2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
35 #include "transaction.h"
36 #include "btrfs_inode.h"
38 #include "print-tree.h"
44 * when auto defrag is enabled we
45 * queue up these defrag structs to remember which
46 * inodes need defragging passes
49 struct rb_node rb_node
;
53 * transid where the defrag was added, we search for
54 * extents newer than this
61 /* last offset we were able to defrag */
64 /* if we've wrapped around back to zero once already */
68 /* pop a record for an inode into the defrag tree. The lock
69 * must be held already
71 * If you're inserting a record for an older transid than an
72 * existing record, the transid already in the tree is lowered
74 * If an existing record is found the defrag item you
77 static void __btrfs_add_inode_defrag(struct inode
*inode
,
78 struct inode_defrag
*defrag
)
80 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
81 struct inode_defrag
*entry
;
83 struct rb_node
*parent
= NULL
;
85 p
= &root
->fs_info
->defrag_inodes
.rb_node
;
88 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
90 if (defrag
->ino
< entry
->ino
)
92 else if (defrag
->ino
> entry
->ino
)
93 p
= &parent
->rb_right
;
95 /* if we're reinserting an entry for
96 * an old defrag run, make sure to
97 * lower the transid of our existing record
99 if (defrag
->transid
< entry
->transid
)
100 entry
->transid
= defrag
->transid
;
101 if (defrag
->last_offset
> entry
->last_offset
)
102 entry
->last_offset
= defrag
->last_offset
;
106 BTRFS_I(inode
)->in_defrag
= 1;
107 rb_link_node(&defrag
->rb_node
, parent
, p
);
108 rb_insert_color(&defrag
->rb_node
, &root
->fs_info
->defrag_inodes
);
118 * insert a defrag record for this inode if auto defrag is
121 int btrfs_add_inode_defrag(struct btrfs_trans_handle
*trans
,
124 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
125 struct inode_defrag
*defrag
;
128 if (!btrfs_test_opt(root
, AUTO_DEFRAG
))
131 if (btrfs_fs_closing(root
->fs_info
))
134 if (BTRFS_I(inode
)->in_defrag
)
138 transid
= trans
->transid
;
140 transid
= BTRFS_I(inode
)->root
->last_trans
;
142 defrag
= kzalloc(sizeof(*defrag
), GFP_NOFS
);
146 defrag
->ino
= btrfs_ino(inode
);
147 defrag
->transid
= transid
;
148 defrag
->root
= root
->root_key
.objectid
;
150 spin_lock(&root
->fs_info
->defrag_inodes_lock
);
151 if (!BTRFS_I(inode
)->in_defrag
)
152 __btrfs_add_inode_defrag(inode
, defrag
);
153 spin_unlock(&root
->fs_info
->defrag_inodes_lock
);
158 * must be called with the defrag_inodes lock held
160 struct inode_defrag
*btrfs_find_defrag_inode(struct btrfs_fs_info
*info
, u64 ino
,
161 struct rb_node
**next
)
163 struct inode_defrag
*entry
= NULL
;
165 struct rb_node
*parent
= NULL
;
167 p
= info
->defrag_inodes
.rb_node
;
170 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
172 if (ino
< entry
->ino
)
174 else if (ino
> entry
->ino
)
175 p
= parent
->rb_right
;
181 while (parent
&& ino
> entry
->ino
) {
182 parent
= rb_next(parent
);
183 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
191 * run through the list of inodes in the FS that need
194 int btrfs_run_defrag_inodes(struct btrfs_fs_info
*fs_info
)
196 struct inode_defrag
*defrag
;
197 struct btrfs_root
*inode_root
;
200 struct btrfs_key key
;
201 struct btrfs_ioctl_defrag_range_args range
;
204 int defrag_batch
= 1024;
206 memset(&range
, 0, sizeof(range
));
209 atomic_inc(&fs_info
->defrag_running
);
210 spin_lock(&fs_info
->defrag_inodes_lock
);
214 /* find an inode to defrag */
215 defrag
= btrfs_find_defrag_inode(fs_info
, first_ino
, &n
);
218 defrag
= rb_entry(n
, struct inode_defrag
, rb_node
);
219 else if (first_ino
) {
227 /* remove it from the rbtree */
228 first_ino
= defrag
->ino
+ 1;
229 rb_erase(&defrag
->rb_node
, &fs_info
->defrag_inodes
);
231 if (btrfs_fs_closing(fs_info
))
234 spin_unlock(&fs_info
->defrag_inodes_lock
);
237 key
.objectid
= defrag
->root
;
238 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
239 key
.offset
= (u64
)-1;
240 inode_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
241 if (IS_ERR(inode_root
))
244 key
.objectid
= defrag
->ino
;
245 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
248 inode
= btrfs_iget(fs_info
->sb
, &key
, inode_root
, NULL
);
252 /* do a chunk of defrag */
253 BTRFS_I(inode
)->in_defrag
= 0;
254 range
.start
= defrag
->last_offset
;
255 num_defrag
= btrfs_defrag_file(inode
, NULL
, &range
, defrag
->transid
,
258 * if we filled the whole defrag batch, there
259 * must be more work to do. Queue this defrag
262 if (num_defrag
== defrag_batch
) {
263 defrag
->last_offset
= range
.start
;
264 __btrfs_add_inode_defrag(inode
, defrag
);
266 * we don't want to kfree defrag, we added it back to
270 } else if (defrag
->last_offset
&& !defrag
->cycled
) {
272 * we didn't fill our defrag batch, but
273 * we didn't start at zero. Make sure we loop
274 * around to the start of the file.
