cris: add arch/cris/include/asm/serial.h
[linux-2.6/next.git] / drivers / edac / x38_edac.c
blobb6f47de152f31f4130938e04c468b1bbe7933a00
1 /*
2 * Intel X38 Memory Controller kernel module
3 * Copyright (C) 2008 Cluster Computing, Inc.
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
8 * This file is based on i3200_edac.c
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/edac.h>
17 #include "edac_core.h"
19 #define X38_REVISION "1.1"
21 #define EDAC_MOD_STR "x38_edac"
23 #define PCI_DEVICE_ID_INTEL_X38_HB 0x29e0
25 #define X38_RANKS 8
26 #define X38_RANKS_PER_CHANNEL 4
27 #define X38_CHANNELS 2
29 /* Intel X38 register addresses - device 0 function 0 - DRAM Controller */
31 #define X38_MCHBAR_LOW 0x48 /* MCH Memory Mapped Register BAR */
32 #define X38_MCHBAR_HIGH 0x4c
33 #define X38_MCHBAR_MASK 0xfffffc000ULL /* bits 35:14 */
34 #define X38_MMR_WINDOW_SIZE 16384
36 #define X38_TOM 0xa0 /* Top of Memory (16b)
38 * 15:10 reserved
39 * 9:0 total populated physical memory
41 #define X38_TOM_MASK 0x3ff /* bits 9:0 */
42 #define X38_TOM_SHIFT 26 /* 64MiB grain */
44 #define X38_ERRSTS 0xc8 /* Error Status Register (16b)
46 * 15 reserved
47 * 14 Isochronous TBWRR Run Behind FIFO Full
48 * (ITCV)
49 * 13 Isochronous TBWRR Run Behind FIFO Put
50 * (ITSTV)
51 * 12 reserved
52 * 11 MCH Thermal Sensor Event
53 * for SMI/SCI/SERR (GTSE)
54 * 10 reserved
55 * 9 LOCK to non-DRAM Memory Flag (LCKF)
56 * 8 reserved
57 * 7 DRAM Throttle Flag (DTF)
58 * 6:2 reserved
59 * 1 Multi-bit DRAM ECC Error Flag (DMERR)
60 * 0 Single-bit DRAM ECC Error Flag (DSERR)
62 #define X38_ERRSTS_UE 0x0002
63 #define X38_ERRSTS_CE 0x0001
64 #define X38_ERRSTS_BITS (X38_ERRSTS_UE | X38_ERRSTS_CE)
67 /* Intel MMIO register space - device 0 function 0 - MMR space */
69 #define X38_C0DRB 0x200 /* Channel 0 DRAM Rank Boundary (16b x 4)
71 * 15:10 reserved
72 * 9:0 Channel 0 DRAM Rank Boundary Address
74 #define X38_C1DRB 0x600 /* Channel 1 DRAM Rank Boundary (16b x 4) */
75 #define X38_DRB_MASK 0x3ff /* bits 9:0 */
76 #define X38_DRB_SHIFT 26 /* 64MiB grain */
78 #define X38_C0ECCERRLOG 0x280 /* Channel 0 ECC Error Log (64b)
80 * 63:48 Error Column Address (ERRCOL)
81 * 47:32 Error Row Address (ERRROW)
82 * 31:29 Error Bank Address (ERRBANK)
83 * 28:27 Error Rank Address (ERRRANK)
84 * 26:24 reserved
85 * 23:16 Error Syndrome (ERRSYND)
86 * 15: 2 reserved
87 * 1 Multiple Bit Error Status (MERRSTS)
88 * 0 Correctable Error Status (CERRSTS)
90 #define X38_C1ECCERRLOG 0x680 /* Channel 1 ECC Error Log (64b) */
91 #define X38_ECCERRLOG_CE 0x1
92 #define X38_ECCERRLOG_UE 0x2
93 #define X38_ECCERRLOG_RANK_BITS 0x18000000
94 #define X38_ECCERRLOG_SYNDROME_BITS 0xff0000
96 #define X38_CAPID0 0xe0 /* see P.94 of spec for details */
98 static int x38_channel_num;
100 static int how_many_channel(struct pci_dev *pdev)
102 unsigned char capid0_8b; /* 8th byte of CAPID0 */
104 pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b);
105 if (capid0_8b & 0x20) { /* check DCD: Dual Channel Disable */
106 debugf0("In single channel mode.\n");
107 x38_channel_num = 1;
108 } else {
109 debugf0("In dual channel mode.\n");
110 x38_channel_num = 2;
113 return x38_channel_num;
116 static unsigned long eccerrlog_syndrome(u64 log)
118 return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16;
121 static int eccerrlog_row(int channel, u64 log)
123 return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) |
124 (channel * X38_RANKS_PER_CHANNEL);
127 enum x38_chips {
128 X38 = 0,
131 struct x38_dev_info {
132 const char *ctl_name;
135 struct x38_error_info {
136 u16 errsts;
137 u16 errsts2;
138 u64 eccerrlog[X38_CHANNELS];
141 static const struct x38_dev_info x38_devs[] = {
142 [X38] = {
143 .ctl_name = "x38"},
146 static struct pci_dev *mci_pdev;
147 static int x38_registered = 1;
150 static void x38_clear_error_info(struct mem_ctl_info *mci)
152 struct pci_dev *pdev;
154 pdev = to_pci_dev(mci->dev);
157 * Clear any error bits.
