i2c-au1550: remove unused ack_timeout
[linux-2.6/linux-mips.git] / net / rds / send.c
blobaa57e22539ef2f905e6469079e4f7105a4b6ceaa
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
35 #include <net/sock.h>
36 #include <linux/in.h>
37 #include <linux/list.h>
38 #include <linux/ratelimit.h>
40 #include "rds.h"
42 /* When transmitting messages in rds_send_xmit, we need to emerge from
43 * time to time and briefly release the CPU. Otherwise the softlock watchdog
44 * will kick our shin.
45 * Also, it seems fairer to not let one busy connection stall all the
46 * others.
48 * send_batch_count is the number of times we'll loop in send_xmit. Setting
49 * it to 0 will restore the old behavior (where we looped until we had
50 * drained the queue).
52 static int send_batch_count = 64;
53 module_param(send_batch_count, int, 0444);
54 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
56 static void rds_send_remove_from_sock(struct list_head *messages, int status);
59 * Reset the send state. Callers must ensure that this doesn't race with
60 * rds_send_xmit().
62 void rds_send_reset(struct rds_connection *conn)
64 struct rds_message *rm, *tmp;
65 unsigned long flags;
67 if (conn->c_xmit_rm) {
68 rm = conn->c_xmit_rm;
69 conn->c_xmit_rm = NULL;
70 /* Tell the user the RDMA op is no longer mapped by the
71 * transport. This isn't entirely true (it's flushed out
72 * independently) but as the connection is down, there's
73 * no ongoing RDMA to/from that memory */
74 rds_message_unmapped(rm);
75 rds_message_put(rm);
78 conn->c_xmit_sg = 0;
79 conn->c_xmit_hdr_off = 0;
80 conn->c_xmit_data_off = 0;
81 conn->c_xmit_atomic_sent = 0;
82 conn->c_xmit_rdma_sent = 0;
83 conn->c_xmit_data_sent = 0;
85 conn->c_map_queued = 0;
87 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
88 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
90 /* Mark messages as retransmissions, and move them to the send q */
91 spin_lock_irqsave(&conn->c_lock, flags);
92 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
93 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
94 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
96 list_splice_init(&conn->c_retrans, &conn->c_send_queue);
97 spin_unlock_irqrestore(&conn->c_lock, flags);
100 static int acquire_in_xmit(struct rds_connection *conn)
102 return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
105 static void release_in_xmit(struct rds_connection *conn)
107 clear_bit(RDS_IN_XMIT, &conn->c_flags);
108 smp_mb__after_clear_bit();
110 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
111 * hot path and finding waiters is very rare. We don't want to walk
112 * the system-wide hashed waitqueue buckets in the fast path only to
113 * almost never find waiters.
115 if (waitqueue_active(&conn->c_waitq))
116 wake_up_all(&conn->c_waitq);
120 * We're making the conscious trade-off here to only send one message
121 * down the connection at a time.
122 * Pro:
123 * - tx queueing is a simple fifo list
124 * - reassembly is optional and easily done by transports per conn
125 * - no per flow rx lookup at all, straight to the socket
126 * - less per-frag memory and wire overhead
127 * Con:
128 * - queued acks can be delayed behind large messages
129 * Depends:
130 * - small message latency is higher behind queued large messages
131 * - large message latency isn't starved by intervening small sends
133 int rds_send_xmit(struct rds_connection *conn)
135 struct rds_message *rm;
136 unsigned long flags;
137 unsigned int tmp;
138 struct scatterlist *sg;
139 int ret = 0;
140 LIST_HEAD(to_be_dropped);
142 restart:
145 * sendmsg calls here after having queued its message on the send
146 * queue. We only have one task feeding the connection at a time. If
147 * another thread is already feeding the queue then we back off. This
148 * avoids blocking the caller and trading per-connection data between
149 * caches per message.
151 if (!acquire_in_xmit(conn)) {
152 rds_stats_inc(s_send_lock_contention);
153 ret = -ENOMEM;
154 goto out;
158 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
159 * we do the opposite to avoid races.
161 if (!rds_conn_up(conn)) {
162 release_in_xmit(conn);
163 ret = 0;
164 goto out;
167 if (conn->c_trans->xmit_prepare)
168 conn->c_trans->xmit_prepare(conn);
171 * spin trying to push headers and data down the connection until
172 * the connection doesn't make forward progress.
