1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
40 enum {NETDEV_STATS
, E1000_STATS
};
43 char stat_string
[ETH_GSTRING_LEN
];
49 #define E1000_STAT(str, m) { \
51 .type = E1000_STATS, \
52 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
53 .stat_offset = offsetof(struct e1000_adapter, m) }
54 #define E1000_NETDEV_STAT(str, m) { \
56 .type = NETDEV_STATS, \
57 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
58 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
60 static const struct e1000_stats e1000_gstrings_stats
[] = {
61 E1000_STAT("rx_packets", stats
.gprc
),
62 E1000_STAT("tx_packets", stats
.gptc
),
63 E1000_STAT("rx_bytes", stats
.gorc
),
64 E1000_STAT("tx_bytes", stats
.gotc
),
65 E1000_STAT("rx_broadcast", stats
.bprc
),
66 E1000_STAT("tx_broadcast", stats
.bptc
),
67 E1000_STAT("rx_multicast", stats
.mprc
),
68 E1000_STAT("tx_multicast", stats
.mptc
),
69 E1000_NETDEV_STAT("rx_errors", rx_errors
),
70 E1000_NETDEV_STAT("tx_errors", tx_errors
),
71 E1000_NETDEV_STAT("tx_dropped", tx_dropped
),
72 E1000_STAT("multicast", stats
.mprc
),
73 E1000_STAT("collisions", stats
.colc
),
74 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors
),
75 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors
),
76 E1000_STAT("rx_crc_errors", stats
.crcerrs
),
77 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors
),
78 E1000_STAT("rx_no_buffer_count", stats
.rnbc
),
79 E1000_STAT("rx_missed_errors", stats
.mpc
),
80 E1000_STAT("tx_aborted_errors", stats
.ecol
),
81 E1000_STAT("tx_carrier_errors", stats
.tncrs
),
82 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors
),
83 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors
),
84 E1000_STAT("tx_window_errors", stats
.latecol
),
85 E1000_STAT("tx_abort_late_coll", stats
.latecol
),
86 E1000_STAT("tx_deferred_ok", stats
.dc
),
87 E1000_STAT("tx_single_coll_ok", stats
.scc
),
88 E1000_STAT("tx_multi_coll_ok", stats
.mcc
),
89 E1000_STAT("tx_timeout_count", tx_timeout_count
),
90 E1000_STAT("tx_restart_queue", restart_queue
),
91 E1000_STAT("rx_long_length_errors", stats
.roc
),
92 E1000_STAT("rx_short_length_errors", stats
.ruc
),
93 E1000_STAT("rx_align_errors", stats
.algnerrc
),
94 E1000_STAT("tx_tcp_seg_good", stats
.tsctc
),
95 E1000_STAT("tx_tcp_seg_failed", stats
.tsctfc
),
96 E1000_STAT("rx_flow_control_xon", stats
.xonrxc
),
97 E1000_STAT("rx_flow_control_xoff", stats
.xoffrxc
),
98 E1000_STAT("tx_flow_control_xon", stats
.xontxc
),
99 E1000_STAT("tx_flow_control_xoff", stats
.xofftxc
),
100 E1000_STAT("rx_long_byte_count", stats
.gorc
),
101 E1000_STAT("rx_csum_offload_good", hw_csum_good
),
102 E1000_STAT("rx_csum_offload_errors", hw_csum_err
),
103 E1000_STAT("rx_header_split", rx_hdr_split
),
104 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed
),
105 E1000_STAT("tx_smbus", stats
.mgptc
),
106 E1000_STAT("rx_smbus", stats
.mgprc
),
107 E1000_STAT("dropped_smbus", stats
.mgpdc
),
108 E1000_STAT("rx_dma_failed", rx_dma_failed
),
109 E1000_STAT("tx_dma_failed", tx_dma_failed
),
112 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
113 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
114 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
115 "Register test (offline)", "Eeprom test (offline)",
116 "Interrupt test (offline)", "Loopback test (offline)",
117 "Link test (on/offline)"
119 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121 static int e1000_get_settings(struct net_device
*netdev
,
122 struct ethtool_cmd
*ecmd
)
124 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
125 struct e1000_hw
*hw
= &adapter
->hw
;
128 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
130 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
131 SUPPORTED_10baseT_Full
|
132 SUPPORTED_100baseT_Half
|
133 SUPPORTED_100baseT_Full
|
134 SUPPORTED_1000baseT_Full
|
137 if (hw
->phy
.type
== e1000_phy_ife
)
138 ecmd
->supported
&= ~SUPPORTED_1000baseT_Full
;
139 ecmd
->advertising
= ADVERTISED_TP
;
141 if (hw
->mac
.autoneg
== 1) {
142 ecmd
->advertising
|= ADVERTISED_Autoneg
;
143 /* the e1000 autoneg seems to match ethtool nicely */
144 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
147 ecmd
->port
= PORT_TP
;
148 ecmd
->phy_address
= hw
->phy
.addr
;
149 ecmd
->transceiver
= XCVR_INTERNAL
;
152 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
156 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
160 ecmd
->port
= PORT_FIBRE
;
161 ecmd
->transceiver
= XCVR_EXTERNAL
;
167 if (netif_running(netdev
)) {
168 if (netif_carrier_ok(netdev
)) {
169 speed
= adapter
->link_speed
;
170 ecmd
->duplex
= adapter
->link_duplex
- 1;
173 u32 status
= er32(STATUS
);
174 if (status
& E1000_STATUS_LU
) {
175 if (status
& E1000_STATUS_SPEED_1000
)
177 else if (status
& E1000_STATUS_SPEED_100
)
182 if (status
& E1000_STATUS_FD
)
183 ecmd
->duplex
= DUPLEX_FULL
;
185 ecmd
->duplex
= DUPLEX_HALF
;
189 ethtool_cmd_speed_set(ecmd
, speed
);
190 ecmd
->autoneg
= ((hw
->phy
.media_type
== e1000_media_type_fiber
) ||
191 hw
->mac
.autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
193 /* MDI-X => 2; MDI =>1; Invalid =>0 */
194 if ((hw
->phy
.media_type
== e1000_media_type_copper
) &&
195 netif_carrier_ok(netdev
))
196 ecmd
->eth_tp_mdix
= hw
->phy
.is_mdix
? ETH_TP_MDI_X
:
199 ecmd
->eth_tp_mdix
= ETH_TP_MDI_INVALID
;
204 static int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u32 spd
, u8 dplx
)
206 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
210 /* Make sure dplx is at most 1 bit and lsb of speed is not set
211 * for the switch() below to work */
212 if ((spd
& 1) || (dplx
& ~1))
215 /* Fiber NICs only allow 1000 gbps Full duplex */
216 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
218 dplx
!= DUPLEX_FULL
) {
222 switch (spd
+ dplx
) {
223 case SPEED_10
+ DUPLEX_HALF
:
224 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
226 case SPEED_10
+ DUPLEX_FULL
:
227 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
229 case SPEED_100
+ DUPLEX_HALF
:
230 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
232 case SPEED_100
+ DUPLEX_FULL
:
233 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
235 case SPEED_1000
+ DUPLEX_FULL
:
237 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
239 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
246 e_err("Unsupported Speed/Duplex configuration\n");
250 static int e1000_set_settings(struct net_device
*netdev
,
251 struct ethtool_cmd
*ecmd
)
253 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
254 struct e1000_hw
*hw
= &adapter
->hw
;
257 * When SoL/IDER sessions are active, autoneg/speed/duplex
260 if (e1000_check_reset_block(hw
)) {
261 e_err("Cannot change link characteristics when SoL/IDER is "
266 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
267 usleep_range(1000, 2000);
269 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
271 if (hw
->phy
.media_type
== e1000_media_type_fiber
)
272 hw
->phy
.autoneg_advertised
