cmd64x: don't clear the other channel's interrupt
[linux-2.6/linux-mips/linux-dm7025.git] / drivers / ide / ide-iops.c
blobe17a9ee120ead8182c24cdc8fca7b81a043ed288
1 /*
2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
7 */
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
34 * Conventional PIO operations for ATA devices
37 static u8 ide_inb (unsigned long port)
39 return (u8) inb(port);
42 static u16 ide_inw (unsigned long port)
44 return (u16) inw(port);
47 static void ide_insw (unsigned long port, void *addr, u32 count)
49 insw(port, addr, count);
52 static void ide_insl (unsigned long port, void *addr, u32 count)
54 insl(port, addr, count);
57 static void ide_outb (u8 val, unsigned long port)
59 outb(val, port);
62 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
64 outb(addr, port);
67 static void ide_outw (u16 val, unsigned long port)
69 outw(val, port);
72 static void ide_outsw (unsigned long port, void *addr, u32 count)
74 outsw(port, addr, count);
77 static void ide_outsl (unsigned long port, void *addr, u32 count)
79 outsl(port, addr, count);
82 void default_hwif_iops (ide_hwif_t *hwif)
84 hwif->OUTB = ide_outb;
85 hwif->OUTBSYNC = ide_outbsync;
86 hwif->OUTW = ide_outw;
87 hwif->OUTSW = ide_outsw;
88 hwif->OUTSL = ide_outsl;
89 hwif->INB = ide_inb;
90 hwif->INW = ide_inw;
91 hwif->INSW = ide_insw;
92 hwif->INSL = ide_insl;
96 * MMIO operations, typically used for SATA controllers
99 static u8 ide_mm_inb (unsigned long port)
101 return (u8) readb((void __iomem *) port);
104 static u16 ide_mm_inw (unsigned long port)
106 return (u16) readw((void __iomem *) port);
109 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
111 __ide_mm_insw((void __iomem *) port, addr, count);
114 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
116 __ide_mm_insl((void __iomem *) port, addr, count);
119 static void ide_mm_outb (u8 value, unsigned long port)
121 writeb(value, (void __iomem *) port);
124 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
126 writeb(value, (void __iomem *) port);
129 static void ide_mm_outw (u16 value, unsigned long port)
131 writew(value, (void __iomem *) port);
134 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
136 __ide_mm_outsw((void __iomem *) port, addr, count);
139 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
141 __ide_mm_outsl((void __iomem *) port, addr, count);
144 void default_hwif_mmiops (ide_hwif_t *hwif)
146 hwif->OUTB = ide_mm_outb;
147 /* Most systems will need to override OUTBSYNC, alas however
148 this one is controller specific! */
149 hwif->OUTBSYNC = ide_mm_outbsync;
150 hwif->OUTW = ide_mm_outw;
151 hwif->OUTSW = ide_mm_outsw;
152 hwif->OUTSL = ide_mm_outsl;
153 hwif->INB = ide_mm_inb;
154 hwif->INW = ide_mm_inw;
155 hwif->INSW = ide_mm_insw;
156 hwif->INSL = ide_mm_insl;
159 EXPORT_SYMBOL(default_hwif_mmiops);
161 u32 ide_read_24 (ide_drive_t *drive)
163 u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164 u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165 u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166 return (hcyl<<16)|(lcyl<<8)|sect;
169 void SELECT_DRIVE (ide_drive_t *drive)
171 if (HWIF(drive)->selectproc)
172 HWIF(drive)->selectproc(drive);
173 HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
176 EXPORT_SYMBOL(SELECT_DRIVE);
178 void SELECT_INTERRUPT (ide_drive_t *drive)
180 if (HWIF(drive)->intrproc)
181 HWIF(drive)->intrproc(drive);
182 else
183 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
186 void SELECT_MASK (ide_drive_t *drive, int mask)
188 if (HWIF(drive)->maskproc)
189 HWIF(drive)->maskproc(drive, mask);
192 void QUIRK_LIST (ide_drive_t *drive)
194 if (HWIF(drive)->quirkproc)
195 drive->quirk_list = HWIF(drive)->quirkproc(drive);
199 * Some localbus EIDE interfaces require a special access sequence
200 * when using 32-bit I/O instructions to transfer data. We call this
201 * the "vlb_sync" sequence, which consists of three successive reads
202 * of the sector count register location, with interrupts disabled
203 * to ensure that the reads all happen together.
