lxfb-use-the-correct-msr-number-for-panel-support
[linux-2.6/linux-trees-mm.git] / drivers / net / dl2k.c
blob5066beb2e7bc43e3e4e6b6e30a47e198dc647467
1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
19 static char version[] __devinitdata =
20 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
21 #define MAX_UNITS 8
22 static int mtu[MAX_UNITS];
23 static int vlan[MAX_UNITS];
24 static int jumbo[MAX_UNITS];
25 static char *media[MAX_UNITS];
26 static int tx_flow=-1;
27 static int rx_flow=-1;
28 static int copy_thresh;
29 static int rx_coalesce=10; /* Rx frame count each interrupt */
30 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu, int, NULL, 0);
38 module_param_array(media, charp, NULL, 0);
39 module_param_array(vlan, int, NULL, 0);
40 module_param_array(jumbo, int, NULL, 0);
41 module_param(tx_flow, int, 0);
42 module_param(rx_flow, int, 0);
43 module_param(copy_thresh, int, 0);
44 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
45 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
52 #define EnableInt() \
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
55 static const int max_intrloop = 50;
56 static const int multicast_filter_limit = 0x40;
58 static int rio_open (struct net_device *dev);
59 static void rio_timer (unsigned long data);
60 static void rio_tx_timeout (struct net_device *dev);
61 static void alloc_list (struct net_device *dev);
62 static int start_xmit (struct sk_buff *skb, struct net_device *dev);
63 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
64 static void rio_free_tx (struct net_device *dev, int irq);
65 static void tx_error (struct net_device *dev, int tx_status);
66 static int receive_packet (struct net_device *dev);
67 static void rio_error (struct net_device *dev, int int_status);
68 static int change_mtu (struct net_device *dev, int new_mtu);
69 static void set_multicast (struct net_device *dev);
70 static struct net_device_stats *get_stats (struct net_device *dev);
71 static int clear_stats (struct net_device *dev);
72 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
73 static int rio_close (struct net_device *dev);
74 static int find_miiphy (struct net_device *dev);
75 static int parse_eeprom (struct net_device *dev);
76 static int read_eeprom (long ioaddr, int eep_addr);
77 static int mii_wait_link (struct net_device *dev, int wait);
78 static int mii_set_media (struct net_device *dev);
79 static int mii_get_media (struct net_device *dev);
80 static int mii_set_media_pcs (struct net_device *dev);
81 static int mii_get_media_pcs (struct net_device *dev);
82 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
83 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
84 u16 data);
86 static const struct ethtool_ops ethtool_ops;
88 static int __devinit
89 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
91 struct net_device *dev;
92 struct netdev_private *np;
93 static int card_idx;
94 int chip_idx = ent->driver_data;
95 int err, irq;
96 long ioaddr;
97 static int version_printed;
98 void *ring_space;
99 dma_addr_t ring_dma;
100 DECLARE_MAC_BUF(mac);
102 if (!version_printed++)
103 printk ("%s", version);
105 err = pci_enable_device (pdev);
106 if (err)
107 return err;
109 irq = pdev->irq;
110 err = pci_request_regions (pdev, "dl2k");
111 if (err)
112 goto err_out_disable;
114 pci_set_master (pdev);
115 dev = alloc_etherdev (sizeof (*np));
116 if (!dev) {
117 err = -ENOMEM;
118 goto err_out_res;
120 SET_NETDEV_DEV(dev, &pdev->dev);
122 #ifdef MEM_MAPPING
123 ioaddr = pci_resource_start (pdev, 1);
124 ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
125 if (!ioaddr) {
126 err = -ENOMEM;
127 goto err_out_dev;
129 #else
130 ioaddr = pci_resource_start (pdev, 0);
131 #endif
132 dev->base_addr = ioaddr;
133 dev->irq = irq;
134 np = netdev_priv(dev);
135 np->chip_id = chip_idx;
136 np->pdev = pdev;
137 spin_lock_init (&np->tx_lock);
138 spin_lock_init (&np->rx_lock);
140 /* Parse manual configuration */
141 np->an_enable = 1;
142 np->tx_coalesce = 1;
143 if (card_idx < MAX_UNITS) {
144 if (media[card_idx] != NULL) {
145 np->an_enable = 0;
146 if (strcmp (media[card_idx], "auto") == 0 ||
147 strcmp (media[card_idx], "autosense") == 0 ||
148 strcmp (media[card_idx], "0") == 0 ) {
149 np->an_enable = 2;
150 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
151 strcmp (media[card_idx], "4") == 0) {
152 np->speed = 100;
153 np->full_duplex = 1;
154 } else if (strcmp (media[card_idx], "100mbps_hd") == 0
155 || strcmp (media[card_idx], "3") == 0) {
156 np->speed = 100;
157 np->full_duplex = 0;
158 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
159 strcmp (media[card_idx], "2") == 0) {
160 np->speed = 10;
161 np->full_duplex = 1;
162 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
163 strcmp (media[card_idx], "1") == 0) {
164 np->speed = 10;
165 np->full_duplex = 0;
166 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
167 strcmp (media[card_idx], "6") == 0) {
168 np->speed=1000;
169 np->full_duplex=1;
170 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
171 strcmp (media[card_idx], "5") == 0) {
172 np->speed = 1000;
173 np->full_duplex = 0;
174 } else {
175 np->an_enable = 1;
178 if (jumbo[card_idx] != 0) {
179 np->jumbo = 1;
180 dev->mtu = MAX_JUMBO;
181 } else {
182 np->jumbo = 0;
183 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
184 dev->mtu = mtu[card_idx];
186 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
187 vlan[card_idx] : 0;
188 if (rx_coalesce > 0 && rx_timeout > 0) {
189 np->rx_coalesce = rx_coalesce;
190 np->rx_timeout = rx_timeout;
191 np->coalesce = 1;
193 np->tx_flow = (tx_flow == 0) ? 0 : 1;
194 np->rx_flow = (rx_flow == 0) ? 0 : 1;
196 if (tx_coalesce < 1)
197 tx_coalesce = 1;
198 else if (tx_coalesce > TX_RING_SIZE-1)
199 tx_coalesce = TX_RING_SIZE - 1;
201 dev->open = &rio_open;
202 dev->hard_start_xmit = &start_xmit;
203 dev->stop = &rio_close;
204 dev->get_stats = &get_stats;
205 dev->set_multicast_list = &set_multicast;
206 dev->do_ioctl = &rio_ioctl;
207 dev->tx_timeout = &rio_tx_timeout;
208 dev->watchdog_timeo = TX_TIMEOUT;
209 dev->change_mtu = &change_mtu;
210 SET_ETHTOOL_OPS(dev, &ethtool_ops);
211 #if 0
212 dev->features = NETIF_F_IP_CSUM;
213 #endif
214 pci_set_drvdata (pdev, dev);
216 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
217 if (!ring_space)
218 goto err_out_iounmap;
219 np->tx_ring = (struct netdev_desc *) ring_space;
220 np->tx_ring_dma = ring_dma;
222 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
223 if (!ring_space)
224 goto err_out_unmap_tx;
