2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/ctype.h>
31 #include <linux/cache.h>
32 #include <linux/init.h>
33 #include <linux/signal.h>
34 #include <linux/memblock.h>
36 #include <asm/processor.h>
37 #include <asm/pgtable.h>
39 #include <asm/mmu_context.h>
41 #include <asm/types.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
46 #include <asm/abs_addr.h>
47 #include <asm/tlbflush.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
56 #include <asm/code-patching.h>
59 #define DBG(fmt...) udbg_printf(fmt)
65 #define DBG_LOW(fmt...) udbg_printf(fmt)
67 #define DBG_LOW(fmt...)
75 * Note: pte --> Linux PTE
76 * HPTE --> PowerPC Hashed Page Table Entry
79 * htab_initialize is called with the MMU off (of course), but
80 * the kernel has been copied down to zero so it can directly
81 * reference global data. At this point it is very difficult
82 * to print debug info.
87 extern unsigned long dart_tablebase
;
88 #endif /* CONFIG_U3_DART */
90 static unsigned long _SDR1
;
91 struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
];
93 struct hash_pte
*htab_address
;
94 unsigned long htab_size_bytes
;
95 unsigned long htab_hash_mask
;
96 EXPORT_SYMBOL_GPL(htab_hash_mask
);
97 int mmu_linear_psize
= MMU_PAGE_4K
;
98 int mmu_virtual_psize
= MMU_PAGE_4K
;
99 int mmu_vmalloc_psize
= MMU_PAGE_4K
;
100 #ifdef CONFIG_SPARSEMEM_VMEMMAP
101 int mmu_vmemmap_psize
= MMU_PAGE_4K
;
103 int mmu_io_psize
= MMU_PAGE_4K
;
104 int mmu_kernel_ssize
= MMU_SEGSIZE_256M
;
105 int mmu_highuser_ssize
= MMU_SEGSIZE_256M
;
106 u16 mmu_slb_size
= 64;
107 EXPORT_SYMBOL_GPL(mmu_slb_size
);
108 #ifdef CONFIG_HUGETLB_PAGE
109 unsigned int HPAGE_SHIFT
;
111 #ifdef CONFIG_PPC_64K_PAGES
112 int mmu_ci_restrictions
;
114 #ifdef CONFIG_DEBUG_PAGEALLOC
115 static u8
*linear_map_hash_slots
;
116 static unsigned long linear_map_hash_count
;
117 static DEFINE_SPINLOCK(linear_map_hash_lock
);
118 #endif /* CONFIG_DEBUG_PAGEALLOC */
120 /* There are definitions of page sizes arrays to be used when none
121 * is provided by the firmware.
124 /* Pre-POWER4 CPUs (4k pages only)
126 static struct mmu_psize_def mmu_psize_defaults_old
[] = {
136 /* POWER4, GPUL, POWER5
138 * Support for 16Mb large pages
140 static struct mmu_psize_def mmu_psize_defaults_gp
[] = {
157 static unsigned long htab_convert_pte_flags(unsigned long pteflags
)
159 unsigned long rflags
= pteflags
& 0x1fa;
161 /* _PAGE_EXEC -> NOEXEC */
162 if ((pteflags
& _PAGE_EXEC
) == 0)
165 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
166 * need to add in 0x1 if it's a read-only user page
168 if ((pteflags
& _PAGE_USER
) && !((pteflags
& _PAGE_RW
) &&
169 (pteflags
& _PAGE_DIRTY
)))
173 return rflags
| HPTE_R_C
;
176 int htab_bolt_mapping(unsigned long vstart
, unsigned long vend
,
177 unsigned long pstart
, unsigned long prot
,
178 int psize
, int ssize
)
180 unsigned long vaddr
, paddr
;
181 unsigned int step
, shift
;
184 shift
= mmu_psize_defs
[psize
].shift
;
187 prot
= htab_convert_pte_flags(prot
);
189 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
190 vstart
, vend
, pstart
, prot
, psize
, ssize
);
192 for (vaddr
= vstart
, paddr
= pstart
; vaddr
< vend
;
193 vaddr
+= step
, paddr
+= step
) {
194 unsigned long hash
, hpteg
;
195 unsigned long vsid
= get_kernel_vsid(vaddr
, ssize
);
196 unsigned long va
= hpt_va(vaddr
, vsid
, ssize
);
197 unsigned long tprot
= prot
;
199 /* Make kernel text executable */
200 if (overlaps_kernel_text(vaddr
, vaddr
+ step
))
203 hash
= hpt_hash(va
, shift
, ssize
);
204 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
206 BUG_ON(!ppc_md
.hpte_insert
);
207 ret
= ppc_md
.hpte_insert(hpteg
, va
, paddr
, tprot
,
208 HPTE_V_BOLTED
, psize
, ssize
);
212 #ifdef CONFIG_DEBUG_PAGEALLOC
213 if ((paddr
>> PAGE_SHIFT
) < linear_map_hash_count
)
214 linear_map_hash_slots
[paddr
>> PAGE_SHIFT
] = ret
| 0x80;
215 #endif /* CONFIG_DEBUG_PAGEALLOC */
217 return ret
< 0 ? ret
: 0;
220 #ifdef CONFIG_MEMORY_HOTPLUG
221 static int htab_remove_mapping(unsigned long vstart
, unsigned long vend
,
222 int psize
, int ssize
)
225 unsigned int step
, shift
;
227 shift
= mmu_psize_defs
[psize
].shift
;
230 if (!ppc_md
.hpte_removebolted
) {
231 printk(KERN_WARNING
"Platform doesn't implement "
232 "hpte_removebolted\n");
236 for (vaddr
= vstart
; vaddr
< vend
; vaddr
+= step
)
237 ppc_md
.hpte_removebolted(vaddr
, psize
, ssize
);
