include/linux: enclose idr.h in #ifndef
[linux-2.6/linux-mips.git] / net / core / skbuff.c
blob95501e40100e72f986ca5208cdabe9be01feeb68
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
9 * Fixes:
10 * Alan Cox : Fixed the worst of the load
11 * balancer bugs.
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
25 * NOTE:
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
46 #include <linux/mm.h>
47 #include <linux/interrupt.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
54 #endif
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
71 static kmem_cache_t *skbuff_head_cache __read_mostly;
72 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
75 * Keep out-of-line to prevent kernel bloat.
76 * __builtin_return_address is not used because it is not always
77 * reliable.
80 /**
81 * skb_over_panic - private function
82 * @skb: buffer
83 * @sz: size
84 * @here: address
86 * Out of line support code for skb_put(). Not user callable.
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 "data:%p tail:%p end:%p dev:%s\n",
92 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
93 skb->dev ? skb->dev->name : "<NULL>");
94 BUG();
97 /**
98 * skb_under_panic - private function
99 * @skb: buffer
100 * @sz: size
101 * @here: address
103 * Out of line support code for skb_push(). Not user callable.
106 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
108 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
109 "data:%p tail:%p end:%p dev:%s\n",
110 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
111 skb->dev ? skb->dev->name : "<NULL>");
112 BUG();
115 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
116 * 'private' fields and also do memory statistics to find all the
117 * [BEEP] leaks.
122 * __alloc_skb - allocate a network buffer
123 * @size: size to allocate
124 * @gfp_mask: allocation mask
125 * @fclone: allocate from fclone cache instead of head cache
126 * and allocate a cloned (child) skb
128 * Allocate a new &sk_buff. The returned buffer has no headroom and a
129 * tail room of size bytes. The object has a reference count of one.
130 * The return is the buffer. On a failure the return is %NULL.
132 * Buffers may only be allocated from interrupts using a @gfp_mask of
133 * %GFP_ATOMIC.
135 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
136 int fclone)
138 struct sk_buff *skb;
139 u8 *data;
141 /* Get the HEAD */
142 if (fclone)
143 skb = kmem_cache_alloc(skbuff_fclone_cache,
144 gfp_mask & ~__GFP_DMA);
145 else
146 skb = kmem_cache_alloc(skbuff_head_cache,
147 gfp_mask & ~__GFP_DMA);
149 if (!skb)
150 goto out;
152 /* Get the DATA. Size must match skb_add_mtu(). */
153 size = SKB_DATA_ALIGN(size);
154 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
155 if (!data)
156 goto nodata;
158 memset(skb, 0, offsetof(struct sk_buff, truesize));
159 skb->truesize = size + sizeof(struct sk_buff);
160 atomic_set(&skb->users, 1);
161 skb->head = data;
162 skb->data = data;
163 skb->tail = data;
164 skb->end = data + size;
165 if (fclone) {
166 struct sk_buff *child = skb + 1;
167 atomic_t *fclone_ref = (atomic_t *) (child + 1);
169 skb->fclone = SKB_FCLONE_ORIG;
170 atomic_set(fclone_ref, 1);
172 child->fclone = SKB_FCLONE_UNAVAILABLE;
174 atomic_set(&(skb_shinfo(skb)->dataref), 1);
175 skb_shinfo(skb)->nr_frags = 0;
176 skb_shinfo(skb)->tso_size = 0;
177 skb_shinfo(skb)->tso_segs = 0;
178 skb_shinfo(skb)->frag_list = NULL;
179 skb_shinfo(skb)->ufo_size = 0;
180 skb_shinfo(skb)->ip6_frag_id = 0;
181 out:
182 return skb;
183 nodata:
184 kmem_cache_free(skbuff_head_cache, skb);
185 skb = NULL;
186 goto out;
190 * alloc_skb_from_cache - allocate a network buffer
191 * @cp: kmem_cache from which to allocate the data area
192 * (object size must be big enough for @size bytes + skb overheads)
193 * @size: size to allocate
194 * @gfp_mask: allocation mask
196 * Allocate a new &sk_buff. The returned buffer has no headroom and
197 * tail room of size bytes. The object has a reference count of one.
198 * The return is the buffer. On a failure the return is %NULL.
200 * Buffers may only be allocated from interrupts using a @gfp_mask of
201 * %GFP_ATOMIC.
203 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
204 unsigned int size,
205 gfp_t gfp_mask)
207 struct sk_buff *skb;
208 u8 *data;
210 /* Get the HEAD */
211 skb = kmem_cache_alloc(skbuff_head_cache,
212 gfp_mask & ~__GFP_DMA);
213 if (!skb)
214 goto out;
216 /* Get the DATA. */
217 size = SKB_DATA_ALIGN(size);
218 data = kmem_cache_alloc(cp, gfp_mask);
219 if (!data)
220 goto nodata;
222 memset(skb, 0, offsetof(struct sk_buff, truesize));
223 skb->truesize = size + sizeof(struct sk_buff);
224 atomic_set(&skb->users, 1);
225 skb->head = data;
226 skb->data = data;
227 skb->tail = data;
228 skb->end = data + size;
230 atomic_set(&(skb_shinfo(skb)->dataref), 1);
231 skb_shinfo(skb)->nr_frags = 0;
232 skb_shinfo(skb)->tso_size = 0;
233 skb_shinfo(skb)->tso_segs = 0;
234 skb_shinfo(skb)->frag_list = NULL;
235 out:
236 return skb;
237 nodata:
238 kmem_cache_free(skbuff_head_cache, skb);
239 skb = NULL;
240 goto out;
244 static void skb_drop_fraglist(struct sk_buff *skb)
246 struct sk_buff *list = skb_shinfo(skb)->frag_list;
248 skb_shinfo(skb)->frag_list = NULL;
250 do {
251 struct sk_buff *this = list;
252 list = list->next;
253 kfree_skb(this);
254 } while (list);
257 static void skb_clone_fraglist(struct sk_buff *skb)
259 struct sk_buff *list;
261 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
262 skb_get(list);
265 void skb_release_data(struct sk_buff *skb)
267 if (!skb->cloned ||
268 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
269 &skb_shinfo(skb)->dataref)) {
270 if (skb_shinfo(skb)->nr_frags) {
271 int i;
272 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
273 put_page(skb_shinfo(skb)->frags[i].page);
276 if (skb_shinfo(skb)->frag_list)
277 skb_drop_fraglist(skb);
279 kfree(skb->head);
284 * Free an skbuff by memory without cleaning the state.
