MIPS: Octeon: Add octeon_get_io_clock_rate() for cn63xx
[linux-2.6/linux-mips.git] / fs / jbd / journal.c
blobda1b5e4ffce1200675e5cf7690e08d0545b304d8
1 /*
2 * linux/fs/jbd/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
41 #include <asm/uaccess.h>
42 #include <asm/page.h>
44 EXPORT_SYMBOL(journal_start);
45 EXPORT_SYMBOL(journal_restart);
46 EXPORT_SYMBOL(journal_extend);
47 EXPORT_SYMBOL(journal_stop);
48 EXPORT_SYMBOL(journal_lock_updates);
49 EXPORT_SYMBOL(journal_unlock_updates);
50 EXPORT_SYMBOL(journal_get_write_access);
51 EXPORT_SYMBOL(journal_get_create_access);
52 EXPORT_SYMBOL(journal_get_undo_access);
53 EXPORT_SYMBOL(journal_dirty_data);
54 EXPORT_SYMBOL(journal_dirty_metadata);
55 EXPORT_SYMBOL(journal_release_buffer);
56 EXPORT_SYMBOL(journal_forget);
57 #if 0
58 EXPORT_SYMBOL(journal_sync_buffer);
59 #endif
60 EXPORT_SYMBOL(journal_flush);
61 EXPORT_SYMBOL(journal_revoke);
63 EXPORT_SYMBOL(journal_init_dev);
64 EXPORT_SYMBOL(journal_init_inode);
65 EXPORT_SYMBOL(journal_update_format);
66 EXPORT_SYMBOL(journal_check_used_features);
67 EXPORT_SYMBOL(journal_check_available_features);
68 EXPORT_SYMBOL(journal_set_features);
69 EXPORT_SYMBOL(journal_create);
70 EXPORT_SYMBOL(journal_load);
71 EXPORT_SYMBOL(journal_destroy);
72 EXPORT_SYMBOL(journal_abort);
73 EXPORT_SYMBOL(journal_errno);
74 EXPORT_SYMBOL(journal_ack_err);
75 EXPORT_SYMBOL(journal_clear_err);
76 EXPORT_SYMBOL(log_wait_commit);
77 EXPORT_SYMBOL(log_start_commit);
78 EXPORT_SYMBOL(journal_start_commit);
79 EXPORT_SYMBOL(journal_force_commit_nested);
80 EXPORT_SYMBOL(journal_wipe);
81 EXPORT_SYMBOL(journal_blocks_per_page);
82 EXPORT_SYMBOL(journal_invalidatepage);
83 EXPORT_SYMBOL(journal_try_to_free_buffers);
84 EXPORT_SYMBOL(journal_force_commit);
86 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
87 static void __journal_abort_soft (journal_t *journal, int errno);
88 static const char *journal_dev_name(journal_t *journal, char *buffer);
91 * Helper function used to manage commit timeouts
94 static void commit_timeout(unsigned long __data)
96 struct task_struct * p = (struct task_struct *) __data;
98 wake_up_process(p);
102 * kjournald: The main thread function used to manage a logging device
103 * journal.
105 * This kernel thread is responsible for two things:
107 * 1) COMMIT: Every so often we need to commit the current state of the
108 * filesystem to disk. The journal thread is responsible for writing
109 * all of the metadata buffers to disk.
111 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
112 * of the data in that part of the log has been rewritten elsewhere on
113 * the disk. Flushing these old buffers to reclaim space in the log is
114 * known as checkpointing, and this thread is responsible for that job.
117 static int kjournald(void *arg)
119 journal_t *journal = arg;
120 transaction_t *transaction;
123 * Set up an interval timer which can be used to trigger a commit wakeup
124 * after the commit interval expires
126 setup_timer(&journal->j_commit_timer, commit_timeout,
127 (unsigned long)current);
129 /* Record that the journal thread is running */
130 journal->j_task = current;
131 wake_up(&journal->j_wait_done_commit);
133 printk(KERN_INFO "kjournald starting. Commit interval %ld seconds\n",
134 journal->j_commit_interval / HZ);
137 * And now, wait forever for commit wakeup events.
139 spin_lock(&journal->j_state_lock);
141 loop:
142 if (journal->j_flags & JFS_UNMOUNT)
143 goto end_loop;
145 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
146 journal->j_commit_sequence, journal->j_commit_request);
148 if (journal->j_commit_sequence != journal->j_commit_request) {
149 jbd_debug(1, "OK, requests differ\n");
150 spin_unlock(&journal->j_state_lock);
151 del_timer_sync(&journal->j_commit_timer);
152 journal_commit_transaction(journal);
153 spin_lock(&journal->j_state_lock);
154 goto loop;
157 wake_up(&journal->j_wait_done_commit);
158 if (freezing(current)) {
160 * The simpler the better. Flushing journal isn't a
161 * good idea, because that depends on threads that may
162 * be already stopped.
164 jbd_debug(1, "Now suspending kjournald\n");
165 spin_unlock(&journal->j_state_lock);
166 refrigerator();
167 spin_lock(&journal->j_state_lock);
168 } else {
170 * We assume on resume that commits are already there,
171 * so we don't sleep
173 DEFINE_WAIT(wait);
174 int should_sleep = 1;
176 prepare_to_wait(&journal->j_wait_commit, &wait,
177 TASK_INTERRUPTIBLE);
178 if (journal->j_commit_sequence != journal->j_commit_request)
179 should_sleep = 0;
180 transaction = journal->j_running_transaction;
181 if (transaction && time_after_eq(jiffies,
182 transaction->t_expires))
183 should_sleep = 0;
184 if (journal->j_flags & JFS_UNMOUNT)
185 should_sleep = 0;
186 if (should_sleep) {
187 spin_unlock(&journal->j_state_lock);
188 schedule();
189 spin_lock(&journal->j_state_lock);
191 finish_wait(&journal->j_wait_commit, &wait);
194 jbd_debug(1, "kjournald wakes\n");
197 * Were we woken up by a commit wakeup event?
199 transaction = journal->j_running_transaction;
200 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
201 journal->j_commit_request = transaction->t_tid;
202 jbd_debug(1, "woke because of timeout\n");
204 goto loop;
206 end_loop:
207 spin_unlock(&journal->j_state_lock);
208 del_timer_sync(&journal->j_commit_timer);
209 journal->j_task = NULL;
210 wake_up(&journal->j_wait_done_commit);
211 jbd_debug(1, "Journal thread exiting.\n");
212 return 0;
215 static int journal_start_thread(journal_t *journal)
217 struct task_struct *t;
219 t = kthread_run(kjournald, journal, "kjournald");
220 if (IS_ERR(t))
221 return PTR_ERR(t);
223 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
224 return 0;
227 static void journal_kill_thread(journal_t *journal)
229 spin_lock(&journal->j_state_lock);
230 journal->j_flags |= JFS_UNMOUNT;
232 while (journal->j_task) {
233 wake_up(&journal->j_wait_commit);
234 spin_unlock(&journal->j_state_lock);
235 wait_event(journal->j_wait_done_commit,
236 journal->j_task == NULL);
237 spin_lock(&journal->j_state_lock);
239 spin_unlock(&journal->j_state_lock);
243 * journal_write_metadata_buffer: write a metadata buffer to the journal.
245 * Writes a metadata buffer to a given disk block. The actual IO is not
246 * performed but a new buffer_head is constructed which labels the data
247 * to be written with the correct destination disk block.
