /* Nothing to do here yet */
328 case CLOCK_EVT_MODE_UNUSED
:
329 case CLOCK_EVT_MODE_SHUTDOWN
:
330 uv_rtc_unset_timer(ced_cpu
, 1);
335 static void uv_rtc_interrupt(void)
337 int cpu
= smp_processor_id();
338 struct clock_event_device
*ced
= &per_cpu(cpu_ced
, cpu
);
340 if (!ced
|| !ced
->event_handler
)
343 if (uv_rtc_unset_timer(cpu
, 0) != 1)
346 ced
->event_handler(ced
);
349 static int __init
uv_enable_evt_rtc(char *str
)
351 uv_rtc_evt_enable
= 1;
355 __setup("uvrtcevt", uv_enable_evt_rtc
);
357 static __init
void uv_rtc_register_clockevents(struct work_struct
*dummy
)
359 struct clock_event_device
*ced
= &__get_cpu_var(cpu_ced
);
361 *ced
= clock_event_device_uv
;
362 ced
->cpumask
= cpumask_of(smp_processor_id());
363 clockevents_register_device(ced
);
366 static __init
int uv_rtc_setup_clock(void)
373 clocksource_uv
.mult
= clocksource_hz2mult(sn_rtc_cycles_per_second
,
374 clocksource_uv
.shift
);
376 /* If single blade, prefer tsc */
377 if (uv_num_possible_blades() == 1)
378 clocksource_uv
.rating
= 250;
380 rc
= clocksource_register(&clocksource_uv
);
382 printk(KERN_INFO
"UV RTC clocksource failed rc %d\n", rc
);
384 printk(KERN_INFO
"UV RTC clocksource registered freq %lu MHz\n",
385 sn_rtc_cycles_per_second
/(unsigned long)1E6
);
387 if (rc
|| !uv_rtc_evt_enable
|| x86_platform_ipi_callback
)
390 /* Setup and register clockevents */
391 rc
= uv_rtc_allocate_timers();
395 x86_platform_ipi_callback
= uv_rtc_interrupt
;
397 clock_event_device_uv
.mult
= div_sc(sn_rtc_cycles_per_second
,
398 NSEC_PER_SEC
, clock_event_device_uv
.shift
);
400 clock_event_device_uv
.min_delta_ns
= NSEC_PER_SEC
/
401 sn_rtc_cycles_per_second
;
403 clock_event_device_uv
.max_delta_ns
= clocksource_uv
.mask
*
404 (NSEC_PER_SEC
/ sn_rtc_cycles_per_second
);
406 rc
= schedule_on_each_cpu(uv_rtc_register_clockevents
);
408 x86_platform_ipi_callback
= NULL
;
409 uv_rtc_deallocate_timers();
413 printk(KERN_INFO
"UV RTC clockevents registered\n");
418 clocksource_unregister(&clocksource_uv
);
419 printk(KERN_INFO
"UV RTC clockevents failed rc %d\n", rc
);
423 arch_initcall(uv_rtc_setup_clock
);