286 void kfree_skbmem(struct sk_buff *skb)
288 struct sk_buff *other;
289 atomic_t *fclone_ref;
291 skb_release_data(skb);
292 switch (skb->fclone) {
293 case SKB_FCLONE_UNAVAILABLE:
294 kmem_cache_free(skbuff_head_cache, skb);
295 break;
297 case SKB_FCLONE_ORIG:
298 fclone_ref = (atomic_t *) (skb + 2);
299 if (atomic_dec_and_test(fclone_ref))
300 kmem_cache_free(skbuff_fclone_cache, skb);
301 break;
303 case SKB_FCLONE_CLONE:
304 fclone_ref = (atomic_t *) (skb + 1);
305 other = skb - 1;
307 /* The clone portion is available for
308 * fast-cloning again.
310 skb->fclone = SKB_FCLONE_UNAVAILABLE;
312 if (atomic_dec_and_test(fclone_ref))
313 kmem_cache_free(skbuff_fclone_cache, other);
314 break;
319 * __kfree_skb - private function
320 * @skb: buffer
322 * Free an sk_buff. Release anything attached to the buffer.
323 * Clean the state. This is an internal helper function. Users should
324 * always call kfree_skb
327 void __kfree_skb(struct sk_buff *skb)
329 dst_release(skb->dst);
330 #ifdef CONFIG_XFRM
331 secpath_put(skb->sp);
332 #endif
333 if (skb->destructor) {
334 WARN_ON(in_irq());
335 skb->destructor(skb);
337 #ifdef CONFIG_NETFILTER
338 nf_conntrack_put(skb->nfct);
339 #ifdef CONFIG_BRIDGE_NETFILTER
340 nf_bridge_put(skb->nf_bridge);
341 #endif
342 #endif
343 /* XXX: IS this still necessary? - JHS */
344 #ifdef CONFIG_NET_SCHED
345 skb->tc_index = 0;
346 #ifdef CONFIG_NET_CLS_ACT
347 skb->tc_verd = 0;
348 #endif
349 #endif
351 kfree_skbmem(skb);
355 * skb_clone - duplicate an sk_buff
356 * @skb: buffer to clone
357 * @gfp_mask: allocation priority
359 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
360 * copies share the same packet data but not structure. The new
361 * buffer has a reference count of 1. If the allocation fails the
362 * function returns %NULL otherwise the new buffer is returned.
364 * If this function is called from an interrupt gfp_mask() must be
365 * %GFP_ATOMIC.
368 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
370 struct sk_buff *n;
372 n = skb + 1;
373 if (skb->fclone == SKB_FCLONE_ORIG &&
374 n->fclone == SKB_FCLONE_UNAVAILABLE) {
375 atomic_t *fclone_ref = (atomic_t *) (n + 1);
376 n->fclone = SKB_FCLONE_CLONE;
377 atomic_inc(fclone_ref);
378 } else {
379 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
380 if (!n)
381 return NULL;
382 n->fclone = SKB_FCLONE_UNAVAILABLE;
385 #define C(x) n->x = skb->x
387 n->next = n->prev = NULL;
388 n->sk = NULL;
389 C(tstamp);
390 C(dev);
391 C(h);
392 C(nh);
393 C(mac);
394 C(dst);
395 dst_clone(skb->dst);
396 C(sp);
397 #ifdef CONFIG_INET
398 secpath_get(skb->sp);
399 #endif
400 memcpy(n->cb, skb->cb, sizeof(skb->cb));
401 C(len);
402 C(data_len);
403 C(csum);
404 C(local_df);
405 n->cloned = 1;
406 n->nohdr = 0;
407 C(pkt_type);
408 C(ip_summed);
409 C(priority);
410 C(protocol);
411 n->destructor = NULL;
412 #ifdef CONFIG_NETFILTER
413 C(nfmark);
414 C(nfct);
415 nf_conntrack_get(skb->nfct);
416 C(nfctinfo);
417 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
418 C(ipvs_property);
419 #endif
420 #ifdef CONFIG_BRIDGE_NETFILTER
421 C(nf_bridge);
422 nf_bridge_get(skb->nf_bridge);
423 #endif
424 #endif /*CONFIG_NETFILTER*/
425 #ifdef CONFIG_NET_SCHED
426 C(tc_index);
427 #ifdef CONFIG_NET_CLS_ACT
428 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
429 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
430 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
431 C(input_dev);
432 #endif
434 #endif
435 C(truesize);
436 atomic_set(&n->users, 1);
437 C(head);
438 C(data);
439 C(tail);
440 C(end);
442 atomic_inc(&(skb_shinfo(skb)->dataref));
443 skb->cloned = 1;
445 return n;
448 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
451 * Shift between the two data areas in bytes
453 unsigned long offset = new->data - old->data;
455 new->sk = NULL;
456 new->dev = old->dev;
457 new->priority = old->priority;
458 new->protocol = old->protocol;
459 new->dst = dst_clone(old->dst);
460 #ifdef CONFIG_INET
461 new->sp = secpath_get(old->sp);
462 #endif
463 new->h.raw = old->h.raw + offset;
464 new->nh.raw = old->nh.raw + offset;
465 new->mac.raw = old->mac.raw + offset;
466 memcpy(new->cb, old->cb, sizeof(old->cb));
467 new->local_df = old->local_df;
468 new->fclone = SKB_FCLONE_UNAVAILABLE;
469 new->pkt_type = old->pkt_type;
470 new->tstamp = old->tstamp;
471 new->destructor = NULL;
472 #ifdef CONFIG_NETFILTER
473 new->nfmark = old->nfmark;
474 new->nfct = old->nfct;
475 nf_conntrack_get(old->nfct);
476 new->nfctinfo = old->nfctinfo;
477 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
478 new->ipvs_property = old->ipvs_property;
479 #endif
480 #ifdef CONFIG_BRIDGE_NETFILTER
481 new->nf_bridge = old->nf_bridge;
482 nf_bridge_get(old->nf_bridge);
483 #endif
484 #endif
485 #ifdef CONFIG_NET_SCHED
486 #ifdef CONFIG_NET_CLS_ACT
487 new->tc_verd = old->tc_verd;
488 #endif
489 new->tc_index = old->tc_index;
490 #endif
491 atomic_set(&new->users, 1);
492 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
493 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
497 * skb_copy - create private copy of an sk_buff
498 * @skb: buffer to copy
499 * @gfp_mask: allocation priority
501 * Make a copy of both an &sk_buff and its data. This is used when the
502 * caller wishes to modify the data and needs a private copy of the
503 * data to alter. Returns %NULL on failure or the pointer to the buffer
504 * on success. The returned buffer has a reference count of 1.