174 while (1) {
176 rm = conn->c_xmit_rm;
179 * If between sending messages, we can send a pending congestion
180 * map update.
182 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
183 rm = rds_cong_update_alloc(conn);
184 if (IS_ERR(rm)) {
185 ret = PTR_ERR(rm);
186 break;
188 rm->data.op_active = 1;
190 conn->c_xmit_rm = rm;
194 * If not already working on one, grab the next message.
196 * c_xmit_rm holds a ref while we're sending this message down
197 * the connction. We can use this ref while holding the
198 * send_sem.. rds_send_reset() is serialized with it.
200 if (!rm) {
201 unsigned int len;
203 spin_lock_irqsave(&conn->c_lock, flags);
205 if (!list_empty(&conn->c_send_queue)) {
206 rm = list_entry(conn->c_send_queue.next,
207 struct rds_message,
208 m_conn_item);
209 rds_message_addref(rm);
212 * Move the message from the send queue to the retransmit
213 * list right away.
215 list_move_tail(&rm->m_conn_item, &conn->c_retrans);
218 spin_unlock_irqrestore(&conn->c_lock, flags);
220 if (!rm)
221 break;
223 /* Unfortunately, the way Infiniband deals with
224 * RDMA to a bad MR key is by moving the entire
225 * queue pair to error state. We cold possibly
226 * recover from that, but right now we drop the
227 * connection.
228 * Therefore, we never retransmit messages with RDMA ops.
230 if (rm->rdma.op_active &&
231 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
232 spin_lock_irqsave(&conn->c_lock, flags);
233 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
234 list_move(&rm->m_conn_item, &to_be_dropped);
235 spin_unlock_irqrestore(&conn->c_lock, flags);
236 continue;
239 /* Require an ACK every once in a while */
240 len = ntohl(rm->m_inc.i_hdr.h_len);
241 if (conn->c_unacked_packets == 0 ||
242 conn->c_unacked_bytes < len) {
243 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
245 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
246 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
247 rds_stats_inc(s_send_ack_required);
248 } else {
249 conn->c_unacked_bytes -= len;
250 conn->c_unacked_packets--;
253 conn->c_xmit_rm = rm;
256 /* The transport either sends the whole rdma or none of it */
257 if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
258 rm->m_final_op = &rm->rdma;
259 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
260 if (ret)
261 break;
262 conn->c_xmit_rdma_sent = 1;
264 /* The transport owns the mapped memory for now.
265 * You can't unmap it while it's on the send queue */
266 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
269 if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
270 rm->m_final_op = &rm->atomic;
271 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
272 if (ret)
273 break;
274 conn->c_xmit_atomic_sent = 1;
276 /* The transport owns the mapped memory for now.
277 * You can't unmap it while it's on the send queue */
278 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
282 * A number of cases require an RDS header to be sent
283 * even if there is no data.
284 * We permit 0-byte sends; rds-ping depends on this.
285 * However, if there are exclusively attached silent ops,
286 * we skip the hdr/data send, to enable silent operation.
288 if (rm->data.op_nents == 0) {
289 int ops_present;
290 int all_ops_are_silent = 1;
292 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
293 if (rm->atomic.op_active && !rm->atomic.op_silent)
294 all_ops_are_silent = 0;
295 if (rm->rdma.op_active && !rm->rdma.op_silent)
296 all_ops_are_silent = 0;
298 if (ops_present && all_ops_are_silent
299 && !rm->m_rdma_cookie)
300 rm->data.op_active = 0;
303 if (rm->data.op_active && !conn->c_xmit_data_sent) {
304 rm->m_final_op = &rm->data;
305 ret = conn->c_trans->xmit(conn, rm,
306 conn->c_xmit_hdr_off,
307 conn->c_xmit_sg,
308 conn->c_xmit_data_off);
309 if (ret <= 0)
310 break;
312 if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
313 tmp = min_t(int, ret,
314 sizeof(struct rds_header) -
315 conn->c_xmit_hdr_off);
316 conn->c_xmit_hdr_off += tmp;
317 ret -= tmp;
320 sg = &rm->data.op_sg[conn->c_xmit_sg];
321 while (ret) {
322 tmp = min_t(int, ret, sg->length -
323 conn->c_xmit_data_off);
324 conn->c_xmit_data_off += tmp;
325 ret -= tmp;
326 if (conn->c_xmit_data_off == sg->length) {
327 conn->c_xmit_data_off = 0;
328 sg++;
329 conn->c_xmit_sg++;
330 BUG_ON(ret != 0 &&
331 conn->c_xmit_sg == rm->data.op_nents);
335 if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
336 (conn->c_xmit_sg == rm->data.op_nents))
337 conn->c_xmit_data_sent = 1;
341 * A rm will only take multiple times through this loop
342 * if there is a data op. Thus, if the data is sent (or there was
343 * none), then we're done with the rm.