276 defrag
->last_offset
= 0;
278 __btrfs_add_inode_defrag(inode
, defrag
);
284 spin_lock(&fs_info
->defrag_inodes_lock
);
288 spin_unlock(&fs_info
->defrag_inodes_lock
);
290 atomic_dec(&fs_info
->defrag_running
);
293 * during unmount, we use the transaction_wait queue to
294 * wait for the defragger to stop
296 wake_up(&fs_info
->transaction_wait
);
300 /* simple helper to fault in pages and copy. This should go away
301 * and be replaced with calls into generic code.
303 static noinline
int btrfs_copy_from_user(loff_t pos
, int num_pages
,
305 struct page
**prepared_pages
,
309 size_t total_copied
= 0;
311 int offset
= pos
& (PAGE_CACHE_SIZE
- 1);
313 while (write_bytes
> 0) {
314 size_t count
= min_t(size_t,
315 PAGE_CACHE_SIZE
- offset
, write_bytes
);
316 struct page
*page
= prepared_pages
[pg
];
318 * Copy data from userspace to the current page
320 * Disable pagefault to avoid recursive lock since
321 * the pages are already locked
324 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, count
);
327 /* Flush processor's dcache for this page */
328 flush_dcache_page(page
);
331 * if we get a partial write, we can end up with
332 * partially up to date pages. These add
333 * a lot of complexity, so make sure they don't
334 * happen by forcing this copy to be retried.
336 * The rest of the btrfs_file_write code will fall
337 * back to page at a time copies after we return 0.
339 if (!PageUptodate(page
) && copied
< count
)
342 iov_iter_advance(i
, copied
);
343 write_bytes
-= copied
;
344 total_copied
+= copied
;
346 /* Return to btrfs_file_aio_write to fault page */
347 if (unlikely(copied
== 0))
350 if (unlikely(copied
< PAGE_CACHE_SIZE
- offset
)) {
361 * unlocks pages after btrfs_file_write is done with them
363 void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
366 for (i
= 0; i
< num_pages
; i
++) {
367 /* page checked is some magic around finding pages that
368 * have been modified without going through btrfs_set_page_dirty
371 ClearPageChecked(pages
[i
]);
372 unlock_page(pages
[i
]);
373 mark_page_accessed(pages
[i
]);
374 page_cache_release(pages
[i
]);
379 * after copy_from_user, pages need to be dirtied and we need to make
380 * sure holes are created between the current EOF and the start of
381 * any next extents (if required).
383 * this also makes the decision about creating an inline extent vs
384 * doing real data extents, marking pages dirty and delalloc as required.
386 int btrfs_dirty_pages(struct btrfs_root
*root
, struct inode
*inode
,
387 struct page
**pages
, size_t num_pages
,
388 loff_t pos
, size_t write_bytes
,
389 struct extent_state
**cached
)
395 u64 end_of_last_block
;
396 u64 end_pos
= pos
+ write_bytes
;
397 loff_t isize
= i_size_read(inode
);
399 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
400 num_bytes
= (write_bytes
+ pos
- start_pos
+
401 root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
403 end_of_last_block
= start_pos
+ num_bytes
- 1;
404 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
,
409 for (i
= 0; i
< num_pages
; i
++) {
410 struct page
*p
= pages
[i
];
417 * we've only changed i_size in ram, and we haven't updated
418 * the disk i_size. There is no need to log the inode
422 i_size_write(inode
, end_pos
);
427 * this drops all the extents in the cache that intersect the range
428 * [start, end]. Existing extents are split as required.
430 int btrfs_drop_extent_cache(struct inode
*inode
, u64 start
, u64 end
,
433 struct extent_map
*em
;
434 struct extent_map
*split
= NULL
;
435 struct extent_map
*split2
= NULL
;
436 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
437 u64 len
= end
- start
+ 1;
443 WARN_ON(end
< start
);
444 if (end
== (u64
)-1) {
450 split
= alloc_extent_map();
452 split2
= alloc_extent_map();
453 BUG_ON(!split
|| !split2
);
455 write_lock(&em_tree
->lock
);
456 em
= lookup_extent_mapping(em_tree
, start
, len
);
458 write_unlock(&em_tree
->lock
);
462 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
463 if (testend
&& em
->start
+ em
->len
>= start
+ len
) {
465 write_unlock(&em_tree
->lock
);
468 start
= em
->start
+ em
->len
;
470 len
= start
+ len
- (em
->start
+ em
->len
);
472 write_unlock(&em_tree
->lock
);
475 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
476 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
477 remove_extent_mapping(em_tree
, em
);
479 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
481 split
->start
= em
->start
;
482 split
->len
= start
- em
->start
;
483 split
->orig_start
= em
->orig_start
;
484 split
->block_start
= em
->block_start
;
487 split
->block_len
= em
->block_len
;
489 split
->block_len
= split
->len
;
491 split
->bdev
= em
->bdev
;
492 split
->flags
= flags
;
493 split
->compress_type
= em
->compress_type
;
494 ret
= add_extent_mapping(em_tree
, split
);
496 free_extent_map(split
);
500 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
501 testend
&& em
->start
+ em
->len
> start
+ len
) {
502 u64 diff
= start
+ len
- em
->start
;
504 split
->start
= start
+ len
;
505 split
->len
= em
->start
+ em
->len
- (start
+ len
);
506 split
->bdev
= em
->bdev
;
507 split
->flags
= flags
;
508 split
->compress_type
= em
->compress_type
;
511 split
->block_len
= em
->block_len
;
512 split
->block_start
= em
->block_start
;
513 split
->orig_start
= em
->orig_start
;
515 split
->block_len
= split
->len
;
516 split
->block_start
= em
->block_start
+ diff
;
517 split
->orig_start
= split
->start
;
520 ret
= add_extent_mapping(em_tree
, split
);
522 free_extent_map(split
);
525 write_unlock(&em_tree
->lock
);
529 /* once for the tree*/
533 free_extent_map(split
);
535 free_extent_map(split2
);
540 * this is very complex, but the basic idea is to drop all extents
541 * in the range start - end. hint_block is filled in with a block number
542 * that would be a good hint to the block allocator for this file.