506 * As by-product this function converts non-linear &sk_buff to linear
507 * one, so that &sk_buff becomes completely private and caller is allowed
508 * to modify all the data of returned buffer. This means that this
509 * function is not recommended for use in circumstances when only
510 * header is going to be modified. Use pskb_copy() instead.
513 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
515 int headerlen = skb->data - skb->head;
517 * Allocate the copy buffer
519 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
520 gfp_mask);
521 if (!n)
522 return NULL;
524 /* Set the data pointer */
525 skb_reserve(n, headerlen);
526 /* Set the tail pointer and length */
527 skb_put(n, skb->len);
528 n->csum = skb->csum;
529 n->ip_summed = skb->ip_summed;
531 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
532 BUG();
534 copy_skb_header(n, skb);
535 return n;
540 * pskb_copy - create copy of an sk_buff with private head.
541 * @skb: buffer to copy
542 * @gfp_mask: allocation priority
544 * Make a copy of both an &sk_buff and part of its data, located
545 * in header. Fragmented data remain shared. This is used when
546 * the caller wishes to modify only header of &sk_buff and needs
547 * private copy of the header to alter. Returns %NULL on failure
548 * or the pointer to the buffer on success.
549 * The returned buffer has a reference count of 1.
552 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
555 * Allocate the copy buffer
557 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
559 if (!n)
560 goto out;
562 /* Set the data pointer */
563 skb_reserve(n, skb->data - skb->head);
564 /* Set the tail pointer and length */
565 skb_put(n, skb_headlen(skb));
566 /* Copy the bytes */
567 memcpy(n->data, skb->data, n->len);
568 n->csum = skb->csum;
569 n->ip_summed = skb->ip_summed;
571 n->data_len = skb->data_len;
572 n->len = skb->len;
574 if (skb_shinfo(skb)->nr_frags) {
575 int i;
577 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
578 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
579 get_page(skb_shinfo(n)->frags[i].page);
581 skb_shinfo(n)->nr_frags = i;
584 if (skb_shinfo(skb)->frag_list) {
585 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
586 skb_clone_fraglist(n);
589 copy_skb_header(n, skb);
590 out:
591 return n;
595 * pskb_expand_head - reallocate header of &sk_buff
596 * @skb: buffer to reallocate
597 * @nhead: room to add at head
598 * @ntail: room to add at tail
599 * @gfp_mask: allocation priority
601 * Expands (or creates identical copy, if &nhead and &ntail are zero)
602 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
603 * reference count of 1. Returns zero in the case of success or error,
604 * if expansion failed. In the last case, &sk_buff is not changed.
606 * All the pointers pointing into skb header may change and must be
607 * reloaded after call to this function.
610 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
611 gfp_t gfp_mask)
613 int i;
614 u8 *data;
615 int size = nhead + (skb->end - skb->head) + ntail;
616 long off;
618 if (skb_shared(skb))
619 BUG();
621 size = SKB_DATA_ALIGN(size);
623 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
624 if (!data)
625 goto nodata;
627 /* Copy only real data... and, alas, header. This should be
628 * optimized for the cases when header is void. */
629 memcpy(data + nhead, skb->head, skb->tail - skb->head);
630 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
632 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
633 get_page(skb_shinfo(skb)->frags[i].page);
635 if (skb_shinfo(skb)->frag_list)
636 skb_clone_fraglist(skb);
638 skb_release_data(skb);
640 off = (data + nhead) - skb->head;
642 skb->head = data;
643 skb->end = data + size;
644 skb->data += off;
645 skb->tail += off;
646 skb->mac.raw += off;
647 skb->h.raw += off;
648 skb->nh.raw += off;
649 skb->cloned = 0;
650 skb->nohdr = 0;
651 atomic_set(&skb_shinfo(skb)->dataref, 1);
652 return 0;
654 nodata:
655 return -ENOMEM;
658 /* Make private copy of skb with writable head and some headroom */
660 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
662 struct sk_buff *skb2;
663 int delta = headroom - skb_headroom(skb);
665 if (delta <= 0)
666 skb2 = pskb_copy(skb, GFP_ATOMIC);
667 else {
668 skb2 = skb_clone(skb, GFP_ATOMIC);
669 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
670 GFP_ATOMIC)) {
671 kfree_skb(skb2);
672 skb2 = NULL;
675 return skb2;
680 * skb_copy_expand - copy and expand sk_buff
681 * @skb: buffer to copy
682 * @newheadroom: new free bytes at head
683 * @newtailroom: new free bytes at tail
684 * @gfp_mask: allocation priority
686 * Make a copy of both an &sk_buff and its data and while doing so
687 * allocate additional space.
689 * This is used when the caller wishes to modify the data and needs a
690 * private copy of the data to alter as well as more space for new fields.
691 * Returns %NULL on failure or the pointer to the buffer
692 * on success. The returned buffer has a reference count of 1.
694 * You must pass %GFP_ATOMIC as the allocation priority if this function
695 * is called from an interrupt.