345 if (!rm->data.op_active || conn->c_xmit_data_sent) {
346 conn->c_xmit_rm = NULL;
347 conn->c_xmit_sg = 0;
348 conn->c_xmit_hdr_off = 0;
349 conn->c_xmit_data_off = 0;
350 conn->c_xmit_rdma_sent = 0;
351 conn->c_xmit_atomic_sent = 0;
352 conn->c_xmit_data_sent = 0;
354 rds_message_put(rm);
358 if (conn->c_trans->xmit_complete)
359 conn->c_trans->xmit_complete(conn);
361 release_in_xmit(conn);
363 /* Nuke any messages we decided not to retransmit. */
364 if (!list_empty(&to_be_dropped)) {
365 /* irqs on here, so we can put(), unlike above */
366 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
367 rds_message_put(rm);
368 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
372 * Other senders can queue a message after we last test the send queue
373 * but before we clear RDS_IN_XMIT. In that case they'd back off and
374 * not try and send their newly queued message. We need to check the
375 * send queue after having cleared RDS_IN_XMIT so that their message
376 * doesn't get stuck on the send queue.
378 * If the transport cannot continue (i.e ret != 0), then it must
379 * call us when more room is available, such as from the tx
380 * completion handler.
382 if (ret == 0) {
383 smp_mb();
384 if (!list_empty(&conn->c_send_queue)) {
385 rds_stats_inc(s_send_lock_queue_raced);
386 goto restart;
389 out:
390 return ret;
393 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
395 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
397 assert_spin_locked(&rs->rs_lock);
399 BUG_ON(rs->rs_snd_bytes < len);
400 rs->rs_snd_bytes -= len;
402 if (rs->rs_snd_bytes == 0)
403 rds_stats_inc(s_send_queue_empty);
406 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
407 is_acked_func is_acked)
409 if (is_acked)
410 return is_acked(rm, ack);
411 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
415 * This is pretty similar to what happens below in the ACK
416 * handling code - except that we call here as soon as we get
417 * the IB send completion on the RDMA op and the accompanying
418 * message.
420 void rds_rdma_send_complete(struct rds_message *rm, int status)
422 struct rds_sock *rs = NULL;
423 struct rm_rdma_op *ro;
424 struct rds_notifier *notifier;
425 unsigned long flags;
427 spin_lock_irqsave(&rm->m_rs_lock, flags);
429 ro = &rm->rdma;
430 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
431 ro->op_active && ro->op_notify && ro->op_notifier) {
432 notifier = ro->op_notifier;
433 rs = rm->m_rs;
434 sock_hold(rds_rs_to_sk(rs));
436 notifier->n_status = status;
437 spin_lock(&rs->rs_lock);
438 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
439 spin_unlock(&rs->rs_lock);
441 ro->op_notifier = NULL;
444 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
446 if (rs) {
447 rds_wake_sk_sleep(rs);
448 sock_put(rds_rs_to_sk(rs));
451 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
454 * Just like above, except looks at atomic op
456 void rds_atomic_send_complete(struct rds_message *rm, int status)
458 struct rds_sock *rs = NULL;
459 struct rm_atomic_op *ao;
460 struct rds_notifier *notifier;
461 unsigned long flags;
463 spin_lock_irqsave(&rm->m_rs_lock, flags);
465 ao = &rm->atomic;
466 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
467 && ao->op_active && ao->op_notify && ao->op_notifier) {
468 notifier = ao->op_notifier;
469 rs = rm->m_rs;
470 sock_hold(rds_rs_to_sk(rs));
472 notifier->n_status = status;
473 spin_lock(&rs->rs_lock);
474 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
475 spin_unlock(&rs->rs_lock);
477 ao->op_notifier = NULL;
480 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
482 if (rs) {
483 rds_wake_sk_sleep(rs);
484 sock_put(rds_rs_to_sk(rs));
487 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
490 * This is the same as rds_rdma_send_complete except we
491 * don't do any locking - we have all the ingredients (message,
492 * socket, socket lock) and can just move the notifier.