205 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
207 (void) HWIF(drive)->INB(port);
208 (void) HWIF(drive)->INB(port);
209 (void) HWIF(drive)->INB(port);
213 * This is used for most PIO data transfers *from* the IDE interface
215 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
217 ide_hwif_t *hwif = HWIF(drive);
218 u8 io_32bit = drive->io_32bit;
220 if (io_32bit) {
221 if (io_32bit & 2) {
222 unsigned long flags;
223 local_irq_save(flags);
224 ata_vlb_sync(drive, IDE_NSECTOR_REG);
225 hwif->INSL(IDE_DATA_REG, buffer, wcount);
226 local_irq_restore(flags);
227 } else
228 hwif->INSL(IDE_DATA_REG, buffer, wcount);
229 } else {
230 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
235 * This is used for most PIO data transfers *to* the IDE interface
237 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
239 ide_hwif_t *hwif = HWIF(drive);
240 u8 io_32bit = drive->io_32bit;
242 if (io_32bit) {
243 if (io_32bit & 2) {
244 unsigned long flags;
245 local_irq_save(flags);
246 ata_vlb_sync(drive, IDE_NSECTOR_REG);
247 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248 local_irq_restore(flags);
249 } else
250 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251 } else {
252 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
257 * The following routines are mainly used by the ATAPI drivers.
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd bytecount is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
264 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
266 ide_hwif_t *hwif = HWIF(drive);
268 ++bytecount;
269 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270 if (MACH_IS_ATARI || MACH_IS_Q40) {
271 /* Atari has a byte-swapped IDE interface */
272 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273 return;
275 #endif /* CONFIG_ATARI || CONFIG_Q40 */
276 hwif->ata_input_data(drive, buffer, bytecount / 4);
277 if ((bytecount & 0x03) >= 2)
278 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
281 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
283 ide_hwif_t *hwif = HWIF(drive);
285 ++bytecount;
286 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287 if (MACH_IS_ATARI || MACH_IS_Q40) {
288 /* Atari has a byte-swapped IDE interface */
289 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290 return;
292 #endif /* CONFIG_ATARI || CONFIG_Q40 */
293 hwif->ata_output_data(drive, buffer, bytecount / 4);
294 if ((bytecount & 0x03) >= 2)
295 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
298 void default_hwif_transport(ide_hwif_t *hwif)
300 hwif->ata_input_data = ata_input_data;
301 hwif->ata_output_data = ata_output_data;
302 hwif->atapi_input_bytes = atapi_input_bytes;
303 hwif->atapi_output_bytes = atapi_output_bytes;
307 * Beginning of Taskfile OPCODE Library and feature sets.
309 void ide_fix_driveid (struct hd_driveid *id)
311 #ifndef __LITTLE_ENDIAN
312 # ifdef __BIG_ENDIAN
313 int i;
314 u16 *stringcast;
316 id->config = __le16_to_cpu(id->config);
317 id->cyls = __le16_to_cpu(id->cyls);
318 id->reserved2 = __le16_to_cpu(id->reserved2);
319 id->heads = __le16_to_cpu(id->heads);
320 id->track_bytes = __le16_to_cpu(id->track_bytes);
321 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
322 id->sectors = __le16_to_cpu(id->sectors);
323 id->vendor0 = __le16_to_cpu(id->vendor0);
324 id->vendor1 = __le16_to_cpu(id->vendor1);
325 id->vendor2 = __le16_to_cpu(id->vendor2);
326 stringcast = (u16 *)&id->serial_no[0];
327 for (i = 0; i < (20/2); i++)
328 stringcast[i] = __le16_to_cpu(stringcast[i]);
329 id->buf_type = __le16_to_cpu(id->buf_type);
330 id->buf_size = __le16_to_cpu(id->buf_size);
331 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
332 stringcast = (u16 *)&id->fw_rev[0];
333 for (i = 0; i < (8/2); i++)
334 stringcast[i] = __le16_to_cpu(stringcast[i]);
335 stringcast = (u16 *)&id->model[0];
336 for (i = 0; i < (40/2); i++)
337 stringcast[i] = __le16_to_cpu(stringcast[i]);
338 id->dword_io = __le16_to_cpu(id->dword_io);
339 id->reserved50 = __le16_to_cpu(id->reserved50);
340 id->field_valid = __le16_to_cpu(id->field_valid);
341 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
342 id->cur_heads = __le16_to_cpu(id->cur_heads);
343 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