249 * Any magic-number escaping which needs to be done will cause a
250 * copy-out here. If the buffer happens to start with the
251 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
252 * magic number is only written to the log for descripter blocks. In
253 * this case, we copy the data and replace the first word with 0, and we
254 * return a result code which indicates that this buffer needs to be
255 * marked as an escaped buffer in the corresponding log descriptor
256 * block. The missing word can then be restored when the block is read
257 * during recovery.
259 * If the source buffer has already been modified by a new transaction
260 * since we took the last commit snapshot, we use the frozen copy of
261 * that data for IO. If we end up using the existing buffer_head's data
262 * for the write, then we *have* to lock the buffer to prevent anyone
263 * else from using and possibly modifying it while the IO is in
264 * progress.
266 * The function returns a pointer to the buffer_heads to be used for IO.
268 * We assume that the journal has already been locked in this function.
270 * Return value:
271 * <0: Error
272 * >=0: Finished OK
274 * On success:
275 * Bit 0 set == escape performed on the data
276 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
279 int journal_write_metadata_buffer(transaction_t *transaction,
280 struct journal_head *jh_in,
281 struct journal_head **jh_out,
282 unsigned int blocknr)
284 int need_copy_out = 0;
285 int done_copy_out = 0;
286 int do_escape = 0;
287 char *mapped_data;
288 struct buffer_head *new_bh;
289 struct journal_head *new_jh;
290 struct page *new_page;
291 unsigned int new_offset;
292 struct buffer_head *bh_in = jh2bh(jh_in);
293 journal_t *journal = transaction->t_journal;
296 * The buffer really shouldn't be locked: only the current committing
297 * transaction is allowed to write it, so nobody else is allowed
298 * to do any IO.
300 * akpm: except if we're journalling data, and write() output is
301 * also part of a shared mapping, and another thread has
302 * decided to launch a writepage() against this buffer.
304 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
306 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
307 /* keep subsequent assertions sane */
308 new_bh->b_state = 0;
309 init_buffer(new_bh, NULL, NULL);
310 atomic_set(&new_bh->b_count, 1);
311 new_jh = journal_add_journal_head(new_bh); /* This sleeps */
314 * If a new transaction has already done a buffer copy-out, then
315 * we use that version of the data for the commit.
317 jbd_lock_bh_state(bh_in);
318 repeat:
319 if (jh_in->b_frozen_data) {
320 done_copy_out = 1;
321 new_page = virt_to_page(jh_in->b_frozen_data);
322 new_offset = offset_in_page(jh_in->b_frozen_data);
323 } else {
324 new_page = jh2bh(jh_in)->b_page;
325 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
328 mapped_data = kmap_atomic(new_page, KM_USER0);
330 * Check for escaping
332 if (*((__be32 *)(mapped_data + new_offset)) ==
333 cpu_to_be32(JFS_MAGIC_NUMBER)) {
334 need_copy_out = 1;
335 do_escape = 1;
337 kunmap_atomic(mapped_data, KM_USER0);
340 * Do we need to do a data copy?
342 if (need_copy_out && !done_copy_out) {
343 char *tmp;
345 jbd_unlock_bh_state(bh_in);
346 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
347 jbd_lock_bh_state(bh_in);
348 if (jh_in->b_frozen_data) {
349 jbd_free(tmp, bh_in->b_size);
350 goto repeat;
353 jh_in->b_frozen_data = tmp;
354 mapped_data = kmap_atomic(new_page, KM_USER0);
355 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
356 kunmap_atomic(mapped_data, KM_USER0);
358 new_page = virt_to_page(tmp);
359 new_offset = offset_in_page(tmp);
360 done_copy_out = 1;
364 * Did we need to do an escaping? Now we've done all the
365 * copying, we can finally do so.
367 if (do_escape) {
368 mapped_data = kmap_atomic(new_page, KM_USER0);
369 *((unsigned int *)(mapped_data + new_offset)) = 0;
370 kunmap_atomic(mapped_data, KM_USER0);
373 set_bh_page(new_bh, new_page, new_offset);
374 new_jh->b_transaction = NULL;
375 new_bh->b_size = jh2bh(jh_in)->b_size;
376 new_bh->b_bdev = transaction->t_journal->j_dev;
377 new_bh->b_blocknr = blocknr;
378 set_buffer_mapped(new_bh);
379 set_buffer_dirty(new_bh);
381 *jh_out = new_jh;
384 * The to-be-written buffer needs to get moved to the io queue,
385 * and the original buffer whose contents we are shadowing or
386 * copying is moved to the transaction's shadow queue.
388 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
389 spin_lock(&journal->j_list_lock);
390 __journal_file_buffer(jh_in, transaction, BJ_Shadow);
391 spin_unlock(&journal->j_list_lock);
392 jbd_unlock_bh_state(bh_in);
394 JBUFFER_TRACE(new_jh, "file as BJ_IO");
395 journal_file_buffer(new_jh, transaction, BJ_IO);
397 return do_escape | (done_copy_out << 1);
401 * Allocation code for the journal file. Manage the space left in the
402 * journal, so that we can begin checkpointing when appropriate.
406 * __log_space_left: Return the number of free blocks left in the journal.
408 * Called with the journal already locked.
410 * Called under j_state_lock
413 int __log_space_left(journal_t *journal)
415 int left = journal->j_free;
417 assert_spin_locked(&journal->j_state_lock);
420 * Be pessimistic here about the number of those free blocks which
421 * might be required for log descriptor control blocks.
424 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
426 left -= MIN_LOG_RESERVED_BLOCKS;
428 if (left <= 0)
429 return 0;
430 left -= (left >> 3);
431 return left;
435 * Called under j_state_lock. Returns true if a transaction commit was started.
437 int __log_start_commit(journal_t *journal, tid_t target)
440 * Are we already doing a recent enough commit?
442 if (!tid_geq(journal->j_commit_request, target)) {
444 * We want a new commit: OK, mark the request and wakeup the
445 * commit thread. We do _not_ do the commit ourselves.
448 journal->j_commit_request = target;
449 jbd_debug(1, "JBD: requesting commit %d/%d\n",
450 journal->j_commit_request,
451 journal->j_commit_sequence);
452 wake_up(&journal->j_wait_commit);
453 return 1;
455 return 0;
458 int log_start_commit(journal_t *journal, tid_t tid)
460 int ret;
462 spin_lock(&journal->j_state_lock);
463 ret = __log_start_commit(journal, tid);
464 spin_unlock(&journal->j_state_lock);
465 return ret;
469 * Force and wait upon a commit if the calling process is not within
470 * transaction. This is used for forcing out undo-protected data which contains
471 * bitmaps, when the fs is running out of space.
473 * We can only force the running transaction if we don't have an active handle;
474 * otherwise, we will deadlock.
476 * Returns true if a transaction was started.