241 #endif /* CONFIG_MEMORY_HOTPLUG */
243 static int __init
htab_dt_scan_seg_sizes(unsigned long node
,
244 const char *uname
, int depth
,
247 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
249 unsigned long size
= 0;
251 /* We are scanning "cpu" nodes only */
252 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
255 prop
= (u32
*)of_get_flat_dt_prop(node
, "ibm,processor-segment-sizes",
259 for (; size
>= 4; size
-= 4, ++prop
) {
261 DBG("1T segment support detected\n");
262 cur_cpu_spec
->mmu_features
|= MMU_FTR_1T_SEGMENT
;
266 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_NO_SLBIE_B
;
270 static void __init
htab_init_seg_sizes(void)
272 of_scan_flat_dt(htab_dt_scan_seg_sizes
, NULL
);
275 static int __init
htab_dt_scan_page_sizes(unsigned long node
,
276 const char *uname
, int depth
,
279 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
281 unsigned long size
= 0;
283 /* We are scanning "cpu" nodes only */
284 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
287 prop
= (u32
*)of_get_flat_dt_prop(node
,
288 "ibm,segment-page-sizes", &size
);
290 DBG("Page sizes from device-tree:\n");
292 cur_cpu_spec
->mmu_features
&= ~(MMU_FTR_16M_PAGE
);
294 unsigned int shift
= prop
[0];
295 unsigned int slbenc
= prop
[1];
296 unsigned int lpnum
= prop
[2];
297 unsigned int lpenc
= 0;
298 struct mmu_psize_def
*def
;
301 size
-= 3; prop
+= 3;
302 while(size
> 0 && lpnum
) {
303 if (prop
[0] == shift
)
305 prop
+= 2; size
-= 2;
320 cur_cpu_spec
->mmu_features
|= MMU_FTR_16M_PAGE
;
328 def
= &mmu_psize_defs
[idx
];
333 def
->avpnm
= (1 << (shift
- 23)) - 1;
336 /* We don't know for sure what's up with tlbiel, so
337 * for now we only set it for 4K and 64K pages
339 if (idx
== MMU_PAGE_4K
|| idx
== MMU_PAGE_64K
)
344 DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
345 "tlbiel=%d, penc=%d\n",
346 idx
, shift
, def
->sllp
, def
->avpnm
, def
->tlbiel
,
354 #ifdef CONFIG_HUGETLB_PAGE
355 /* Scan for 16G memory blocks that have been set aside for huge pages
356 * and reserve those blocks for 16G huge pages.
358 static int __init
htab_dt_scan_hugepage_blocks(unsigned long node
,
359 const char *uname
, int depth
,
361 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
362 unsigned long *addr_prop
;
363 u32
*page_count_prop
;
364 unsigned int expected_pages
;
365 long unsigned int phys_addr
;
366 long unsigned int block_size
;
368 /* We are scanning "memory" nodes only */
369 if (type
== NULL
|| strcmp(type
, "memory") != 0)
372 /* This property is the log base 2 of the number of virtual pages that
373 * will represent this memory block. */
374 page_count_prop
= of_get_flat_dt_prop(node
, "ibm,expected#pages", NULL
);
375 if (page_count_prop
== NULL
)
377 expected_pages
= (1 << page_count_prop
[0]);
378 addr_prop
= of_get_flat_dt_prop(node
, "reg", NULL
);
379 if (addr_prop
== NULL
)
381 phys_addr
= addr_prop
[0];
382 block_size
= addr_prop
[1];
383 if (block_size
!= (16 * GB
))
385 printk(KERN_INFO
"Huge page(16GB) memory: "
386 "addr = 0x%lX size = 0x%lX pages = %d\n",
387 phys_addr
, block_size
, expected_pages
);
388 if (phys_addr
+ (16 * GB
) <= memblock_end_of_DRAM()) {
389 memblock_reserve(phys_addr
, block_size
* expected_pages
);
390 add_gpage(phys_addr
, block_size
, expected_pages
);
394 #endif /* CONFIG_HUGETLB_PAGE */
396 static void __init
htab_init_page_sizes(void)
400 /* Default to 4K pages only */
401 memcpy(mmu_psize_defs
, mmu_psize_defaults_old
,
402 sizeof(mmu_psize_defaults_old
));
405 * Try to find the available page sizes in the device-tree
407 rc
= of_scan_flat_dt(htab_dt_scan_page_sizes
, NULL
);
408 if (rc
!= 0) /* Found */
412 * Not in the device-tree, let's fallback on known size
413 * list for 16M capable GP & GR
415 if (mmu_has_feature(MMU_FTR_16M_PAGE
))
416 memcpy(mmu_psize_defs
, mmu_psize_defaults_gp
,
417 sizeof(mmu_psize_defaults_gp
));
419 #ifndef CONFIG_DEBUG_PAGEALLOC
421 * Pick a size for the linear mapping. Currently, we only support
422 * 16M, 1M and 4K which is the default
424 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
425 mmu_linear_psize
= MMU_PAGE_16M
;
426 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
427 mmu_linear_psize
= MMU_PAGE_1M
;
428 #endif /* CONFIG_DEBUG_PAGEALLOC */
430 #ifdef CONFIG_PPC_64K_PAGES
432 * Pick a size for the ordinary pages. Default is 4K, we support
433 * 64K for user mappings and vmalloc if supported by the processor.