344 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
345 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
346 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
347 id->dma_1word = __le16_to_cpu(id->dma_1word);
348 id->dma_mword = __le16_to_cpu(id->dma_mword);
349 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
350 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
351 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
352 id->eide_pio = __le16_to_cpu(id->eide_pio);
353 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
354 for (i = 0; i < 2; ++i)
355 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
356 for (i = 0; i < 4; ++i)
357 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
358 id->queue_depth = __le16_to_cpu(id->queue_depth);
359 for (i = 0; i < 4; ++i)
360 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
361 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
362 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
363 id->command_set_1 = __le16_to_cpu(id->command_set_1);
364 id->command_set_2 = __le16_to_cpu(id->command_set_2);
365 id->cfsse = __le16_to_cpu(id->cfsse);
366 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
367 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
368 id->csf_default = __le16_to_cpu(id->csf_default);
369 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
370 id->trseuc = __le16_to_cpu(id->trseuc);
371 id->trsEuc = __le16_to_cpu(id->trsEuc);
372 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
373 id->mprc = __le16_to_cpu(id->mprc);
374 id->hw_config = __le16_to_cpu(id->hw_config);
375 id->acoustic = __le16_to_cpu(id->acoustic);
376 id->msrqs = __le16_to_cpu(id->msrqs);
377 id->sxfert = __le16_to_cpu(id->sxfert);
378 id->sal = __le16_to_cpu(id->sal);
379 id->spg = __le32_to_cpu(id->spg);
380 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
381 for (i = 0; i < 22; i++)
382 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
383 id->last_lun = __le16_to_cpu(id->last_lun);
384 id->word127 = __le16_to_cpu(id->word127);
385 id->dlf = __le16_to_cpu(id->dlf);
386 id->csfo = __le16_to_cpu(id->csfo);
387 for (i = 0; i < 26; i++)
388 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
389 id->word156 = __le16_to_cpu(id->word156);
390 for (i = 0; i < 3; i++)
391 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
392 id->cfa_power = __le16_to_cpu(id->cfa_power);
393 for (i = 0; i < 14; i++)
394 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
395 for (i = 0; i < 31; i++)
396 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
397 for (i = 0; i < 48; i++)
398 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
399 id->integrity_word = __le16_to_cpu(id->integrity_word);
400 # else
401 # error "Please fix <asm/byteorder.h>"
402 # endif
403 #endif
407 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
408 * removing leading/trailing blanks and compressing internal blanks.
409 * It is primarily used to tidy up the model name/number fields as
410 * returned by the WIN_[P]IDENTIFY commands.
413 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
415 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
417 if (byteswap) {
418 /* convert from big-endian to host byte order */
419 for (p = end ; p != s;) {
420 unsigned short *pp = (unsigned short *) (p -= 2);
421 *pp = ntohs(*pp);
424 /* strip leading blanks */
425 while (s != end && *s == ' ')
426 ++s;
427 /* compress internal blanks and strip trailing blanks */
428 while (s != end && *s) {
429 if (*s++ != ' ' || (s != end && *s && *s != ' '))
430 *p++ = *(s-1);
432 /* wipe out trailing garbage */
433 while (p != end)
434 *p++ = '\0';
437 EXPORT_SYMBOL(ide_fixstring);
440 * Needed for PCI irq sharing
442 int drive_is_ready (ide_drive_t *drive)
444 ide_hwif_t *hwif = HWIF(drive);
445 u8 stat = 0;
447 if (drive->waiting_for_dma)
448 return hwif->ide_dma_test_irq(drive);
450 #if 0
451 /* need to guarantee 400ns since last command was issued */
452 udelay(1);
453 #endif
455 #ifdef CONFIG_IDEPCI_SHARE_IRQ
457 * We do a passive status test under shared PCI interrupts on
458 * cards that truly share the ATA side interrupt, but may also share
459 * an interrupt with another pci card/device. We make no assumptions
460 * about possible isa-pnp and pci-pnp issues yet.