158 * (Yes, we really clear bits by writing 1 to them.)
160 pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS,
161 X38_ERRSTS_BITS);
164 static u64 x38_readq(const void __iomem *addr)
166 return readl(addr) | (((u64)readl(addr + 4)) << 32);
169 static void x38_get_and_clear_error_info(struct mem_ctl_info *mci,
170 struct x38_error_info *info)
172 struct pci_dev *pdev;
173 void __iomem *window = mci->pvt_info;
175 pdev = to_pci_dev(mci->dev);
178 * This is a mess because there is no atomic way to read all the
179 * registers at once and the registers can transition from CE being
180 * overwritten by UE.
182 pci_read_config_word(pdev, X38_ERRSTS, &info->errsts);
183 if (!(info->errsts & X38_ERRSTS_BITS))
184 return;
186 info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
187 if (x38_channel_num == 2)
188 info->eccerrlog[1] = x38_readq(window + X38_C1ECCERRLOG);
190 pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2);
193 * If the error is the same for both reads then the first set
194 * of reads is valid. If there is a change then there is a CE
195 * with no info and the second set of reads is valid and
196 * should be UE info.
198 if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
199 info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
200 if (x38_channel_num == 2)
201 info->eccerrlog[1] =
202 x38_readq(window + X38_C1ECCERRLOG);
205 x38_clear_error_info(mci);
208 static void x38_process_error_info(struct mem_ctl_info *mci,
209 struct x38_error_info *info)
211 int channel;
212 u64 log;
214 if (!(info->errsts & X38_ERRSTS_BITS))
215 return;
217 if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
218 edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
219 info->errsts = info->errsts2;
222 for (channel = 0; channel < x38_channel_num; channel++) {
223 log = info->eccerrlog[channel];
224 if (log & X38_ECCERRLOG_UE) {
225 edac_mc_handle_ue(mci, 0, 0,
226 eccerrlog_row(channel, log), "x38 UE");
227 } else if (log & X38_ECCERRLOG_CE) {
228 edac_mc_handle_ce(mci, 0, 0,
229 eccerrlog_syndrome(log),
230 eccerrlog_row(channel, log), 0, "x38 CE");
235 static void x38_check(struct mem_ctl_info *mci)
237 struct x38_error_info info;
239 debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
240 x38_get_and_clear_error_info(mci, &info);
241 x38_process_error_info(mci, &info);
245 void __iomem *x38_map_mchbar(struct pci_dev *pdev)
247 union {
248 u64 mchbar;
249 struct {
250 u32 mchbar_low;
251 u32 mchbar_high;
253 } u;
254 void __iomem *window;
256 pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low);
257 pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1);
258 pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high);
259 u.mchbar &= X38_MCHBAR_MASK;
261 if (u.mchbar != (resource_size_t)u.mchbar) {
262 printk(KERN_ERR
263 "x38: mmio space beyond accessible range (0x%llx)\n",
264 (unsigned long long)u.mchbar);
265 return NULL;
268 window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE);
269 if (!window)
270 printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n",
271 (unsigned long long)u.mchbar);
273 return window;
277 static void x38_get_drbs(void __iomem *window,
278 u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
280 int i;
282 for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) {
283 drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK;
284 drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK;
288 static bool x38_is_stacked(struct pci_dev *pdev,
289 u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
291 u16 tom;
293 pci_read_config_word(pdev, X38_TOM, &tom);
294 tom &= X38_TOM_MASK;
296 return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom;
299 static unsigned long drb_to_nr_pages(
300 u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL],
301 bool stacked, int channel, int rank)
303 int n;
305 n = drbs[channel][rank];
306 if (rank > 0)
307 n -= drbs[channel][rank - 1];
308 if (stacked && (channel == 1) && drbs[channel][rank] ==
309 drbs[channel][X38_RANKS_PER_CHANNEL - 1]) {
310 n -= drbs[0][X38_RANKS_PER_CHANNEL - 1];
313 n <<= (X38_DRB_SHIFT - PAGE_SHIFT);
314 return n;
317 static int x38_probe1(struct pci_dev *pdev, int dev_idx)
319 int rc;
320 int i;
321 struct mem_ctl_info *mci = NULL;
322 unsigned long last_page;
323 u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL];
324 bool stacked;
325 void __iomem *window;
327 debugf0("MC: %s()\n", __func__);
329 window = x38_map_mchbar(pdev);
330 if (!window)
331 return -ENODEV;
333 x38_get_drbs(window, drbs);
335 how_many_channel(pdev);
337 /* FIXME: unconventional pvt_info usage */
338 mci = edac_mc_alloc(0, X38_RANKS, x38_channel_num, 0);
339 if (!mci)
340 return -ENOMEM;
342 debugf3("MC: %s(): init mci\n", __func__);
344 mci->dev = &pdev->dev;
345 mci->mtype_cap = MEM_FLAG_DDR2;
347 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
348 mci->edac_cap = EDAC_FLAG_SECDED;
350 mci->mod_name = EDAC_MOD_STR;
351 mci->mod_ver = X38_REVISION;
352 mci->ctl_name = x38_devs[dev_idx].ctl_name;
353 mci->dev_name = pci_name(pdev);
354 mci->edac_check = x38_check;
355 mci->ctl_page_to_phys = NULL;
356 mci->pvt_info = window;
358 stacked = x38_is_stacked(pdev, drbs);
361 * The dram rank boundary (DRB) reg values are boundary addresses
362 * for each DRAM rank with a granularity of 64MB. DRB regs are
363 * cumulative; the last one will contain the total memory
364 * contained in all ranks.