434 * We only use 64k for ioremap if the processor
435 * (and firmware) support cache-inhibited large pages.
436 * If not, we use 4k and set mmu_ci_restrictions so that
437 * hash_page knows to switch processes that use cache-inhibited
438 * mappings to 4k pages.
440 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
) {
441 mmu_virtual_psize
= MMU_PAGE_64K
;
442 mmu_vmalloc_psize
= MMU_PAGE_64K
;
443 if (mmu_linear_psize
== MMU_PAGE_4K
)
444 mmu_linear_psize
= MMU_PAGE_64K
;
445 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE
)) {
447 * Don't use 64k pages for ioremap on pSeries, since
448 * that would stop us accessing the HEA ethernet.
450 if (!machine_is(pseries
))
451 mmu_io_psize
= MMU_PAGE_64K
;
453 mmu_ci_restrictions
= 1;
455 #endif /* CONFIG_PPC_64K_PAGES */
457 #ifdef CONFIG_SPARSEMEM_VMEMMAP
458 /* We try to use 16M pages for vmemmap if that is supported
459 * and we have at least 1G of RAM at boot
461 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
&&
462 memblock_phys_mem_size() >= 0x40000000)
463 mmu_vmemmap_psize
= MMU_PAGE_16M
;
464 else if (mmu_psize_defs
[MMU_PAGE_64K
].shift
)
465 mmu_vmemmap_psize
= MMU_PAGE_64K
;
467 mmu_vmemmap_psize
= MMU_PAGE_4K
;
468 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
470 printk(KERN_DEBUG
"Page orders: linear mapping = %d, "
471 "virtual = %d, io = %d"
472 #ifdef CONFIG_SPARSEMEM_VMEMMAP
476 mmu_psize_defs
[mmu_linear_psize
].shift
,
477 mmu_psize_defs
[mmu_virtual_psize
].shift
,
478 mmu_psize_defs
[mmu_io_psize
].shift
479 #ifdef CONFIG_SPARSEMEM_VMEMMAP
480 ,mmu_psize_defs
[mmu_vmemmap_psize
].shift
484 #ifdef CONFIG_HUGETLB_PAGE
485 /* Reserve 16G huge page memory sections for huge pages */
486 of_scan_flat_dt(htab_dt_scan_hugepage_blocks
, NULL
);
487 #endif /* CONFIG_HUGETLB_PAGE */
490 static int __init
htab_dt_scan_pftsize(unsigned long node
,
491 const char *uname
, int depth
,
494 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
497 /* We are scanning "cpu" nodes only */
498 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
501 prop
= (u32
*)of_get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
503 /* pft_size[0] is the NUMA CEC cookie */
504 ppc64_pft_size
= prop
[1];
510 static unsigned long __init
htab_get_table_size(void)
512 unsigned long mem_size
, rnd_mem_size
, pteg_count
, psize
;
514 /* If hash size isn't already provided by the platform, we try to
515 * retrieve it from the device-tree. If it's not there neither, we
516 * calculate it now based on the total RAM size
518 if (ppc64_pft_size
== 0)
519 of_scan_flat_dt(htab_dt_scan_pftsize
, NULL
);
521 return 1UL << ppc64_pft_size
;
523 /* round mem_size up to next power of 2 */
524 mem_size
= memblock_phys_mem_size();
525 rnd_mem_size
= 1UL << __ilog2(mem_size
);
526 if (rnd_mem_size
< mem_size
)
530 psize
= mmu_psize_defs
[mmu_virtual_psize
].shift
;
531 pteg_count
= max(rnd_mem_size
>> (psize
+ 1), 1UL << 11);
533 return pteg_count
<< 7;
536 #ifdef CONFIG_MEMORY_HOTPLUG
537 void create_section_mapping(unsigned long start
, unsigned long end
)
539 BUG_ON(htab_bolt_mapping(start
, end
, __pa(start
),
540 pgprot_val(PAGE_KERNEL
), mmu_linear_psize
,
544 int remove_section_mapping(unsigned long start
, unsigned long end
)
546 return htab_remove_mapping(start
, end
, mmu_linear_psize
,
549 #endif /* CONFIG_MEMORY_HOTPLUG */
551 #define FUNCTION_TEXT(A) ((*(unsigned long *)(A)))
553 static void __init
htab_finish_init(void)
555 extern unsigned int *htab_call_hpte_insert1