544 * If an extent intersects the range but is not entirely inside the range
545 * it is either truncated or split. Anything entirely inside the range
546 * is deleted from the tree.
548 int btrfs_drop_extents(struct btrfs_trans_handle
*trans
, struct inode
*inode
,
549 u64 start
, u64 end
, u64
*hint_byte
, int drop_cache
)
551 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
552 struct extent_buffer
*leaf
;
553 struct btrfs_file_extent_item
*fi
;
554 struct btrfs_path
*path
;
555 struct btrfs_key key
;
556 struct btrfs_key new_key
;
557 u64 ino
= btrfs_ino(inode
);
558 u64 search_start
= start
;
561 u64 extent_offset
= 0;
570 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
572 path
= btrfs_alloc_path();
578 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
582 if (ret
> 0 && path
->slots
[0] > 0 && search_start
== start
) {
583 leaf
= path
->nodes
[0];
584 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
585 if (key
.objectid
== ino
&&
586 key
.type
== BTRFS_EXTENT_DATA_KEY
)
591 leaf
= path
->nodes
[0];
592 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
594 ret
= btrfs_next_leaf(root
, path
);
601 leaf
= path
->nodes
[0];
605 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
606 if (key
.objectid
> ino
||
607 key
.type
> BTRFS_EXTENT_DATA_KEY
|| key
.offset
>= end
)
610 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
611 struct btrfs_file_extent_item
);
612 extent_type
= btrfs_file_extent_type(leaf
, fi
);
614 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
615 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
616 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
617 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
618 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
619 extent_end
= key
.offset
+
620 btrfs_file_extent_num_bytes(leaf
, fi
);
621 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
622 extent_end
= key
.offset
+
623 btrfs_file_extent_inline_len(leaf
, fi
);
626 extent_end
= search_start
;
629 if (extent_end
<= search_start
) {
634 search_start
= max(key
.offset
, start
);
636 btrfs_release_path(path
);
641 * | - range to drop - |
642 * | -------- extent -------- |
644 if (start
> key
.offset
&& end
< extent_end
) {
646 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
648 memcpy(&new_key
, &key
, sizeof(new_key
));
649 new_key
.offset
= start
;
650 ret
= btrfs_duplicate_item(trans
, root
, path
,
652 if (ret
== -EAGAIN
) {
653 btrfs_release_path(path
);
659 leaf
= path
->nodes
[0];
660 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
661 struct btrfs_file_extent_item
);
662 btrfs_set_file_extent_num_bytes(leaf
, fi
,
665 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
666 struct btrfs_file_extent_item
);
668 extent_offset
+= start
- key
.offset
;
669 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
670 btrfs_set_file_extent_num_bytes(leaf
, fi
,
672 btrfs_mark_buffer_dirty(leaf
);
674 if (disk_bytenr
> 0) {
675 ret
= btrfs_inc_extent_ref(trans
, root
,
676 disk_bytenr
, num_bytes
, 0,
677 root
->root_key
.objectid
,
679 start
- extent_offset
);
681 *hint_byte
= disk_bytenr
;
686 * | ---- range to drop ----- |
687 * | -------- extent -------- |
689 if (start
<= key
.offset
&& end
< extent_end
) {
690 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
692 memcpy(&new_key
, &key
, sizeof(new_key
));
693 new_key
.offset
= end
;
694 btrfs_set_item_key_safe(trans
, root
, path
, &new_key
);
696 extent_offset
+= end
- key
.offset
;
697 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
698 btrfs_set_file_extent_num_bytes(leaf
, fi
,
700 btrfs_mark_buffer_dirty(leaf
);
701 if (disk_bytenr
> 0) {
702 inode_sub_bytes(inode
, end
- key
.offset
);
703 *hint_byte
= disk_bytenr
;
708 search_start
= extent_end
;
710 * | ---- range to drop ----- |
711 * | -------- extent -------- |
713 if (start
> key
.offset
&& end
>= extent_end
) {
715 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
717 btrfs_set_file_extent_num_bytes(leaf
, fi
,
719 btrfs_mark_buffer_dirty(leaf
);
720 if (disk_bytenr
> 0) {
721 inode_sub_bytes(inode
, extent_end
- start
);
722 *hint_byte
= disk_bytenr
;
724 if (end
== extent_end
)
732 * | ---- range to drop ----- |
733 * | ------ extent ------ |
735 if (start
<= key
.offset
&& end
>= extent_end
) {
737 del_slot
= path
->slots
[0];
740 BUG_ON(del_slot
+ del_nr
!= path
->slots
[0]);
744 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
745 inode_sub_bytes(inode
,
746 extent_end
- key
.offset
);
747 extent_end
= ALIGN(extent_end
,
749 } else if (disk_bytenr
> 0) {
750 ret
= btrfs_free_extent(trans
, root
,
751 disk_bytenr
, num_bytes
, 0,
752 root
->root_key
.objectid
,
753 key
.objectid
, key
.offset
-
756 inode_sub_bytes(inode
,
757 extent_end
- key
.offset
);
758 *hint_byte
= disk_bytenr
;
761 if (end
== extent_end
)
764 if (path
->slots
[0] + 1 < btrfs_header_nritems(leaf
)) {
769 ret
= btrfs_del_items(trans
, root
, path
, del_slot
,
776 btrfs_release_path(path
);
784 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
788 btrfs_free_path(path
);
792 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
793 u64 objectid
, u64 bytenr
, u64 orig_offset
,
794 u64
*start
, u64
*end
)
796 struct btrfs_file_extent_item
*fi
;
797 struct btrfs_key key
;
800 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
803 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
804 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
807 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
808 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
809 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
810 btrfs_file_extent_offset(leaf
, fi
) != key
.offset
- orig_offset
||
811 btrfs_file_extent_compression(leaf
, fi
) ||
812 btrfs_file_extent_encryption(leaf
, fi
) ||
813 btrfs_file_extent_other_encoding(leaf
, fi
))
816 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
817 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
826 * Mark extent in the range start - end as written.