= ADVERTISED_1000baseT_Full
|
276 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
279 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
280 if (adapter
->fc_autoneg
)
281 hw
->fc
.requested_mode
= e1000_fc_default
;
283 u32 speed
= ethtool_cmd_speed(ecmd
);
284 if (e1000_set_spd_dplx(adapter
, speed
, ecmd
->duplex
)) {
285 clear_bit(__E1000_RESETTING
, &adapter
->state
);
292 if (netif_running(adapter
->netdev
)) {
293 e1000e_down(adapter
);
296 e1000e_reset(adapter
);
299 clear_bit(__E1000_RESETTING
, &adapter
->state
);
303 static void e1000_get_pauseparam(struct net_device
*netdev
,
304 struct ethtool_pauseparam
*pause
)
306 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
307 struct e1000_hw
*hw
= &adapter
->hw
;
310 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
312 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
) {
314 } else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
) {
316 } else if (hw
->fc
.current_mode
== e1000_fc_full
) {
322 static int e1000_set_pauseparam(struct net_device
*netdev
,
323 struct ethtool_pauseparam
*pause
)
325 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
326 struct e1000_hw
*hw
= &adapter
->hw
;
329 adapter
->fc_autoneg
= pause
->autoneg
;
331 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
332 usleep_range(1000, 2000);
334 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
335 hw
->fc
.requested_mode
= e1000_fc_default
;
336 if (netif_running(adapter
->netdev
)) {
337 e1000e_down(adapter
);
340 e1000e_reset(adapter
);
343 if (pause
->rx_pause
&& pause
->tx_pause
)
344 hw
->fc
.requested_mode
= e1000_fc_full
;
345 else if (pause
->rx_pause
&& !pause
->tx_pause
)
346 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
347 else if (!pause
->rx_pause
&& pause
->tx_pause
)
348 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
349 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
350 hw
->fc
.requested_mode
= e1000_fc_none
;
352 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
354 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
355 retval
= hw
->mac
.ops
.setup_link(hw
);
356 /* implicit goto out */
358 retval
= e1000e_force_mac_fc(hw
);
361 e1000e_set_fc_watermarks(hw
);
366 clear_bit(__E1000_RESETTING
, &adapter
->state
);
370 static u32
e1000_get_rx_csum(struct net_device
*netdev
)
372 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
373 return adapter
->flags
& FLAG_RX_CSUM_ENABLED
;
376 static int e1000_set_rx_csum(struct net_device
*netdev
, u32 data
)
378 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
381 adapter
->flags
|= FLAG_RX_CSUM_ENABLED
;
383 adapter
->flags
&= ~FLAG_RX_CSUM_ENABLED
;
385 if (netif_running(netdev
))
386 e1000e_reinit_locked(adapter
);
388 e1000e_reset(adapter
);
392 static u32
e1000_get_tx_csum(struct net_device
*netdev
)
394 return (netdev
->features
& NETIF_F_HW_CSUM
) != 0;
397 static int e1000_set_tx_csum(struct net_device
*netdev
, u32 data
)
400 netdev
->features
|= NETIF_F_HW_CSUM
;
402 netdev
->features
&= ~NETIF_F_HW_CSUM
;
407 static int e1000_set_tso(struct net_device
*netdev
, u32 data
)
409 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
412 netdev
->features
|= NETIF_F_TSO
;
413 netdev
->features
|= NETIF_F_TSO6
;
415 netdev
->features
&= ~NETIF_F_TSO
;
416 netdev
->features
&= ~NETIF_F_TSO6
;
419 adapter
->flags
|= FLAG_TSO_FORCE
;
423 static u32
e1000_get_msglevel(struct net_device
*netdev
)
425 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
426 return adapter
->msg_enable
;
429 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
431 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
432 adapter
->msg_enable
= data
;
435 static int e1000_get_regs_len(struct net_device
*netdev
)
437 #define E1000_REGS_LEN 32 /* overestimate */
438 return E1000_REGS_LEN
* sizeof(u32
);
441 static void e1000_get_regs(struct net_device
*netdev
,
442 struct ethtool_regs
*regs
, void *p
)
444 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
445 struct e1000_hw
*hw
= &adapter
->hw
;
449 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
451 regs
->version
= (1 << 24) | (adapter
->pdev
->revision
<< 16) |
452 adapter
->pdev
->device
;
454 regs_buff
[0] = er32(CTRL
);
455 regs_buff
[1] = er32(STATUS
);
457 regs_buff
[2] = er32(RCTL
);
458 regs_buff
[3] = er32(RDLEN
);
459 regs_buff
[4] = er32(RDH
);
460 regs_buff
[5] = er32(RDT
);
461 regs_buff
[6] = er32(RDTR
);
463 regs_buff
[7] = er32(TCTL
);
464 regs_buff
[8] = er32(TDLEN
);
465 regs_buff
[9] = er32(TDH
);
466 regs_buff
[10] = er32(TDT
);
467 regs_buff
[11] = er32(TIDV
);
469 regs_buff
[12] = adapter
->hw
.phy
.type
; /* PHY type (IGP=1, M88=0) */
471 /* ethtool doesn't use anything past this point, so all this
472 * code is likely legacy junk for apps that may or may not
474 if (hw
->phy
.type
== e1000_phy_m88
) {
475 e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
476 regs_buff
[13] = (u32
)phy_data
; /* cable length */
477 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
478 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
479 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
480 e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
481 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
482 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
483 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
484 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
485 /* phy receive errors */
486 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
487 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
489 regs_buff
[21] = 0; /* was idle_errors */
490 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_data
);
491 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
492 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
495 static int e1000_get_eeprom_len(struct net_device
*netdev
)
497 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
498 return adapter
->hw
.nvm
.word_size
* 2;
501 static int e1000_get_eeprom(struct net_device
*netdev
,
502 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
504 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
505 struct e1000_hw
*hw
= &adapter
->hw
;
512 if (eeprom
->len
== 0)
515 eeprom
->magic
= adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16);
517 first_word
= eeprom
->offset
>> 1;
518 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
520 eeprom_buff
= kmalloc(sizeof(u16
) *
521 (last_word
- first_word
+ 1), GFP_KERNEL
);
525 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
526 ret_val
= e1000_read_nvm(hw
, first_word
,
527 last_word
- first_word
+ 1,
530 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
531 ret_val
= e1000_read_nvm(hw
, first_word
+ i
, 1,
539 /* a read error occurred, throw away the result */
540 memset(eeprom_buff
, 0xff, sizeof(u16
) *
541 (last_word
- first_word
+ 1));
543 /* Device's eeprom is always little-endian, word addressable */