462 if (IDE_CONTROL_REG)
463 stat = hwif->INB(IDE_ALTSTATUS_REG);
464 else
465 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
466 /* Note: this may clear a pending IRQ!! */
467 stat = hwif->INB(IDE_STATUS_REG);
469 if (stat & BUSY_STAT)
470 /* drive busy: definitely not interrupting */
471 return 0;
473 /* drive ready: *might* be interrupting */
474 return 1;
477 EXPORT_SYMBOL(drive_is_ready);
480 * This routine busy-waits for the drive status to be not "busy".
481 * It then checks the status for all of the "good" bits and none
482 * of the "bad" bits, and if all is okay it returns 0. All other
483 * cases return error -- caller may then invoke ide_error().
485 * This routine should get fixed to not hog the cpu during extra long waits..
486 * That could be done by busy-waiting for the first jiffy or two, and then
487 * setting a timer to wake up at half second intervals thereafter,
488 * until timeout is achieved, before timing out.
490 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
492 ide_hwif_t *hwif = drive->hwif;
493 unsigned long flags;
494 int i;
495 u8 stat;
497 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
498 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
499 local_irq_set(flags);
500 timeout += jiffies;
501 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
502 if (time_after(jiffies, timeout)) {
504 * One last read after the timeout in case
505 * heavy interrupt load made us not make any
506 * progress during the timeout..
508 stat = hwif->INB(IDE_STATUS_REG);
509 if (!(stat & BUSY_STAT))
510 break;
512 local_irq_restore(flags);
513 *rstat = stat;
514 return -EBUSY;
517 local_irq_restore(flags);
520 * Allow status to settle, then read it again.
521 * A few rare drives vastly violate the 400ns spec here,
522 * so we'll wait up to 10usec for a "good" status
523 * rather than expensively fail things immediately.
524 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
526 for (i = 0; i < 10; i++) {
527 udelay(1);
528 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
529 *rstat = stat;
530 return 0;
533 *rstat = stat;
534 return -EFAULT;
538 * In case of error returns error value after doing "*startstop = ide_error()".
539 * The caller should return the updated value of "startstop" in this case,
540 * "startstop" is unchanged when the function returns 0.
542 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
544 int err;
545 u8 stat;
547 /* bail early if we've exceeded max_failures */
548 if (drive->max_failures && (drive->failures > drive->max_failures)) {
549 *startstop = ide_stopped;
550 return 1;
553 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
555 if (err) {
556 char *s = (err == -EBUSY) ? "status timeout" : "status error";
557 *startstop = ide_error(drive, s, stat);
560 return err;
563 EXPORT_SYMBOL(ide_wait_stat);
566 * ide_in_drive_list - look for drive in black/white list
567 * @id: drive identifier
568 * @drive_table: list to inspect
570 * Look for a drive in the blacklist and the whitelist tables
571 * Returns 1 if the drive is found in the table.
574 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
576 for ( ; drive_table->id_model; drive_table++)
577 if ((!strcmp(drive_table->id_model, id->model)) &&
578 (!drive_table->id_firmware ||
579 strstr(id->fw_rev, drive_table->id_firmware)))
580 return 1;
581 return 0;
584 EXPORT_SYMBOL_GPL(ide_in_drive_list);
587 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
588 * We list them here and depend on the device side cable detection for them.
590 * Some optical devices with the buggy firmwares have the same problem.
592 static const struct drive_list_entry ivb_list[] = {
593 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
594 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
595 { NULL , NULL }
599 * All hosts that use the 80c ribbon must use!
600 * The name is derived from upper byte of word 93 and the 80c ribbon.