225 np->rx_ring = (struct netdev_desc *) ring_space;
226 np->rx_ring_dma = ring_dma;
228 /* Parse eeprom data */
229 parse_eeprom (dev);
231 /* Find PHY address */
232 err = find_miiphy (dev);
233 if (err)
234 goto err_out_unmap_rx;
236 /* Fiber device? */
237 np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
238 np->link_status = 0;
239 /* Set media and reset PHY */
240 if (np->phy_media) {
241 /* default Auto-Negotiation for fiber deivices */
242 if (np->an_enable == 2) {
243 np->an_enable = 1;
245 mii_set_media_pcs (dev);
246 } else {
247 /* Auto-Negotiation is mandatory for 1000BASE-T,
248 IEEE 802.3ab Annex 28D page 14 */
249 if (np->speed == 1000)
250 np->an_enable = 1;
251 mii_set_media (dev);
254 err = register_netdev (dev);
255 if (err)
256 goto err_out_unmap_rx;
258 card_idx++;
260 printk (KERN_INFO "%s: %s, %s, IRQ %d\n",
261 dev->name, np->name, print_mac(mac, dev->dev_addr), irq);
262 if (tx_coalesce > 1)
263 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
264 tx_coalesce);
265 if (np->coalesce)
266 printk(KERN_INFO "rx_coalesce:\t%d packets\n"
267 KERN_INFO "rx_timeout: \t%d ns\n",
268 np->rx_coalesce, np->rx_timeout*640);
269 if (np->vlan)
270 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
271 return 0;
273 err_out_unmap_rx:
274 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
275 err_out_unmap_tx:
276 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
277 err_out_iounmap:
278 #ifdef MEM_MAPPING
279 iounmap ((void *) ioaddr);
281 err_out_dev:
282 #endif
283 free_netdev (dev);
285 err_out_res:
286 pci_release_regions (pdev);
288 err_out_disable:
289 pci_disable_device (pdev);
290 return err;
293 static int
294 find_miiphy (struct net_device *dev)
296 int i, phy_found = 0;
297 struct netdev_private *np;
298 long ioaddr;
299 np = netdev_priv(dev);
300 ioaddr = dev->base_addr;
301 np->phy_addr = 1;
303 for (i = 31; i >= 0; i--) {
304 int mii_status = mii_read (dev, i, 1);
305 if (mii_status != 0xffff && mii_status != 0x0000) {
306 np->phy_addr = i;
307 phy_found++;
310 if (!phy_found) {
311 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
312 return -ENODEV;
314 return 0;
317 static int
318 parse_eeprom (struct net_device *dev)
320 int i, j;
321 long ioaddr = dev->base_addr;
322 u8 sromdata[256];
323 u8 *psib;
324 u32 crc;
325 PSROM_t psrom = (PSROM_t) sromdata;
326 struct netdev_private *np = netdev_priv(dev);
328 int cid, next;
330 #ifdef MEM_MAPPING
331 ioaddr = pci_resource_start (np->pdev, 0);
332 #endif
333 /* Read eeprom */
334 for (i = 0; i < 128; i++) {
335 ((u16 *) sromdata)[i] = le16_to_cpu (read_eeprom (ioaddr, i));
337 #ifdef MEM_MAPPING
338 ioaddr = dev->base_addr;
339 #endif
340 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
341 /* Check CRC */
342 crc = ~ether_crc_le (256 - 4, sromdata);
343 if (psrom->crc != crc) {
344 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
345 dev->name);
346 return -1;
350 /* Set MAC address */
351 for (i = 0; i < 6; i++)
352 dev->dev_addr[i] = psrom->mac_addr[i];
354 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
355 return 0;
358 /* Parse Software Information Block */
359 i = 0x30;
360 psib = (u8 *) sromdata;
361 do {
362 cid = psib[i++];
363 next = psib[i++];
364 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
365 printk (KERN_ERR "Cell data error\n");
366 return -1;
368 switch (cid) {
369 case 0: /* Format version */
370 break;
371 case 1: /* End of cell */
372 return 0;
373 case 2: /* Duplex Polarity */
374 np->duplex_polarity = psib[i];
375 writeb (readb (ioaddr + PhyCtrl) | psib[i],
376 ioaddr + PhyCtrl);
377 break;
378 case 3: /* Wake Polarity */
379 np->wake_polarity = psib[i];
380 break;
381 case 9: /* Adapter description */
382 j = (next - i > 255) ? 255 : next - i;
383 memcpy (np->name, &(psib[i]), j);
384 break;
385 case 4:
386 case 5:
387 case 6:
388 case 7:
389 case 8: /* Reversed */
390 break;
391 default: /* Unknown cell */
392 return -1;
394 i = next;
395 } while (1);
397 return 0;
400 static int
401 rio_open (struct net_device *dev)
403 struct netdev_private *np = netdev_priv(dev);
404 long ioaddr = dev->base_addr;
405 int i;
406 u16 macctrl;
408 i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
409 if (i)
410 return i;
412 /* Reset all logic functions */
413 writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
414 ioaddr + ASICCtrl + 2);
415 mdelay(10);
417 /* DebugCtrl bit 4, 5, 9 must set */
418 writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
420 /* Jumbo frame */
421 if (np->jumbo != 0)
422 writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
424 alloc_list (dev);
426 /* Get station address */
427 for (i = 0; i < 6; i++)
428 writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
430 set_multicast (dev);
431 if (np->coalesce) {
432 writel (np->rx_coalesce | np->rx_timeout << 16,
433 ioaddr + RxDMAIntCtrl);
435 /* Set RIO to poll every N*320nsec. */
436 writeb (0x20, ioaddr + RxDMAPollPeriod);
437 writeb (0xff, ioaddr + TxDMAPollPeriod);
438 writeb (0x30, ioaddr + RxDMABurstThresh);
439 writeb (0x30, ioaddr + RxDMAUrgentThresh);
440 writel (0x0007ffff, ioaddr + RmonStatMask);
441 /* clear statistics */
442 clear_stats (dev);
444 /* VLAN supported */
445 if (np->vlan) {
446 /* priority field in RxDMAIntCtrl */
447 writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
448 ioaddr + RxDMAIntCtrl);
449 /* VLANId */
450 writew (np->vlan, ioaddr + VLANId);
451 /* Length/Type should be 0x8100 */
452 writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
453 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
454 VLAN information tagged by TFC' VID, CFI fields. */
455 writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
456 ioaddr + MACCtrl);
459 init_timer (&np->timer);
460 np->timer.expires = jiffies + 1*HZ;
461 np->timer.data = (unsigned long) dev;
462 np->timer.function = &rio_timer;
463 add_timer (&np->timer);
465 /* Start Tx/Rx */
466 writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
467 ioaddr + MACCtrl);
469 macctrl = 0;
470 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
471 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
472 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
473 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
474 writew(macctrl, ioaddr + MACCtrl);
476 netif_start_queue (dev);
478 /* Enable default interrupts */
479 EnableInt ();
480 return 0;
483 static void
484 rio_timer (unsigned long data)
486 struct net_device *dev = (struct net_device *)data;
487 struct netdev_private *np = netdev_priv(dev);