828 * This changes extent type from 'pre-allocated' to 'regular'. If only
829 * part of extent is marked as written, the extent will be split into
832 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
833 struct inode
*inode
, u64 start
, u64 end
)
835 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
836 struct extent_buffer
*leaf
;
837 struct btrfs_path
*path
;
838 struct btrfs_file_extent_item
*fi
;
839 struct btrfs_key key
;
840 struct btrfs_key new_key
;
852 u64 ino
= btrfs_ino(inode
);
854 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
856 path
= btrfs_alloc_path();
863 key
.type
= BTRFS_EXTENT_DATA_KEY
;
866 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
869 if (ret
> 0 && path
->slots
[0] > 0)
872 leaf
= path
->nodes
[0];
873 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
874 BUG_ON(key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
);
875 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
876 struct btrfs_file_extent_item
);
877 BUG_ON(btrfs_file_extent_type(leaf
, fi
) !=
878 BTRFS_FILE_EXTENT_PREALLOC
);
879 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
880 BUG_ON(key
.offset
> start
|| extent_end
< end
);
882 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
883 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
884 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
885 memcpy(&new_key
, &key
, sizeof(new_key
));
887 if (start
== key
.offset
&& end
< extent_end
) {
890 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
891 ino
, bytenr
, orig_offset
,
892 &other_start
, &other_end
)) {
893 new_key
.offset
= end
;
894 btrfs_set_item_key_safe(trans
, root
, path
, &new_key
);
895 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
896 struct btrfs_file_extent_item
);
897 btrfs_set_file_extent_num_bytes(leaf
, fi
,
899 btrfs_set_file_extent_offset(leaf
, fi
,
901 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
902 struct btrfs_file_extent_item
);
903 btrfs_set_file_extent_num_bytes(leaf
, fi
,
905 btrfs_mark_buffer_dirty(leaf
);
910 if (start
> key
.offset
&& end
== extent_end
) {
913 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
914 ino
, bytenr
, orig_offset
,
915 &other_start
, &other_end
)) {
916 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
917 struct btrfs_file_extent_item
);
918 btrfs_set_file_extent_num_bytes(leaf
, fi
,
921 new_key
.offset
= start
;
922 btrfs_set_item_key_safe(trans
, root
, path
, &new_key
);
924 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
925 struct btrfs_file_extent_item
);
926 btrfs_set_file_extent_num_bytes(leaf
, fi
,
928 btrfs_set_file_extent_offset(leaf
, fi
,
929 start
- orig_offset
);
930 btrfs_mark_buffer_dirty(leaf
);
935 while (start
> key
.offset
|| end
< extent_end
) {
936 if (key
.offset
== start
)
939 new_key
.offset
= split
;
940 ret
= btrfs_duplicate_item(trans
, root
, path
, &new_key
);
941 if (ret
== -EAGAIN
) {
942 btrfs_release_path(path
);
947 leaf
= path
->nodes
[0];
948 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
949 struct btrfs_file_extent_item
);
950 btrfs_set_file_extent_num_bytes(leaf
, fi
,
953 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
954 struct btrfs_file_extent_item
);
956 btrfs_set_file_extent_offset(leaf
, fi
, split
- orig_offset
);
957 btrfs_set_file_extent_num_bytes(leaf
, fi
,
959 btrfs_mark_buffer_dirty(leaf
);
961 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
, 0,
962 root
->root_key
.objectid
,
966 if (split
== start
) {
969 BUG_ON(start
!= key
.offset
);
978 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
979 ino
, bytenr
, orig_offset
,
980 &other_start
, &other_end
)) {
982 btrfs_release_path(path
);
985 extent_end
= other_end
;
986 del_slot
= path
->slots
[0] + 1;
988 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
989 0, root
->root_key
.objectid
,
995 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
996 ino
, bytenr
, orig_offset
,
997 &other_start
, &other_end
)) {
999 btrfs_release_path(path
);
1002 key
.offset
= other_start
;
1003 del_slot
= path
->slots
[0];
1005 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1006 0, root
->root_key
.objectid
,
1011 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1012 struct btrfs_file_extent_item
);
1013 btrfs_set_file_extent_type(leaf
, fi
,
1014 BTRFS_FILE_EXTENT_REG
);
1015 btrfs_mark_buffer_dirty(leaf
);
1017 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
1018 struct btrfs_file_extent_item
);
1019 btrfs_set_file_extent_type(leaf
, fi
,
1020 BTRFS_FILE_EXTENT_REG
);
1021 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1022 extent_end
- key
.offset
);
1023 btrfs_mark_buffer_dirty(leaf
);
1025 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1029 btrfs_free_path(path