602 u8 eighty_ninty_three (ide_drive_t *drive)
604 ide_hwif_t *hwif = drive->hwif;
605 struct hd_driveid *id = drive->id;
606 int ivb = ide_in_drive_list(id, ivb_list);
608 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
609 return 1;
611 if (ivb)
612 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
613 drive->name);
615 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
616 goto no_80w;
618 if (ide_dev_is_sata(id))
619 return 1;
622 * FIXME:
623 * - force bit13 (80c cable present) check also for !ivb devices
624 * (unless the slave device is pre-ATA3)
626 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
627 return 1;
629 no_80w:
630 if (drive->udma33_warned == 1)
631 return 0;
633 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
634 "limiting max speed to UDMA33\n",
635 drive->name,
636 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
638 drive->udma33_warned = 1;
640 return 0;
643 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
645 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
646 (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
647 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
648 if (eighty_ninty_three(drive) == 0) {
649 printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
650 "be set\n", drive->name);
651 return 1;
655 return 0;
659 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
660 * 1 : Safe to update drive->id DMA registers.
661 * 0 : OOPs not allowed.
663 int set_transfer (ide_drive_t *drive, ide_task_t *args)
665 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
666 (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
667 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
668 (drive->id->dma_ultra ||
669 drive->id->dma_mword ||
670 drive->id->dma_1word))
671 return 1;
673 return 0;
676 #ifdef CONFIG_BLK_DEV_IDEDMA
677 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
679 if (!drive->crc_count)
680 return drive->current_speed;
681 drive->crc_count = 0;
683 switch(drive->current_speed) {
684 case XFER_UDMA_7: return XFER_UDMA_6;
685 case XFER_UDMA_6: return XFER_UDMA_5;
686 case XFER_UDMA_5: return XFER_UDMA_4;
687 case XFER_UDMA_4: return XFER_UDMA_3;
688 case XFER_UDMA_3: return XFER_UDMA_2;
689 case XFER_UDMA_2: return XFER_UDMA_1;
690 case XFER_UDMA_1: return XFER_UDMA_0;
692 * OOPS we do not goto non Ultra DMA modes
693 * without iCRC's available we force
694 * the system to PIO and make the user
695 * invoke the ATA-1 ATA-2 DMA modes.
697 case XFER_UDMA_0:
698 default: return XFER_PIO_4;
701 #endif /* CONFIG_BLK_DEV_IDEDMA */
703 int ide_driveid_update(ide_drive_t *drive)
705 ide_hwif_t *hwif = drive->hwif;
706 struct hd_driveid *id;
707 unsigned long timeout, flags;
710 * Re-read drive->id for possible DMA mode
711 * change (copied from ide-probe.c)
714 SELECT_MASK(drive, 1);
715 if (IDE_CONTROL_REG)
716 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
717 msleep(50);
718 hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
719 timeout = jiffies + WAIT_WORSTCASE;
720 do {
721 if (time_after(jiffies, timeout)) {
722 SELECT_MASK(drive, 0);
723 return 0; /* drive timed-out */
725 msleep(50); /* give drive a breather */
726 } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
727 msleep(50); /* wait for IRQ and DRQ_STAT */
728 if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
729 SELECT_MASK(drive, 0);
730 printk("%s: CHECK for good STATUS\n", drive->name);
731 return 0;
733 local_irq_save(flags);
734 SELECT_MASK(drive, 0);
735 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
736 if (!id) {
737 local_irq_restore(flags);
738 return 0;
740 ata_input_data(drive, id, SECTOR_WORDS);
741 (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
742 local_irq_enable();
743 local_irq_restore(flags);
744 ide_fix_driveid(id);
745 if (id) {
746 drive->id->dma_ultra = id->dma_ultra;
747 drive->id->dma_mword = id->dma_mword;
748 drive->id->dma_1word = id->dma_1word;
749 /* anything more ? */
750 kfree(id);
753 return 1;
756 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
758 ide_hwif_t *hwif = drive->hwif;
759 int error;
760 u8 stat;
762 // while (HWGROUP(drive)->busy)
763 // msleep(50);
765 #ifdef CONFIG_BLK_DEV_IDEDMA
766 if (hwif->ide_dma_on) /* check if host supports DMA */
767 hwif->dma_host_off(drive);
768 #endif
771 * Don't use ide_wait_cmd here - it will
772 * attempt to set_geometry and recalibrate,
773 * but for some reason these don't work at
774 * this point (lost interrupt).
777 * Select the drive, and issue the SETFEATURES command
779 disable_irq_nosync(hwif->irq);
782 * FIXME: we race against the running IRQ here if
783 * this is called from non IRQ context. If we use
784 * disable_irq() we hang on the error path. Work
785 * is needed.