494 static inline void
495 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
497 struct rm_rdma_op *ro;
498 struct rm_atomic_op *ao;
500 ro = &rm->rdma;
501 if (ro->op_active && ro->op_notify && ro->op_notifier) {
502 ro->op_notifier->n_status = status;
503 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
504 ro->op_notifier = NULL;
507 ao = &rm->atomic;
508 if (ao->op_active && ao->op_notify && ao->op_notifier) {
509 ao->op_notifier->n_status = status;
510 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
511 ao->op_notifier = NULL;
514 /* No need to wake the app - caller does this */
518 * This is called from the IB send completion when we detect
519 * a RDMA operation that failed with remote access error.
520 * So speed is not an issue here.
522 struct rds_message *rds_send_get_message(struct rds_connection *conn,
523 struct rm_rdma_op *op)
525 struct rds_message *rm, *tmp, *found = NULL;
526 unsigned long flags;
528 spin_lock_irqsave(&conn->c_lock, flags);
530 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
531 if (&rm->rdma == op) {
532 atomic_inc(&rm->m_refcount);
533 found = rm;
534 goto out;
538 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
539 if (&rm->rdma == op) {
540 atomic_inc(&rm->m_refcount);
541 found = rm;
542 break;
546 out:
547 spin_unlock_irqrestore(&conn->c_lock, flags);
549 return found;
551 EXPORT_SYMBOL_GPL(rds_send_get_message);
554 * This removes messages from the socket's list if they're on it. The list
555 * argument must be private to the caller, we must be able to modify it
556 * without locks. The messages must have a reference held for their
557 * position on the list. This function will drop that reference after
558 * removing the messages from the 'messages' list regardless of if it found
559 * the messages on the socket list or not.
561 static void rds_send_remove_from_sock(struct list_head *messages, int status)
563 unsigned long flags;
564 struct rds_sock *rs = NULL;
565 struct rds_message *rm;
567 while (!list_empty(messages)) {
568 int was_on_sock = 0;
570 rm = list_entry(messages->next, struct rds_message,
571 m_conn_item);
572 list_del_init(&rm->m_conn_item);
575 * If we see this flag cleared then we're *sure* that someone
576 * else beat us to removing it from the sock. If we race
577 * with their flag update we'll get the lock and then really
578 * see that the flag has been cleared.
580 * The message spinlock makes sure nobody clears rm->m_rs
581 * while we're messing with it. It does not prevent the
582 * message from being removed from the socket, though.
584 spin_lock_irqsave(&rm->m_rs_lock, flags);
585 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
586 goto unlock_and_drop;
588 if (rs != rm->m_rs) {
589 if (rs) {
590 rds_wake_sk_sleep(rs);
591 sock_put(rds_rs_to_sk(rs));
593 rs = rm->m_rs;
594 sock_hold(rds_rs_to_sk(rs));
596 spin_lock(&rs->rs_lock);
598 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
599 struct rm_rdma_op *ro = &rm->rdma;
600 struct rds_notifier *notifier;
602 list_del_init(&rm->m_sock_item);
603 rds_send_sndbuf_remove(rs, rm);
605 if (ro->op_active && ro->op_notifier &&
606 (ro->op_notify || (ro->op_recverr && status))) {
607 notifier = ro->op_notifier;
608 list_add_tail(&notifier->n_list,
609 &rs->rs_notify_queue);
610 if (!notifier->n_status)
611 notifier->n_status = status;
612 rm->rdma.op_notifier = NULL;
614 was_on_sock = 1;
615 rm->m_rs = NULL;
617 spin_unlock(&rs->rs_lock);
619 unlock_and_drop:
620 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
621 rds_message_put(rm);
622 if (was_on_sock)
623 rds_message_put(rm);
626 if (rs) {
627 rds_wake_sk_sleep(rs);
628 sock_put(rds_rs_to_sk(rs));
633 * Transports call here when they've determined that the receiver queued
634 * messages up to, and including, the given sequence number. Messages are
635 * moved to the retrans queue when rds_send_xmit picks them off the send
636 * queue. This means that in the TCP case, the message may not have been
637 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
638 * checks the RDS_MSG_HAS_ACK_SEQ bit.