488 unsigned int entry;
489 int next_tick = 1*HZ;
490 unsigned long flags;
492 spin_lock_irqsave(&np->rx_lock, flags);
493 /* Recover rx ring exhausted error */
494 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
495 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
496 /* Re-allocate skbuffs to fill the descriptor ring */
497 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
498 struct sk_buff *skb;
499 entry = np->old_rx % RX_RING_SIZE;
500 /* Dropped packets don't need to re-allocate */
501 if (np->rx_skbuff[entry] == NULL) {
502 skb = dev_alloc_skb (np->rx_buf_sz);
503 if (skb == NULL) {
504 np->rx_ring[entry].fraginfo = 0;
505 printk (KERN_INFO
506 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
507 dev->name, entry);
508 break;
510 np->rx_skbuff[entry] = skb;
511 /* 16 byte align the IP header */
512 skb_reserve (skb, 2);
513 np->rx_ring[entry].fraginfo =
514 cpu_to_le64 (pci_map_single
515 (np->pdev, skb->data, np->rx_buf_sz,
516 PCI_DMA_FROMDEVICE));
518 np->rx_ring[entry].fraginfo |=
519 cpu_to_le64 (np->rx_buf_sz) << 48;
520 np->rx_ring[entry].status = 0;
521 } /* end for */
522 } /* end if */
523 spin_unlock_irqrestore (&np->rx_lock, flags);
524 np->timer.expires = jiffies + next_tick;
525 add_timer(&np->timer);
528 static void
529 rio_tx_timeout (struct net_device *dev)
531 long ioaddr = dev->base_addr;
533 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
534 dev->name, readl (ioaddr + TxStatus));
535 rio_free_tx(dev, 0);
536 dev->if_port = 0;
537 dev->trans_start = jiffies;
540 /* allocate and initialize Tx and Rx descriptors */
541 static void
542 alloc_list (struct net_device *dev)
544 struct netdev_private *np = netdev_priv(dev);
545 int i;
547 np->cur_rx = np->cur_tx = 0;
548 np->old_rx = np->old_tx = 0;
549 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
551 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
552 for (i = 0; i < TX_RING_SIZE; i++) {
553 np->tx_skbuff[i] = NULL;
554 np->tx_ring[i].status = cpu_to_le64 (TFDDone);
555 np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
556 ((i+1)%TX_RING_SIZE) *
557 sizeof (struct netdev_desc));
560 /* Initialize Rx descriptors */
561 for (i = 0; i < RX_RING_SIZE; i++) {
562 np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
563 ((i + 1) % RX_RING_SIZE) *
564 sizeof (struct netdev_desc));
565 np->rx_ring[i].status = 0;
566 np->rx_ring[i].fraginfo = 0;
567 np->rx_skbuff[i] = NULL;
570 /* Allocate the rx buffers */
571 for (i = 0; i < RX_RING_SIZE; i++) {
572 /* Allocated fixed size of skbuff */
573 struct sk_buff *skb = dev_alloc_skb (np->rx_buf_sz);
574 np->rx_skbuff[i] = skb;
575 if (skb == NULL) {
576 printk (KERN_ERR
577 "%s: alloc_list: allocate Rx buffer error! ",
578 dev->name);
579 break;
581 skb_reserve (skb, 2); /* 16 byte align the IP header. */
582 /* Rubicon now supports 40 bits of addressing space. */
583 np->rx_ring[i].fraginfo =
584 cpu_to_le64 ( pci_map_single (
585 np->pdev, skb->data, np->rx_buf_sz,
586 PCI_DMA_FROMDEVICE));
587 np->rx_ring[i].fraginfo |= cpu_to_le64 (np->rx_buf_sz) << 48;
590 /* Set RFDListPtr */
591 writel (cpu_to_le32 (np->rx_ring_dma), dev->base_addr + RFDListPtr0);
592 writel (0, dev->base_addr + RFDListPtr1);
594 return;
597 static int
598 start_xmit (struct sk_buff *skb, struct net_device *dev)
600 struct netdev_private *np = netdev_priv(dev);
601 struct netdev_desc *txdesc;
602 unsigned entry;
603 u32 ioaddr;
604 u64 tfc_vlan_tag = 0;
606 if (np->link_status == 0) { /* Link Down */
607 dev_kfree_skb(skb);
608 return 0;
610 ioaddr = dev->base_addr;
611 entry = np->cur_tx % TX_RING_SIZE;
612 np->tx_skbuff[entry] = skb;
613 txdesc = &np->tx_ring[entry];
615 #if 0
616 if (skb->ip_summed == CHECKSUM_PARTIAL) {
617 txdesc->status |=
618 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
619 IPChecksumEnable);
621 #endif
622 if (np->vlan) {
623 tfc_vlan_tag =
624 cpu_to_le64 (VLANTagInsert) |
625 (cpu_to_le64 (np->vlan) << 32) |
626 (cpu_to_le64 (skb->priority) << 45);
628 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
629 skb->len,
630 PCI_DMA_TODEVICE));
631 txdesc->fraginfo |= cpu_to_le64 (skb->len) << 48;
633 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
634 * Work around: Always use 1 descriptor in 10Mbps mode */
635 if (entry % np->tx_coalesce == 0 || np->speed == 10)
636 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
637 WordAlignDisable |
638 TxDMAIndicate |
639 (1 << FragCountShift));
640 else
641 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
642 WordAlignDisable |
643 (1 << FragCountShift));
645 /* TxDMAPollNow */
646 writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
647 /* Schedule ISR */
648 writel(10000, ioaddr + CountDown);
649 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
650 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
651 < TX_QUEUE_LEN - 1 && np->speed != 10) {
652 /* do nothing */
653 } else if (!netif_queue_stopped(dev)) {
654 netif_stop_queue (dev);
657 /* The first TFDListPtr */
658 if (readl (dev->base_addr + TFDListPtr0) == 0) {
659 writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
660 dev->base_addr + TFDListPtr0);
661 writel (0, dev->base_addr + TFDListPtr1);
664 /* NETDEV WATCHDOG timer */
665 dev->trans_start = jiffies;
666 return 0;
669 static irqreturn_t
670 rio_interrupt (int irq, void *dev_instance)
672 struct net_device *dev = dev_instance;
673 struct netdev_private *np;
674 unsigned int_status;
675 long ioaddr;
676 int cnt = max_intrloop;
677 int handled = 0;
679 ioaddr = dev->base_addr;
680 np = netdev_priv(dev);
681 while (1) {
682 int_status = readw (ioaddr + IntStatus);
683 writew (int_status, ioaddr + IntStatus);
684 int_status &= DEFAULT_INTR;
685 if (int_status == 0 || --cnt < 0)
686 break;
687 handled = 1;
688 /* Processing received packets */
689 if (int_status & RxDMAComplete)
690 receive_packet (dev);
691 /* TxDMAComplete interrupt */
692 if ((int_status & (TxDMAComplete|IntRequested))) {
693 int tx_status;
694 tx_status = readl (ioaddr + TxStatus);
695 if (tx_status & 0x01)
696 tx_error (dev, tx_status);
697 /* Free used tx skbuffs */
698 rio_free_tx (dev, 1);
701 /* Handle uncommon events */
702 if (int_status &
703 (HostError | LinkEvent | UpdateStats))
704 rio_error (dev, int_status);
706 if (np->cur_tx != np->old_tx)
707 writel (100, ioaddr + CountDown);
708 return IRQ_RETVAL(handled);
711 static void
712 rio_free_tx (struct net_device *dev, int irq)
714 struct netdev_private *np = netdev_priv(dev);
715 int entry = np->old_tx % TX_RING_SIZE;