);
1034 * on error we return an unlocked page and the error value
1035 * on success we return a locked page and 0
1037 static int prepare_uptodate_page(struct page
*page
, u64 pos
)
1041 if ((pos
& (PAGE_CACHE_SIZE
- 1)) && !PageUptodate(page
)) {
1042 ret
= btrfs_readpage(NULL
, page
);
1046 if (!PageUptodate(page
)) {
1055 * this gets pages into the page cache and locks them down, it also properly
1056 * waits for data=ordered extents to finish before allowing the pages to be
1059 static noinline
int prepare_pages(struct btrfs_root
*root
, struct file
*file
,
1060 struct page
**pages
, size_t num_pages
,
1061 loff_t pos
, unsigned long first_index
,
1064 struct extent_state
*cached_state
= NULL
;
1066 unsigned long index
= pos
>> PAGE_CACHE_SHIFT
;
1067 struct inode
*inode
= fdentry(file
)->d_inode
;
1073 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
1074 last_pos
= ((u64
)index
+ num_pages
) << PAGE_CACHE_SHIFT
;
1076 if (start_pos
> inode
->i_size
) {
1077 err
= btrfs_cont_expand(inode
, i_size_read(inode
), start_pos
);
1083 for (i
= 0; i
< num_pages
; i
++) {
1084 pages
[i
] = find_or_create_page(inode
->i_mapping
, index
+ i
,
1093 err
= prepare_uptodate_page(pages
[i
], pos
);
1094 if (i
== num_pages
- 1)
1095 err
= prepare_uptodate_page(pages
[i
],
1098 page_cache_release(pages
[i
]);
1102 wait_on_page_writeback(pages
[i
]);
1105 if (start_pos
< inode
->i_size
) {
1106 struct btrfs_ordered_extent
*ordered
;
1107 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1108 start_pos
, last_pos
- 1, 0, &cached_state
,
1110 ordered
= btrfs_lookup_first_ordered_extent(inode
,
1113 ordered
->file_offset
+ ordered
->len
> start_pos
&&
1114 ordered
->file_offset
< last_pos
) {
1115 btrfs_put_ordered_extent(ordered
);
1116 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1117 start_pos
, last_pos
- 1,
1118 &cached_state
, GFP_NOFS
);
1119 for (i
= 0; i
< num_pages
; i
++) {
1120 unlock_page(pages
[i
]);
1121 page_cache_release(pages
[i
]);
1123 btrfs_wait_ordered_range(inode
, start_pos
,
1124 last_pos
- start_pos
);
1128 btrfs_put_ordered_extent(ordered
);
1130 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start_pos
,
1131 last_pos
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1132 EXTENT_DO_ACCOUNTING
, 0, 0, &cached_state
,
1134 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1135 start_pos
, last_pos
- 1, &cached_state
,
1138 for (i
= 0; i
< num_pages
; i
++) {
1139 clear_page_dirty_for_io(pages
[i
]);
1140 set_page_extent_mapped(pages
[i
]);
1141 WARN_ON(!PageLocked(pages
[i
]));
1145 while (faili
>= 0) {
1146 unlock_page(pages
[faili
]);
1147 page_cache_release(pages
[faili
]);
1154 static noinline ssize_t
__btrfs_buffered_write(struct file
*file
,
1158 struct inode
*inode
= fdentry(file
)->d_inode
;
1159 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1160 struct page
**pages
= NULL
;
1161 unsigned long first_index
;
1162 size_t num_written
= 0;
1166 nrptrs
= min((iov_iter_count(i
) + PAGE_CACHE_SIZE
- 1) /
1167 PAGE_CACHE_SIZE
, PAGE_CACHE_SIZE
/
1168 (sizeof(struct page
*)));
1169 pages
= kmalloc(nrptrs
* sizeof(struct page
*), GFP_KERNEL
);
1173 first_index
= pos
>> PAGE_CACHE_SHIFT
;
1175 while (iov_iter_count(i
) > 0) {
1176 size_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1177 size_t write_bytes
= min(iov_iter_count(i
),
1178 nrptrs
* (size_t)PAGE_CACHE_SIZE
-
1180 size_t num_pages
= (write_bytes
+ offset
+
1181 PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1185 WARN_ON(num_pages
> nrptrs
);
1188 * Fault pages before locking them in prepare_pages
1189 * to avoid recursive lock
1191 if (unlikely(iov_iter_fault_in_readable(i
, write_bytes
))) {
1196 ret
= btrfs_delalloc_reserve_space(inode
,
1197 num_pages
<< PAGE_CACHE_SHIFT
);
1202 * This is going to setup the pages array with the number of
1203 * pages we want, so we don't really need to worry about the
1204 * contents of pages from loop to loop
1206 ret
= prepare_pages(root
, file
, pages
, num_pages
,
1207 pos
, first_index
, write_bytes
);
1209 btrfs_delalloc_release_space(inode
,
1210 num_pages
<< PAGE_CACHE_SHIFT
);
1214 copied
= btrfs_copy_from_user(pos
, num_pages
,
1215 write_bytes
, pages
, i
);
1218 * if we have trouble faulting in the pages, fall
1219 * back to one page at a time
1221 if (copied
< write_bytes
)
1227 dirty_pages
= (copied
+ offset
+
1228 PAGE_CACHE_SIZE
- 1) >>
1232 * If we had a short copy we need to release the excess delaloc
1233 * bytes we reserved. We need to increment outstanding_extents
1234 * because btrfs_delalloc_release_space will decrement it, but
1235 * we still have an outstanding extent for the chunk we actually
1238 if (num_pages
> dirty_pages
) {
1240 spin_lock(&BTRFS_I(inode
)->lock
);