697 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
698 * only by netfilter in the cases when checksum is recalculated? --ANK
700 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
701 int newheadroom, int newtailroom,
702 gfp_t gfp_mask)
705 * Allocate the copy buffer
707 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
708 gfp_mask);
709 int head_copy_len, head_copy_off;
711 if (!n)
712 return NULL;
714 skb_reserve(n, newheadroom);
716 /* Set the tail pointer and length */
717 skb_put(n, skb->len);
719 head_copy_len = skb_headroom(skb);
720 head_copy_off = 0;
721 if (newheadroom <= head_copy_len)
722 head_copy_len = newheadroom;
723 else
724 head_copy_off = newheadroom - head_copy_len;
726 /* Copy the linear header and data. */
727 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
728 skb->len + head_copy_len))
729 BUG();
731 copy_skb_header(n, skb);
733 return n;
737 * skb_pad - zero pad the tail of an skb
738 * @skb: buffer to pad
739 * @pad: space to pad
741 * Ensure that a buffer is followed by a padding area that is zero
742 * filled. Used by network drivers which may DMA or transfer data
743 * beyond the buffer end onto the wire.
745 * May return NULL in out of memory cases.
748 struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
750 struct sk_buff *nskb;
752 /* If the skbuff is non linear tailroom is always zero.. */
753 if (skb_tailroom(skb) >= pad) {
754 memset(skb->data+skb->len, 0, pad);
755 return skb;
758 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
759 kfree_skb(skb);
760 if (nskb)
761 memset(nskb->data+nskb->len, 0, pad);
762 return nskb;
765 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
766 * If realloc==0 and trimming is impossible without change of data,
767 * it is BUG().
770 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
772 int offset = skb_headlen(skb);
773 int nfrags = skb_shinfo(skb)->nr_frags;
774 int i;
776 for (i = 0; i < nfrags; i++) {
777 int end = offset + skb_shinfo(skb)->frags[i].size;
778 if (end > len) {
779 if (skb_cloned(skb)) {
780 if (!realloc)
781 BUG();
782 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
783 return -ENOMEM;
785 if (len <= offset) {
786 put_page(skb_shinfo(skb)->frags[i].page);
787 skb_shinfo(skb)->nr_frags--;
788 } else {
789 skb_shinfo(skb)->frags[i].size = len - offset;
792 offset = end;
795 if (offset < len) {
796 skb->data_len -= skb->len - len;
797 skb->len = len;
798 } else {
799 if (len <= skb_headlen(skb)) {
800 skb->len = len;
801 skb->data_len = 0;
802 skb->tail = skb->data + len;
803 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
804 skb_drop_fraglist(skb);
805 } else {
806 skb->data_len -= skb->len - len;
807 skb->len = len;
811 return 0;
815 * __pskb_pull_tail - advance tail of skb header
816 * @skb: buffer to reallocate
817 * @delta: number of bytes to advance tail
819 * The function makes a sense only on a fragmented &sk_buff,
820 * it expands header moving its tail forward and copying necessary
821 * data from fragmented part.
823 * &sk_buff MUST have reference count of 1.
825 * Returns %NULL (and &sk_buff does not change) if pull failed
826 * or value of new tail of skb in the case of success.
828 * All the pointers pointing into skb header may change and must be
829 * reloaded after call to this function.
832 /* Moves tail of skb head forward, copying data from fragmented part,
833 * when it is necessary.
834 * 1. It may fail due to malloc failure.
835 * 2. It may change skb pointers.
837 * It is pretty complicated. Luckily, it is called only in exceptional cases.
839 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
841 /* If skb has not enough free space at tail, get new one
842 * plus 128 bytes for future expansions. If we have enough
843 * room at tail, reallocate without expansion only if skb is cloned.
845 int i, k, eat = (skb->tail + delta) - skb->end;
847 if (eat > 0 || skb_cloned(skb)) {
848 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
849 GFP_ATOMIC))
850 return NULL;
853 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
854 BUG();
856 /* Optimization: no fragments, no reasons to preestimate
857 * size of pulled pages. Superb.
859 if (!skb_shinfo(skb)->frag_list)
860 goto pull_pages;
862 /* Estimate size of pulled pages. */
863 eat = delta;
864 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
865 if (skb_shinfo(skb)->frags[i].size >= eat)
866 goto pull_pages;
867 eat -= skb_shinfo(skb)->frags[i].size;
870 /* If we need update frag list, we are in troubles.
871 * Certainly, it possible to add an offset to skb data,
872 * but taking into account that pulling is expected to
873 * be very rare operation, it is worth to fight against
874 * further bloating skb head and crucify ourselves here instead.