716 int tx_use = 0;
717 unsigned long flag = 0;
719 if (irq)
720 spin_lock(&np->tx_lock);
721 else
722 spin_lock_irqsave(&np->tx_lock, flag);
724 /* Free used tx skbuffs */
725 while (entry != np->cur_tx) {
726 struct sk_buff *skb;
728 if (!(np->tx_ring[entry].status & TFDDone))
729 break;
730 skb = np->tx_skbuff[entry];
731 pci_unmap_single (np->pdev,
732 np->tx_ring[entry].fraginfo & DMA_48BIT_MASK,
733 skb->len, PCI_DMA_TODEVICE);
734 if (irq)
735 dev_kfree_skb_irq (skb);
736 else
737 dev_kfree_skb (skb);
739 np->tx_skbuff[entry] = NULL;
740 entry = (entry + 1) % TX_RING_SIZE;
741 tx_use++;
743 if (irq)
744 spin_unlock(&np->tx_lock);
745 else
746 spin_unlock_irqrestore(&np->tx_lock, flag);
747 np->old_tx = entry;
749 /* If the ring is no longer full, clear tx_full and
750 call netif_wake_queue() */
752 if (netif_queue_stopped(dev) &&
753 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
754 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
755 netif_wake_queue (dev);
759 static void
760 tx_error (struct net_device *dev, int tx_status)
762 struct netdev_private *np;
763 long ioaddr = dev->base_addr;
764 int frame_id;
765 int i;
767 np = netdev_priv(dev);
769 frame_id = (tx_status & 0xffff0000);
770 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
771 dev->name, tx_status, frame_id);
772 np->stats.tx_errors++;
773 /* Ttransmit Underrun */
774 if (tx_status & 0x10) {
775 np->stats.tx_fifo_errors++;
776 writew (readw (ioaddr + TxStartThresh) + 0x10,
777 ioaddr + TxStartThresh);
778 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
779 writew (TxReset | DMAReset | FIFOReset | NetworkReset,
780 ioaddr + ASICCtrl + 2);
781 /* Wait for ResetBusy bit clear */
782 for (i = 50; i > 0; i--) {
783 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
784 break;
785 mdelay (1);
787 rio_free_tx (dev, 1);
788 /* Reset TFDListPtr */
789 writel (np->tx_ring_dma +
790 np->old_tx * sizeof (struct netdev_desc),
791 dev->base_addr + TFDListPtr0);
792 writel (0, dev->base_addr + TFDListPtr1);
794 /* Let TxStartThresh stay default value */
796 /* Late Collision */
797 if (tx_status & 0x04) {
798 np->stats.tx_fifo_errors++;
799 /* TxReset and clear FIFO */
800 writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
801 /* Wait reset done */
802 for (i = 50; i > 0; i--) {
803 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
804 break;
805 mdelay (1);
807 /* Let TxStartThresh stay default value */
809 /* Maximum Collisions */
810 #ifdef ETHER_STATS
811 if (tx_status & 0x08)
812 np->stats.collisions16++;
813 #else
814 if (tx_status & 0x08)
815 np->stats.collisions++;
816 #endif
817 /* Restart the Tx */
818 writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
821 static int
822 receive_packet (struct net_device *dev)
824 struct netdev_private *np = netdev_priv(dev);
825 int entry = np->cur_rx % RX_RING_SIZE;
826 int cnt = 30;
828 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
829 while (1) {
830 struct netdev_desc *desc = &np->rx_ring[entry];
831 int pkt_len;
832 u64 frame_status;
834 if (!(desc->status & RFDDone) ||
835 !(desc->status & FrameStart) || !(desc->status & FrameEnd))
836 break;
838 /* Chip omits the CRC. */
839 pkt_len = le64_to_cpu (desc->status & 0xffff);
840 frame_status = le64_to_cpu (desc->status);
841 if (--cnt < 0)
842 break;
843 /* Update rx error statistics, drop packet. */
844 if (frame_status & RFS_Errors) {
845 np->stats.rx_errors++;
846 if (frame_status & (RxRuntFrame | RxLengthError))
847 np->stats.rx_length_errors++;
848 if (frame_status & RxFCSError)
849 np->stats.rx_crc_errors++;
850 if (frame_status & RxAlignmentError && np->speed != 1000)
851 np->stats.rx_frame_errors++;
852 if (frame_status & RxFIFOOverrun)
853 np->stats.rx_fifo_errors++;
854 } else {
855 struct sk_buff *skb;
857 /* Small skbuffs for short packets */
858 if (pkt_len > copy_thresh) {
859 pci_unmap_single (np->pdev,
860 desc->fraginfo & DMA_48BIT_MASK,
861 np->rx_buf_sz,
862 PCI_DMA_FROMDEVICE);
863 skb_put (skb = np->rx_skbuff[entry], pkt_len);
864 np->rx_skbuff[entry] = NULL;
865 } else if ((skb = dev_alloc_skb (pkt_len + 2)) != NULL) {
866 pci_dma_sync_single_for_cpu(np->pdev,
867 desc->fraginfo &
868 DMA_48BIT_MASK,
869 np->rx_buf_sz,
870 PCI_DMA_FROMDEVICE);
871 /* 16 byte align the IP header */
872 skb_reserve (skb, 2);
873 skb_copy_to_linear_data (skb,
874 np->rx_skbuff[entry]->data,
875 pkt_len);
876 skb_put (skb, pkt_len);
877 pci_dma_sync_single_for_device(np->pdev,
878 desc->fraginfo &
879 DMA_48BIT_MASK,
880 np->rx_buf_sz,
881 PCI_DMA_FROMDEVICE);
883 skb->protocol = eth_type_trans (skb, dev);
884 #if 0
885 /* Checksum done by hw, but csum value unavailable. */
886 if (np->pdev->pci_rev_id >= 0x0c &&
887 !(frame_status & (TCPError | UDPError | IPError))) {
888 skb->ip_summed = CHECKSUM_UNNECESSARY;
890 #endif
891 netif_rx (skb);
892 dev->last_rx = jiffies;
894 entry = (entry + 1) % RX_RING_SIZE;
896 spin_lock(&np->rx_lock);
897 np->cur_rx = entry;
898 /* Re-allocate skbuffs to fill the descriptor ring */
899 entry = np->old_rx;
900 while (entry != np->cur_rx) {
901 struct sk_buff *skb;
902 /* Dropped packets don't need to re-allocate */
903 if (np->rx_skbuff[entry] == NULL) {
904 skb = dev_alloc_skb (np->rx_buf_sz);
905 if (skb == NULL) {
906 np->rx_ring[entry].fraginfo = 0;
907 printk (KERN_INFO
908 "%s: receive_packet: "
909 "Unable to re-allocate Rx skbuff.#%d\n",
910 dev->name, entry);
911 break;
913 np->rx_skbuff[entry] = skb;
914 /* 16 byte align the IP header */
915 skb_reserve (skb, 2);
916 np->rx_ring[entry].fraginfo =
917 cpu_to_le64 (pci_map_single
918 (np->pdev, skb->data, np->rx_buf_sz,
919 PCI_DMA_FROMDEVICE));
921 np->rx_ring[entry].fraginfo |=
922 cpu_to_le64 (np->rx_buf_sz) << 48;
923 np->rx_ring[entry].status = 0;
924 entry = (entry + 1) % RX_RING_SIZE;
926 np->old_rx = entry;
927 spin_unlock(&np->rx_lock);
928 return 0;
931 static void
932 rio_error (struct net_device *dev, int int_status)
934 long ioaddr = dev->base_addr;
935 struct netdev_private *np = netdev_priv(dev);
936 u16 macctrl;
938 /* Link change event */
939 if (int_status & LinkEvent) {
940 if (mii_wait_link (dev, 10) == 0) {
941 printk (KERN_INFO "%s: Link up\n", dev->name);
942 if (np->phy_media)
943 mii_get_media_pcs (dev);
944 else
945 mii_get_media (dev);
946 if (np->speed == 1000)
947 np->tx_coalesce = tx_coalesce;
948 else
949 np->tx_coalesce = 1;
950 macctrl = 0;
951 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
952 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
953 macctrl |= (np->tx_flow) ?