;
556 extern unsigned int *htab_call_hpte_insert2
;
557 extern unsigned int *htab_call_hpte_remove
;
558 extern unsigned int *htab_call_hpte_updatepp
;
560 #ifdef CONFIG_PPC_HAS_HASH_64K
561 extern unsigned int *ht64_call_hpte_insert1
;
562 extern unsigned int *ht64_call_hpte_insert2
;
563 extern unsigned int *ht64_call_hpte_remove
;
564 extern unsigned int *ht64_call_hpte_updatepp
;
566 patch_branch(ht64_call_hpte_insert1
,
567 FUNCTION_TEXT(ppc_md
.hpte_insert
),
569 patch_branch(ht64_call_hpte_insert2
,
570 FUNCTION_TEXT(ppc_md
.hpte_insert
),
572 patch_branch(ht64_call_hpte_remove
,
573 FUNCTION_TEXT(ppc_md
.hpte_remove
),
575 patch_branch(ht64_call_hpte_updatepp
,
576 FUNCTION_TEXT(ppc_md
.hpte_updatepp
),
579 #endif /* CONFIG_PPC_HAS_HASH_64K */
581 patch_branch(htab_call_hpte_insert1
,
582 FUNCTION_TEXT(ppc_md
.hpte_insert
),
584 patch_branch(htab_call_hpte_insert2
,
585 FUNCTION_TEXT(ppc_md
.hpte_insert
),
587 patch_branch(htab_call_hpte_remove
,
588 FUNCTION_TEXT(ppc_md
.hpte_remove
),
590 patch_branch(htab_call_hpte_updatepp
,
591 FUNCTION_TEXT(ppc_md
.hpte_updatepp
),
595 static void __init
htab_initialize(void)
598 unsigned long pteg_count
;
600 unsigned long base
= 0, size
= 0, limit
;
601 struct memblock_region
*reg
;
603 DBG(" -> htab_initialize()\n");
605 /* Initialize segment sizes */
606 htab_init_seg_sizes();
608 /* Initialize page sizes */
609 htab_init_page_sizes();
611 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
)) {
612 mmu_kernel_ssize
= MMU_SEGSIZE_1T
;
613 mmu_highuser_ssize
= MMU_SEGSIZE_1T
;
614 printk(KERN_INFO
"Using 1TB segments\n");
618 * Calculate the required size of the htab. We want the number of
619 * PTEGs to equal one half the number of real pages.
621 htab_size_bytes
= htab_get_table_size();
622 pteg_count
= htab_size_bytes
>> 7;
624 htab_hash_mask
= pteg_count
- 1;
626 if (firmware_has_feature(FW_FEATURE_LPAR
)) {
627 /* Using a hypervisor which owns the htab */
631 /* Find storage for the HPT. Must be contiguous in
632 * the absolute address space. On cell we want it to be
633 * in the first 2 Gig so we can use it for IOMMU hacks.
635 if (machine_is(cell
))
638 limit
= MEMBLOCK_ALLOC_ANYWHERE
;
640 table
= memblock_alloc_base(htab_size_bytes
, htab_size_bytes
, limit
);
642 DBG("Hash table allocated at %lx, size: %lx\n", table
,
645 htab_address
= abs_to_virt(table
);
647 /* htab absolute addr + encoded htabsize */
648 _SDR1
= table
+ __ilog2(pteg_count
) - 11;
650 /* Initialize the HPT with no entries */
651 memset((void *)table
, 0, htab_size_bytes
);
654 mtspr(SPRN_SDR1
, _SDR1
);
657 prot
= pgprot_val(PAGE_KERNEL
);
659 #ifdef CONFIG_DEBUG_PAGEALLOC
660 linear_map_hash_count
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
661 linear_map_hash_slots
= __va(memblock_alloc_base(linear_map_hash_count
,
663 memset(linear_map_hash_slots
, 0, linear_map_hash_count
);
664 #endif /* CONFIG_DEBUG_PAGEALLOC */
666 /* On U3 based machines, we need to reserve the DART area and
667 * _NOT_ map it to avoid cache paradoxes as it's remapped non
671 /* create bolted the linear mapping in the hash table */
672 for_each_memblock(memory
, reg
) {
673 base
= (unsigned long)__va(reg
->base
);
676 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
679 #ifdef CONFIG_U3_DART
680 /* Do not map the DART space. Fortunately, it will be aligned
681 * in such a way that it will not cross two memblock regions and
682 * will fit within a single 16Mb page.