478 int journal_force_commit_nested(journal_t *journal)
480 transaction_t *transaction = NULL;
481 tid_t tid;
483 spin_lock(&journal->j_state_lock);
484 if (journal->j_running_transaction && !current->journal_info) {
485 transaction = journal->j_running_transaction;
486 __log_start_commit(journal, transaction->t_tid);
487 } else if (journal->j_committing_transaction)
488 transaction = journal->j_committing_transaction;
490 if (!transaction) {
491 spin_unlock(&journal->j_state_lock);
492 return 0; /* Nothing to retry */
495 tid = transaction->t_tid;
496 spin_unlock(&journal->j_state_lock);
497 log_wait_commit(journal, tid);
498 return 1;
502 * Start a commit of the current running transaction (if any). Returns true
503 * if a transaction is going to be committed (or is currently already
504 * committing), and fills its tid in at *ptid
506 int journal_start_commit(journal_t *journal, tid_t *ptid)
508 int ret = 0;
510 spin_lock(&journal->j_state_lock);
511 if (journal->j_running_transaction) {
512 tid_t tid = journal->j_running_transaction->t_tid;
514 __log_start_commit(journal, tid);
515 /* There's a running transaction and we've just made sure
516 * it's commit has been scheduled. */
517 if (ptid)
518 *ptid = tid;
519 ret = 1;
520 } else if (journal->j_committing_transaction) {
522 * If ext3_write_super() recently started a commit, then we
523 * have to wait for completion of that transaction
525 if (ptid)
526 *ptid = journal->j_committing_transaction->t_tid;
527 ret = 1;
529 spin_unlock(&journal->j_state_lock);
530 return ret;
534 * Wait for a specified commit to complete.
535 * The caller may not hold the journal lock.
537 int log_wait_commit(journal_t *journal, tid_t tid)
539 int err = 0;
541 #ifdef CONFIG_JBD_DEBUG
542 spin_lock(&journal->j_state_lock);
543 if (!tid_geq(journal->j_commit_request, tid)) {
544 printk(KERN_EMERG
545 "%s: error: j_commit_request=%d, tid=%d\n",
546 __func__, journal->j_commit_request, tid);
548 spin_unlock(&journal->j_state_lock);
549 #endif
550 spin_lock(&journal->j_state_lock);
551 while (tid_gt(tid, journal->j_commit_sequence)) {
552 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
553 tid, journal->j_commit_sequence);
554 wake_up(&journal->j_wait_commit);
555 spin_unlock(&journal->j_state_lock);
556 wait_event(journal->j_wait_done_commit,
557 !tid_gt(tid, journal->j_commit_sequence));
558 spin_lock(&journal->j_state_lock);
560 spin_unlock(&journal->j_state_lock);
562 if (unlikely(is_journal_aborted(journal))) {
563 printk(KERN_EMERG "journal commit I/O error\n");
564 err = -EIO;
566 return err;
570 * Return 1 if a given transaction has not yet sent barrier request
571 * connected with a transaction commit. If 0 is returned, transaction
572 * may or may not have sent the barrier. Used to avoid sending barrier
573 * twice in common cases.
575 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
577 int ret = 0;
578 transaction_t *commit_trans;
580 if (!(journal->j_flags & JFS_BARRIER))
581 return 0;
582 spin_lock(&journal->j_state_lock);
583 /* Transaction already committed? */
584 if (tid_geq(journal->j_commit_sequence, tid))
585 goto out;
587 * Transaction is being committed and we already proceeded to
588 * writing commit record?
590 commit_trans = journal->j_committing_transaction;
591 if (commit_trans && commit_trans->t_tid == tid &&
592 commit_trans->t_state >= T_COMMIT_RECORD)
593 goto out;
594 ret = 1;
595 out:
596 spin_unlock(&journal->j_state_lock);
597 return ret;
599 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
602 * Log buffer allocation routines:
605 int journal_next_log_block(journal_t *journal, unsigned int *retp)
607 unsigned int blocknr;
609 spin_lock(&journal->j_state_lock);
610 J_ASSERT(journal->j_free > 1);
612 blocknr = journal->j_head;
613 journal->j_head++;
614 journal->j_free--;
615 if (journal->j_head == journal->j_last)
616 journal->j_head = journal->j_first;
617 spin_unlock(&journal->j_state_lock);
618 return journal_bmap(journal, blocknr, retp);
622 * Conversion of logical to physical block numbers for the journal
624 * On external journals the journal blocks are identity-mapped, so
625 * this is a no-op. If needed, we can use j_blk_offset - everything is
626 * ready.
628 int journal_bmap(journal_t *journal, unsigned int blocknr,
629 unsigned int *retp)
631 int err = 0;
632 unsigned int ret;
634 if (journal->j_inode) {
635 ret = bmap(journal->j_inode, blocknr);
636 if (ret)
637 *retp = ret;
638 else {
639 char b[BDEVNAME_SIZE];
641 printk(KERN_ALERT "%s: journal block not found "
642 "at offset %u on %s\n",
643 __func__,
644 blocknr,
645 bdevname(journal->j_dev, b));
646 err = -EIO;
647 __journal_abort_soft(journal, err);
649 } else {
650 *retp = blocknr; /* +journal->j_blk_offset */
652 return err;
656 * We play buffer_head aliasing tricks to write data/metadata blocks to
657 * the journal without copying their contents, but for journal
658 * descriptor blocks we do need to generate bona fide buffers.
660 * After the caller of journal_get_descriptor_buffer() has finished modifying
661 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
662 * But we don't bother doing that, so there will be coherency problems with
663 * mmaps of blockdevs which hold live JBD-controlled filesystems.
665 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
667 struct buffer_head *bh;
668 unsigned int blocknr;
669 int err;
671 err = journal_next_log_block(journal, &blocknr);
673 if (err)
674 return NULL;
676 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
677 if (!bh)
678 return NULL;
679 lock_buffer(bh);
680 memset(bh->b_data, 0, journal->j_blocksize);
681 set_buffer_uptodate(bh);
682 unlock_buffer(bh);
683 BUFFER_TRACE(bh, "return this buffer");
684 return journal_add_journal_head(bh);
688 * Management for journal control blocks: functions to create and
689 * destroy journal_t structures, and to initialise and read existing
690 * journal blocks from disk. */
692 /* First: create and setup a journal_t object in memory. We initialise
693 * very few fields yet: that has to wait until we have created the
694 * journal structures from from scratch, or loaded them from disk. */
696 static journal_t * journal_init_common (void)
698 journal_t *journal;
699 int err;
701 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
702 if (!journal)
703 goto fail;
705 init_waitqueue_head(&journal->j_wait_transaction_locked);
706 init_waitqueue_head(&journal->j_wait_logspace);
707 init_waitqueue_head(&journal->j_wait_done_commit);
708 init_waitqueue_head(&journal->j_wait_checkpoint);
709 init_waitqueue_head(&journal->j_wait_commit);
710 init_waitqueue_head(&journal->j_wait_updates);
711 mutex_init(&journal->j_barrier);
712 mutex_init(&journal->j_checkpoint_mutex);
713 spin_lock_init(&journal->j_revoke_lock);
714 spin_lock_init(&journal->j_list_lock);
715 spin_lock_init(&journal->j_state_lock);
717 journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
719 /* The journal is marked for error until we succeed with recovery! */
720 journal->j_flags = JFS_ABORT;
722 /* Set up a default-sized revoke table for the new mount. */
723 err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
724 if (err) {
725 kfree(journal);
726 goto fail;
728 return journal;
729 fail:
730 return NULL;
733 /* journal_init_dev and journal_init_inode:
735 * Create a journal structure assigned some fixed set of disk blocks to
736 * the journal. We don't actually touch those disk blocks yet, but we
737 * need to set up all of the mapping information to tell the journaling
738 * system where the journal blocks are.
743 * journal_t * journal_init_dev() - creates and initialises a journal structure
744 * @bdev: Block device on which to create the journal
745 * @fs_dev: Device which hold journalled filesystem for this journal.
746 * @start: Block nr Start of journal.