954 TxFlowControlEnable : 0;
955 macctrl |= (np->rx_flow) ?
956 RxFlowControlEnable : 0;
957 writew(macctrl, ioaddr + MACCtrl);
958 np->link_status = 1;
959 netif_carrier_on(dev);
960 } else {
961 printk (KERN_INFO "%s: Link off\n", dev->name);
962 np->link_status = 0;
963 netif_carrier_off(dev);
967 /* UpdateStats statistics registers */
968 if (int_status & UpdateStats) {
969 get_stats (dev);
972 /* PCI Error, a catastronphic error related to the bus interface
973 occurs, set GlobalReset and HostReset to reset. */
974 if (int_status & HostError) {
975 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
976 dev->name, int_status);
977 writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
978 mdelay (500);
982 static struct net_device_stats *
983 get_stats (struct net_device *dev)
985 long ioaddr = dev->base_addr;
986 struct netdev_private *np = netdev_priv(dev);
987 #ifdef MEM_MAPPING
988 int i;
989 #endif
990 unsigned int stat_reg;
992 /* All statistics registers need to be acknowledged,
993 else statistic overflow could cause problems */
995 np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
996 np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
997 np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
998 np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
1000 np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
1001 np->stats.collisions += readl (ioaddr + SingleColFrames)
1002 + readl (ioaddr + MultiColFrames);
1004 /* detailed tx errors */
1005 stat_reg = readw (ioaddr + FramesAbortXSColls);
1006 np->stats.tx_aborted_errors += stat_reg;
1007 np->stats.tx_errors += stat_reg;
1009 stat_reg = readw (ioaddr + CarrierSenseErrors);
1010 np->stats.tx_carrier_errors += stat_reg;
1011 np->stats.tx_errors += stat_reg;
1013 /* Clear all other statistic register. */
1014 readl (ioaddr + McstOctetXmtOk);
1015 readw (ioaddr + BcstFramesXmtdOk);
1016 readl (ioaddr + McstFramesXmtdOk);
1017 readw (ioaddr + BcstFramesRcvdOk);
1018 readw (ioaddr + MacControlFramesRcvd);
1019 readw (ioaddr + FrameTooLongErrors);
1020 readw (ioaddr + InRangeLengthErrors);
1021 readw (ioaddr + FramesCheckSeqErrors);
1022 readw (ioaddr + FramesLostRxErrors);
1023 readl (ioaddr + McstOctetXmtOk);
1024 readl (ioaddr + BcstOctetXmtOk);
1025 readl (ioaddr + McstFramesXmtdOk);
1026 readl (ioaddr + FramesWDeferredXmt);
1027 readl (ioaddr + LateCollisions);
1028 readw (ioaddr + BcstFramesXmtdOk);
1029 readw (ioaddr + MacControlFramesXmtd);
1030 readw (ioaddr + FramesWEXDeferal);
1032 #ifdef MEM_MAPPING
1033 for (i = 0x100; i <= 0x150; i += 4)
1034 readl (ioaddr + i);
1035 #endif
1036 readw (ioaddr + TxJumboFrames);
1037 readw (ioaddr + RxJumboFrames);
1038 readw (ioaddr + TCPCheckSumErrors);
1039 readw (ioaddr + UDPCheckSumErrors);
1040 readw (ioaddr + IPCheckSumErrors);
1041 return &np->stats;
1044 static int
1045 clear_stats (struct net_device *dev)
1047 long ioaddr = dev->base_addr;
1048 #ifdef MEM_MAPPING
1049 int i;
1050 #endif
1052 /* All statistics registers need to be acknowledged,
1053 else statistic overflow could cause problems */
1054 readl (ioaddr + FramesRcvOk);
1055 readl (ioaddr + FramesXmtOk);
1056 readl (ioaddr + OctetRcvOk);
1057 readl (ioaddr + OctetXmtOk);
1059 readl (ioaddr + McstFramesRcvdOk);
1060 readl (ioaddr + SingleColFrames);
1061 readl (ioaddr + MultiColFrames);
1062 readl (ioaddr + LateCollisions);
1063 /* detailed rx errors */
1064 readw (ioaddr + FrameTooLongErrors);
1065 readw (ioaddr + InRangeLengthErrors);
1066 readw (ioaddr + FramesCheckSeqErrors);
1067 readw (ioaddr + FramesLostRxErrors);
1069 /* detailed tx errors */
1070 readw (ioaddr + FramesAbortXSColls);
1071 readw (ioaddr + CarrierSenseErrors);
1073 /* Clear all other statistic register. */
1074 readl (ioaddr + McstOctetXmtOk);
1075 readw (ioaddr + BcstFramesXmtdOk);
1076 readl (ioaddr + McstFramesXmtdOk);
1077 readw (ioaddr + BcstFramesRcvdOk);
1078 readw (ioaddr + MacControlFramesRcvd);
1079 readl (ioaddr + McstOctetXmtOk);
1080 readl (ioaddr + BcstOctetXmtOk);
1081 readl (ioaddr + McstFramesXmtdOk);
1082 readl (ioaddr + FramesWDeferredXmt);
1083 readw (ioaddr + BcstFramesXmtdOk);
1084 readw (ioaddr + MacControlFramesXmtd);
1085 readw (ioaddr + FramesWEXDeferal);
1086 #ifdef MEM_MAPPING
1087 for (i = 0x100; i <= 0x150; i += 4)
1088 readl (ioaddr + i);
1089 #endif
1090 readw (ioaddr + TxJumboFrames);
1091 readw (ioaddr + RxJumboFrames);
1092 readw (ioaddr + TCPCheckSumErrors);
1093 readw (ioaddr + UDPCheckSumErrors);
1094 readw (ioaddr + IPCheckSumErrors);
1095 return 0;
1099 static int
1100 change_mtu (struct net_device *dev, int new_mtu)
1102 struct netdev_private *np = netdev_priv(dev);
1103 int max = (np->jumbo) ? MAX_JUMBO : 1536;
1105 if ((new_mtu < 68) || (new_mtu > max)) {
1106 return -EINVAL;
1109 dev->mtu = new_mtu;
1111 return 0;
1114 static void
1115 set_multicast (struct net_device *dev)
1117 long ioaddr = dev->base_addr;
1118 u32 hash_table[2];
1119 u16 rx_mode = 0;
1120 struct netdev_private *np = netdev_priv(dev);
1122 hash_table[0] = hash_table[1] = 0;
1123 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1124 hash_table[1] |= cpu_to_le32(0x02000000);
1125 if (dev->flags & IFF_PROMISC) {
1126 /* Receive all frames promiscuously. */
1127 rx_mode = ReceiveAllFrames;
1128 } else if ((dev->flags & IFF_ALLMULTI) ||
1129 (dev->mc_count > multicast_filter_limit)) {
1130 /* Receive broadcast and multicast frames */
1131 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1132 } else if (dev->mc_count > 0) {
1133 int i;
1134 struct dev_mc_list *mclist;
1135 /* Receive broadcast frames and multicast frames filtering
1136 by Hashtable */
1137 rx_mode =
1138 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1139 for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1140 i++, mclist=mclist->next)
1142 int bit, index = 0;
1143 int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1144 /* The inverted high significant 6 bits of CRC are
1145 used as an index to hashtable */
1146 for (bit = 0; bit < 6; bit++)
1147 if (crc & (1 << (31 - bit)))
1148 index |= (1 << bit);