683 * The DART space is assumed to be a full 16Mb region even if
684 * we only use 2Mb of that space. We will use more of it later
685 * for AGP GART. We have to use a full 16Mb large page.
687 DBG("DART base: %lx\n", dart_tablebase
);
689 if (dart_tablebase
!= 0 && dart_tablebase
>= base
690 && dart_tablebase
< (base
+ size
)) {
691 unsigned long dart_table_end
= dart_tablebase
+ 16 * MB
;
692 if (base
!= dart_tablebase
)
693 BUG_ON(htab_bolt_mapping(base
, dart_tablebase
,
697 if ((base
+ size
) > dart_table_end
)
698 BUG_ON(htab_bolt_mapping(dart_tablebase
+16*MB
,
700 __pa(dart_table_end
),
706 #endif /* CONFIG_U3_DART */
707 BUG_ON(htab_bolt_mapping(base
, base
+ size
, __pa(base
),
708 prot
, mmu_linear_psize
, mmu_kernel_ssize
));
710 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE
);
713 * If we have a memory_limit and we've allocated TCEs then we need to
714 * explicitly map the TCE area at the top of RAM. We also cope with the
715 * case that the TCEs start below memory_limit.
716 * tce_alloc_start/end are 16MB aligned so the mapping should work
717 * for either 4K or 16MB pages.
719 if (tce_alloc_start
) {
720 tce_alloc_start
= (unsigned long)__va(tce_alloc_start
);
721 tce_alloc_end
= (unsigned long)__va(tce_alloc_end
);
723 if (base
+ size
>= tce_alloc_start
)
724 tce_alloc_start
= base
+ size
+ 1;
726 BUG_ON(htab_bolt_mapping(tce_alloc_start
, tce_alloc_end
,
727 __pa(tce_alloc_start
), prot
,
728 mmu_linear_psize
, mmu_kernel_ssize
));
733 DBG(" <- htab_initialize()\n");
738 void __init
early_init_mmu(void)
740 /* Setup initial STAB address in the PACA */
741 get_paca()->stab_real
= __pa((u64
)&initial_stab
);
742 get_paca()->stab_addr
= (u64
)&initial_stab
;
744 /* Initialize the MMU Hash table and create the linear mapping
745 * of memory. Has to be done before stab/slb initialization as
746 * this is currently where the page size encoding is obtained
750 /* Initialize stab / SLB management except on iSeries
752 if (mmu_has_feature(MMU_FTR_SLB
))
754 else if (!firmware_has_feature(FW_FEATURE_ISERIES
))
755 stab_initialize(get_paca()->stab_real
);
759 void __cpuinit
early_init_mmu_secondary(void)
761 /* Initialize hash table for that CPU */
762 if (!firmware_has_feature(FW_FEATURE_LPAR
))
763 mtspr(SPRN_SDR1
, _SDR1
);
765 /* Initialize STAB/SLB. We use a virtual address as it works
766 * in real mode on pSeries and we want a virtual address on
769 if (mmu_has_feature(MMU_FTR_SLB
))
772 stab_initialize(get_paca()->stab_addr
);
774 #endif /* CONFIG_SMP */
777 * Called by asm hashtable.S for doing lazy icache flush
779 unsigned int hash_page_do_lazy_icache(unsigned int pp
, pte_t pte
, int trap
)
783 if (!pfn_valid(pte_pfn(pte
)))
786 page
= pte_page(pte
);
789 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
791 flush_dcache_icache_page(page
);
792 set_bit(PG_arch_1
, &page
->flags
);
799 #ifdef CONFIG_PPC_MM_SLICES
800 unsigned int get_paca_psize(unsigned long addr
)
802 unsigned long index
, slices
;
804 if (addr
< SLICE_LOW_TOP
) {
805 slices
= get_paca()->context
.low_slices_psize
;
806 index
= GET_LOW_SLICE_INDEX(addr
);
808 slices
= get_paca()->context
.high_slices_psize
;
809 index
= GET_HIGH_SLICE_INDEX(addr
);
811 return (slices
>> (index
* 4)) & 0xF;
815 unsigned int get_paca_psize(unsigned long addr
)
817 return get_paca()->context
.user_psize
;
822 * Demote a segment to using 4k pages.
823 * For now this makes the whole process use 4k pages.