875 * Pure masohism, indeed. 8)8)
877 if (eat) {
878 struct sk_buff *list = skb_shinfo(skb)->frag_list;
879 struct sk_buff *clone = NULL;
880 struct sk_buff *insp = NULL;
882 do {
883 if (!list)
884 BUG();
886 if (list->len <= eat) {
887 /* Eaten as whole. */
888 eat -= list->len;
889 list = list->next;
890 insp = list;
891 } else {
892 /* Eaten partially. */
894 if (skb_shared(list)) {
895 /* Sucks! We need to fork list. :-( */
896 clone = skb_clone(list, GFP_ATOMIC);
897 if (!clone)
898 return NULL;
899 insp = list->next;
900 list = clone;
901 } else {
902 /* This may be pulled without
903 * problems. */
904 insp = list;
906 if (!pskb_pull(list, eat)) {
907 if (clone)
908 kfree_skb(clone);
909 return NULL;
911 break;
913 } while (eat);
915 /* Free pulled out fragments. */
916 while ((list = skb_shinfo(skb)->frag_list) != insp) {
917 skb_shinfo(skb)->frag_list = list->next;
918 kfree_skb(list);
920 /* And insert new clone at head. */
921 if (clone) {
922 clone->next = list;
923 skb_shinfo(skb)->frag_list = clone;
926 /* Success! Now we may commit changes to skb data. */
928 pull_pages:
929 eat = delta;
930 k = 0;
931 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
932 if (skb_shinfo(skb)->frags[i].size <= eat) {
933 put_page(skb_shinfo(skb)->frags[i].page);
934 eat -= skb_shinfo(skb)->frags[i].size;
935 } else {
936 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
937 if (eat) {
938 skb_shinfo(skb)->frags[k].page_offset += eat;
939 skb_shinfo(skb)->frags[k].size -= eat;
940 eat = 0;
942 k++;
945 skb_shinfo(skb)->nr_frags = k;
947 skb->tail += delta;
948 skb->data_len -= delta;
950 return skb->tail;
953 /* Copy some data bits from skb to kernel buffer. */
955 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
957 int i, copy;
958 int start = skb_headlen(skb);
960 if (offset > (int)skb->len - len)
961 goto fault;
963 /* Copy header. */
964 if ((copy = start - offset) > 0) {
965 if (copy > len)
966 copy = len;
967 memcpy(to, skb->data + offset, copy);
968 if ((len -= copy) == 0)
969 return 0;
970 offset += copy;
971 to += copy;
974 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
975 int end;
977 BUG_TRAP(start <= offset + len);
979 end = start + skb_shinfo(skb)->frags[i].size;
980 if ((copy = end - offset) > 0) {
981 u8 *vaddr;
983 if (copy > len)
984 copy = len;
986 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
987 memcpy(to,
988 vaddr + skb_shinfo(skb)->frags[i].page_offset+
989 offset - start, copy);
990 kunmap_skb_frag(vaddr);
992 if ((len -= copy) == 0)
993 return 0;
994 offset += copy;
995 to += copy;
997 start = end;
1000 if (skb_shinfo(skb)->frag_list) {
1001 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1003 for (; list; list = list->next) {
1004 int end;
1006 BUG_TRAP(start <= offset + len);
1008 end = start + list->len;
1009 if ((copy = end - offset) > 0) {
1010 if (copy > len)
1011 copy = len;
1012 if (skb_copy_bits(list, offset - start,
1013 to, copy))
1014 goto fault;
1015 if ((len -= copy) == 0)
1016 return 0;
1017 offset += copy;
1018 to += copy;
1020 start = end;
1023 if (!len)
1024 return 0;
1026 fault:
1027 return -EFAULT;
1031 * skb_store_bits - store bits from kernel buffer to skb
1032 * @skb: destination buffer
1033 * @offset: offset in destination
1034 * @from: source buffer
1035 * @len: number of bytes to copy
1037 * Copy the specified number of bytes from the source buffer to the
1038 * destination skb. This function handles all the messy bits of
1039 * traversing fragment lists and such.
1042 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1044 int i, copy;
1045 int start = skb_headlen(skb);
1047 if (offset > (int)skb->len - len)
1048 goto fault;
1050 if ((copy = start - offset) > 0) {
1051 if (copy > len)
1052 copy = len;
1053 memcpy(skb->data + offset, from, copy);
1054 if ((len -= copy) == 0)
1055 return 0;
1056 offset += copy;
1057 from += copy;
1060 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1061 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1062 int end;
1064 BUG_TRAP(start <= offset + len);
1066 end = start + frag->size;
1067 if ((copy = end - offset) > 0) {
1068 u8 *vaddr;
1070 if (copy > len)
1071 copy = len;
1073 vaddr = kmap_skb_frag(frag);
1074 memcpy(vaddr + frag->page_offset + offset - start,
1075 from, copy);
1076 kunmap_skb_frag(vaddr);
1078 if ((len -= copy) == 0)
1079 return 0;
1080 offset += copy;
1081 from += copy;
1083 start = end;
1086 if (skb_shinfo(skb)->frag_list) {
1087 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1089 for (; list; list = list->next) {
1090 int end;
1092 BUG_TRAP(start <= offset + len);
1094 end = start + list->len;
1095 if ((copy = end - offset) > 0) {
1096 if (copy > len)
1097 copy = len;
1098 if (skb_store_bits(list, offset - start,
1099 from, copy))
1100 goto fault;
1101 if ((len -= copy) == 0)
1102 return 0;
1103 offset += copy;
1104 from += copy;
1106 start = end;
1109 if (!len)
1110 return 0;
1112 fault:
1113 return -EFAULT;
1116 EXPORT_SYMBOL(skb_store_bits);
1118 /* Checksum skb data. */
1120 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1121 int len, unsigned int csum)
1123 int start = skb_headlen(skb);
1124 int i, copy = start - offset;
1125 int pos = 0;
1127 /* Checksum header. */
1128 if (copy > 0) {
1129 if (copy > len)
1130 copy = len;
1131 csum = csum_partial(skb->data + offset, copy, csum);
1132 if ((len -= copy) == 0)
1133 return csum;
1134 offset += copy;
1135 pos = copy;
1138 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1139 int end;
1141 BUG_TRAP(start <= offset + len);
1143 end = start + skb_shinfo(skb)->frags[i].size;
1144 if ((copy = end - offset) > 0) {
1145 unsigned int csum2;
1146 u8 *vaddr;
1147 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1149 if (copy > len)
1150 copy = len;
1151 vaddr = kmap_skb_frag(frag);
1152 csum2 = csum_partial(vaddr + frag->page_offset +
1153 offset - start, copy, 0);
1154 kunmap_skb_frag(vaddr);
1155 csum = csum_block_add(csum, csum2, pos);
1156 if (!(len -= copy))
1157 return csum;
1158 offset += copy;
1159 pos += copy;
1161 start = end;
1164 if (skb_shinfo(skb)->frag_list) {
1165 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1167 for (; list; list = list->next) {
1168 int end;
1170 BUG_TRAP(start <= offset + len);