1149 hash_table[index / 32] |= (1 << (index % 32));
1151 } else {
1152 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1154 if (np->vlan) {
1155 /* ReceiveVLANMatch field in ReceiveMode */
1156 rx_mode |= ReceiveVLANMatch;
1159 writel (hash_table[0], ioaddr + HashTable0);
1160 writel (hash_table[1], ioaddr + HashTable1);
1161 writew (rx_mode, ioaddr + ReceiveMode);
1164 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1166 struct netdev_private *np = netdev_priv(dev);
1167 strcpy(info->driver, "dl2k");
1168 strcpy(info->version, DRV_VERSION);
1169 strcpy(info->bus_info, pci_name(np->pdev));
1172 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1174 struct netdev_private *np = netdev_priv(dev);
1175 if (np->phy_media) {
1176 /* fiber device */
1177 cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1178 cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1179 cmd->port = PORT_FIBRE;
1180 cmd->transceiver = XCVR_INTERNAL;
1181 } else {
1182 /* copper device */
1183 cmd->supported = SUPPORTED_10baseT_Half |
1184 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1185 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1186 SUPPORTED_Autoneg | SUPPORTED_MII;
1187 cmd->advertising = ADVERTISED_10baseT_Half |
1188 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1189 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1190 ADVERTISED_Autoneg | ADVERTISED_MII;
1191 cmd->port = PORT_MII;
1192 cmd->transceiver = XCVR_INTERNAL;
1194 if ( np->link_status ) {
1195 cmd->speed = np->speed;
1196 cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1197 } else {
1198 cmd->speed = -1;
1199 cmd->duplex = -1;
1201 if ( np->an_enable)
1202 cmd->autoneg = AUTONEG_ENABLE;
1203 else
1204 cmd->autoneg = AUTONEG_DISABLE;
1206 cmd->phy_address = np->phy_addr;
1207 return 0;
1210 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1212 struct netdev_private *np = netdev_priv(dev);
1213 netif_carrier_off(dev);
1214 if (cmd->autoneg == AUTONEG_ENABLE) {
1215 if (np->an_enable)
1216 return 0;
1217 else {
1218 np->an_enable = 1;
1219 mii_set_media(dev);
1220 return 0;
1222 } else {
1223 np->an_enable = 0;
1224 if (np->speed == 1000) {
1225 cmd->speed = SPEED_100;
1226 cmd->duplex = DUPLEX_FULL;
1227 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1229 switch(cmd->speed + cmd->duplex) {
1231 case SPEED_10 + DUPLEX_HALF:
1232 np->speed = 10;
1233 np->full_duplex = 0;
1234 break;
1236 case SPEED_10 + DUPLEX_FULL:
1237 np->speed = 10;
1238 np->full_duplex = 1;
1239 break;
1240 case SPEED_100 + DUPLEX_HALF:
1241 np->speed = 100;
1242 np->full_duplex = 0;
1243 break;
1244 case SPEED_100 + DUPLEX_FULL:
1245 np->speed = 100;
1246 np->full_duplex = 1;
1247 break;
1248 case SPEED_1000 + DUPLEX_HALF:/* not supported */
1249 case SPEED_1000 + DUPLEX_FULL:/* not supported */
1250 default:
1251 return -EINVAL;
1253 mii_set_media(dev);
1255 return 0;
1258 static u32 rio_get_link(struct net_device *dev)
1260 struct netdev_private *np = netdev_priv(dev);
1261 return np->link_status;
1264 static const struct ethtool_ops ethtool_ops = {
1265 .get_drvinfo = rio_get_drvinfo,
1266 .get_settings = rio_get_settings,
1267 .set_settings = rio_set_settings,
1268 .get_link = rio_get_link,
1271 static int
1272 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1274 int phy_addr;
1275 struct netdev_private *np = netdev_priv(dev);
1276 struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
1278 struct netdev_desc *desc;
1279 int i;
1281 phy_addr = np->phy_addr;
1282 switch (cmd) {
1283 case SIOCDEVPRIVATE:
1284 break;
1286 case SIOCDEVPRIVATE + 1:
1287 miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
1288 break;
1289 case SIOCDEVPRIVATE + 2:
1290 mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
1291 break;
1292 case SIOCDEVPRIVATE + 3:
1293 break;
1294 case SIOCDEVPRIVATE + 4:
1295 break;
1296 case SIOCDEVPRIVATE + 5:
1297 netif_stop_queue (dev);
1298 break;
1299 case SIOCDEVPRIVATE + 6:
1300 netif_wake_queue (dev);
1301 break;
1302 case SIOCDEVPRIVATE + 7:
1303 printk
1304 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1305 netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
1306 np->old_rx);
1307 break;
1308 case SIOCDEVPRIVATE + 8:
1309 printk("TX ring:\n");
1310 for (i = 0; i < TX_RING_SIZE; i++) {
1311 desc = &np->tx_ring[i];
1312 printk
1313 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1315 (u32) (np->tx_ring_dma + i * sizeof (*desc)),
1316 (u32) desc->next_desc,
1317 (u32) desc->status, (u32) (desc->fraginfo >> 32),
1318 (u32) desc->fraginfo);
1319 printk ("\n");
1321 printk ("\n");
1322 break;
1324 default:
1325 return -EOPNOTSUPP;
1327 return 0;
1330 #define EEP_READ 0x0200
1331 #define EEP_BUSY 0x8000
1332 /* Read the EEPROM word */
1333 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1334 static int
1335 read_eeprom (long ioaddr, int eep_addr)
1337 int i = 1000;
1338 outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
1339 while (i-- > 0) {
1340 if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
1341 return inw (ioaddr + EepromData);
1344 return 0;
1347 enum phy_ctrl_bits {
1348 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1349 MII_DUPLEX = 0x08,
1352 #define mii_delay() readb(ioaddr)
1353 static void
1354 mii_sendbit (struct net_device *dev, u32 data)
1356 long ioaddr = dev->base_addr + PhyCtrl;
1357 data = (data) ? MII_DATA1 : 0;
1358 data |= MII_WRITE;
1359 data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
1360 writeb (data, ioaddr);
1361 mii_delay ();
1362 writeb (data | MII_CLK, ioaddr);
1363 mii_delay ();
1366 static int
1367 mii_getbit (struct net_device *dev)
1369 long ioaddr = dev->base_addr + PhyCtrl;
1370 u8 data;
1372 data = (readb (ioaddr) & 0xf8) | MII_READ;
1373 writeb (data, ioaddr);
1374 mii_delay ();
1375 writeb (data | MII_CLK, ioaddr);
1376 mii_delay ();
1377 return ((readb (ioaddr) >> 1) & 1);
1380 static void
1381 mii_send_bits (struct net_device *dev, u32 data, int len)
1383 int i;
1384 for (i = len - 1; i >= 0; i--) {
1385 mii_sendbit (dev, data & (1 << i));
1389 static int