1241 BTRFS_I(inode
)->outstanding_extents
++;
1242 spin_unlock(&BTRFS_I(inode
)->lock
);
1244 btrfs_delalloc_release_space(inode
,
1245 (num_pages
- dirty_pages
) <<
1250 ret
= btrfs_dirty_pages(root
, inode
, pages
,
1251 dirty_pages
, pos
, copied
,
1254 btrfs_delalloc_release_space(inode
,
1255 dirty_pages
<< PAGE_CACHE_SHIFT
);
1256 btrfs_drop_pages(pages
, num_pages
);
1261 btrfs_drop_pages(pages
, num_pages
);
1265 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
,
1267 if (dirty_pages
< (root
->leafsize
>> PAGE_CACHE_SHIFT
) + 1)
1268 btrfs_btree_balance_dirty(root
, 1);
1269 btrfs_throttle(root
);
1272 num_written
+= copied
;
1277 return num_written
? num_written
: ret
;
1280 static ssize_t
__btrfs_direct_write(struct kiocb
*iocb
,
1281 const struct iovec
*iov
,
1282 unsigned long nr_segs
, loff_t pos
,
1283 loff_t
*ppos
, size_t count
, size_t ocount
)
1285 struct file
*file
= iocb
->ki_filp
;
1286 struct inode
*inode
= fdentry(file
)->d_inode
;
1289 ssize_t written_buffered
;
1293 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
, ppos
,
1297 * the generic O_DIRECT will update in-memory i_size after the
1298 * DIOs are done. But our endio handlers that update the on
1299 * disk i_size never update past the in memory i_size. So we
1300 * need one more update here to catch any additions to the
1303 if (inode
->i_size
!= BTRFS_I(inode
)->disk_i_size
) {
1304 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
1305 mark_inode_dirty(inode
);
1308 if (written
< 0 || written
== count
)
1313 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
1314 written_buffered
= __btrfs_buffered_write(file
, &i
, pos
);
1315 if (written_buffered
< 0) {
1316 err
= written_buffered
;
1319 endbyte
= pos
+ written_buffered
- 1;
1320 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
1323 written
+= written_buffered
;
1324 *ppos
= pos
+ written_buffered
;
1325 invalidate_mapping_pages(file
->f_mapping
, pos
>> PAGE_CACHE_SHIFT
,
1326 endbyte
>> PAGE_CACHE_SHIFT
);
1328 return written
? written
: err
;
1331 static ssize_t
btrfs_file_aio_write(struct kiocb
*iocb
,
1332 const struct iovec
*iov
,
1333 unsigned long nr_segs
, loff_t pos
)
1335 struct file
*file
= iocb
->ki_filp
;
1336 struct inode
*inode
= fdentry(file
)->d_inode
;
1337 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1338 loff_t
*ppos
= &iocb
->ki_pos
;
1339 ssize_t num_written
= 0;
1341 size_t count
, ocount
;
1343 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
1345 mutex_lock(&inode
->i_mutex
);
1347 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
1349 mutex_unlock(&inode
->i_mutex
);
1354 current
->backing_dev_info
= inode
->i_mapping
->backing_dev_info
;
1355 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
1357 mutex_unlock(&inode
->i_mutex
);
1362 mutex_unlock(&inode
->i_mutex
);
1366 err
= file_remove_suid(file
);
1368 mutex_unlock(&inode
->i_mutex
);
1373 * If BTRFS flips readonly due to some impossible error
1374 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1375 * although we have opened a file as writable, we have
1376 * to stop this write operation to ensure FS consistency.
1378 if (root
->fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
1379 mutex_unlock(&inode
->i_mutex
);
1384 file_update_time(file
);
1385 BTRFS_I(inode
)->sequence
++;
1387 if (unlikely(file
->f_flags
& O_DIRECT
)) {
1388 num_written
= __btrfs_direct_write(iocb
, iov
, nr_segs
,
1389 pos
, ppos
, count
, ocount
);
1393 iov_iter_init(&i
, iov
, nr_segs
, count
, num_written
);
1395 num_written
= __btrfs_buffered_write(file
, &i
, pos
);
1396 if (num_written
> 0)
1397 *ppos
= pos
+ num_written
;
1400 mutex_unlock(&inode
->i_mutex
);
1403 * we want to make sure fsync finds this change
1404 * but we haven't joined a transaction running right now.
1406 * Later on, someone is sure to update the inode and get the
1407 * real transid recorded.
1409 * We set last_trans now to the fs_info generation + 1,
1410 * this will either be one more than the running transaction
1411 * or the generation used for the next transaction if there isn't
1412 * one running right now.
1414 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
+ 1;
1415 if (num_written
> 0 || num_written
== -EIOCBQUEUED
) {
1416 err
= generic_write_sync(file
, pos
, num_written
);
1417 if (err
< 0 && num_written
> 0)
1421 current
->backing_dev_info
= NULL
;
1422 return num_written
? num_written
: err
;
1425 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1428 * ordered_data_close is set by settattr when we are about to truncate
1429 * a file from a non-zero size to a zero size. This tries to
1430 * flush down new bytes that may have been written if the
1431 * application were using truncate to replace a file in place.