366 last_page = -1UL;
367 for (i = 0; i < mci->nr_csrows; i++) {
368 unsigned long nr_pages;
369 struct csrow_info *csrow = &mci->csrows[i];
371 nr_pages = drb_to_nr_pages(drbs, stacked,
372 i / X38_RANKS_PER_CHANNEL,
373 i % X38_RANKS_PER_CHANNEL);
375 if (nr_pages == 0) {
376 csrow->mtype = MEM_EMPTY;
377 continue;
380 csrow->first_page = last_page + 1;
381 last_page += nr_pages;
382 csrow->last_page = last_page;
383 csrow->nr_pages = nr_pages;
385 csrow->grain = nr_pages << PAGE_SHIFT;
386 csrow->mtype = MEM_DDR2;
387 csrow->dtype = DEV_UNKNOWN;
388 csrow->edac_mode = EDAC_UNKNOWN;
391 x38_clear_error_info(mci);
393 rc = -ENODEV;
394 if (edac_mc_add_mc(mci)) {
395 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
396 goto fail;
399 /* get this far and it's successful */
400 debugf3("MC: %s(): success\n", __func__);
401 return 0;
403 fail:
404 iounmap(window);
405 if (mci)
406 edac_mc_free(mci);
408 return rc;
411 static int __devinit x38_init_one(struct pci_dev *pdev,
412 const struct pci_device_id *ent)
414 int rc;
416 debugf0("MC: %s()\n", __func__);
418 if (pci_enable_device(pdev) < 0)
419 return -EIO;
421 rc = x38_probe1(pdev, ent->driver_data);
422 if (!mci_pdev)
423 mci_pdev = pci_dev_get(pdev);
425 return rc;
428 static void __devexit x38_remove_one(struct pci_dev *pdev)
430 struct mem_ctl_info *mci;
432 debugf0("%s()\n", __func__);
434 mci = edac_mc_del_mc(&pdev->dev);
435 if (!mci)
436 return;
438 iounmap(mci->pvt_info);
440 edac_mc_free(mci);
443 static const struct pci_device_id x38_pci_tbl[] __devinitdata = {
445 PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
446 X38},
449 } /* 0 terminated list. */
452 MODULE_DEVICE_TABLE(pci, x38_pci_tbl);
454 static struct pci_driver x38_driver = {
455 .name = EDAC_MOD_STR,
456 .probe = x38_init_one,
457 .remove = __devexit_p(x38_remove_one),
458 .id_table = x38_pci_tbl,
461 static int __init x38_init(void)
463 int pci_rc;
465 debugf3("MC: %s()\n", __func__);
467 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
468 opstate_init();
470 pci_rc = pci_register_driver(&x38_driver);
471 if (pci_rc < 0)
472 goto fail0;
474 if (!mci_pdev) {
475 x38_registered = 0;
476 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
477 PCI_DEVICE_ID_INTEL_X38_HB, NULL);
478 if (!mci_pdev) {
479 debugf0("x38 pci_get_device fail\n");
480 pci_rc = -ENODEV;
481 goto fail1;
484 pci_rc = x38_init_one(mci_pdev, x38_pci_tbl);
485 if (pci_rc < 0) {
486 debugf0("x38 init fail\n");
487 pci_rc = -ENODEV;
488 goto fail1;
492 return 0;
494 fail1:
495 pci_unregister_driver(&x38_driver);
497 fail0:
498 if (mci_pdev)
499 pci_dev_put(mci_pdev);
501 return pci_rc;
504 static void __exit x38_exit(void)
506 debugf3("MC: %s()\n", __func__);
508 pci_unregister_driver(&x38_driver);
509 if (!x38_registered) {
510 x38_remove_one(mci_pdev);
511 pci_dev_put(mci_pdev);
515 module_init(x38_init);
516 module_exit(x38_exit);
518 MODULE_LICENSE("GPL");
519 MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake");
520 MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers");
522 module_param(edac_op_state, int, 0444);
523 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");