1390 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1392 u32 cmd;
1393 int i;
1394 u32 retval = 0;
1396 /* Preamble */
1397 mii_send_bits (dev, 0xffffffff, 32);
1398 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1399 /* ST,OP = 0110'b for read operation */
1400 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1401 mii_send_bits (dev, cmd, 14);
1402 /* Turnaround */
1403 if (mii_getbit (dev))
1404 goto err_out;
1405 /* Read data */
1406 for (i = 0; i < 16; i++) {
1407 retval |= mii_getbit (dev);
1408 retval <<= 1;
1410 /* End cycle */
1411 mii_getbit (dev);
1412 return (retval >> 1) & 0xffff;
1414 err_out:
1415 return 0;
1417 static int
1418 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1420 u32 cmd;
1422 /* Preamble */
1423 mii_send_bits (dev, 0xffffffff, 32);
1424 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1425 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1426 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1427 mii_send_bits (dev, cmd, 32);
1428 /* End cycle */
1429 mii_getbit (dev);
1430 return 0;
1432 static int
1433 mii_wait_link (struct net_device *dev, int wait)
1435 BMSR_t bmsr;
1436 int phy_addr;
1437 struct netdev_private *np;
1439 np = netdev_priv(dev);
1440 phy_addr = np->phy_addr;
1442 do {
1443 bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
1444 if (bmsr.bits.link_status)
1445 return 0;
1446 mdelay (1);
1447 } while (--wait > 0);
1448 return -1;
1450 static int
1451 mii_get_media (struct net_device *dev)
1453 ANAR_t negotiate;
1454 BMSR_t bmsr;
1455 BMCR_t bmcr;
1456 MSCR_t mscr;
1457 MSSR_t mssr;
1458 int phy_addr;
1459 struct netdev_private *np;
1461 np = netdev_priv(dev);
1462 phy_addr = np->phy_addr;
1464 bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
1465 if (np->an_enable) {
1466 if (!bmsr.bits.an_complete) {
1467 /* Auto-Negotiation not completed */
1468 return -1;
1470 negotiate.image = mii_read (dev, phy_addr, MII_ANAR) &
1471 mii_read (dev, phy_addr, MII_ANLPAR);
1472 mscr.image = mii_read (dev, phy_addr, MII_MSCR);
1473 mssr.image = mii_read (dev, phy_addr, MII_MSSR);
1474 if (mscr.bits.media_1000BT_FD & mssr.bits.lp_1000BT_FD) {
1475 np->speed = 1000;
1476 np->full_duplex = 1;
1477 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1478 } else if (mscr.bits.media_1000BT_HD & mssr.bits.lp_1000BT_HD) {
1479 np->speed = 1000;
1480 np->full_duplex = 0;
1481 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1482 } else if (negotiate.bits.media_100BX_FD) {
1483 np->speed = 100;
1484 np->full_duplex = 1;
1485 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1486 } else if (negotiate.bits.media_100BX_HD) {
1487 np->speed = 100;
1488 np->full_duplex = 0;
1489 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1490 } else if (negotiate.bits.media_10BT_FD) {
1491 np->speed = 10;
1492 np->full_duplex = 1;
1493 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1494 } else if (negotiate.bits.media_10BT_HD) {
1495 np->speed = 10;
1496 np->full_duplex = 0;
1497 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1499 if (negotiate.bits.pause) {
1500 np->tx_flow &= 1;
1501 np->rx_flow &= 1;
1502 } else if (negotiate.bits.asymmetric) {
1503 np->tx_flow = 0;
1504 np->rx_flow &= 1;
1506 /* else tx_flow, rx_flow = user select */
1507 } else {
1508 bmcr.image = mii_read (dev, phy_addr, MII_BMCR);
1509 if (bmcr.bits.speed100 == 1 && bmcr.bits.speed1000 == 0) {
1510 printk (KERN_INFO "Operating at 100 Mbps, ");
1511 } else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 0) {
1512 printk (KERN_INFO "Operating at 10 Mbps, ");
1513 } else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 1) {
1514 printk (KERN_INFO "Operating at 1000 Mbps, ");
1516 if (bmcr.bits.duplex_mode) {
1517 printk ("Full duplex\n");
1518 } else {
1519 printk ("Half duplex\n");
1522 if (np->tx_flow)
1523 printk(KERN_INFO "Enable Tx Flow Control\n");
1524 else
1525 printk(KERN_INFO "Disable Tx Flow Control\n");
1526 if (np->rx_flow)
1527 printk(KERN_INFO "Enable Rx Flow Control\n");
1528 else
1529 printk(KERN_INFO "Disable Rx Flow Control\n");
1531 return 0;
1534 static int
1535 mii_set_media (struct net_device *dev)
1537 PHY_SCR_t pscr;
1538 BMCR_t bmcr;
1539 BMSR_t bmsr;
1540 ANAR_t anar;
1541 int phy_addr;
1542 struct netdev_private *np;
1543 np = netdev_priv(dev);
1544 phy_addr = np->phy_addr;
1546 /* Does user set speed? */
1547 if (np->an_enable) {
1548 /* Advertise capabilities */
1549 bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
1550 anar.image = mii_read (dev, phy_addr, MII_ANAR);
1551 anar.bits.media_100BX_FD = bmsr.bits.media_100BX_FD;
1552 anar.bits.media_100BX_HD = bmsr.bits.media_100BX_HD;
1553 anar.bits.media_100BT4 = bmsr.bits.media_100BT4;
1554 anar.bits.media_10BT_FD = bmsr.bits.media_10BT_FD;
1555 anar.bits.media_10BT_HD = bmsr.bits.media_10BT_HD;
1556 anar.bits.pause = 1;
1557 anar.bits.asymmetric = 1;
1558 mii_write (dev, phy_addr, MII_ANAR, anar.image);
1560 /* Enable Auto crossover */
1561 pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR);
1562 pscr.bits.mdi_crossover_mode = 3; /* 11'b */
1563 mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image);
1565 /* Soft reset PHY */
1566 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1567 bmcr.image = 0;
1568 bmcr.bits.an_enable = 1;
1569 bmcr.bits.restart_an = 1;
1570 bmcr.bits.reset = 1;
1571 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1572 mdelay(1);
1573 } else {
1574 /* Force speed setting */
1575 /* 1) Disable Auto crossover */
1576 pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR);
1577 pscr.bits.mdi_crossover_mode = 0;
1578 mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image);
1580 /* 2) PHY Reset */
1581 bmcr.image = mii_read (dev, phy_addr, MII_BMCR);
1582 bmcr.bits.reset = 1;
1583 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1585 /* 3) Power Down */
1586 bmcr.image = 0x1940; /* must be 0x1940 */
1587 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1588 mdelay (100); /* wait a certain time */
1590 /* 4) Advertise nothing */
1591 mii_write (dev, phy_addr, MII_ANAR, 0);
1593 /* 5) Set media and Power Up */