1433 if (BTRFS_I(inode
)->ordered_data_close
) {
1434 BTRFS_I(inode
)->ordered_data_close
= 0;
1435 btrfs_add_ordered_operation(NULL
, BTRFS_I(inode
)->root
, inode
);
1436 if (inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
1437 filemap_flush(inode
->i_mapping
);
1439 if (filp
->private_data
)
1440 btrfs_ioctl_trans_end(filp
);
1445 * fsync call for both files and directories. This logs the inode into
1446 * the tree log instead of forcing full commits whenever possible.
1448 * It needs to call filemap_fdatawait so that all ordered extent updates are
1449 * in the metadata btree are up to date for copying to the log.
1451 * It drops the inode mutex before doing the tree log commit. This is an
1452 * important optimization for directories because holding the mutex prevents
1453 * new operations on the dir while we write to disk.
1455 int btrfs_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1457 struct dentry
*dentry
= file
->f_path
.dentry
;
1458 struct inode
*inode
= dentry
->d_inode
;
1459 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1461 struct btrfs_trans_handle
*trans
;
1463 trace_btrfs_sync_file(file
, datasync
);
1465 ret
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
1468 mutex_lock(&inode
->i_mutex
);
1470 /* we wait first, since the writeback may change the inode */
1472 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1476 * check the transaction that last modified this inode
1477 * and see if its already been committed
1479 if (!BTRFS_I(inode
)->last_trans
) {
1480 mutex_unlock(&inode
->i_mutex
);
1485 * if the last transaction that changed this file was before
1486 * the current transaction, we can bail out now without any
1490 if (BTRFS_I(inode
)->last_trans
<=
1491 root
->fs_info
->last_trans_committed
) {
1492 BTRFS_I(inode
)->last_trans
= 0;
1493 mutex_unlock(&inode
->i_mutex
);
1498 * ok we haven't committed the transaction yet, lets do a commit
1500 if (file
->private_data
)
1501 btrfs_ioctl_trans_end(file
);
1503 trans
= btrfs_start_transaction(root
, 0);
1504 if (IS_ERR(trans
)) {
1505 ret
= PTR_ERR(trans
);
1506 mutex_unlock(&inode
->i_mutex
);
1510 ret
= btrfs_log_dentry_safe(trans
, root
, dentry
);
1512 mutex_unlock(&inode
->i_mutex
);
1516 /* we've logged all the items and now have a consistent
1517 * version of the file in the log. It is possible that
1518 * someone will come in and modify the file, but that's
1519 * fine because the log is consistent on disk, and we
1520 * have references to all of the file's extents
1522 * It is possible that someone will come in and log the
1523 * file again, but that will end up using the synchronization
1524 * inside btrfs_sync_log to keep things safe.
1526 mutex_unlock(&inode
->i_mutex
);
1528 if (ret
!= BTRFS_NO_LOG_SYNC
) {
1530 ret
= btrfs_commit_transaction(trans
, root
);
1532 ret
= btrfs_sync_log(trans
, root
);
1534 ret
= btrfs_end_transaction(trans
, root
);
1536 ret
= btrfs_commit_transaction(trans
, root
);
1539 ret
= btrfs_end_transaction(trans
, root
);
1542 return ret
> 0 ? -EIO
: ret
;
1545 static const struct vm_operations_struct btrfs_file_vm_ops
= {
1546 .fault
= filemap_fault
,
1547 .page_mkwrite
= btrfs_page_mkwrite
,
1550 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
1552 struct address_space
*mapping
= filp
->f_mapping
;
1554 if (!mapping
->a_ops
->readpage
)
1557 file_accessed(filp
);
1558 vma
->vm_ops
= &btrfs_file_vm_ops
;
1559 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1564 static long btrfs_fallocate(struct file
*file
, int mode
,
1565 loff_t offset
, loff_t len
)
1567 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1568 struct extent_state
*cached_state
= NULL
;
1575 u64 mask
= BTRFS_I(inode
)->root
->sectorsize
- 1;
1576 struct extent_map
*em
;
1579 alloc_start
= offset
& ~mask
;
1580 alloc_end
= (offset
+ len
+ mask
) & ~mask
;
1582 /* We only support the FALLOC_FL_KEEP_SIZE mode */
1583 if (mode
& ~FALLOC_FL_KEEP_SIZE
)
1587 * wait for ordered IO before we have any locks. We'll loop again
1588 * below with the locks held.