747 * @len: Length of the journal in blocks.
748 * @blocksize: blocksize of journalling device
750 * Returns: a newly created journal_t *
752 * journal_init_dev creates a journal which maps a fixed contiguous
753 * range of blocks on an arbitrary block device.
756 journal_t * journal_init_dev(struct block_device *bdev,
757 struct block_device *fs_dev,
758 int start, int len, int blocksize)
760 journal_t *journal = journal_init_common();
761 struct buffer_head *bh;
762 int n;
764 if (!journal)
765 return NULL;
767 /* journal descriptor can store up to n blocks -bzzz */
768 journal->j_blocksize = blocksize;
769 n = journal->j_blocksize / sizeof(journal_block_tag_t);
770 journal->j_wbufsize = n;
771 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
772 if (!journal->j_wbuf) {
773 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
774 __func__);
775 goto out_err;
777 journal->j_dev = bdev;
778 journal->j_fs_dev = fs_dev;
779 journal->j_blk_offset = start;
780 journal->j_maxlen = len;
782 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
783 if (!bh) {
784 printk(KERN_ERR
785 "%s: Cannot get buffer for journal superblock\n",
786 __func__);
787 goto out_err;
789 journal->j_sb_buffer = bh;
790 journal->j_superblock = (journal_superblock_t *)bh->b_data;
792 return journal;
793 out_err:
794 kfree(journal->j_wbuf);
795 kfree(journal);
796 return NULL;
800 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
801 * @inode: An inode to create the journal in
803 * journal_init_inode creates a journal which maps an on-disk inode as
804 * the journal. The inode must exist already, must support bmap() and
805 * must have all data blocks preallocated.
807 journal_t * journal_init_inode (struct inode *inode)
809 struct buffer_head *bh;
810 journal_t *journal = journal_init_common();
811 int err;
812 int n;
813 unsigned int blocknr;
815 if (!journal)
816 return NULL;
818 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
819 journal->j_inode = inode;
820 jbd_debug(1,
821 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
822 journal, inode->i_sb->s_id, inode->i_ino,
823 (long long) inode->i_size,
824 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
826 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
827 journal->j_blocksize = inode->i_sb->s_blocksize;
829 /* journal descriptor can store up to n blocks -bzzz */
830 n = journal->j_blocksize / sizeof(journal_block_tag_t);
831 journal->j_wbufsize = n;
832 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
833 if (!journal->j_wbuf) {
834 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
835 __func__);
836 goto out_err;
839 err = journal_bmap(journal, 0, &blocknr);
840 /* If that failed, give up */
841 if (err) {
842 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
843 __func__);
844 goto out_err;
847 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
848 if (!bh) {
849 printk(KERN_ERR
850 "%s: Cannot get buffer for journal superblock\n",
851 __func__);
852 goto out_err;
854 journal->j_sb_buffer = bh;
855 journal->j_superblock = (journal_superblock_t *)bh->b_data;
857 return journal;
858 out_err:
859 kfree(journal->j_wbuf);
860 kfree(journal);
861 return NULL;
865 * If the journal init or create aborts, we need to mark the journal
866 * superblock as being NULL to prevent the journal destroy from writing
867 * back a bogus superblock.
869 static void journal_fail_superblock (journal_t *journal)
871 struct buffer_head *bh = journal->j_sb_buffer;
872 brelse(bh);
873 journal->j_sb_buffer = NULL;
877 * Given a journal_t structure, initialise the various fields for
878 * startup of a new journaling session. We use this both when creating
879 * a journal, and after recovering an old journal to reset it for
880 * subsequent use.
883 static int journal_reset(journal_t *journal)
885 journal_superblock_t *sb = journal->j_superblock;
886 unsigned int first, last;
888 first = be32_to_cpu(sb->s_first);
889 last = be32_to_cpu(sb->s_maxlen);
890 if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
891 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
892 first, last);
893 journal_fail_superblock(journal);
894 return -EINVAL;
897 journal->j_first = first;
898 journal->j_last = last;
900 journal->j_head = first;
901 journal->j_tail = first;
902 journal->j_free = last - first;
904 journal->j_tail_sequence = journal->j_transaction_sequence;
905 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
906 journal->j_commit_request = journal->j_commit_sequence;
908 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
910 /* Add the dynamic fields and write it to disk. */
911 journal_update_superblock(journal, 1);
912 return journal_start_thread(journal);
916 * int journal_create() - Initialise the new journal file
917 * @journal: Journal to create. This structure must have been initialised
919 * Given a journal_t structure which tells us which disk blocks we can
920 * use, create a new journal superblock and initialise all of the
921 * journal fields from scratch.
923 int journal_create(journal_t *journal)
925 unsigned int blocknr;
926 struct buffer_head *bh;
927 journal_superblock_t *sb;
928 int i, err;
930 if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
931 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
932 journal->j_maxlen);
933 journal_fail_superblock(journal);
934 return -EINVAL;
937 if (journal->j_inode == NULL) {
939 * We don't know what block to start at!
941 printk(KERN_EMERG
942 "%s: creation of journal on external device!\n",
943 __func__);
944 BUG();
947 /* Zero out the entire journal on disk. We cannot afford to
948 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
949 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
950 for (i = 0; i < journal->j_maxlen; i++) {
951 err = journal_bmap(journal, i, &blocknr);
952 if (err)
953 return err;
954 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
955 if (unlikely(!bh))
956 return -ENOMEM;
957 lock_buffer(bh);
958 memset (bh->b_data, 0, journal->j_blocksize);
959 BUFFER_TRACE(bh, "marking dirty");
960 mark_buffer_dirty(bh);
961 BUFFER_TRACE(bh, "marking uptodate");
962 set_buffer_uptodate(bh);
963 unlock_buffer(bh);
964 __brelse(bh);
967 sync_blockdev(journal->j_dev);
968 jbd_debug(1, "JBD: journal cleared.\n");
970 /* OK, fill in the initial static fields in the new superblock */
971 sb = journal->j_superblock;
973 sb->s_header.h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
974 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
976 sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
977 sb->s_maxlen = cpu_to_be32(journal->j_maxlen);
978 sb->s_first = cpu_to_be32(1);
980 journal->j_transaction_sequence = 1;
982 journal->j_flags &= ~JFS_ABORT;
983 journal->j_format_version = 2;
985 return journal_reset(journal);
989 * void journal_update_superblock() - Update journal sb on disk.
990 * @journal: The journal to update.
991 * @wait: Set to '0' if you don't want to wait for IO completion.
993 * Update a journal's dynamic superblock fields and write it to disk,
994 * optionally waiting for the IO to complete.
996 void journal_update_superblock(journal_t *journal, int wait)
998 journal_superblock_t *sb = journal->j_superblock;
999 struct buffer_head *bh = journal->j_sb_buffer;
1002 * As a special case, if the on-disk copy is already marked as needing
1003 * no recovery (s_start == 0) and there are no outstanding transactions
1004 * in the filesystem, then we can safely defer the superblock update
1005 * until the next commit by setting JFS_FLUSHED. This avoids
1006 * attempting a write to a potential-readonly device.
1008 if (sb->s_start == 0 && journal->j_tail_sequence ==
1009 journal->j_transaction_sequence) {
1010 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1011 "(start %u, seq %d, errno %d)\n",
1012 journal->j_tail, journal->j_tail_sequence,
1013 journal->j_errno);
1014 goto out;
1017 if (buffer_write_io_error(bh)) {
1018 char b[BDEVNAME_SIZE];
1020 * Oh, dear. A previous attempt to write the journal
1021 * superblock failed. This could happen because the
1022 * USB device was yanked out. Or it could happen to
1023 * be a transient write error and maybe the block will
1024 * be remapped. Nothing we can do but to retry the
1025 * write and hope for the best.