640 * XXX It's not clear to me how this is safely serialized with socket
641 * destruction. Maybe it should bail if it sees SOCK_DEAD.
643 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
644 is_acked_func is_acked)
646 struct rds_message *rm, *tmp;
647 unsigned long flags;
648 LIST_HEAD(list);
650 spin_lock_irqsave(&conn->c_lock, flags);
652 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
653 if (!rds_send_is_acked(rm, ack, is_acked))
654 break;
656 list_move(&rm->m_conn_item, &list);
657 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
660 /* order flag updates with spin locks */
661 if (!list_empty(&list))
662 smp_mb__after_clear_bit();
664 spin_unlock_irqrestore(&conn->c_lock, flags);
666 /* now remove the messages from the sock list as needed */
667 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
669 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
671 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
673 struct rds_message *rm, *tmp;
674 struct rds_connection *conn;
675 unsigned long flags;
676 LIST_HEAD(list);
678 /* get all the messages we're dropping under the rs lock */
679 spin_lock_irqsave(&rs->rs_lock, flags);
681 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
682 if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
683 dest->sin_port != rm->m_inc.i_hdr.h_dport))
684 continue;
686 list_move(&rm->m_sock_item, &list);
687 rds_send_sndbuf_remove(rs, rm);
688 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
691 /* order flag updates with the rs lock */
692 smp_mb__after_clear_bit();
694 spin_unlock_irqrestore(&rs->rs_lock, flags);
696 if (list_empty(&list))
697 return;
699 /* Remove the messages from the conn */
700 list_for_each_entry(rm, &list, m_sock_item) {
702 conn = rm->m_inc.i_conn;
704 spin_lock_irqsave(&conn->c_lock, flags);
706 * Maybe someone else beat us to removing rm from the conn.
707 * If we race with their flag update we'll get the lock and
708 * then really see that the flag has been cleared.
710 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
711 spin_unlock_irqrestore(&conn->c_lock, flags);
712 continue;
714 list_del_init(&rm->m_conn_item);
715 spin_unlock_irqrestore(&conn->c_lock, flags);
718 * Couldn't grab m_rs_lock in top loop (lock ordering),
719 * but we can now.
721 spin_lock_irqsave(&rm->m_rs_lock, flags);
723 spin_lock(&rs->rs_lock);
724 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
725 spin_unlock(&rs->rs_lock);
727 rm->m_rs = NULL;
728 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
730 rds_message_put(rm);
733 rds_wake_sk_sleep(rs);
735 while (!list_empty(&list)) {
736 rm = list_entry(list.next, struct rds_message, m_sock_item);
737 list_del_init(&rm->m_sock_item);
739 rds_message_wait(rm);
740 rds_message_put(rm);
745 * we only want this to fire once so we use the callers 'queued'. It's
746 * possible that another thread can race with us and remove the
747 * message from the flow with RDS_CANCEL_SENT_TO.
749 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
750 struct rds_message *rm, __be16 sport,
751 __be16 dport, int *queued)
753 unsigned long flags;
754 u32 len;
756 if (*queued)
757 goto out;
759 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
761 /* this is the only place which holds both the socket's rs_lock
762 * and the connection's c_lock */
763 spin_lock_irqsave(&rs->rs_lock, flags);
766 * If there is a little space in sndbuf, we don't queue anything,
767 * and userspace gets -EAGAIN. But poll() indicates there's send
768 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
769 * freed up by incoming acks. So we check the *old* value of
770 * rs_snd_bytes here to allow the last msg to exceed the buffer,
771 * and poll() now knows no more data can be sent.
773 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
774 rs->rs_snd_bytes += len;
776 /* let recv side know we are close to send space exhaustion.
777 * This is probably not the optimal way to do it, as this
778 * means we set the flag on *all* messages as soon as our
779 * throughput hits a certain threshold.