825 #ifdef CONFIG_PPC_64K_PAGES
826 void demote_segment_4k(struct mm_struct
*mm
, unsigned long addr
)
828 if (get_slice_psize(mm
, addr
) == MMU_PAGE_4K
)
830 slice_set_range_psize(mm
, addr
, 1, MMU_PAGE_4K
);
831 #ifdef CONFIG_SPU_BASE
832 spu_flush_all_slbs(mm
);
834 if (get_paca_psize(addr
) != MMU_PAGE_4K
) {
835 get_paca()->context
= mm
->context
;
836 slb_flush_and_rebolt();
839 #endif /* CONFIG_PPC_64K_PAGES */
841 #ifdef CONFIG_PPC_SUBPAGE_PROT
843 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
844 * Userspace sets the subpage permissions using the subpage_prot system call.
846 * Result is 0: full permissions, _PAGE_RW: read-only,
847 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
849 static int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
851 struct subpage_prot_table
*spt
= &mm
->context
.spt
;
855 if (ea
>= spt
->maxaddr
)
857 if (ea
< 0x100000000) {
858 /* addresses below 4GB use spt->low_prot */
859 sbpm
= spt
->low_prot
;
861 sbpm
= spt
->protptrs
[ea
>> SBP_L3_SHIFT
];
865 sbpp
= sbpm
[(ea
>> SBP_L2_SHIFT
) & (SBP_L2_COUNT
- 1)];
868 spp
= sbpp
[(ea
>> PAGE_SHIFT
) & (SBP_L1_COUNT
- 1)];
870 /* extract 2-bit bitfield for this 4k subpage */
871 spp
>>= 30 - 2 * ((ea
>> 12) & 0xf);
873 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
874 spp
= ((spp
& 2) ? _PAGE_USER
: 0) | ((spp
& 1) ? _PAGE_RW
: 0);
878 #else /* CONFIG_PPC_SUBPAGE_PROT */
879 static inline int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
885 void hash_failure_debug(unsigned long ea
, unsigned long access
,
886 unsigned long vsid
, unsigned long trap
,
887 int ssize
, int psize
, unsigned long pte
)
889 if (!printk_ratelimit())
891 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
892 ea
, access
, current
->comm
);
893 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
894 trap
, vsid
, ssize
, psize
, pte
);
899 * 1 - normal page fault
900 * -1 - critical hash insertion error
901 * -2 - access not permitted by subpage protection mechanism
903 int hash_page(unsigned long ea
, unsigned long access
, unsigned long trap
)
907 struct mm_struct
*mm
;
910 const struct cpumask
*tmp
;
911 int rc
, user_region
= 0, local
= 0;
914 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
917 if ((ea
& ~REGION_MASK
) >= PGTABLE_RANGE
) {
918 DBG_LOW(" out of pgtable range !\n");
922 /* Get region & vsid */
923 switch (REGION_ID(ea
)) {
928 DBG_LOW(" user region with no mm !\n");
931 psize
= get_slice_psize(mm
, ea
);
932 ssize
= user_segment_size(ea
);
933 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
935 case VMALLOC_REGION_ID
:
937 vsid
= get_kernel_vsid(ea
, mmu_kernel_ssize
);
938 if (ea
< VMALLOC_END
)
939 psize
= mmu_vmalloc_psize
;
941 psize
= mmu_io_psize
;
942 ssize
= mmu_kernel_ssize
;
946 * Send the problem up to do_page_fault
950 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm
, mm
->pgd
, vsid
);
957 /* Check CPU locality */
958 tmp
= cpumask_of(smp_processor_id());
959 if (user_region
&& cpumask_equal(mm_cpumask(mm
), tmp
))
962 #ifndef CONFIG_PPC_64K_PAGES
963 /* If we use 4K pages and our psize is not 4K, then we might
964 * be hitting a special driver mapping, and need to align the
965 * address before we fetch the PTE.
967 * It could also be a hugepage mapping, in which case this is
968 * not necessary, but it's not harmful, either.