1027 printk(KERN_ERR "JBD: previous I/O error detected "
1028 "for journal superblock update for %s.\n",
1029 journal_dev_name(journal, b));
1030 clear_buffer_write_io_error(bh);
1031 set_buffer_uptodate(bh);
1034 spin_lock(&journal->j_state_lock);
1035 jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
1036 journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1038 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1039 sb->s_start = cpu_to_be32(journal->j_tail);
1040 sb->s_errno = cpu_to_be32(journal->j_errno);
1041 spin_unlock(&journal->j_state_lock);
1043 BUFFER_TRACE(bh, "marking dirty");
1044 mark_buffer_dirty(bh);
1045 if (wait) {
1046 sync_dirty_buffer(bh);
1047 if (buffer_write_io_error(bh)) {
1048 char b[BDEVNAME_SIZE];
1049 printk(KERN_ERR "JBD: I/O error detected "
1050 "when updating journal superblock for %s.\n",
1051 journal_dev_name(journal, b));
1052 clear_buffer_write_io_error(bh);
1053 set_buffer_uptodate(bh);
1055 } else
1056 write_dirty_buffer(bh, WRITE);
1058 out:
1059 /* If we have just flushed the log (by marking s_start==0), then
1060 * any future commit will have to be careful to update the
1061 * superblock again to re-record the true start of the log. */
1063 spin_lock(&journal->j_state_lock);
1064 if (sb->s_start)
1065 journal->j_flags &= ~JFS_FLUSHED;
1066 else
1067 journal->j_flags |= JFS_FLUSHED;
1068 spin_unlock(&journal->j_state_lock);
1072 * Read the superblock for a given journal, performing initial
1073 * validation of the format.
1076 static int journal_get_superblock(journal_t *journal)
1078 struct buffer_head *bh;
1079 journal_superblock_t *sb;
1080 int err = -EIO;
1082 bh = journal->j_sb_buffer;
1084 J_ASSERT(bh != NULL);
1085 if (!buffer_uptodate(bh)) {
1086 ll_rw_block(READ, 1, &bh);
1087 wait_on_buffer(bh);
1088 if (!buffer_uptodate(bh)) {
1089 printk (KERN_ERR
1090 "JBD: IO error reading journal superblock\n");
1091 goto out;
1095 sb = journal->j_superblock;
1097 err = -EINVAL;
1099 if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1100 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1101 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1102 goto out;
1105 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1106 case JFS_SUPERBLOCK_V1:
1107 journal->j_format_version = 1;
1108 break;
1109 case JFS_SUPERBLOCK_V2:
1110 journal->j_format_version = 2;
1111 break;
1112 default:
1113 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1114 goto out;
1117 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1118 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1119 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1120 printk (KERN_WARNING "JBD: journal file too short\n");
1121 goto out;
1124 return 0;
1126 out:
1127 journal_fail_superblock(journal);
1128 return err;
1132 * Load the on-disk journal superblock and read the key fields into the
1133 * journal_t.
1136 static int load_superblock(journal_t *journal)
1138 int err;
1139 journal_superblock_t *sb;
1141 err = journal_get_superblock(journal);
1142 if (err)
1143 return err;
1145 sb = journal->j_superblock;
1147 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1148 journal->j_tail = be32_to_cpu(sb->s_start);
1149 journal->j_first = be32_to_cpu(sb->s_first);
1150 journal->j_last = be32_to_cpu(sb->s_maxlen);
1151 journal->j_errno = be32_to_cpu(sb->s_errno);
1153 return 0;
1158 * int journal_load() - Read journal from disk.
1159 * @journal: Journal to act on.
1161 * Given a journal_t structure which tells us which disk blocks contain
1162 * a journal, read the journal from disk to initialise the in-memory
1163 * structures.
1165 int journal_load(journal_t *journal)
1167 int err;
1168 journal_superblock_t *sb;
1170 err = load_superblock(journal);
1171 if (err)
1172 return err;
1174 sb = journal->j_superblock;
1175 /* If this is a V2 superblock, then we have to check the
1176 * features flags on it. */
1178 if (journal->j_format_version >= 2) {
1179 if ((sb->s_feature_ro_compat &
1180 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1181 (sb->s_feature_incompat &
1182 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1183 printk (KERN_WARNING
1184 "JBD: Unrecognised features on journal\n");
1185 return -EINVAL;
1189 /* Let the recovery code check whether it needs to recover any
1190 * data from the journal. */
1191 if (journal_recover(journal))
1192 goto recovery_error;
1194 /* OK, we've finished with the dynamic journal bits:
1195 * reinitialise the dynamic contents of the superblock in memory
1196 * and reset them on disk. */
1197 if (journal_reset(journal))
1198 goto recovery_error;
1200 journal->j_flags &= ~JFS_ABORT;
1201 journal->j_flags |= JFS_LOADED;
1202 return 0;
1204 recovery_error:
1205 printk (KERN_WARNING "JBD: recovery failed\n");
1206 return -EIO;
1210 * void journal_destroy() - Release a journal_t structure.
1211 * @journal: Journal to act on.
1213 * Release a journal_t structure once it is no longer in use by the
1214 * journaled object.
1215 * Return <0 if we couldn't clean up the journal.
1217 int journal_destroy(journal_t *journal)
1219 int err = 0;
1222 /* Wait for the commit thread to wake up and die. */
1223 journal_kill_thread(journal);
1225 /* Force a final log commit */
1226 if (journal->j_running_transaction)
1227 journal_commit_transaction(journal);
1229 /* Force any old transactions to disk */
1231 /* Totally anal locking here... */
1232 spin_lock(&journal->j_list_lock);
1233 while (journal->j_checkpoint_transactions != NULL) {
1234 spin_unlock(&journal->j_list_lock);
1235 log_do_checkpoint(journal);
1236 spin_lock(&journal->j_list_lock);
1239 J_ASSERT(journal->j_running_transaction == NULL);
1240 J_ASSERT(journal->j_committing_transaction == NULL);
1241 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1242 spin_unlock(&journal->j_list_lock);
1244 if (journal->j_sb_buffer) {
1245 if (!is_journal_aborted(journal)) {
1246 /* We can now mark the journal as empty. */
1247 journal->j_tail = 0;
1248 journal->j_tail_sequence =
1249 ++journal->j_transaction_sequence;
1250 journal_update_superblock(journal, 1);
1251 } else {
1252 err = -EIO;
1254 brelse(journal->j_sb_buffer);
1257 if (journal->j_inode)
1258 iput(journal->j_inode);
1259 if (journal->j_revoke)
1260 journal_destroy_revoke(journal);
1261 kfree(journal->j_wbuf);
1262 kfree(journal);
1264 return err;
1269 *int journal_check_used_features () - Check if features specified are used.
1270 * @journal: Journal to check.
1271 * @compat: bitmask of compatible features
1272 * @ro: bitmask of features that force read-only mount
1273 * @incompat: bitmask of incompatible features
1275 * Check whether the journal uses all of a given set of
1276 * features. Return true (non-zero) if it does.