788 udelay(1);
789 SELECT_DRIVE(drive);
790 SELECT_MASK(drive, 0);
791 udelay(1);
792 if (IDE_CONTROL_REG)
793 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
794 hwif->OUTB(speed, IDE_NSECTOR_REG);
795 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
796 hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
797 if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
798 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
800 error = __ide_wait_stat(drive, drive->ready_stat,
801 BUSY_STAT|DRQ_STAT|ERR_STAT,
802 WAIT_CMD, &stat);
804 SELECT_MASK(drive, 0);
806 enable_irq(hwif->irq);
808 if (error) {
809 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
810 return error;
813 drive->id->dma_ultra &= ~0xFF00;
814 drive->id->dma_mword &= ~0x0F00;
815 drive->id->dma_1word &= ~0x0F00;
817 #ifdef CONFIG_BLK_DEV_IDEDMA
818 if (speed >= XFER_SW_DMA_0)
819 hwif->dma_host_on(drive);
820 else if (hwif->ide_dma_on) /* check if host supports DMA */
821 hwif->dma_off_quietly(drive);
822 #endif
824 switch(speed) {
825 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
826 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
827 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
828 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
829 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
830 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
831 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
832 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
833 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
834 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
835 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
836 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
837 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
838 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
839 default: break;
841 if (!drive->init_speed)
842 drive->init_speed = speed;
843 drive->current_speed = speed;
844 return error;
848 * This should get invoked any time we exit the driver to
849 * wait for an interrupt response from a drive. handler() points
850 * at the appropriate code to handle the next interrupt, and a
851 * timer is started to prevent us from waiting forever in case
852 * something goes wrong (see the ide_timer_expiry() handler later on).
854 * See also ide_execute_command
856 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
857 unsigned int timeout, ide_expiry_t *expiry)
859 ide_hwgroup_t *hwgroup = HWGROUP(drive);
861 if (hwgroup->handler != NULL) {
862 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
863 "old=%p, new=%p\n",
864 drive->name, hwgroup->handler, handler);
866 hwgroup->handler = handler;
867 hwgroup->expiry = expiry;
868 hwgroup->timer.expires = jiffies + timeout;
869 hwgroup->req_gen_timer = hwgroup->req_gen;
870 add_timer(&hwgroup->timer);
873 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
874 unsigned int timeout, ide_expiry_t *expiry)
876 unsigned long flags;
877 spin_lock_irqsave(&ide_lock, flags);
878 __ide_set_handler(drive, handler, timeout, expiry);
879 spin_unlock_irqrestore(&ide_lock, flags);
882 EXPORT_SYMBOL(ide_set_handler);
885 * ide_execute_command - execute an IDE command
886 * @drive: IDE drive to issue the command against
887 * @command: command byte to write
888 * @handler: handler for next phase
889 * @timeout: timeout for command
890 * @expiry: handler to run on timeout
892 * Helper function to issue an IDE command. This handles the
893 * atomicity requirements, command timing and ensures that the
894 * handler and IRQ setup do not race. All IDE command kick off
895 * should go via this function or do equivalent locking.
898 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
900 unsigned long flags;
901 ide_hwgroup_t *hwgroup = HWGROUP(drive);
902 ide_hwif_t *hwif = HWIF(drive);
904 spin_lock_irqsave(&ide_lock, flags);
906 BUG_ON(hwgroup->handler);
907 hwgroup->handler = handler;
908 hwgroup->expiry = expiry;
909 hwgroup->timer.expires = jiffies + timeout;
910 hwgroup->req_gen_timer = hwgroup->req_gen;
911 add_timer(&hwgroup->timer);
912 hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
913 /* Drive takes 400nS to respond, we must avoid the IRQ being
914 serviced before that.
916 FIXME: we could skip this delay with care on non shared
917 devices
919 ndelay(400);
920 spin_unlock_irqrestore(&ide_lock, flags);
923 EXPORT_SYMBOL(ide_execute_command);
926 /* needed below */
927 static ide_startstop_t do_reset1 (ide_drive_t *, int);
930 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
931 * during an atapi drive reset operation. If the drive has not yet responded,
932 * and we have not yet hit our maximum waiting time, then the timer is restarted
933 * for another 50ms.