544 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
545 le16_to_cpus(&eeprom_buff
[i
]);
548 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1), eeprom
->len
);
554 static int e1000_set_eeprom(struct net_device
*netdev
,
555 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
557 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
558 struct e1000_hw
*hw
= &adapter
->hw
;
567 if (eeprom
->len
== 0)
570 if (eeprom
->magic
!= (adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16)))
573 if (adapter
->flags
& FLAG_READ_ONLY_NVM
)
576 max_len
= hw
->nvm
.word_size
* 2;
578 first_word
= eeprom
->offset
>> 1;
579 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
580 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
584 ptr
= (void *)eeprom_buff
;
586 if (eeprom
->offset
& 1) {
587 /* need read/modify/write of first changed EEPROM word */
588 /* only the second byte of the word is being modified */
589 ret_val
= e1000_read_nvm(hw
, first_word
, 1, &eeprom_buff
[0]);
592 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0))
593 /* need read/modify/write of last changed EEPROM word */
594 /* only the first byte of the word is being modified */
595 ret_val
= e1000_read_nvm(hw
, last_word
, 1,
596 &eeprom_buff
[last_word
- first_word
]);
601 /* Device's eeprom is always little-endian, word addressable */
602 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
603 le16_to_cpus(&eeprom_buff
[i
]);
605 memcpy(ptr
, bytes
, eeprom
->len
);
607 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
608 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
610 ret_val
= e1000_write_nvm(hw
, first_word
,
611 last_word
- first_word
+ 1, eeprom_buff
);
617 * Update the checksum over the first part of the EEPROM if needed
618 * and flush shadow RAM for applicable controllers
620 if ((first_word
<= NVM_CHECKSUM_REG
) ||
621 (hw
->mac
.type
== e1000_82583
) ||
622 (hw
->mac
.type
== e1000_82574
) ||
623 (hw
->mac
.type
== e1000_82573
))
624 ret_val
= e1000e_update_nvm_checksum(hw
);
631 static void e1000_get_drvinfo(struct net_device
*netdev
,
632 struct ethtool_drvinfo
*drvinfo
)
634 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
635 char firmware_version
[32];
637 strncpy(drvinfo
->driver
, e1000e_driver_name
,
638 sizeof(drvinfo
->driver
) - 1);
639 strncpy(drvinfo
->version
, e1000e_driver_version
,
640 sizeof(drvinfo
->version
) - 1);
643 * EEPROM image version # is reported as firmware version # for
646 snprintf(firmware_version
, sizeof(firmware_version
), "%d.%d-%d",
647 (adapter
->eeprom_vers
& 0xF000) >> 12,
648 (adapter
->eeprom_vers
& 0x0FF0) >> 4,
649 (adapter
->eeprom_vers
& 0x000F));
651 strncpy(drvinfo
->fw_version
, firmware_version
,
652 sizeof(drvinfo
->fw_version
) - 1);
653 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
654 sizeof(drvinfo
->bus_info
) - 1);
655 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
656 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
659 static void e1000_get_ringparam(struct net_device
*netdev
,
660 struct ethtool_ringparam
*ring
)
662 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
663 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
664 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
666 ring
->rx_max_pending
= E1000_MAX_RXD
;
667 ring
->tx_max_pending
= E1000_MAX_TXD
;
668 ring
->rx_mini_max_pending
= 0;
669 ring
->rx_jumbo_max_pending
= 0;
670 ring
->rx_pending
= rx_ring
->count
;
671 ring
->tx_pending
= tx_ring
->count
;
672 ring
->rx_mini_pending
= 0;
673 ring
->rx_jumbo_pending
= 0;
676 static int e1000_set_ringparam(struct net_device
*netdev
,
677 struct ethtool_ringparam
*ring
)
679 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
680 struct e1000_ring
*tx_ring
, *tx_old
;
681 struct e1000_ring
*rx_ring
, *rx_old
;
684 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
687 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
688 usleep_range(1000, 2000);
690 if (netif_running(adapter
->netdev
))
691 e1000e_down(adapter
);
693 tx_old
= adapter
->tx_ring
;
694 rx_old
= adapter
->rx_ring
;
697 tx_ring
= kmemdup(tx_old
, sizeof(struct e1000_ring
), GFP_KERNEL
);
701 rx_ring
= kmemdup(rx_old
, sizeof(struct e1000_ring
), GFP_KERNEL
);
705 adapter
->tx_ring
= tx_ring
;
706 adapter
->rx_ring
= rx_ring
;
708 rx_ring
->count
= max(ring
->rx_pending
, (u32
)E1000_MIN_RXD
);
709 rx_ring
->count
= min(rx_ring
->count
, (u32
)(E1000_MAX_RXD
));
710 rx_ring
->count
= ALIGN(rx_ring
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
712 tx_ring
->count
= max(ring
->tx_pending
, (u32
)E1000_MIN_TXD
);
713 tx_ring
->count
= min(tx_ring
->count
, (u32
)(E1000_MAX_TXD
));
714 tx_ring
->count
= ALIGN(tx_ring
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
716 if (netif_running(adapter
->netdev
)) {
717 /* Try to get new resources before deleting old */
718 err
= e1000e_setup_rx_resources(adapter
);
721 err
= e1000e_setup_tx_resources(adapter
);
726 * restore the old in order to free it,
727 * then add in the new
729 adapter
->rx_ring
= rx_old
;
730 adapter
->tx_ring
= tx_old
;
731 e1000e_free_rx_resources(adapter
);
732 e1000e_free_tx_resources(adapter
);
735 adapter
->rx_ring
= rx_ring
;
736 adapter
->tx_ring
= tx_ring
;
737 err
= e1000e_up(adapter
);
742 clear_bit(__E1000_RESETTING
, &adapter
->state
);
745 e1000e_free_rx_resources(adapter
);
747 adapter
->rx_ring
= rx_old
;
748 adapter
->tx_ring
= tx_old
;
755 clear_bit(__E1000_RESETTING
, &adapter
->state
);
759 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
,
760 int reg
, int offset
, u32 mask
, u32 write
)
763 static const u32 test
[] = {
764 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
765 for (pat
= 0; pat
< ARRAY_SIZE(test
); pat
++) {
766 E1000_WRITE_REG_ARRAY(&adapter
->hw
, reg
, offset
,
767 (test
[pat
] & write
));
768 val
= E1000_READ_REG_ARRAY(&adapter
->hw
, reg
, offset
);
769 if (val
!= (test
[pat
] & write
& mask
)) {
770 e_err("pattern test reg %04X failed: got 0x%08X "
771 "expected 0x%08X\n", reg
+ offset
, val
,
772 (test
[pat
] & write
& mask
));
780 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
,
781 int reg
, u32 mask
, u32 write
)
784 __ew32(&adapter
->hw
, reg
, write
& mask
);
785 val
= __er32(&adapter
->hw
, reg
);
786 if ((write
& mask
) != (val
& mask
)) {
787 e_err("set/check reg %04X test failed: got 0x%08X "
788 "expected 0x%08X\n", reg
, (val
& mask
), (write
& mask
));
794 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
796 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
799 #define REG_PATTERN_TEST(reg, mask, write) \
800 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
802 #define REG_SET_AND_CHECK(reg, mask, write) \
804 if (reg_set_and_check(adapter, data, reg, mask, write)) \
808 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
810 struct e1000_hw
*hw
= &adapter
->hw
;
811 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
820 * The status register is Read Only, so a write should fail.