1594 bmcr.image = 0;
1595 bmcr.bits.power_down = 1;
1596 if (np->speed == 100) {
1597 bmcr.bits.speed100 = 1;
1598 bmcr.bits.speed1000 = 0;
1599 printk (KERN_INFO "Manual 100 Mbps, ");
1600 } else if (np->speed == 10) {
1601 bmcr.bits.speed100 = 0;
1602 bmcr.bits.speed1000 = 0;
1603 printk (KERN_INFO "Manual 10 Mbps, ");
1605 if (np->full_duplex) {
1606 bmcr.bits.duplex_mode = 1;
1607 printk ("Full duplex\n");
1608 } else {
1609 bmcr.bits.duplex_mode = 0;
1610 printk ("Half duplex\n");
1612 #if 0
1613 /* Set 1000BaseT Master/Slave setting */
1614 mscr.image = mii_read (dev, phy_addr, MII_MSCR);
1615 mscr.bits.cfg_enable = 1;
1616 mscr.bits.cfg_value = 0;
1617 #endif
1618 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1619 mdelay(10);
1621 return 0;
1624 static int
1625 mii_get_media_pcs (struct net_device *dev)
1627 ANAR_PCS_t negotiate;
1628 BMSR_t bmsr;
1629 BMCR_t bmcr;
1630 int phy_addr;
1631 struct netdev_private *np;
1633 np = netdev_priv(dev);
1634 phy_addr = np->phy_addr;
1636 bmsr.image = mii_read (dev, phy_addr, PCS_BMSR);
1637 if (np->an_enable) {
1638 if (!bmsr.bits.an_complete) {
1639 /* Auto-Negotiation not completed */
1640 return -1;
1642 negotiate.image = mii_read (dev, phy_addr, PCS_ANAR) &
1643 mii_read (dev, phy_addr, PCS_ANLPAR);
1644 np->speed = 1000;
1645 if (negotiate.bits.full_duplex) {
1646 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1647 np->full_duplex = 1;
1648 } else {
1649 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1650 np->full_duplex = 0;
1652 if (negotiate.bits.pause) {
1653 np->tx_flow &= 1;
1654 np->rx_flow &= 1;
1655 } else if (negotiate.bits.asymmetric) {
1656 np->tx_flow = 0;
1657 np->rx_flow &= 1;
1659 /* else tx_flow, rx_flow = user select */
1660 } else {
1661 bmcr.image = mii_read (dev, phy_addr, PCS_BMCR);
1662 printk (KERN_INFO "Operating at 1000 Mbps, ");
1663 if (bmcr.bits.duplex_mode) {
1664 printk ("Full duplex\n");
1665 } else {
1666 printk ("Half duplex\n");
1669 if (np->tx_flow)
1670 printk(KERN_INFO "Enable Tx Flow Control\n");
1671 else
1672 printk(KERN_INFO "Disable Tx Flow Control\n");
1673 if (np->rx_flow)
1674 printk(KERN_INFO "Enable Rx Flow Control\n");
1675 else
1676 printk(KERN_INFO "Disable Rx Flow Control\n");
1678 return 0;
1681 static int
1682 mii_set_media_pcs (struct net_device *dev)
1684 BMCR_t bmcr;
1685 ESR_t esr;
1686 ANAR_PCS_t anar;
1687 int phy_addr;
1688 struct netdev_private *np;
1689 np = netdev_priv(dev);
1690 phy_addr = np->phy_addr;
1692 /* Auto-Negotiation? */
1693 if (np->an_enable) {
1694 /* Advertise capabilities */
1695 esr.image = mii_read (dev, phy_addr, PCS_ESR);
1696 anar.image = mii_read (dev, phy_addr, MII_ANAR);
1697 anar.bits.half_duplex =
1698 esr.bits.media_1000BT_HD | esr.bits.media_1000BX_HD;
1699 anar.bits.full_duplex =
1700 esr.bits.media_1000BT_FD | esr.bits.media_1000BX_FD;
1701 anar.bits.pause = 1;
1702 anar.bits.asymmetric = 1;
1703 mii_write (dev, phy_addr, MII_ANAR, anar.image);
1705 /* Soft reset PHY */
1706 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1707 bmcr.image = 0;
1708 bmcr.bits.an_enable = 1;
1709 bmcr.bits.restart_an = 1;
1710 bmcr.bits.reset = 1;
1711 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1712 mdelay(1);
1713 } else {
1714 /* Force speed setting */
1715 /* PHY Reset */
1716 bmcr.image = 0;
1717 bmcr.bits.reset = 1;
1718 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1719 mdelay(10);
1720 bmcr.image = 0;
1721 bmcr.bits.an_enable = 0;
1722 if (np->full_duplex) {
1723 bmcr.bits.duplex_mode = 1;
1724 printk (KERN_INFO "Manual full duplex\n");
1725 } else {
1726 bmcr.bits.duplex_mode = 0;
1727 printk (KERN_INFO "Manual half duplex\n");
1729 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1730 mdelay(10);
1732 /* Advertise nothing */
1733 mii_write (dev, phy_addr, MII_ANAR, 0);
1735 return 0;
1739 static int
1740 rio_close (struct net_device *dev)
1742 long ioaddr = dev->base_addr;
1743 struct netdev_private *np = netdev_priv(dev);
1744 struct sk_buff *skb;
1745 int i;
1747 netif_stop_queue (dev);
1749 /* Disable interrupts */
1750 writew (0, ioaddr + IntEnable);
1752 /* Stop Tx and Rx logics */
1753 writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
1754 synchronize_irq (dev->irq);
1755 free_irq (dev->irq, dev);
1756 del_timer_sync (&np->timer);
1758 /* Free all the skbuffs in the queue. */
1759 for (i = 0; i < RX_RING_SIZE; i++) {
1760 np->rx_ring[i].status = 0;
1761 np->rx_ring[i].fraginfo = 0;
1762 skb = np->rx_skbuff[i];
1763 if (skb) {
1764 pci_unmap_single(np->pdev,
1765 np->rx_ring[i].fraginfo & DMA_48BIT_MASK,
1766 skb->len, PCI_DMA_FROMDEVICE);
1767 dev_kfree_skb (skb);
1768 np->rx_skbuff[i] = NULL;
1771 for (i = 0; i < TX_RING_SIZE; i++) {
1772 skb = np->tx_skbuff[i];
1773 if (skb) {
1774 pci_unmap_single(np->pdev,
1775 np->tx_ring[i].fraginfo & DMA_48BIT_MASK,
1776 skb->len, PCI_DMA_TODEVICE);
1777 dev_kfree_skb (skb);
1778 np->tx_skbuff[i] = NULL;
1782 return 0;
1785 static void __devexit
1786 rio_remove1 (struct pci_dev *pdev)
1788 struct net_device *dev = pci_get_drvdata (pdev);
1790 if (dev) {
1791 struct netdev_private *np = netdev_priv(dev);
1793 unregister_netdev (dev);
1794 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1795 np->rx_ring_dma);
1796 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1797 np->tx_ring_dma);
1798 #ifdef MEM_MAPPING
1799 iounmap ((char *) (dev->base_addr));
1800 #endif
1801 free_netdev (dev);
1802 pci_release_regions (pdev);
1803 pci_disable_device (pdev);
1805 pci_set_drvdata (pdev, NULL);
1808 static struct pci_driver rio_driver = {
1809 .name = "dl2k",
1810 .id_table = rio_pci_tbl,
1811 .probe = rio_probe1,
1812 .remove = __devexit_p(rio_remove1),
1815 static int __init
1816 rio_init (void)
1818 return pci_register_driver(&rio_driver);
1821 static void __exit
1822 rio_exit (void)
1824 pci_unregister_driver (&rio_driver);
1827 module_init (rio_init);
1828 module_exit (rio_exit);
1832 Compile command:
1834 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1836 Read Documentation/networking/dl2k.txt for details.