1279 int journal_check_used_features (journal_t *journal, unsigned long compat,
1280 unsigned long ro, unsigned long incompat)
1282 journal_superblock_t *sb;
1284 if (!compat && !ro && !incompat)
1285 return 1;
1286 if (journal->j_format_version == 1)
1287 return 0;
1289 sb = journal->j_superblock;
1291 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1292 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1293 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1294 return 1;
1296 return 0;
1300 * int journal_check_available_features() - Check feature set in journalling layer
1301 * @journal: Journal to check.
1302 * @compat: bitmask of compatible features
1303 * @ro: bitmask of features that force read-only mount
1304 * @incompat: bitmask of incompatible features
1306 * Check whether the journaling code supports the use of
1307 * all of a given set of features on this journal. Return true
1308 * (non-zero) if it can. */
1310 int journal_check_available_features (journal_t *journal, unsigned long compat,
1311 unsigned long ro, unsigned long incompat)
1313 if (!compat && !ro && !incompat)
1314 return 1;
1316 /* We can support any known requested features iff the
1317 * superblock is in version 2. Otherwise we fail to support any
1318 * extended sb features. */
1320 if (journal->j_format_version != 2)
1321 return 0;
1323 if ((compat & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1324 (ro & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1325 (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1326 return 1;
1328 return 0;
1332 * int journal_set_features () - Mark a given journal feature in the superblock
1333 * @journal: Journal to act on.
1334 * @compat: bitmask of compatible features
1335 * @ro: bitmask of features that force read-only mount
1336 * @incompat: bitmask of incompatible features
1338 * Mark a given journal feature as present on the
1339 * superblock. Returns true if the requested features could be set.
1343 int journal_set_features (journal_t *journal, unsigned long compat,
1344 unsigned long ro, unsigned long incompat)
1346 journal_superblock_t *sb;
1348 if (journal_check_used_features(journal, compat, ro, incompat))
1349 return 1;
1351 if (!journal_check_available_features(journal, compat, ro, incompat))
1352 return 0;
1354 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1355 compat, ro, incompat);
1357 sb = journal->j_superblock;
1359 sb->s_feature_compat |= cpu_to_be32(compat);
1360 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1361 sb->s_feature_incompat |= cpu_to_be32(incompat);
1363 return 1;
1368 * int journal_update_format () - Update on-disk journal structure.
1369 * @journal: Journal to act on.
1371 * Given an initialised but unloaded journal struct, poke about in the
1372 * on-disk structure to update it to the most recent supported version.
1374 int journal_update_format (journal_t *journal)
1376 journal_superblock_t *sb;
1377 int err;
1379 err = journal_get_superblock(journal);
1380 if (err)
1381 return err;
1383 sb = journal->j_superblock;
1385 switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1386 case JFS_SUPERBLOCK_V2:
1387 return 0;
1388 case JFS_SUPERBLOCK_V1:
1389 return journal_convert_superblock_v1(journal, sb);
1390 default:
1391 break;
1393 return -EINVAL;
1396 static int journal_convert_superblock_v1(journal_t *journal,
1397 journal_superblock_t *sb)
1399 int offset, blocksize;
1400 struct buffer_head *bh;
1402 printk(KERN_WARNING
1403 "JBD: Converting superblock from version 1 to 2.\n");
1405 /* Pre-initialise new fields to zero */
1406 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1407 blocksize = be32_to_cpu(sb->s_blocksize);
1408 memset(&sb->s_feature_compat, 0, blocksize-offset);
1410 sb->s_nr_users = cpu_to_be32(1);
1411 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1412 journal->j_format_version = 2;
1414 bh = journal->j_sb_buffer;
1415 BUFFER_TRACE(bh, "marking dirty");
1416 mark_buffer_dirty(bh);
1417 sync_dirty_buffer(bh);
1418 return 0;
1423 * int journal_flush () - Flush journal
1424 * @journal: Journal to act on.
1426 * Flush all data for a given journal to disk and empty the journal.
1427 * Filesystems can use this when remounting readonly to ensure that
1428 * recovery does not need to happen on remount.
1431 int journal_flush(journal_t *journal)
1433 int err = 0;
1434 transaction_t *transaction = NULL;
1435 unsigned int old_tail;
1437 spin_lock(&journal->j_state_lock);
1439 /* Force everything buffered to the log... */
1440 if (journal->j_running_transaction) {
1441 transaction = journal->j_running_transaction;
1442 __log_start_commit(journal, transaction->t_tid);
1443 } else if (journal->j_committing_transaction)
1444 transaction = journal->j_committing_transaction;
1446 /* Wait for the log commit to complete... */
1447 if (transaction) {
1448 tid_t tid = transaction->t_tid;
1450 spin_unlock(&journal->j_state_lock);
1451 log_wait_commit(journal, tid);
1452 } else {
1453 spin_unlock(&journal->j_state_lock);
1456 /* ...and flush everything in the log out to disk. */
1457 spin_lock(&journal->j_list_lock);
1458 while (!err && journal->j_checkpoint_transactions != NULL) {
1459 spin_unlock(&journal->j_list_lock);
1460 mutex_lock(&journal->j_checkpoint_mutex);
1461 err = log_do_checkpoint(journal);
1462 mutex_unlock(&journal->j_checkpoint_mutex);
1463 spin_lock(&journal->j_list_lock);
1465 spin_unlock(&journal->j_list_lock);
1467 if (is_journal_aborted(journal))
1468 return -EIO;
1470 cleanup_journal_tail(journal);
1472 /* Finally, mark the journal as really needing no recovery.
1473 * This sets s_start==0 in the underlying superblock, which is
1474 * the magic code for a fully-recovered superblock. Any future
1475 * commits of data to the journal will restore the current
1476 * s_start value. */
1477 spin_lock(&journal->j_state_lock);
1478 old_tail = journal->j_tail;
1479 journal->j_tail = 0;
1480 spin_unlock(&journal->j_state_lock);
1481 journal_update_superblock(journal, 1);
1482 spin_lock(&journal->j_state_lock);
1483 journal->j_tail = old_tail;
1485 J_ASSERT(!journal->j_running_transaction);
1486 J_ASSERT(!journal->j_committing_transaction);
1487 J_ASSERT(!journal->j_checkpoint_transactions);
1488 J_ASSERT(journal->j_head == journal->j_tail);
1489 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1490 spin_unlock(&journal->j_state_lock);
1491 return 0;
1495 * int journal_wipe() - Wipe journal contents
1496 * @journal: Journal to act on.
1497 * @write: flag (see below)
1499 * Wipe out all of the contents of a journal, safely. This will produce
1500 * a warning if the journal contains any valid recovery information.
1501 * Must be called between journal_init_*() and journal_load().
1503 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1504 * we merely suppress recovery.
1507 int journal_wipe(journal_t *journal, int write)
1509 int err = 0;
1511 J_ASSERT (!(journal->j_flags & JFS_LOADED));
1513 err = load_superblock(journal);
1514 if (err)
1515 return err;
1517 if (!journal->j_tail)
1518 goto no_recovery;
1520 printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1521 write ? "Clearing" : "Ignoring");
1523 err = journal_skip_recovery(journal);
1524 if (write)
1525 journal_update_superblock(journal, 1);
1527 no_recovery:
1528 return err;
1532 * journal_dev_name: format a character string to describe on what
1533 * device this journal is present.