970 if (psize
!= MMU_PAGE_4K
)
971 ea
&= ~((1ul << mmu_psize_defs
[psize
].shift
) - 1);
972 #endif /* CONFIG_PPC_64K_PAGES */
974 /* Get PTE and page size from page tables */
975 ptep
= find_linux_pte_or_hugepte(pgdir
, ea
, &hugeshift
);
976 if (ptep
== NULL
|| !pte_present(*ptep
)) {
977 DBG_LOW(" no PTE !\n");
981 /* Add _PAGE_PRESENT to the required access perm */
982 access
|= _PAGE_PRESENT
;
984 /* Pre-check access permissions (will be re-checked atomically
985 * in __hash_page_XX but this pre-check is a fast path
987 if (access
& ~pte_val(*ptep
)) {
988 DBG_LOW(" no access !\n");
992 #ifdef CONFIG_HUGETLB_PAGE
994 return __hash_page_huge(ea
, access
, vsid
, ptep
, trap
, local
,
995 ssize
, hugeshift
, psize
);
996 #endif /* CONFIG_HUGETLB_PAGE */
998 #ifndef CONFIG_PPC_64K_PAGES
999 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep
));
1001 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep
),
1002 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1004 /* Do actual hashing */
1005 #ifdef CONFIG_PPC_64K_PAGES
1006 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1007 if ((pte_val(*ptep
) & _PAGE_4K_PFN
) && psize
== MMU_PAGE_64K
) {
1008 demote_segment_4k(mm
, ea
);
1009 psize
= MMU_PAGE_4K
;
1012 /* If this PTE is non-cacheable and we have restrictions on
1013 * using non cacheable large pages, then we switch to 4k
1015 if (mmu_ci_restrictions
&& psize
== MMU_PAGE_64K
&&
1016 (pte_val(*ptep
) & _PAGE_NO_CACHE
)) {
1018 demote_segment_4k(mm
, ea
);
1019 psize
= MMU_PAGE_4K
;
1020 } else if (ea
< VMALLOC_END
) {
1022 * some driver did a non-cacheable mapping
1023 * in vmalloc space, so switch vmalloc
1026 printk(KERN_ALERT
"Reducing vmalloc segment "
1027 "to 4kB pages because of "
1028 "non-cacheable mapping\n");
1029 psize
= mmu_vmalloc_psize
= MMU_PAGE_4K
;
1030 #ifdef CONFIG_SPU_BASE
1031 spu_flush_all_slbs(mm
);
1036 if (psize
!= get_paca_psize(ea
)) {
1037 get_paca()->context
= mm
->context
;
1038 slb_flush_and_rebolt();
1040 } else if (get_paca()->vmalloc_sllp
!=
1041 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
) {
1042 get_paca()->vmalloc_sllp
=
1043 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
;
1044 slb_vmalloc_update();
1046 #endif /* CONFIG_PPC_64K_PAGES */
1048 #ifdef CONFIG_PPC_HAS_HASH_64K
1049 if (psize
== MMU_PAGE_64K
)
1050 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
1052 #endif /* CONFIG_PPC_HAS_HASH_64K */
1054 int spp
= subpage_protection(mm
, ea
);
1058 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
,
1062 /* Dump some info in case of hash insertion failure, they should
1063 * never happen so it is really useful to know if/when they do
1066 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
, psize
,
1068 #ifndef CONFIG_PPC_64K_PAGES
1069 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep
));
1071 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep
),
1072 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1074 DBG_LOW(" -> rc=%d\n", rc
);
1077 EXPORT_SYMBOL_GPL(hash_page
);
1079 void hash_preload(struct mm_struct
*mm
, unsigned long ea
,
1080 unsigned long access
, unsigned long trap
)
1085 unsigned long flags
;
1086 int rc
, ssize
, local
= 0;
1088 BUG_ON(REGION_ID(ea
) != USER_REGION_ID
);
1090 #ifdef CONFIG_PPC_MM_SLICES
1091 /* We only prefault standard pages for now */
1092 if (unlikely(get_slice_psize(mm
, ea
) != mm
->context
.user_psize
))
1096 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1097 " trap=%lx\n", mm
, mm
->pgd
, ea
, access
, trap
);
1099 /* Get Linux PTE if available */
1103 ptep
= find_linux_pte(pgdir
, ea
);
1107 #ifdef CONFIG_PPC_64K_PAGES
1108 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1109 * a 64K kernel), then we don't preload, hash_page() will take
1110 * care of it once we actually try to access the page.
1111 * That way we don't have to duplicate all of the logic for segment
1112 * page size demotion here
1114 if (pte_val(*ptep
) & (_PAGE_4K_PFN
| _PAGE_NO_CACHE
))
1116 #endif /* CONFIG_PPC_64K_PAGES */
1119 ssize
= user_segment_size(ea
);
1120 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1122 /* Hash doesn't like irqs */
1123 local_irq_save(flags
);
1125 /* Is that local to this CPU ? */
1126 if (cpumask_equal(mm_cpumask(mm
), cpumask_of(smp_processor_id())))
1130 #ifdef CONFIG_PPC_HAS_HASH_64K
1131 if (mm
->context
.user_psize
== MMU_PAGE_64K
)
1132 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
1134 #endif /* CONFIG_PPC_HAS_HASH_64K */
1135 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
,
1136 subpage_protection(mm
, ea
));
1138 /* Dump some info in case of hash insertion failure, they should
1139 * never happen so it is really useful to know if/when they do
1142 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
,
1143 mm
->context
.user_psize
, pte_val(*ptep
));
1145 local_irq_restore(flags
);
1148 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1149 * do not forget to update the assembly call site !