935 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
937 ide_hwgroup_t *hwgroup = HWGROUP(drive);
938 ide_hwif_t *hwif = HWIF(drive);
939 u8 stat;
941 SELECT_DRIVE(drive);
942 udelay (10);
944 if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
945 printk("%s: ATAPI reset complete\n", drive->name);
946 } else {
947 if (time_before(jiffies, hwgroup->poll_timeout)) {
948 BUG_ON(HWGROUP(drive)->handler != NULL);
949 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
950 /* continue polling */
951 return ide_started;
953 /* end of polling */
954 hwgroup->polling = 0;
955 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
956 drive->name, stat);
957 /* do it the old fashioned way */
958 return do_reset1(drive, 1);
960 /* done polling */
961 hwgroup->polling = 0;
962 hwgroup->resetting = 0;
963 return ide_stopped;
967 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
968 * during an ide reset operation. If the drives have not yet responded,
969 * and we have not yet hit our maximum waiting time, then the timer is restarted
970 * for another 50ms.
972 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
974 ide_hwgroup_t *hwgroup = HWGROUP(drive);
975 ide_hwif_t *hwif = HWIF(drive);
976 u8 tmp;
978 if (hwif->reset_poll != NULL) {
979 if (hwif->reset_poll(drive)) {
980 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
981 hwif->name, drive->name);
982 return ide_stopped;
986 if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
987 if (time_before(jiffies, hwgroup->poll_timeout)) {
988 BUG_ON(HWGROUP(drive)->handler != NULL);
989 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
990 /* continue polling */
991 return ide_started;
993 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
994 drive->failures++;
995 } else {
996 printk("%s: reset: ", hwif->name);
997 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
998 printk("success\n");
999 drive->failures = 0;
1000 } else {
1001 drive->failures++;
1002 printk("master: ");
1003 switch (tmp & 0x7f) {
1004 case 1: printk("passed");
1005 break;
1006 case 2: printk("formatter device error");
1007 break;
1008 case 3: printk("sector buffer error");
1009 break;
1010 case 4: printk("ECC circuitry error");
1011 break;
1012 case 5: printk("controlling MPU error");
1013 break;
1014 default:printk("error (0x%02x?)", tmp);
1016 if (tmp & 0x80)
1017 printk("; slave: failed");
1018 printk("\n");
1021 hwgroup->polling = 0; /* done polling */
1022 hwgroup->resetting = 0; /* done reset attempt */
1023 return ide_stopped;
1026 static void check_dma_crc(ide_drive_t *drive)
1028 #ifdef CONFIG_BLK_DEV_IDEDMA
1029 if (drive->crc_count) {
1030 drive->hwif->dma_off_quietly(drive);
1031 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1032 if (drive->current_speed >= XFER_SW_DMA_0)
1033 (void) HWIF(drive)->ide_dma_on(drive);
1034 } else
1035 ide_dma_off(drive);
1036 #endif
1039 static void ide_disk_pre_reset(ide_drive_t *drive)
1041 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1043 drive->special.all = 0;
1044 drive->special.b.set_geometry = legacy;
1045 drive->special.b.recalibrate = legacy;
1046 if (OK_TO_RESET_CONTROLLER)
1047 drive->mult_count = 0;
1048 if (!drive->keep_settings && !drive->using_dma)
1049 drive->mult_req = 0;
1050 if (drive->mult_req != drive->mult_count)
1051 drive->special.b.set_multmode = 1;
1054 static void pre_reset(ide_drive_t *drive)
1056 if (drive->media == ide_disk)
1057 ide_disk_pre_reset(drive);
1058 else
1059 drive->post_reset = 1;
1061 if (!drive->keep_settings) {
1062 if (drive->using_dma) {
1063 check_dma_crc(drive);
1064 } else {
1065 drive->unmask = 0;
1066 drive->io_32bit = 0;
1068 return;
1070 if (drive->using_dma)
1071 check_dma_crc(drive);
1073 if (HWIF(drive)->pre_reset != NULL)
1074 HWIF(drive)->pre_reset(drive);
1076 if (drive->current_speed != 0xff)
1077 drive->desired_speed = drive->current_speed;
1078 drive->current_speed = 0xff;
1082 * do_reset1() attempts to recover a confused drive by resetting it.