1536 static const char *journal_dev_name(journal_t *journal, char *buffer)
1538 struct block_device *bdev;
1540 if (journal->j_inode)
1541 bdev = journal->j_inode->i_sb->s_bdev;
1542 else
1543 bdev = journal->j_dev;
1545 return bdevname(bdev, buffer);
1549 * Journal abort has very specific semantics, which we describe
1550 * for journal abort.
1552 * Two internal function, which provide abort to te jbd layer
1553 * itself are here.
1557 * Quick version for internal journal use (doesn't lock the journal).
1558 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1559 * and don't attempt to make any other journal updates.
1561 static void __journal_abort_hard(journal_t *journal)
1563 transaction_t *transaction;
1564 char b[BDEVNAME_SIZE];
1566 if (journal->j_flags & JFS_ABORT)
1567 return;
1569 printk(KERN_ERR "Aborting journal on device %s.\n",
1570 journal_dev_name(journal, b));
1572 spin_lock(&journal->j_state_lock);
1573 journal->j_flags |= JFS_ABORT;
1574 transaction = journal->j_running_transaction;
1575 if (transaction)
1576 __log_start_commit(journal, transaction->t_tid);
1577 spin_unlock(&journal->j_state_lock);
1580 /* Soft abort: record the abort error status in the journal superblock,
1581 * but don't do any other IO. */
1582 static void __journal_abort_soft (journal_t *journal, int errno)
1584 if (journal->j_flags & JFS_ABORT)
1585 return;
1587 if (!journal->j_errno)
1588 journal->j_errno = errno;
1590 __journal_abort_hard(journal);
1592 if (errno)
1593 journal_update_superblock(journal, 1);
1597 * void journal_abort () - Shutdown the journal immediately.
1598 * @journal: the journal to shutdown.
1599 * @errno: an error number to record in the journal indicating
1600 * the reason for the shutdown.
1602 * Perform a complete, immediate shutdown of the ENTIRE
1603 * journal (not of a single transaction). This operation cannot be
1604 * undone without closing and reopening the journal.
1606 * The journal_abort function is intended to support higher level error
1607 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1608 * mode.
1610 * Journal abort has very specific semantics. Any existing dirty,
1611 * unjournaled buffers in the main filesystem will still be written to
1612 * disk by bdflush, but the journaling mechanism will be suspended
1613 * immediately and no further transaction commits will be honoured.
1615 * Any dirty, journaled buffers will be written back to disk without
1616 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1617 * filesystem, but we _do_ attempt to leave as much data as possible
1618 * behind for fsck to use for cleanup.
1620 * Any attempt to get a new transaction handle on a journal which is in
1621 * ABORT state will just result in an -EROFS error return. A
1622 * journal_stop on an existing handle will return -EIO if we have
1623 * entered abort state during the update.
1625 * Recursive transactions are not disturbed by journal abort until the
1626 * final journal_stop, which will receive the -EIO error.
1628 * Finally, the journal_abort call allows the caller to supply an errno
1629 * which will be recorded (if possible) in the journal superblock. This
1630 * allows a client to record failure conditions in the middle of a
1631 * transaction without having to complete the transaction to record the
1632 * failure to disk. ext3_error, for example, now uses this
1633 * functionality.
1635 * Errors which originate from within the journaling layer will NOT
1636 * supply an errno; a null errno implies that absolutely no further
1637 * writes are done to the journal (unless there are any already in
1638 * progress).
1642 void journal_abort(journal_t *journal, int errno)
1644 __journal_abort_soft(journal, errno);
1648 * int journal_errno () - returns the journal's error state.
1649 * @journal: journal to examine.
1651 * This is the errno numbet set with journal_abort(), the last
1652 * time the journal was mounted - if the journal was stopped
1653 * without calling abort this will be 0.
1655 * If the journal has been aborted on this mount time -EROFS will
1656 * be returned.
1658 int journal_errno(journal_t *journal)
1660 int err;
1662 spin_lock(&journal->j_state_lock);
1663 if (journal->j_flags & JFS_ABORT)
1664 err = -EROFS;
1665 else
1666 err = journal->j_errno;
1667 spin_unlock(&journal->j_state_lock);
1668 return err;
1672 * int journal_clear_err () - clears the journal's error state
1673 * @journal: journal to act on.
1675 * An error must be cleared or Acked to take a FS out of readonly
1676 * mode.
1678 int journal_clear_err(journal_t *journal)
1680 int err = 0;
1682 spin_lock(&journal->j_state_lock);
1683 if (journal->j_flags & JFS_ABORT)
1684 err = -EROFS;
1685 else
1686 journal->j_errno = 0;
1687 spin_unlock(&journal->j_state_lock);
1688 return err;
1692 * void journal_ack_err() - Ack journal err.
1693 * @journal: journal to act on.
1695 * An error must be cleared or Acked to take a FS out of readonly
1696 * mode.
1698 void journal_ack_err(journal_t *journal)
1700 spin_lock(&journal->j_state_lock);
1701 if (journal->j_errno)
1702 journal->j_flags |= JFS_ACK_ERR;
1703 spin_unlock(&journal->j_state_lock);
1706 int journal_blocks_per_page(struct inode *inode)
1708 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1712 * Journal_head storage management
1714 static struct kmem_cache *journal_head_cache;
1715 #ifdef CONFIG_JBD_DEBUG
1716 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1717 #endif
1719 static int journal_init_journal_head_cache(void)
1721 int retval;
1723 J_ASSERT(journal_head_cache == NULL);
1724 journal_head_cache = kmem_cache_create("journal_head",
1725 sizeof(struct journal_head),
1726 0, /* offset */
1727 SLAB_TEMPORARY, /* flags */
1728 NULL); /* ctor */
1729 retval = 0;
1730 if (!journal_head_cache) {
1731 retval = -ENOMEM;
1732 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1734 return retval;
1737 static void journal_destroy_journal_head_cache(void)
1739 if (journal_head_cache) {
1740 kmem_cache_destroy(journal_head_cache);
1741 journal_head_cache = NULL;
1746 * journal_head splicing and dicing
1748 static struct journal_head *journal_alloc_journal_head(void)
1750 struct journal_head *ret;
1752 #ifdef CONFIG_JBD_DEBUG
1753 atomic_inc(&nr_journal_heads);
1754 #endif
1755 ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1756 if (ret == NULL) {
1757 jbd_debug(1, "out of memory for journal_head\n");
1758 printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1759 __func__);
1761 while (ret == NULL) {
1762 yield();
1763 ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1766 return ret;
1769 static void journal_free_journal_head(struct journal_head *jh)
1771 #ifdef CONFIG_JBD_DEBUG
1772 atomic_dec(&nr_journal_heads);
1773 memset(jh, JBD_POISON_FREE, sizeof(*jh));
1774 #endif
1775 kmem_cache_free(journal_head_cache, jh);
1779 * A journal_head is attached to a buffer_head whenever JBD has an
1780 * interest in the buffer.
1782 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1783 * is set. This bit is tested in core kernel code where we need to take
1784 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1785 * there.
1787 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1789 * When a buffer has its BH_JBD bit set it is immune from being released by
1790 * core kernel code, mainly via ->b_count.
1792 * A journal_head may be detached from its buffer_head when the journal_head's
1793 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1794 * Various places in JBD call journal_remove_journal_head() to indicate that the
1795 * journal_head can be dropped if needed.
1797 * Various places in the kernel want to attach a journal_head to a buffer_head
1798 * _before_ attaching the journal_head to a transaction. To protect the
1799 * journal_head in this situation, journal_add_journal_head elevates the
1800 * journal_head's b_jcount refcount by one. The caller must call
1801 * journal_put_journal_head() to undo this.