1151 void flush_hash_page(unsigned long va
, real_pte_t pte
, int psize
, int ssize
,
1154 unsigned long hash
, index
, shift
, hidx
, slot
;
1156 DBG_LOW("flush_hash_page(va=%016lx)\n", va
);
1157 pte_iterate_hashed_subpages(pte
, psize
, va
, index
, shift
) {
1158 hash
= hpt_hash(va
, shift
, ssize
);
1159 hidx
= __rpte_to_hidx(pte
, index
);
1160 if (hidx
& _PTEIDX_SECONDARY
)
1162 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1163 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1164 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index
, slot
, hidx
);
1165 ppc_md
.hpte_invalidate(slot
, va
, psize
, ssize
, local
);
1166 } pte_iterate_hashed_end();
1169 void flush_hash_range(unsigned long number
, int local
)
1171 if (ppc_md
.flush_hash_range
)
1172 ppc_md
.flush_hash_range(number
, local
);
1175 struct ppc64_tlb_batch
*batch
=
1176 &__get_cpu_var(ppc64_tlb_batch
);
1178 for (i
= 0; i
< number
; i
++)
1179 flush_hash_page(batch
->vaddr
[i
], batch
->pte
[i
],
1180 batch
->psize
, batch
->ssize
, local
);
1185 * low_hash_fault is called when we the low level hash code failed
1186 * to instert a PTE due to an hypervisor error
1188 void low_hash_fault(struct pt_regs
*regs
, unsigned long address
, int rc
)
1190 if (user_mode(regs
)) {
1191 #ifdef CONFIG_PPC_SUBPAGE_PROT
1193 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, address
);
1196 _exception(SIGBUS
, regs
, BUS_ADRERR
, address
);
1198 bad_page_fault(regs
, address
, SIGBUS
);
1201 #ifdef CONFIG_DEBUG_PAGEALLOC
1202 static void kernel_map_linear_page(unsigned long vaddr
, unsigned long lmi
)
1204 unsigned long hash
, hpteg
;
1205 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1206 unsigned long va
= hpt_va(vaddr
, vsid
, mmu_kernel_ssize
);
1207 unsigned long mode
= htab_convert_pte_flags(PAGE_KERNEL
);
1210 hash
= hpt_hash(va
, PAGE_SHIFT
, mmu_kernel_ssize
);
1211 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
1213 ret
= ppc_md
.hpte_insert(hpteg
, va
, __pa(vaddr
),
1214 mode
, HPTE_V_BOLTED
,
1215 mmu_linear_psize
, mmu_kernel_ssize
);
1217 spin_lock(&linear_map_hash_lock
);
1218 BUG_ON(linear_map_hash_slots
[lmi
] & 0x80);
1219 linear_map_hash_slots
[lmi
] = ret
| 0x80;
1220 spin_unlock(&linear_map_hash_lock
);
1223 static void kernel_unmap_linear_page(unsigned long vaddr
, unsigned long lmi
)
1225 unsigned long hash
, hidx
, slot
;
1226 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1227 unsigned long va
= hpt_va(vaddr
, vsid
, mmu_kernel_ssize
);
1229 hash
= hpt_hash(va
, PAGE_SHIFT
, mmu_kernel_ssize
);
1230 spin_lock(&linear_map_hash_lock
);
1231 BUG_ON(!(linear_map_hash_slots
[lmi
] & 0x80));
1232 hidx
= linear_map_hash_slots
[lmi
] & 0x7f;
1233 linear_map_hash_slots
[lmi
] = 0;
1234 spin_unlock(&linear_map_hash_lock
);
1235 if (hidx
& _PTEIDX_SECONDARY
)
1237 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1238 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1239 ppc_md
.hpte_invalidate(slot
, va
, mmu_linear_psize
, mmu_kernel_ssize
, 0);
1242 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1244 unsigned long flags
, vaddr
, lmi
;
1247 local_irq_save(flags
);
1248 for (i
= 0; i
< numpages
; i
++, page
++) {
1249 vaddr
= (unsigned long)page_address(page
);
1250 lmi
= __pa(vaddr
) >> PAGE_SHIFT
;
1251 if (lmi
>= linear_map_hash_count
)
1254 kernel_map_linear_page(vaddr
, lmi
);
1256 kernel_unmap_linear_page(vaddr
, lmi
);
1258 local_irq_restore(flags
);
1260 #endif /* CONFIG_DEBUG_PAGEALLOC */
1262 void setup_initial_memory_limit(phys_addr_t first_memblock_base
,
1263 phys_addr_t first_memblock_size
)
1265 /* We don't currently support the first MEMBLOCK not mapping 0
1266 * physical on those processors
1268 BUG_ON(first_memblock_base
!= 0);
1270 /* On LPAR systems, the first entry is our RMA region,
1271 * non-LPAR 64-bit hash MMU systems don't have a limitation
1272 * on real mode access, but using the first entry works well
1273 * enough. We also clamp it to 1G to avoid some funky things
1274 * such as RTAS bugs etc...
1276 ppc64_rma_size
= min_t(u64
, first_memblock_size
, 0x40000000);
1278 /* Finally limit subsequent allocations */
1279 memblock_set_current_limit(ppc64_rma_size
);