821 * Some bits that get toggled are ignored.
824 /* there are several bits on newer hardware that are r/w */
827 case e1000_80003es2lan
:
835 before
= er32(STATUS
);
836 value
= (er32(STATUS
) & toggle
);
837 ew32(STATUS
, toggle
);
838 after
= er32(STATUS
) & toggle
;
839 if (value
!= after
) {
840 e_err("failed STATUS register test got: 0x%08X expected: "
841 "0x%08X\n", after
, value
);
845 /* restore previous status */
846 ew32(STATUS
, before
);
848 if (!(adapter
->flags
& FLAG_IS_ICH
)) {
849 REG_PATTERN_TEST(E1000_FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
850 REG_PATTERN_TEST(E1000_FCAH
, 0x0000FFFF, 0xFFFFFFFF);
851 REG_PATTERN_TEST(E1000_FCT
, 0x0000FFFF, 0xFFFFFFFF);
852 REG_PATTERN_TEST(E1000_VET
, 0x0000FFFF, 0xFFFFFFFF);
855 REG_PATTERN_TEST(E1000_RDTR
, 0x0000FFFF, 0xFFFFFFFF);
856 REG_PATTERN_TEST(E1000_RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
857 REG_PATTERN_TEST(E1000_RDLEN
, 0x000FFF80, 0x000FFFFF);
858 REG_PATTERN_TEST(E1000_RDH
, 0x0000FFFF, 0x0000FFFF);
859 REG_PATTERN_TEST(E1000_RDT
, 0x0000FFFF, 0x0000FFFF);
860 REG_PATTERN_TEST(E1000_FCRTH
, 0x0000FFF8, 0x0000FFF8);
861 REG_PATTERN_TEST(E1000_FCTTV
, 0x0000FFFF, 0x0000FFFF);
862 REG_PATTERN_TEST(E1000_TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
863 REG_PATTERN_TEST(E1000_TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
864 REG_PATTERN_TEST(E1000_TDLEN
, 0x000FFF80, 0x000FFFFF);
866 REG_SET_AND_CHECK(E1000_RCTL
, 0xFFFFFFFF, 0x00000000);
868 before
= ((adapter
->flags
& FLAG_IS_ICH
) ? 0x06C3B33E : 0x06DFB3FE);
869 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0x003FFFFB);
870 REG_SET_AND_CHECK(E1000_TCTL
, 0xFFFFFFFF, 0x00000000);
872 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0xFFFFFFFF);
873 REG_PATTERN_TEST(E1000_RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
874 if (!(adapter
->flags
& FLAG_IS_ICH
))
875 REG_PATTERN_TEST(E1000_TXCW
, 0xC000FFFF, 0x0000FFFF);
876 REG_PATTERN_TEST(E1000_TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
877 REG_PATTERN_TEST(E1000_TIDV
, 0x0000FFFF, 0x0000FFFF);
888 for (i
= 0; i
< mac
->rar_entry_count
; i
++)
889 REG_PATTERN_TEST_ARRAY(E1000_RA
, ((i
<< 1) + 1),
892 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
893 REG_PATTERN_TEST_ARRAY(E1000_MTA
, i
, 0xFFFFFFFF, 0xFFFFFFFF);
899 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
906 /* Read and add up the contents of the EEPROM */
907 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
908 if ((e1000_read_nvm(&adapter
->hw
, i
, 1, &temp
)) < 0) {
915 /* If Checksum is not Correct return error else test passed */
916 if ((checksum
!= (u16
) NVM_SUM
) && !(*data
))
922 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
924 struct net_device
*netdev
= (struct net_device
*) data
;
925 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
926 struct e1000_hw
*hw
= &adapter
->hw
;
928 adapter
->test_icr
|= er32(ICR
);
933 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
935 struct net_device
*netdev
= adapter
->netdev
;
936 struct e1000_hw
*hw
= &adapter
->hw
;
939 u32 irq
= adapter
->pdev
->irq
;
942 int int_mode
= E1000E_INT_MODE_LEGACY
;
946 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
947 if (adapter
->int_mode
== E1000E_INT_MODE_MSIX
) {
948 int_mode
= adapter
->int_mode
;
949 e1000e_reset_interrupt_capability(adapter
);
950 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
951 e1000e_set_interrupt_capability(adapter
);
953 /* Hook up test interrupt handler just for this test */
954 if (!request_irq(irq
, e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
957 } else if (request_irq(irq
, e1000_test_intr
, IRQF_SHARED
,
958 netdev
->name
, netdev
)) {
963 e_info("testing %s interrupt\n", (shared_int
? "shared" : "unshared"));
965 /* Disable all the interrupts */
966 ew32(IMC
, 0xFFFFFFFF);
968 usleep_range(10000, 20000);
970 /* Test each interrupt */
971 for (i
= 0; i
< 10; i
++) {
972 /* Interrupt to test */
975 if (adapter
->flags
& FLAG_IS_ICH
) {
977 case E1000_ICR_RXSEQ
:
980 if (adapter
->hw
.mac
.type
== e1000_ich8lan
||
981 adapter
->hw
.mac
.type
== e1000_ich9lan
)
991 * Disable the interrupt to be reported in
992 * the cause register and then force the same
993 * interrupt and see if one gets posted. If
994 * an interrupt was posted to the bus, the
997 adapter
->test_icr
= 0;
1001 usleep_range(10000, 20000);
1003 if (adapter
->test_icr
& mask
) {
1010 * Enable the interrupt to be reported in
1011 * the cause register and then force the same
1012 * interrupt and see if one gets posted. If
1013 * an interrupt was not posted to the bus, the
1016 adapter
->test_icr
= 0;
1020 usleep_range(10000, 20000);
1022 if (!(adapter
->test_icr
& mask
)) {
1029 * Disable the other interrupts to be reported in
1030 * the cause register and then force the other
1031 * interrupts and see if any get posted. If
1032 * an interrupt was posted to the bus, the
1035 adapter
->test_icr
= 0;
1036 ew32(IMC
, ~mask
& 0x00007FFF);
1037 ew32(ICS
, ~mask
& 0x00007FFF);
1039 usleep_range(10000, 20000);
1041 if (adapter
->test_icr
) {
1048 /* Disable all the interrupts */
1049 ew32(IMC
, 0xFFFFFFFF);
1051 usleep_range(10000, 20000);
1053 /* Unhook test interrupt handler */
1054 free_irq(irq
, netdev
);
1057 if (int_mode
== E1000E_INT_MODE_MSIX
) {
1058 e1000e_reset_interrupt_capability(adapter
);
1059 adapter
->int_mode
= int_mode
;
1060 e1000e_set_interrupt_capability(adapter
);
1066 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
1068 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1069 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1070 struct pci_dev
*pdev
= adapter
->pdev
;
1073 if (tx_ring
->desc
&& tx_ring
->buffer_info
) {
1074 for (i
= 0; i
< tx_ring
->count
; i
++) {
1075 if (tx_ring
->buffer_info
[i
].dma
)
1076 dma_unmap_single(&pdev
->dev
,
1077 tx_ring
->buffer_info
[i
].dma
,
1078 tx_ring
->buffer_info
[i
].length
,
1080 if (tx_ring
->buffer_info
[i
].skb
)
1081 dev_kfree_skb(tx_ring
->buffer_info
[i
].skb
);
1085 if (rx_ring
->desc
&& rx_ring
->buffer_info
) {
1086 for (i
= 0; i
< rx_ring
->count