1083 * Unfortunately, resetting a disk drive actually resets all devices on
1084 * the same interface, so it can really be thought of as resetting the
1085 * interface rather than resetting the drive.
1087 * ATAPI devices have their own reset mechanism which allows them to be
1088 * individually reset without clobbering other devices on the same interface.
1090 * Unfortunately, the IDE interface does not generate an interrupt to let
1091 * us know when the reset operation has finished, so we must poll for this.
1092 * Equally poor, though, is the fact that this may a very long time to complete,
1093 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1094 * we set a timer to poll at 50ms intervals.
1096 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1098 unsigned int unit;
1099 unsigned long flags;
1100 ide_hwif_t *hwif;
1101 ide_hwgroup_t *hwgroup;
1103 spin_lock_irqsave(&ide_lock, flags);
1104 hwif = HWIF(drive);
1105 hwgroup = HWGROUP(drive);
1107 /* We must not reset with running handlers */
1108 BUG_ON(hwgroup->handler != NULL);
1110 /* For an ATAPI device, first try an ATAPI SRST. */
1111 if (drive->media != ide_disk && !do_not_try_atapi) {
1112 hwgroup->resetting = 1;
1113 pre_reset(drive);
1114 SELECT_DRIVE(drive);
1115 udelay (20);
1116 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1117 ndelay(400);
1118 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1119 hwgroup->polling = 1;
1120 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1121 spin_unlock_irqrestore(&ide_lock, flags);
1122 return ide_started;
1126 * First, reset any device state data we were maintaining
1127 * for any of the drives on this interface.
1129 for (unit = 0; unit < MAX_DRIVES; ++unit)
1130 pre_reset(&hwif->drives[unit]);
1132 #if OK_TO_RESET_CONTROLLER
1133 if (!IDE_CONTROL_REG) {
1134 spin_unlock_irqrestore(&ide_lock, flags);
1135 return ide_stopped;
1138 hwgroup->resetting = 1;
1140 * Note that we also set nIEN while resetting the device,
1141 * to mask unwanted interrupts from the interface during the reset.
1142 * However, due to the design of PC hardware, this will cause an
1143 * immediate interrupt due to the edge transition it produces.
1144 * This single interrupt gives us a "fast poll" for drives that
1145 * recover from reset very quickly, saving us the first 50ms wait time.
1147 /* set SRST and nIEN */
1148 hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1149 /* more than enough time */
1150 udelay(10);
1151 if (drive->quirk_list == 2) {
1152 /* clear SRST and nIEN */
1153 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1154 } else {
1155 /* clear SRST, leave nIEN */
1156 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1158 /* more than enough time */
1159 udelay(10);
1160 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1161 hwgroup->polling = 1;
1162 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1165 * Some weird controller like resetting themselves to a strange
1166 * state when the disks are reset this way. At least, the Winbond
1167 * 553 documentation says that
1169 if (hwif->resetproc != NULL) {
1170 hwif->resetproc(drive);
1173 #endif /* OK_TO_RESET_CONTROLLER */
1175 spin_unlock_irqrestore(&ide_lock, flags);
1176 return ide_started;
1180 * ide_do_reset() is the entry point to the drive/interface reset code.
1183 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1185 return do_reset1(drive, 0);
1188 EXPORT_SYMBOL(ide_do_reset);
1191 * ide_wait_not_busy() waits for the currently selected device on the hwif
1192 * to report a non-busy status, see comments in probe_hwif().
1194 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1196 u8 stat = 0;
1198 while(timeout--) {
1200 * Turn this into a schedule() sleep once I'm sure
1201 * about locking issues (2.5 work ?).
1203 mdelay(1);
1204 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1205 if ((stat & BUSY_STAT) == 0)
1206 return 0;
1208 * Assume a value of 0xff means nothing is connected to
1209 * the interface and it doesn't implement the pull-down
1210 * resistor on D7.
1212 if (stat == 0xff)
1213 return -ENODEV;
1214 touch_softlockup_watchdog();
1215 touch_nmi_watchdog();
1217 return -EBUSY;
1220 EXPORT_SYMBOL_GPL(ide_wait_not_busy);