1590 btrfs_wait_ordered_range(inode
, alloc_start
, alloc_end
- alloc_start
);
1592 mutex_lock(&inode
->i_mutex
);
1593 ret
= inode_newsize_ok(inode
, alloc_end
);
1597 if (alloc_start
> inode
->i_size
) {
1598 ret
= btrfs_cont_expand(inode
, i_size_read(inode
),
1604 ret
= btrfs_check_data_free_space(inode
, alloc_end
- alloc_start
);
1608 locked_end
= alloc_end
- 1;
1610 struct btrfs_ordered_extent
*ordered
;
1612 /* the extent lock is ordered inside the running
1615 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
1616 locked_end
, 0, &cached_state
, GFP_NOFS
);
1617 ordered
= btrfs_lookup_first_ordered_extent(inode
,
1620 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
1621 ordered
->file_offset
< alloc_end
) {
1622 btrfs_put_ordered_extent(ordered
);
1623 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1624 alloc_start
, locked_end
,
1625 &cached_state
, GFP_NOFS
);
1627 * we can't wait on the range with the transaction
1628 * running or with the extent lock held
1630 btrfs_wait_ordered_range(inode
, alloc_start
,
1631 alloc_end
- alloc_start
);
1634 btrfs_put_ordered_extent(ordered
);
1639 cur_offset
= alloc_start
;
1641 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
1642 alloc_end
- cur_offset
, 0);
1643 BUG_ON(IS_ERR_OR_NULL(em
));
1644 last_byte
= min(extent_map_end(em
), alloc_end
);
1645 last_byte
= (last_byte
+ mask
) & ~mask
;
1646 if (em
->block_start
== EXTENT_MAP_HOLE
||
1647 (cur_offset
>= inode
->i_size
&&
1648 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
1649 ret
= btrfs_prealloc_file_range(inode
, mode
, cur_offset
,
1650 last_byte
- cur_offset
,
1651 1 << inode
->i_blkbits
,
1655 free_extent_map(em
);
1659 free_extent_map(em
);
1661 cur_offset
= last_byte
;
1662 if (cur_offset
>= alloc_end
) {
1667 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
1668 &cached_state
, GFP_NOFS
);
1670 btrfs_free_reserved_data_space(inode
, alloc_end
- alloc_start
);
1672 mutex_unlock(&inode
->i_mutex
);
1676 static int find_desired_extent(struct inode
*inode
, loff_t
*offset
, int origin
)
1678 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1679 struct extent_map
*em
;
1680 struct extent_state
*cached_state
= NULL
;
1681 u64 lockstart
= *offset
;
1682 u64 lockend
= i_size_read(inode
);
1683 u64 start
= *offset
;
1684 u64 orig_start
= *offset
;
1685 u64 len
= i_size_read(inode
);
1689 lockend
= max_t(u64
, root
->sectorsize
, lockend
);
1690 if (lockend
<= lockstart
)
1691 lockend
= lockstart
+ root
->sectorsize
;
1693 len
= lockend
- lockstart
+ 1;
1695 len
= max_t(u64
, len
, root
->sectorsize
);
1696 if (inode
->i_size
== 0)
1699 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
, 0,
1700 &cached_state
, GFP_NOFS
);
1703 * Delalloc is such a pain. If we have a hole and we have pending
1704 * delalloc for a portion of the hole we will get back a hole that
1705 * exists for the entire range since it hasn't been actually written
1706 * yet. So to take care of this case we need to look for an extent just
1707 * before the position we want in case there is outstanding delalloc
1710 if (origin
== SEEK_HOLE
&& start
!= 0) {
1711 if (start
<= root
->sectorsize
)
1712 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0, 0,
1713 root
->sectorsize
, 0);
1715 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0,
1716 start
- root
->sectorsize
,
1717 root
->sectorsize
, 0);
1722 last_end
= em
->start
+ em
->len
;
1723 if (em
->block_start
== EXTENT_MAP_DELALLOC
)
1724 last_end
= min_t(u64
, last_end
, inode
->i_size
);
1725 free_extent_map(em
);
1729 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0, start
, len
, 0);
1735 if (em
->block_start
== EXTENT_MAP_HOLE
) {
1736 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
1737 if (last_end
<= orig_start
) {
1738 free_extent_map(em
);
1744 if (origin
== SEEK_HOLE
) {
1746 free_extent_map(em
);
1750 if (origin
== SEEK_DATA
) {
1751 if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
1752 if (start
>= inode
->i_size
) {
1753 free_extent_map(em
);
1760 free_extent_map(em
);
1765 start
= em
->start
+ em
->len
;
1766 last_end
= em
->start
+ em
->len
;
1768 if (em
->block_start
== EXTENT_MAP_DELALLOC
)
1769 last_end
= min_t(u64
, last_end
, inode
->i_size
);
1771 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
1772 free_extent_map(em
);
1776 free_extent_map(em
);
1780 *offset
= min(*offset
, inode
->i_size
);
1782 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
1783 &cached_state
, GFP_NOFS
);
1787 static loff_t
btrfs_file_llseek(struct file
*file
, loff_t offset
, int origin
)
1789 struct inode
*inode
= file
->f_mapping
->host
;
1792 mutex_lock(&inode
->i_mutex
);
1796 offset
= generic_file_llseek_unlocked(file
, offset
, origin
);
1800 ret
= find_desired_extent(inode
, &offset
, origin
);
1802 mutex_unlock(&inode
->i_mutex
);
1807 if (offset
< 0 && !(file
->f_mode
& FMODE_UNSIGNED_OFFSET
))
1809 if (offset
> inode
->i_sb
->s_maxbytes
)
1812 /* Special lock needed here? */
1813 if (offset
!= file
->f_pos
) {
1814 file
->f_pos
= offset
;
1815 file
->f_version
= 0;
1818 mutex_unlock(&inode
->i_mutex
);
1822 const struct file_operations btrfs_file_operations
= {
1823 .llseek
= btrfs_file_llseek
,
1824 .read
= do_sync_read
,
1825 .write
= do_sync_write
,
1826 .aio_read
= generic_file_aio_read
,
1827 .splice_read
= generic_file_splice_read
,
1828 .aio_write
= btrfs_file_aio_write
,
1829 .mmap
= btrfs_file_mmap
,
1830 .open
= generic_file_open
,
1831 .release
= btrfs_release_file
,
1832 .fsync
= btrfs_sync_file
,
1833 .fallocate
= btrfs_fallocate
,
1834 .unlocked_ioctl
= btrfs_ioctl
,
1835 #ifdef CONFIG_COMPAT
1836 .compat_ioctl
= btrfs_ioctl
,