; i
++) {
1087 if (rx_ring
->buffer_info
[i
].dma
)
1088 dma_unmap_single(&pdev
->dev
,
1089 rx_ring
->buffer_info
[i
].dma
,
1090 2048, DMA_FROM_DEVICE
);
1091 if (rx_ring
->buffer_info
[i
].skb
)
1092 dev_kfree_skb(rx_ring
->buffer_info
[i
].skb
);
1096 if (tx_ring
->desc
) {
1097 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1099 tx_ring
->desc
= NULL
;
1101 if (rx_ring
->desc
) {
1102 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1104 rx_ring
->desc
= NULL
;
1107 kfree(tx_ring
->buffer_info
);
1108 tx_ring
->buffer_info
= NULL
;
1109 kfree(rx_ring
->buffer_info
);
1110 rx_ring
->buffer_info
= NULL
;
1113 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1115 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1116 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1117 struct pci_dev
*pdev
= adapter
->pdev
;
1118 struct e1000_hw
*hw
= &adapter
->hw
;
1123 /* Setup Tx descriptor ring and Tx buffers */
1125 if (!tx_ring
->count
)
1126 tx_ring
->count
= E1000_DEFAULT_TXD
;
1128 tx_ring
->buffer_info
= kcalloc(tx_ring
->count
,
1129 sizeof(struct e1000_buffer
),
1131 if (!(tx_ring
->buffer_info
)) {
1136 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1137 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1138 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
1139 &tx_ring
->dma
, GFP_KERNEL
);
1140 if (!tx_ring
->desc
) {
1144 tx_ring
->next_to_use
= 0;
1145 tx_ring
->next_to_clean
= 0;
1147 ew32(TDBAL
, ((u64
) tx_ring
->dma
& 0x00000000FFFFFFFF));
1148 ew32(TDBAH
, ((u64
) tx_ring
->dma
>> 32));
1149 ew32(TDLEN
, tx_ring
->count
* sizeof(struct e1000_tx_desc
));
1152 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
| E1000_TCTL_MULR
|
1153 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1154 E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1156 for (i
= 0; i
< tx_ring
->count
; i
++) {
1157 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1158 struct sk_buff
*skb
;
1159 unsigned int skb_size
= 1024;
1161 skb
= alloc_skb(skb_size
, GFP_KERNEL
);
1166 skb_put(skb
, skb_size
);
1167 tx_ring
->buffer_info
[i
].skb
= skb
;
1168 tx_ring
->buffer_info
[i
].length
= skb
->len
;
1169 tx_ring
->buffer_info
[i
].dma
=
1170 dma_map_single(&pdev
->dev
, skb
->data
, skb
->len
,
1172 if (dma_mapping_error(&pdev
->dev
,
1173 tx_ring
->buffer_info
[i
].dma
)) {
1177 tx_desc
->buffer_addr
= cpu_to_le64(tx_ring
->buffer_info
[i
].dma
);
1178 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1179 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1180 E1000_TXD_CMD_IFCS
|
1182 tx_desc
->upper
.data
= 0;
1185 /* Setup Rx descriptor ring and Rx buffers */
1187 if (!rx_ring
->count
)
1188 rx_ring
->count
= E1000_DEFAULT_RXD
;
1190 rx_ring
->buffer_info
= kcalloc(rx_ring
->count
,
1191 sizeof(struct e1000_buffer
),
1193 if (!(rx_ring
->buffer_info
)) {
1198 rx_ring
->size
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
1199 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
1200 &rx_ring
->dma
, GFP_KERNEL
);
1201 if (!rx_ring
->desc
) {
1205 rx_ring
->next_to_use
= 0;
1206 rx_ring
->next_to_clean
= 0;
1209 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
1210 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1211 ew32(RDBAL
, ((u64
) rx_ring
->dma
& 0xFFFFFFFF));
1212 ew32(RDBAH
, ((u64
) rx_ring
->dma
>> 32));
1213 ew32(RDLEN
, rx_ring
->size
);
1216 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1217 E1000_RCTL_UPE
| E1000_RCTL_MPE
| E1000_RCTL_LPE
|
1218 E1000_RCTL_SBP
| E1000_RCTL_SECRC
|
1219 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1220 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1223 for (i
= 0; i
< rx_ring
->count
; i
++) {
1224 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
1225 struct sk_buff
*skb
;
1227 skb
= alloc_skb(2048 + NET_IP_ALIGN
, GFP_KERNEL
);
1232 skb_reserve(skb
, NET_IP_ALIGN
);
1233 rx_ring
->buffer_info
[i
].skb
= skb
;
1234 rx_ring
->buffer_info
[i
].dma
=
1235 dma_map_single(&pdev
->dev
, skb
->data
, 2048,
1237 if (dma_mapping_error(&pdev
->dev
,
1238 rx_ring
->buffer_info
[i
].dma
)) {
1242 rx_desc
->buffer_addr
=
1243 cpu_to_le64(rx_ring
->buffer_info
[i
].dma
);
1244 memset(skb
->data
, 0x00, skb
->len
);
1250 e1000_free_desc_rings(adapter
);
1254 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1256 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1257 e1e_wphy(&adapter
->hw
, 29, 0x001F);
1258 e1e_wphy(&adapter
->hw
, 30, 0x8FFC);
1259 e1e_wphy(&adapter
->hw
, 29, 0x001A);
1260 e1e_wphy(&adapter
->hw
, 30, 0x8FF0);
1263 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1265 struct e1000_hw
*hw
= &adapter
->hw
;
1270 hw
->mac
.autoneg
= 0;
1272 if (hw
->phy
.type
== e1000_phy_ife
) {
1273 /* force 100, set loopback */
1274 e1e_wphy(hw
, PHY_CONTROL
, 0x6100);
1276 /* Now set up the MAC to the same speed/duplex as the PHY. */
1277 ctrl_reg
= er32(CTRL
);
1278 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1279 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1280 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1281 E1000_CTRL_SPD_100
|/* Force Speed to 100 */
1282 E1000_CTRL_FD
); /* Force Duplex to FULL */
1284 ew32(CTRL
, ctrl_reg
);
1291 /* Specific PHY configuration for loopback */
1292 switch (hw
->phy
.type
) {
1294 /* Auto-MDI/MDIX Off */
1295 e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1296 /* reset to update Auto-MDI/MDIX */
1297 e1e_wphy(hw
, PHY_CONTROL
, 0x9140);
1299 e1e_wphy(hw
, PHY_CONTROL
, 0x8140);
1301 case e1000_phy_gg82563
:
1302 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x1CC);
1305 /* Set Default MAC Interface speed to 1GB */
1306 e1e_rphy(hw
, PHY_REG(2, 21), &phy_reg
);
1309 e1e_wphy(hw
, PHY_REG(2, 21), phy_reg
);
1310 /* Assert SW reset for above settings to take effect */
1311 e1000e_commit_phy(hw
);
1313 /* Force Full Duplex */
1314 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1315 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x000C);
1316 /* Set Link Up (in force link) */
1317 e1e_rphy(hw
, PHY_REG(776, 16), &phy_reg
);
1318 e1e_wphy(hw
, PHY_REG(776, 16), phy_reg
| 0x0040);