1172 end = start + list->len;
1173 if ((copy = end - offset) > 0) {
1174 unsigned int csum2;
1175 if (copy > len)
1176 copy = len;
1177 csum2 = skb_checksum(list, offset - start,
1178 copy, 0);
1179 csum = csum_block_add(csum, csum2, pos);
1180 if ((len -= copy) == 0)
1181 return csum;
1182 offset += copy;
1183 pos += copy;
1185 start = end;
1188 if (len)
1189 BUG();
1191 return csum;
1194 /* Both of above in one bottle. */
1196 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1197 u8 *to, int len, unsigned int csum)
1199 int start = skb_headlen(skb);
1200 int i, copy = start - offset;
1201 int pos = 0;
1203 /* Copy header. */
1204 if (copy > 0) {
1205 if (copy > len)
1206 copy = len;
1207 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1208 copy, csum);
1209 if ((len -= copy) == 0)
1210 return csum;
1211 offset += copy;
1212 to += copy;
1213 pos = copy;
1216 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1217 int end;
1219 BUG_TRAP(start <= offset + len);
1221 end = start + skb_shinfo(skb)->frags[i].size;
1222 if ((copy = end - offset) > 0) {
1223 unsigned int csum2;
1224 u8 *vaddr;
1225 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1227 if (copy > len)
1228 copy = len;
1229 vaddr = kmap_skb_frag(frag);
1230 csum2 = csum_partial_copy_nocheck(vaddr +
1231 frag->page_offset +
1232 offset - start, to,
1233 copy, 0);
1234 kunmap_skb_frag(vaddr);
1235 csum = csum_block_add(csum, csum2, pos);
1236 if (!(len -= copy))
1237 return csum;
1238 offset += copy;
1239 to += copy;
1240 pos += copy;
1242 start = end;
1245 if (skb_shinfo(skb)->frag_list) {
1246 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1248 for (; list; list = list->next) {
1249 unsigned int csum2;
1250 int end;
1252 BUG_TRAP(start <= offset + len);
1254 end = start + list->len;
1255 if ((copy = end - offset) > 0) {
1256 if (copy > len)
1257 copy = len;
1258 csum2 = skb_copy_and_csum_bits(list,
1259 offset - start,
1260 to, copy, 0);
1261 csum = csum_block_add(csum, csum2, pos);
1262 if ((len -= copy) == 0)
1263 return csum;
1264 offset += copy;
1265 to += copy;
1266 pos += copy;
1268 start = end;
1271 if (len)
1272 BUG();
1273 return csum;
1276 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1278 unsigned int csum;
1279 long csstart;
1281 if (skb->ip_summed == CHECKSUM_HW)
1282 csstart = skb->h.raw - skb->data;
1283 else
1284 csstart = skb_headlen(skb);
1286 if (csstart > skb_headlen(skb))
1287 BUG();
1289 memcpy(to, skb->data, csstart);
1291 csum = 0;
1292 if (csstart != skb->len)
1293 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1294 skb->len - csstart, 0);
1296 if (skb->ip_summed == CHECKSUM_HW) {
1297 long csstuff = csstart + skb->csum;
1299 *((unsigned short *)(to + csstuff)) = csum_fold(csum);
1304 * skb_dequeue - remove from the head of the queue
1305 * @list: list to dequeue from
1307 * Remove the head of the list. The list lock is taken so the function
1308 * may be used safely with other locking list functions. The head item is
1309 * returned or %NULL if the list is empty.
1312 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1314 unsigned long flags;
1315 struct sk_buff *result;
1317 spin_lock_irqsave(&list->lock, flags);
1318 result = __skb_dequeue(list);
1319 spin_unlock_irqrestore(&list->lock, flags);
1320 return result;
1324 * skb_dequeue_tail - remove from the tail of the queue
1325 * @list: list to dequeue from
1327 * Remove the tail of the list. The list lock is taken so the function
1328 * may be used safely with other locking list functions. The tail item is
1329 * returned or %NULL if the list is empty.
1331 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1333 unsigned long flags;
1334 struct sk_buff *result;
1336 spin_lock_irqsave(&list->lock, flags);
1337 result = __skb_dequeue_tail(list);
1338 spin_unlock_irqrestore(&list->lock, flags);
1339 return result;
1343 * skb_queue_purge - empty a list
1344 * @list: list to empty
1346 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1347 * the list and one reference dropped. This function takes the list
1348 * lock and is atomic with respect to other list locking functions.
1350 void skb_queue_purge(struct sk_buff_head *list)
1352 struct sk_buff *skb;
1353 while ((skb = skb_dequeue(list)) != NULL)
1354 kfree_skb(skb);
1358 * skb_queue_head - queue a buffer at the list head
1359 * @list: list to use
1360 * @newsk: buffer to queue
1362 * Queue a buffer at the start of the list. This function takes the
1363 * list lock and can be used safely with other locking &sk_buff functions
1364 * safely.
1366 * A buffer cannot be placed on two lists at the same time.
1368 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1370 unsigned long flags;
1372 spin_lock_irqsave(&list->lock, flags);
1373 __skb_queue_head(list, newsk);
1374 spin_unlock_irqrestore(&list->lock, flags);
1378 * skb_queue_tail - queue a buffer at the list tail
1379 * @list: list to use
1380 * @newsk: buffer to queue
1382 * Queue a buffer at the tail of the list. This function takes the
1383 * list lock and can be used safely with other locking &sk_buff functions
1384 * safely.
1386 * A buffer cannot be placed on two lists at the same time.
1388 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1390 unsigned long flags;
1392 spin_lock_irqsave(&list->lock, flags);
1393 __skb_queue_tail(list, newsk);
1394 spin_unlock_irqrestore(&list->lock, flags);
1398 * skb_unlink - remove a buffer from a list
1399 * @skb: buffer to remove
1400 * @list: list to use
1402 * Remove a packet from a list. The list locks are taken and this
1403 * function is atomic with respect to other list locked calls
1405 * You must know what list the SKB is on.
1407 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1409 unsigned long flags;
1411 spin_lock_irqsave(&list->lock, flags);
1412 __skb_unlink(skb, list);
1413 spin_unlock_irqrestore(&list->lock, flags);
1417 * skb_append - append a buffer
1418 * @old: buffer to insert after
1419 * @newsk: buffer to insert
1420 * @list: list to use
1422 * Place a packet after a given packet in a list. The list locks are taken
1423 * and this function is atomic with respect to other list locked calls.
1424 * A buffer cannot be placed on two lists at the same time.