781 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
782 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
784 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
785 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
786 rds_message_addref(rm);
787 rm->m_rs = rs;
789 /* The code ordering is a little weird, but we're
790 trying to minimize the time we hold c_lock */
791 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
792 rm->m_inc.i_conn = conn;
793 rds_message_addref(rm);
795 spin_lock(&conn->c_lock);
796 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
797 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
798 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
799 spin_unlock(&conn->c_lock);
801 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
802 rm, len, rs, rs->rs_snd_bytes,
803 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
805 *queued = 1;
808 spin_unlock_irqrestore(&rs->rs_lock, flags);
809 out:
810 return *queued;
814 * rds_message is getting to be quite complicated, and we'd like to allocate
815 * it all in one go. This figures out how big it needs to be up front.
817 static int rds_rm_size(struct msghdr *msg, int data_len)
819 struct cmsghdr *cmsg;
820 int size = 0;
821 int cmsg_groups = 0;
822 int retval;
824 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
825 if (!CMSG_OK(msg, cmsg))
826 return -EINVAL;
828 if (cmsg->cmsg_level != SOL_RDS)
829 continue;
831 switch (cmsg->cmsg_type) {
832 case RDS_CMSG_RDMA_ARGS:
833 cmsg_groups |= 1;
834 retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
835 if (retval < 0)
836 return retval;
837 size += retval;
839 break;
841 case RDS_CMSG_RDMA_DEST:
842 case RDS_CMSG_RDMA_MAP:
843 cmsg_groups |= 2;
844 /* these are valid but do no add any size */
845 break;
847 case RDS_CMSG_ATOMIC_CSWP:
848 case RDS_CMSG_ATOMIC_FADD:
849 case RDS_CMSG_MASKED_ATOMIC_CSWP:
850 case RDS_CMSG_MASKED_ATOMIC_FADD:
851 cmsg_groups |= 1;
852 size += sizeof(struct scatterlist);
853 break;
855 default:
856 return -EINVAL;
861 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
863 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
864 if (cmsg_groups == 3)
865 return -EINVAL;
867 return size;
870 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
871 struct msghdr *msg, int *allocated_mr)
873 struct cmsghdr *cmsg;
874 int ret = 0;
876 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
877 if (!CMSG_OK(msg, cmsg))
878 return -EINVAL;
880 if (cmsg->cmsg_level != SOL_RDS)
881 continue;
883 /* As a side effect, RDMA_DEST and RDMA_MAP will set
884 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
886 switch (cmsg->cmsg_type) {
887 case RDS_CMSG_RDMA_ARGS:
888 ret = rds_cmsg_rdma_args(rs, rm, cmsg);
889 break;
891 case RDS_CMSG_RDMA_DEST:
892 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
893 break;
895 case RDS_CMSG_RDMA_MAP:
896 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
897 if (!ret)
898 *allocated_mr = 1;
899 break;
900 case RDS_CMSG_ATOMIC_CSWP:
901 case RDS_CMSG_ATOMIC_FADD:
902 case RDS_CMSG_MASKED_ATOMIC_CSWP:
903 case RDS_CMSG_MASKED_ATOMIC_FADD:
904 ret = rds_cmsg_atomic(rs, rm, cmsg);
905 break;
907 default:
908 return -EINVAL;
911 if (ret)
912 break;
915 return ret;
918 int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
919 size_t payload_len)
921 struct sock *sk = sock->sk;
922 struct rds_sock *rs = rds_sk_to_rs(sk);
923 struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
924 __be32 daddr;
925 __be16 dport;
926 struct rds_message *rm = NULL;
927 struct rds_connection *conn;
928 int ret = 0;
929 int queued = 0, allocated_mr = 0;
930 int nonblock = msg->msg_flags & MSG_DONTWAIT;
931 long timeo = sock_sndtimeo(sk, nonblock);
933 /* Mirror Linux UDP mirror of BSD error message compatibility */
934 /* XXX: Perhaps MSG_MORE someday */
935 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
936 printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags);
937 ret = -EOPNOTSUPP;
938 goto out;
941 if (msg->msg_namelen) {
942 /* XXX fail non-unicast destination IPs? */
943 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
944 ret = -EINVAL;
945 goto out;
947 daddr = usin->sin_addr.s_addr;
948 dport = usin->sin_port;
949 } else {
950 /* We only care about consistency with ->connect() */
951 lock_sock(sk);
952 daddr = rs->rs_conn_addr;
953 dport = rs->rs_conn_port;
954 release_sock(sk);
957 /* racing with another thread binding seems ok here */
958 if (daddr == 0 || rs->rs_bound_addr == 0) {
959 ret = -ENOTCONN; /* XXX not a great errno */
960 goto out;
963 /* size of rm including all sgs */
964 ret = rds_rm_size(msg, payload_len);
965 if (ret < 0)
966 goto out;
968 rm = rds_message_alloc(ret, GFP_KERNEL);
969 if (!rm) {
970 ret = -ENOMEM;
971 goto out;
974 /* Attach data to the rm */
975 if (payload_len) {
976 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
977 if (!rm->data.op_sg) {
978 ret = -ENOMEM;
979 goto out;
981 ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
982 if (ret)
983 goto out;
985 rm->data.op_active = 1;
987 rm->m_daddr = daddr;
989 /* rds_conn_create has a spinlock that runs with IRQ off.