1320 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1321 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x0040);
1322 /* Set Early Link Enable */
1323 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1324 e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| 0x0400);
1326 case e1000_phy_82577
:
1327 case e1000_phy_82578
:
1328 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1329 ret_val
= hw
->phy
.ops
.acquire(hw
);
1331 e_err("Cannot setup 1Gbps loopback.\n");
1334 e1000_configure_k1_ich8lan(hw
, false);
1335 hw
->phy
.ops
.release(hw
);
1337 case e1000_phy_82579
:
1338 /* Disable PHY energy detect power down */
1339 e1e_rphy(hw
, PHY_REG(0, 21), &phy_reg
);
1340 e1e_wphy(hw
, PHY_REG(0, 21), phy_reg
& ~(1 << 3));
1341 /* Disable full chip energy detect */
1342 e1e_rphy(hw
, PHY_REG(776, 18), &phy_reg
);
1343 e1e_wphy(hw
, PHY_REG(776, 18), phy_reg
| 1);
1344 /* Enable loopback on the PHY */
1345 #define I82577_PHY_LBK_CTRL 19
1346 e1e_wphy(hw
, I82577_PHY_LBK_CTRL
, 0x8001);
1352 /* force 1000, set loopback */
1353 e1e_wphy(hw
, PHY_CONTROL
, 0x4140);
1356 /* Now set up the MAC to the same speed/duplex as the PHY. */
1357 ctrl_reg
= er32(CTRL
);
1358 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1359 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1360 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1361 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1362 E1000_CTRL_FD
); /* Force Duplex to FULL */
1364 if (adapter
->flags
& FLAG_IS_ICH
)
1365 ctrl_reg
|= E1000_CTRL_SLU
; /* Set Link Up */
1367 if (hw
->phy
.media_type
== e1000_media_type_copper
&&
1368 hw
->phy
.type
== e1000_phy_m88
) {
1369 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1372 * Set the ILOS bit on the fiber Nic if half duplex link is
1375 if ((er32(STATUS
) & E1000_STATUS_FD
) == 0)
1376 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1379 ew32(CTRL
, ctrl_reg
);
1382 * Disable the receiver on the PHY so when a cable is plugged in, the
1383 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1385 if (hw
->phy
.type
== e1000_phy_m88
)
1386 e1000_phy_disable_receiver(adapter
);
1393 static int e1000_set_82571_fiber_loopback(struct e1000_adapter
*adapter
)
1395 struct e1000_hw
*hw
= &adapter
->hw
;
1396 u32 ctrl
= er32(CTRL
);
1399 /* special requirements for 82571/82572 fiber adapters */
1402 * jump through hoops to make sure link is up because serdes
1403 * link is hardwired up
1405 ctrl
|= E1000_CTRL_SLU
;
1408 /* disable autoneg */
1413 link
= (er32(STATUS
) & E1000_STATUS_LU
);
1416 /* set invert loss of signal */
1418 ctrl
|= E1000_CTRL_ILOS
;
1423 * special write to serdes control register to enable SerDes analog
1426 #define E1000_SERDES_LB_ON 0x410
1427 ew32(SCTL
, E1000_SERDES_LB_ON
);
1429 usleep_range(10000, 20000);
1434 /* only call this for fiber/serdes connections to es2lan */
1435 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter
*adapter
)
1437 struct e1000_hw
*hw
= &adapter
->hw
;
1438 u32 ctrlext
= er32(CTRL_EXT
);
1439 u32 ctrl
= er32(CTRL
);
1442 * save CTRL_EXT to restore later, reuse an empty variable (unused
1443 * on mac_type 80003es2lan)
1445 adapter
->tx_fifo_head
= ctrlext
;
1447 /* clear the serdes mode bits, putting the device into mac loopback */
1448 ctrlext
&= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
1449 ew32(CTRL_EXT
, ctrlext
);
1451 /* force speed to 1000/FD, link up */
1452 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1453 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
|
1454 E1000_CTRL_SPD_1000
| E1000_CTRL_FD
);
1457 /* set mac loopback */
1459 ctrl
|= E1000_RCTL_LBM_MAC
;
1462 /* set testing mode parameters (no need to reset later) */
1463 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1464 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1466 (KMRNCTRLSTA_OPMODE
| KMRNCTRLSTA_OPMODE_1GB_FD_GMII
));
1471 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1473 struct e1000_hw
*hw
= &adapter
->hw
;
1476 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1477 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1478 switch (hw
->mac
.type
) {
1479 case e1000_80003es2lan
:
1480 return e1000_set_es2lan_mac_loopback(adapter
);
1484 return e1000_set_82571_fiber_loopback(adapter
);
1488 rctl
|= E1000_RCTL_LBM_TCVR
;
1492 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1493 return e1000_integrated_phy_loopback(adapter
);
1499 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1501 struct e1000_hw
*hw
= &adapter
->hw
;
1506 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1509 switch (hw
->mac
.type
) {
1510 case e1000_80003es2lan
:
1511 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1512 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1513 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1514 ew32(CTRL_EXT
, adapter
->tx_fifo_head
);
1515 adapter
->tx_fifo_head
= 0;
1520 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1521 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1522 #define E1000_SERDES_LB_OFF 0x400
1523 ew32(SCTL
, E1000_SERDES_LB_OFF
);
1525 usleep_range(10000, 20000);
1530 hw
->mac
.autoneg
= 1;
1531 if (hw
->phy
.type
== e1000_phy_gg82563
)
1532 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x180);
1533 e1e_rphy(hw
, PHY_CONTROL
, &phy_reg
);
1534 if (phy_reg
& MII_CR_LOOPBACK
) {
1535 phy_reg
&= ~MII_CR_LOOPBACK
;
1536 e1e_wphy(hw
, PHY_CONTROL
, phy_reg
);
1537 e1000e_commit_phy(hw
);
1543 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1544 unsigned int frame_size
)
1546 memset(skb
->data
, 0xFF, frame_size
);
1548 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1549 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1550 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1553 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1554 unsigned int frame_size
)
1557 if (*(skb
->data
+ 3) == 0xFF)
1558 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1559 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF))