1426 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1428 unsigned long flags;
1430 spin_lock_irqsave(&list->lock, flags);
1431 __skb_append(old, newsk, list);
1432 spin_unlock_irqrestore(&list->lock, flags);
1437 * skb_insert - insert a buffer
1438 * @old: buffer to insert before
1439 * @newsk: buffer to insert
1440 * @list: list to use
1442 * Place a packet before a given packet in a list. The list locks are
1443 * taken and this function is atomic with respect to other list locked
1444 * calls.
1446 * A buffer cannot be placed on two lists at the same time.
1448 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1450 unsigned long flags;
1452 spin_lock_irqsave(&list->lock, flags);
1453 __skb_insert(newsk, old->prev, old, list);
1454 spin_unlock_irqrestore(&list->lock, flags);
1457 #if 0
1459 * Tune the memory allocator for a new MTU size.
1461 void skb_add_mtu(int mtu)
1463 /* Must match allocation in alloc_skb */
1464 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1466 kmem_add_cache_size(mtu);
1468 #endif
1470 static inline void skb_split_inside_header(struct sk_buff *skb,
1471 struct sk_buff* skb1,
1472 const u32 len, const int pos)
1474 int i;
1476 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1478 /* And move data appendix as is. */
1479 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1480 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1482 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1483 skb_shinfo(skb)->nr_frags = 0;
1484 skb1->data_len = skb->data_len;
1485 skb1->len += skb1->data_len;
1486 skb->data_len = 0;
1487 skb->len = len;
1488 skb->tail = skb->data + len;
1491 static inline void skb_split_no_header(struct sk_buff *skb,
1492 struct sk_buff* skb1,
1493 const u32 len, int pos)
1495 int i, k = 0;
1496 const int nfrags = skb_shinfo(skb)->nr_frags;
1498 skb_shinfo(skb)->nr_frags = 0;
1499 skb1->len = skb1->data_len = skb->len - len;
1500 skb->len = len;
1501 skb->data_len = len - pos;
1503 for (i = 0; i < nfrags; i++) {
1504 int size = skb_shinfo(skb)->frags[i].size;
1506 if (pos + size > len) {
1507 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1509 if (pos < len) {
1510 /* Split frag.
1511 * We have two variants in this case:
1512 * 1. Move all the frag to the second
1513 * part, if it is possible. F.e.
1514 * this approach is mandatory for TUX,
1515 * where splitting is expensive.
1516 * 2. Split is accurately. We make this.
1518 get_page(skb_shinfo(skb)->frags[i].page);
1519 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1520 skb_shinfo(skb1)->frags[0].size -= len - pos;
1521 skb_shinfo(skb)->frags[i].size = len - pos;
1522 skb_shinfo(skb)->nr_frags++;
1524 k++;
1525 } else
1526 skb_shinfo(skb)->nr_frags++;
1527 pos += size;
1529 skb_shinfo(skb1)->nr_frags = k;
1533 * skb_split - Split fragmented skb to two parts at length len.
1534 * @skb: the buffer to split
1535 * @skb1: the buffer to receive the second part
1536 * @len: new length for skb
1538 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1540 int pos = skb_headlen(skb);
1542 if (len < pos) /* Split line is inside header. */
1543 skb_split_inside_header(skb, skb1, len, pos);
1544 else /* Second chunk has no header, nothing to copy. */
1545 skb_split_no_header(skb, skb1, len, pos);
1549 * skb_prepare_seq_read - Prepare a sequential read of skb data
1550 * @skb: the buffer to read
1551 * @from: lower offset of data to be read
1552 * @to: upper offset of data to be read
1553 * @st: state variable
1555 * Initializes the specified state variable. Must be called before
1556 * invoking skb_seq_read() for the first time.
1558 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1559 unsigned int to, struct skb_seq_state *st)
1561 st->lower_offset = from;
1562 st->upper_offset = to;
1563 st->root_skb = st->cur_skb = skb;
1564 st->frag_idx = st->stepped_offset = 0;
1565 st->frag_data = NULL;
1569 * skb_seq_read - Sequentially read skb data
1570 * @consumed: number of bytes consumed by the caller so far
1571 * @data: destination pointer for data to be returned
1572 * @st: state variable
1574 * Reads a block of skb data at &consumed relative to the
1575 * lower offset specified to skb_prepare_seq_read(). Assigns
1576 * the head of the data block to &data and returns the length
1577 * of the block or 0 if the end of the skb data or the upper
1578 * offset has been reached.
1580 * The caller is not required to consume all of the data
1581 * returned, i.e. &consumed is typically set to the number
1582 * of bytes already consumed and the next call to
1583 * skb_seq_read() will return the remaining part of the block.
1585 * Note: The size of each block of data returned can be arbitary,
1586 * this limitation is the cost for zerocopy seqeuental
1587 * reads of potentially non linear data.
1589 * Note: Fragment lists within fragments are not implemented
1590 * at the moment, state->root_skb could be replaced with
1591 * a stack for this purpose.
1593 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1594 struct skb_seq_state *st)
1596 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1597 skb_frag_t *frag;
1599 if (unlikely(abs_offset >= st->upper_offset))
1600 return 0;
1602 next_skb:
1603 block_limit = skb_headlen(st->cur_skb);
1605 if (abs_offset < block_limit) {
1606 *data = st->cur_skb->data + abs_offset;
1607 return block_limit - abs_offset;
1610 if (st->frag_idx == 0 && !st->frag_data)
1611 st->stepped_offset += skb_headlen(st->cur_skb);
1613 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1614 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1615 block_limit = frag->size + st->stepped_offset;
1617 if (abs_offset < block_limit) {
1618 if (!st->frag_data)
1619 st->frag_data = kmap_skb_frag(frag);
1621 *data = (u8 *) st->frag_data + frag->page_offset +
1622 (abs_offset - st->stepped_offset);
1624 return block_limit - abs_offset;
1627 if (st->frag_data) {
1628 kunmap_skb_frag(st->frag_data);
1629 st->frag_data = NULL;
1632 st->frag_idx++;
1633 st->stepped_offset += frag->size;
1636 if (st->cur_skb->next) {
1637 st->cur_skb = st->cur_skb->next;
1638 st->frag_idx = 0;
1639 goto next_skb;
1640 } else if (st->root_skb == st->cur_skb &&
1641 skb_shinfo(st->root_skb)->frag_list) {
1642 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1643 goto next_skb;
1646 return 0;
1650 * skb_abort_seq_read - Abort a sequential read of skb data
1651 * @st: state variable
1653 * Must be called if skb_seq_read() was not called until it
1654 * returned 0.