990 * Caching the conn in the socket helps a lot. */
991 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
992 conn = rs->rs_conn;
993 else {
994 conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
995 rs->rs_transport,
996 sock->sk->sk_allocation);
997 if (IS_ERR(conn)) {
998 ret = PTR_ERR(conn);
999 goto out;
1001 rs->rs_conn = conn;
1004 /* Parse any control messages the user may have included. */
1005 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1006 if (ret)
1007 goto out;
1009 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1010 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1011 &rm->rdma, conn->c_trans->xmit_rdma);
1012 ret = -EOPNOTSUPP;
1013 goto out;
1016 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1017 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1018 &rm->atomic, conn->c_trans->xmit_atomic);
1019 ret = -EOPNOTSUPP;
1020 goto out;
1023 rds_conn_connect_if_down(conn);
1025 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1026 if (ret) {
1027 rs->rs_seen_congestion = 1;
1028 goto out;
1031 while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1032 dport, &queued)) {
1033 rds_stats_inc(s_send_queue_full);
1034 /* XXX make sure this is reasonable */
1035 if (payload_len > rds_sk_sndbuf(rs)) {
1036 ret = -EMSGSIZE;
1037 goto out;
1039 if (nonblock) {
1040 ret = -EAGAIN;
1041 goto out;
1044 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1045 rds_send_queue_rm(rs, conn, rm,
1046 rs->rs_bound_port,
1047 dport,
1048 &queued),
1049 timeo);
1050 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1051 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1052 continue;
1054 ret = timeo;
1055 if (ret == 0)
1056 ret = -ETIMEDOUT;
1057 goto out;
1061 * By now we've committed to the send. We reuse rds_send_worker()
1062 * to retry sends in the rds thread if the transport asks us to.
1064 rds_stats_inc(s_send_queued);
1066 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1067 rds_send_xmit(conn);
1069 rds_message_put(rm);
1070 return payload_len;
1072 out:
1073 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1074 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1075 * or in any other way, we need to destroy the MR again */
1076 if (allocated_mr)
1077 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1079 if (rm)
1080 rds_message_put(rm);
1081 return ret;
1085 * Reply to a ping packet.
1088 rds_send_pong(struct rds_connection *conn, __be16 dport)
1090 struct rds_message *rm;
1091 unsigned long flags;
1092 int ret = 0;
1094 rm = rds_message_alloc(0, GFP_ATOMIC);
1095 if (!rm) {
1096 ret = -ENOMEM;
1097 goto out;
1100 rm->m_daddr = conn->c_faddr;
1101 rm->data.op_active = 1;
1103 rds_conn_connect_if_down(conn);
1105 ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1106 if (ret)
1107 goto out;
1109 spin_lock_irqsave(&conn->c_lock, flags);
1110 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1111 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1112 rds_message_addref(rm);
1113 rm->m_inc.i_conn = conn;
1115 rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1116 conn->c_next_tx_seq);
1117 conn->c_next_tx_seq++;
1118 spin_unlock_irqrestore(&conn->c_lock, flags);
1120 rds_stats_inc(s_send_queued);
1121 rds_stats_inc(s_send_pong);
1123 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1124 rds_send_xmit(conn);
1126 rds_message_put(rm);
1127 return 0;
1129 out:
1130 if (rm)
1131 rds_message_put(rm);
1132 return ret;