1564 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1566 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1567 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1568 struct pci_dev
*pdev
= adapter
->pdev
;
1569 struct e1000_hw
*hw
= &adapter
->hw
;
1576 ew32(RDT
, rx_ring
->count
- 1);
1579 * Calculate the loop count based on the largest descriptor ring
1580 * The idea is to wrap the largest ring a number of times using 64
1581 * send/receive pairs during each loop
1584 if (rx_ring
->count
<= tx_ring
->count
)
1585 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1587 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1591 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1592 for (i
= 0; i
< 64; i
++) { /* send the packets */
1593 e1000_create_lbtest_frame(tx_ring
->buffer_info
[k
].skb
,
1595 dma_sync_single_for_device(&pdev
->dev
,
1596 tx_ring
->buffer_info
[k
].dma
,
1597 tx_ring
->buffer_info
[k
].length
,
1600 if (k
== tx_ring
->count
)
1606 time
= jiffies
; /* set the start time for the receive */
1608 do { /* receive the sent packets */
1609 dma_sync_single_for_cpu(&pdev
->dev
,
1610 rx_ring
->buffer_info
[l
].dma
, 2048,
1613 ret_val
= e1000_check_lbtest_frame(
1614 rx_ring
->buffer_info
[l
].skb
, 1024);
1618 if (l
== rx_ring
->count
)
1621 * time + 20 msecs (200 msecs on 2.4) is more than
1622 * enough time to complete the receives, if it's
1623 * exceeded, break and error off
1625 } while ((good_cnt
< 64) && !time_after(jiffies
, time
+ 20));
1626 if (good_cnt
!= 64) {
1627 ret_val
= 13; /* ret_val is the same as mis-compare */
1630 if (jiffies
>= (time
+ 20)) {
1631 ret_val
= 14; /* error code for time out error */
1634 } /* end loop count loop */
1638 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1641 * PHY loopback cannot be performed if SoL/IDER
1642 * sessions are active
1644 if (e1000_check_reset_block(&adapter
->hw
)) {
1645 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1650 *data
= e1000_setup_desc_rings(adapter
);
1654 *data
= e1000_setup_loopback_test(adapter
);
1658 *data
= e1000_run_loopback_test(adapter
);
1659 e1000_loopback_cleanup(adapter
);
1662 e1000_free_desc_rings(adapter
);
1667 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1669 struct e1000_hw
*hw
= &adapter
->hw
;
1672 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1674 hw
->mac
.serdes_has_link
= false;
1677 * On some blade server designs, link establishment
1678 * could take as long as 2-3 minutes
1681 hw
->mac
.ops
.check_for_link(hw
);
1682 if (hw
->mac
.serdes_has_link
)
1685 } while (i
++ < 3750);
1689 hw
->mac
.ops
.check_for_link(hw
);
1690 if (hw
->mac
.autoneg
)
1692 * On some Phy/switch combinations, link establishment
1693 * can take a few seconds more than expected.
1697 if (!(er32(STATUS
) & E1000_STATUS_LU
))
1703 static int e1000e_get_sset_count(struct net_device
*netdev
, int sset
)
1707 return E1000_TEST_LEN
;
1709 return E1000_STATS_LEN
;
1715 static void e1000_diag_test(struct net_device
*netdev
,
1716 struct ethtool_test
*eth_test
, u64
*data
)
1718 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1719 u16 autoneg_advertised
;
1720 u8 forced_speed_duplex
;
1722 bool if_running
= netif_running(netdev
);
1724 set_bit(__E1000_TESTING
, &adapter
->state
);
1727 /* Get control of and reset hardware */
1728 if (adapter
->flags
& FLAG_HAS_AMT
)
1729 e1000e_get_hw_control(adapter
);
1731 e1000e_power_up_phy(adapter
);
1733 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1734 e1000e_reset(adapter
);
1735 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1738 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1741 /* save speed, duplex, autoneg settings */
1742 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1743 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1744 autoneg
= adapter
->hw
.mac
.autoneg
;
1746 e_info("offline testing starting\n");
1749 /* indicate we're in test mode */
1752 if (e1000_reg_test(adapter
, &data
[0]))
1753 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1755 e1000e_reset(adapter
);
1756 if (e1000_eeprom_test(adapter
, &data
[1]))
1757 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1759 e1000e_reset(adapter
);
1760 if (e1000_intr_test(adapter
, &data
[2]))
1761 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1763 e1000e_reset(adapter
);
1764 if (e1000_loopback_test(adapter
, &data
[3]))
1765 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1767 /* force this routine to wait until autoneg complete/timeout */
1768 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1769 e1000e_reset(adapter
);
1770 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1772 if (e1000_link_test(adapter
, &data
[4]))
1773 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1775 /* restore speed, duplex, autoneg settings */
1776 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1777 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1778 adapter
->hw
.mac
.autoneg
= autoneg
;
1779 e1000e_reset(adapter
);
1781 clear_bit(__E1000_TESTING
, &adapter
->state
);
1787 e_info("online testing starting\n");
1789 /* register, eeprom, intr and loopback tests not run online */
1795 if (e1000_link_test(adapter
, &data
[4]))
1796 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1798 clear_bit(__E1000_TESTING
, &adapter
->state
);
1802 e1000e_reset(adapter
);
1804 if (adapter
->flags
& FLAG_HAS_AMT
)
1805 e1000e_release_hw_control(adapter
);
1808 msleep_interruptible(4 * 1000);
1811 static void e1000_get_wol(struct net_device
*netdev
,
1812 struct ethtool_wolinfo
*wol
)
1814 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1819 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1820 !device_can_wakeup(&adapter
->pdev
->dev
))
1823 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1824 WAKE_BCAST
| WAKE_MAGIC
| WAKE_PHY
;
1826 /* apply any specific unsupported masks here */
1827 if (adapter
->flags
& FLAG_NO_WAKE_UCAST
) {
1828 wol
->supported
&= ~WAKE_UCAST
;
1830 if (adapter
->wol
& E1000_WUFC_EX
)
1831 e_err("Interface does not support directed (unicast) "
1832 "frame wake-up packets\n");
1835 if (adapter
->wol
& E1000_WUFC_EX
)
1836 wol
->wolopts
|= WAKE_UCAST
;