1803 * So the typical usage would be:
1805 * (Attach a journal_head if needed. Increments b_jcount)
1806 * struct journal_head *jh = journal_add_journal_head(bh);
1807 * ...
1808 * jh->b_transaction = xxx;
1809 * journal_put_journal_head(jh);
1811 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1812 * because it has a non-zero b_transaction.
1816 * Give a buffer_head a journal_head.
1818 * Doesn't need the journal lock.
1819 * May sleep.
1821 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1823 struct journal_head *jh;
1824 struct journal_head *new_jh = NULL;
1826 repeat:
1827 if (!buffer_jbd(bh)) {
1828 new_jh = journal_alloc_journal_head();
1829 memset(new_jh, 0, sizeof(*new_jh));
1832 jbd_lock_bh_journal_head(bh);
1833 if (buffer_jbd(bh)) {
1834 jh = bh2jh(bh);
1835 } else {
1836 J_ASSERT_BH(bh,
1837 (atomic_read(&bh->b_count) > 0) ||
1838 (bh->b_page && bh->b_page->mapping));
1840 if (!new_jh) {
1841 jbd_unlock_bh_journal_head(bh);
1842 goto repeat;
1845 jh = new_jh;
1846 new_jh = NULL; /* We consumed it */
1847 set_buffer_jbd(bh);
1848 bh->b_private = jh;
1849 jh->b_bh = bh;
1850 get_bh(bh);
1851 BUFFER_TRACE(bh, "added journal_head");
1853 jh->b_jcount++;
1854 jbd_unlock_bh_journal_head(bh);
1855 if (new_jh)
1856 journal_free_journal_head(new_jh);
1857 return bh->b_private;
1861 * Grab a ref against this buffer_head's journal_head. If it ended up not
1862 * having a journal_head, return NULL
1864 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1866 struct journal_head *jh = NULL;
1868 jbd_lock_bh_journal_head(bh);
1869 if (buffer_jbd(bh)) {
1870 jh = bh2jh(bh);
1871 jh->b_jcount++;
1873 jbd_unlock_bh_journal_head(bh);
1874 return jh;
1877 static void __journal_remove_journal_head(struct buffer_head *bh)
1879 struct journal_head *jh = bh2jh(bh);
1881 J_ASSERT_JH(jh, jh->b_jcount >= 0);
1883 get_bh(bh);
1884 if (jh->b_jcount == 0) {
1885 if (jh->b_transaction == NULL &&
1886 jh->b_next_transaction == NULL &&
1887 jh->b_cp_transaction == NULL) {
1888 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1889 J_ASSERT_BH(bh, buffer_jbd(bh));
1890 J_ASSERT_BH(bh, jh2bh(jh) == bh);
1891 BUFFER_TRACE(bh, "remove journal_head");
1892 if (jh->b_frozen_data) {
1893 printk(KERN_WARNING "%s: freeing "
1894 "b_frozen_data\n",
1895 __func__);
1896 jbd_free(jh->b_frozen_data, bh->b_size);
1898 if (jh->b_committed_data) {
1899 printk(KERN_WARNING "%s: freeing "
1900 "b_committed_data\n",
1901 __func__);
1902 jbd_free(jh->b_committed_data, bh->b_size);
1904 bh->b_private = NULL;
1905 jh->b_bh = NULL; /* debug, really */
1906 clear_buffer_jbd(bh);
1907 __brelse(bh);
1908 journal_free_journal_head(jh);
1909 } else {
1910 BUFFER_TRACE(bh, "journal_head was locked");
1916 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1917 * and has a zero b_jcount then remove and release its journal_head. If we did
1918 * see that the buffer is not used by any transaction we also "logically"
1919 * decrement ->b_count.
1921 * We in fact take an additional increment on ->b_count as a convenience,
1922 * because the caller usually wants to do additional things with the bh
1923 * after calling here.
1924 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1925 * time. Once the caller has run __brelse(), the buffer is eligible for
1926 * reaping by try_to_free_buffers().
1928 void journal_remove_journal_head(struct buffer_head *bh)
1930 jbd_lock_bh_journal_head(bh);
1931 __journal_remove_journal_head(bh);
1932 jbd_unlock_bh_journal_head(bh);
1936 * Drop a reference on the passed journal_head. If it fell to zero then try to
1937 * release the journal_head from the buffer_head.
1939 void journal_put_journal_head(struct journal_head *jh)
1941 struct buffer_head *bh = jh2bh(jh);
1943 jbd_lock_bh_journal_head(bh);
1944 J_ASSERT_JH(jh, jh->b_jcount > 0);
1945 --jh->b_jcount;
1946 if (!jh->b_jcount && !jh->b_transaction) {
1947 __journal_remove_journal_head(bh);
1948 __brelse(bh);
1950 jbd_unlock_bh_journal_head(bh);
1954 * debugfs tunables
1956 #ifdef CONFIG_JBD_DEBUG
1958 u8 journal_enable_debug __read_mostly;
1959 EXPORT_SYMBOL(journal_enable_debug);
1961 static struct dentry *jbd_debugfs_dir;
1962 static struct dentry *jbd_debug;
1964 static void __init jbd_create_debugfs_entry(void)
1966 jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1967 if (jbd_debugfs_dir)
1968 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
1969 jbd_debugfs_dir,
1970 &journal_enable_debug);
1973 static void __exit jbd_remove_debugfs_entry(void)
1975 debugfs_remove(jbd_debug);
1976 debugfs_remove(jbd_debugfs_dir);
1979 #else
1981 static inline void jbd_create_debugfs_entry(void)
1985 static inline void jbd_remove_debugfs_entry(void)
1989 #endif
1991 struct kmem_cache *jbd_handle_cache;
1993 static int __init journal_init_handle_cache(void)
1995 jbd_handle_cache = kmem_cache_create("journal_handle",
1996 sizeof(handle_t),
1997 0, /* offset */
1998 SLAB_TEMPORARY, /* flags */
1999 NULL); /* ctor */
2000 if (jbd_handle_cache == NULL) {
2001 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2002 return -ENOMEM;
2004 return 0;
2007 static void journal_destroy_handle_cache(void)
2009 if (jbd_handle_cache)
2010 kmem_cache_destroy(jbd_handle_cache);
2014 * Module startup and shutdown
2017 static int __init journal_init_caches(void)
2019 int ret;
2021 ret = journal_init_revoke_caches();
2022 if (ret == 0)
2023 ret = journal_init_journal_head_cache();
2024 if (ret == 0)
2025 ret = journal_init_handle_cache();
2026 return ret;
2029 static void journal_destroy_caches(void)
2031 journal_destroy_revoke_caches();
2032 journal_destroy_journal_head_cache();
2033 journal_destroy_handle_cache();
2036 static int __init journal_init(void)
2038 int ret;
2040 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2042 ret = journal_init_caches();
2043 if (ret != 0)
2044 journal_destroy_caches();
2045 jbd_create_debugfs_entry();
2046 return ret;
2049 static void __exit journal_exit(void)
2051 #ifdef CONFIG_JBD_DEBUG
2052 int n = atomic_read(&nr_journal_heads);
2053 if (n)
2054 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2055 #endif
2056 jbd_remove_debugfs_entry();
2057 journal_destroy_caches();
2060 MODULE_LICENSE("GPL");
2061 module_init(journal_init);
2062 module_exit(journal_exit);