1656 void skb_abort_seq_read(struct skb_seq_state *st)
1658 if (st->frag_data)
1659 kunmap_skb_frag(st->frag_data);
1662 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1664 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1665 struct ts_config *conf,
1666 struct ts_state *state)
1668 return skb_seq_read(offset, text, TS_SKB_CB(state));
1671 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1673 skb_abort_seq_read(TS_SKB_CB(state));
1677 * skb_find_text - Find a text pattern in skb data
1678 * @skb: the buffer to look in
1679 * @from: search offset
1680 * @to: search limit
1681 * @config: textsearch configuration
1682 * @state: uninitialized textsearch state variable
1684 * Finds a pattern in the skb data according to the specified
1685 * textsearch configuration. Use textsearch_next() to retrieve
1686 * subsequent occurrences of the pattern. Returns the offset
1687 * to the first occurrence or UINT_MAX if no match was found.
1689 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1690 unsigned int to, struct ts_config *config,
1691 struct ts_state *state)
1693 config->get_next_block = skb_ts_get_next_block;
1694 config->finish = skb_ts_finish;
1696 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1698 return textsearch_find(config, state);
1702 * skb_append_datato_frags: - append the user data to a skb
1703 * @sk: sock structure
1704 * @skb: skb structure to be appened with user data.
1705 * @getfrag: call back function to be used for getting the user data
1706 * @from: pointer to user message iov
1707 * @length: length of the iov message
1709 * Description: This procedure append the user data in the fragment part
1710 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1712 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1713 int getfrag(void *from, char *to, int offset,
1714 int len, int odd, struct sk_buff *skb),
1715 void *from, int length)
1717 int frg_cnt = 0;
1718 skb_frag_t *frag = NULL;
1719 struct page *page = NULL;
1720 int copy, left;
1721 int offset = 0;
1722 int ret;
1724 do {
1725 /* Return error if we don't have space for new frag */
1726 frg_cnt = skb_shinfo(skb)->nr_frags;
1727 if (frg_cnt >= MAX_SKB_FRAGS)
1728 return -EFAULT;
1730 /* allocate a new page for next frag */
1731 page = alloc_pages(sk->sk_allocation, 0);
1733 /* If alloc_page fails just return failure and caller will
1734 * free previous allocated pages by doing kfree_skb()
1736 if (page == NULL)
1737 return -ENOMEM;
1739 /* initialize the next frag */
1740 sk->sk_sndmsg_page = page;
1741 sk->sk_sndmsg_off = 0;
1742 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1743 skb->truesize += PAGE_SIZE;
1744 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1746 /* get the new initialized frag */
1747 frg_cnt = skb_shinfo(skb)->nr_frags;
1748 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1750 /* copy the user data to page */
1751 left = PAGE_SIZE - frag->page_offset;
1752 copy = (length > left)? left : length;
1754 ret = getfrag(from, (page_address(frag->page) +
1755 frag->page_offset + frag->size),
1756 offset, copy, 0, skb);
1757 if (ret < 0)
1758 return -EFAULT;
1760 /* copy was successful so update the size parameters */
1761 sk->sk_sndmsg_off += copy;
1762 frag->size += copy;
1763 skb->len += copy;
1764 skb->data_len += copy;
1765 offset += copy;
1766 length -= copy;
1768 } while (length > 0);
1770 return 0;
1773 void __init skb_init(void)
1775 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1776 sizeof(struct sk_buff),
1778 SLAB_HWCACHE_ALIGN,
1779 NULL, NULL);
1780 if (!skbuff_head_cache)
1781 panic("cannot create skbuff cache");
1783 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
1784 (2*sizeof(struct sk_buff)) +
1785 sizeof(atomic_t),
1787 SLAB_HWCACHE_ALIGN,
1788 NULL, NULL);
1789 if (!skbuff_fclone_cache)
1790 panic("cannot create skbuff cache");
1793 EXPORT_SYMBOL(___pskb_trim);
1794 EXPORT_SYMBOL(__kfree_skb);
1795 EXPORT_SYMBOL(__pskb_pull_tail);
1796 EXPORT_SYMBOL(__alloc_skb);
1797 EXPORT_SYMBOL(pskb_copy);
1798 EXPORT_SYMBOL(pskb_expand_head);
1799 EXPORT_SYMBOL(skb_checksum);
1800 EXPORT_SYMBOL(skb_clone);
1801 EXPORT_SYMBOL(skb_clone_fraglist);
1802 EXPORT_SYMBOL(skb_copy);
1803 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1804 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1805 EXPORT_SYMBOL(skb_copy_bits);
1806 EXPORT_SYMBOL(skb_copy_expand);
1807 EXPORT_SYMBOL(skb_over_panic);
1808 EXPORT_SYMBOL(skb_pad);
1809 EXPORT_SYMBOL(skb_realloc_headroom);
1810 EXPORT_SYMBOL(skb_under_panic);
1811 EXPORT_SYMBOL(skb_dequeue);
1812 EXPORT_SYMBOL(skb_dequeue_tail);
1813 EXPORT_SYMBOL(skb_insert);
1814 EXPORT_SYMBOL(skb_queue_purge);
1815 EXPORT_SYMBOL(skb_queue_head);
1816 EXPORT_SYMBOL(skb_queue_tail);
1817 EXPORT_SYMBOL(skb_unlink);
1818 EXPORT_SYMBOL(skb_append);
1819 EXPORT_SYMBOL(skb_split);
1820 EXPORT_SYMBOL(skb_prepare_seq_read);
1821 EXPORT_SYMBOL(skb_seq_read);
1822 EXPORT_SYMBOL(skb_abort_seq_read);
1823 EXPORT_SYMBOL(skb_find_text);
1824 EXPORT_SYMBOL(skb_append_datato_frags);