1837 if (adapter
->wol
& E1000_WUFC_MC
)
1838 wol
->wolopts
|= WAKE_MCAST
;
1839 if (adapter
->wol
& E1000_WUFC_BC
)
1840 wol
->wolopts
|= WAKE_BCAST
;
1841 if (adapter
->wol
& E1000_WUFC_MAG
)
1842 wol
->wolopts
|= WAKE_MAGIC
;
1843 if (adapter
->wol
& E1000_WUFC_LNKC
)
1844 wol
->wolopts
|= WAKE_PHY
;
1847 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1849 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1851 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1852 !device_can_wakeup(&adapter
->pdev
->dev
) ||
1853 (wol
->wolopts
& ~(WAKE_UCAST
| WAKE_MCAST
| WAKE_BCAST
|
1854 WAKE_MAGIC
| WAKE_PHY
)))
1857 /* these settings will always override what we currently have */
1860 if (wol
->wolopts
& WAKE_UCAST
)
1861 adapter
->wol
|= E1000_WUFC_EX
;
1862 if (wol
->wolopts
& WAKE_MCAST
)
1863 adapter
->wol
|= E1000_WUFC_MC
;
1864 if (wol
->wolopts
& WAKE_BCAST
)
1865 adapter
->wol
|= E1000_WUFC_BC
;
1866 if (wol
->wolopts
& WAKE_MAGIC
)
1867 adapter
->wol
|= E1000_WUFC_MAG
;
1868 if (wol
->wolopts
& WAKE_PHY
)
1869 adapter
->wol
|= E1000_WUFC_LNKC
;
1871 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1876 static int e1000_set_phys_id(struct net_device
*netdev
,
1877 enum ethtool_phys_id_state state
)
1879 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1880 struct e1000_hw
*hw
= &adapter
->hw
;
1883 case ETHTOOL_ID_ACTIVE
:
1884 if (!hw
->mac
.ops
.blink_led
)
1885 return 2; /* cycle on/off twice per second */
1887 hw
->mac
.ops
.blink_led(hw
);
1890 case ETHTOOL_ID_INACTIVE
:
1891 if (hw
->phy
.type
== e1000_phy_ife
)
1892 e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
1893 hw
->mac
.ops
.led_off(hw
);
1894 hw
->mac
.ops
.cleanup_led(hw
);
1898 adapter
->hw
.mac
.ops
.led_on(&adapter
->hw
);
1901 case ETHTOOL_ID_OFF
:
1902 adapter
->hw
.mac
.ops
.led_off(&adapter
->hw
);
1908 static int e1000_get_coalesce(struct net_device
*netdev
,
1909 struct ethtool_coalesce
*ec
)
1911 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1913 if (adapter
->itr_setting
<= 4)
1914 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1916 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1921 static int e1000_set_coalesce(struct net_device
*netdev
,
1922 struct ethtool_coalesce
*ec
)
1924 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1925 struct e1000_hw
*hw
= &adapter
->hw
;
1927 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1928 ((ec
->rx_coalesce_usecs
> 4) &&
1929 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1930 (ec
->rx_coalesce_usecs
== 2))
1933 if (ec
->rx_coalesce_usecs
== 4) {
1934 adapter
->itr
= adapter
->itr_setting
= 4;
1935 } else if (ec
->rx_coalesce_usecs
<= 3) {
1936 adapter
->itr
= 20000;
1937 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1939 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1940 adapter
->itr_setting
= adapter
->itr
& ~3;
1943 if (adapter
->itr_setting
!= 0)
1944 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1951 static int e1000_nway_reset(struct net_device
*netdev
)
1953 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1955 if (!netif_running(netdev
))
1958 if (!adapter
->hw
.mac
.autoneg
)
1961 e1000e_reinit_locked(adapter
);
1966 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1967 struct ethtool_stats
*stats
,
1970 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1971 struct rtnl_link_stats64 net_stats
;
1975 e1000e_get_stats64(netdev
, &net_stats
);
1976 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1977 switch (e1000_gstrings_stats
[i
].type
) {
1979 p
= (char *) &net_stats
+
1980 e1000_gstrings_stats
[i
].stat_offset
;
1983 p
= (char *) adapter
+
1984 e1000_gstrings_stats
[i
].stat_offset
;
1991 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1992 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1996 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
2002 switch (stringset
) {
2004 memcpy(data
, e1000_gstrings_test
, sizeof(e1000_gstrings_test
));
2007 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
2008 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
2010 p
+= ETH_GSTRING_LEN
;
2016 static int e1000e_set_flags(struct net_device
*netdev
, u32 data
)
2018 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2019 bool need_reset
= false;
2022 need_reset
= (data
& ETH_FLAG_RXVLAN
) !=
2023 (netdev
->features
& NETIF_F_HW_VLAN_RX
);
2025 rc
= ethtool_op_set_flags(netdev
, data
, ETH_FLAG_RXVLAN
|
2032 if (netif_running(netdev
))
2033 e1000e_reinit_locked(adapter
);
2035 e1000e_reset(adapter
);
2041 static const struct ethtool_ops e1000_ethtool_ops
= {
2042 .get_settings
= e1000_get_settings
,
2043 .set_settings
= e1000_set_settings
,
2044 .get_drvinfo
= e1000_get_drvinfo
,
2045 .get_regs_len
= e1000_get_regs_len
,
2046 .get_regs
= e1000_get_regs
,
2047 .get_wol
= e1000_get_wol
,
2048 .set_wol
= e1000_set_wol
,
2049 .get_msglevel
= e1000_get_msglevel
,
2050 .set_msglevel
= e1000_set_msglevel
,
2051 .nway_reset
= e1000_nway_reset
,
2052 .get_link
= ethtool_op_get_link
,
2053 .get_eeprom_len
= e1000_get_eeprom_len
,
2054 .get_eeprom
= e1000_get_eeprom
,
2055 .set_eeprom
= e1000_set_eeprom
,
2056 .get_ringparam
= e1000_get_ringparam
,
2057 .set_ringparam
= e1000_set_ringparam
,
2058 .get_pauseparam
= e1000_get_pauseparam
,
2059 .set_pauseparam
= e1000_set_pauseparam
,
2060 .get_rx_csum
= e1000_get_rx_csum
,
2061 .set_rx_csum
= e1000_set_rx_csum
,
2062 .get_tx_csum
= e1000_get_tx_csum
,
2063 .set_tx_csum
= e1000_set_tx_csum
,
2064 .get_sg
= ethtool_op_get_sg
,
2065 .set_sg
= ethtool_op_set_sg
,
2066 .get_tso
= ethtool_op_get_tso
,
2067 .set_tso
= e1000_set_tso
,
2068 .self_test
= e1000_diag_test
,
2069 .get_strings
= e1000_get_strings
,
2070 .set_phys_id
= e1000_set_phys_id
,
2071 .get_ethtool_stats
= e1000_get_ethtool_stats
,
2072 .get_sset_count
= e1000e_get_sset_count
,
2073 .get_coalesce
= e1000_get_coalesce
,
2074 .set_coalesce
= e1000_set_coalesce
,
2075 .get_flags
= ethtool_op_get_flags
,
2076 .set_flags
= e1000e_set_flags
,
2079 void e1000e_set_ethtool_ops(struct net_device
*netdev
)
2081 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);