1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
32 e1000_mng_mode_none
= 0,
36 e1000_mng_mode_host_if_only
39 #define E1000_FACTPS_MNGCG 0x20000000
41 /* Intel(R) Active Management Technology signature */
42 #define E1000_IAMT_SIGNATURE 0x544D4149
45 * e1000e_get_bus_info_pcie - Get PCIe bus information
46 * @hw: pointer to the HW structure
48 * Determines and stores the system bus information for a particular
49 * network interface. The following bus information is determined and stored:
50 * bus speed, bus width, type (PCIe), and PCIe function.
52 s32
e1000e_get_bus_info_pcie(struct e1000_hw
*hw
)
54 struct e1000_mac_info
*mac
= &hw
->mac
;
55 struct e1000_bus_info
*bus
= &hw
->bus
;
56 struct e1000_adapter
*adapter
= hw
->adapter
;
57 u16 pcie_link_status
, cap_offset
;
59 cap_offset
= adapter
->pdev
->pcie_cap
;
61 bus
->width
= e1000_bus_width_unknown
;
63 pci_read_config_word(adapter
->pdev
,
64 cap_offset
+ PCIE_LINK_STATUS
,
66 bus
->width
= (enum e1000_bus_width
)((pcie_link_status
&
67 PCIE_LINK_WIDTH_MASK
) >>
68 PCIE_LINK_WIDTH_SHIFT
);
71 mac
->ops
.set_lan_id(hw
);
77 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
79 * @hw: pointer to the HW structure
81 * Determines the LAN function id by reading memory-mapped registers
82 * and swaps the port value if requested.
84 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw
*hw
)
86 struct e1000_bus_info
*bus
= &hw
->bus
;
90 * The status register reports the correct function number
91 * for the device regardless of function swap state.
94 bus
->func
= (reg
& E1000_STATUS_FUNC_MASK
) >> E1000_STATUS_FUNC_SHIFT
;
98 * e1000_set_lan_id_single_port - Set LAN id for a single port device
99 * @hw: pointer to the HW structure
101 * Sets the LAN function id to zero for a single port device.
103 void e1000_set_lan_id_single_port(struct e1000_hw
*hw
)
105 struct e1000_bus_info
*bus
= &hw
->bus
;
111 * e1000_clear_vfta_generic - Clear VLAN filter table
112 * @hw: pointer to the HW structure
114 * Clears the register array which contains the VLAN filter table by
115 * setting all the values to 0.
117 void e1000_clear_vfta_generic(struct e1000_hw
*hw
)
121 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
122 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, 0);
128 * e1000_write_vfta_generic - Write value to VLAN filter table
129 * @hw: pointer to the HW structure
130 * @offset: register offset in VLAN filter table
131 * @value: register value written to VLAN filter table
133 * Writes value at the given offset in the register array which stores
134 * the VLAN filter table.
136 void e1000_write_vfta_generic(struct e1000_hw
*hw
, u32 offset
, u32 value
)
138 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, value
);
143 * e1000e_init_rx_addrs - Initialize receive address's
144 * @hw: pointer to the HW structure
145 * @rar_count: receive address registers
147 * Setup the receive address registers by setting the base receive address
148 * register to the devices MAC address and clearing all the other receive
149 * address registers to 0.
151 void e1000e_init_rx_addrs(struct e1000_hw
*hw
, u16 rar_count
)
154 u8 mac_addr
[ETH_ALEN
] = {0};
156 /* Setup the receive address */
157 e_dbg("Programming MAC Address into RAR[0]\n");
159 e1000e_rar_set(hw
, hw
->mac
.addr
, 0);
161 /* Zero out the other (rar_entry_count - 1) receive addresses */
162 e_dbg("Clearing RAR[1-%u]\n", rar_count
-1);
163 for (i
= 1; i
< rar_count
; i
++)
164 e1000e_rar_set(hw
, mac_addr
, i
);
168 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
169 * @hw: pointer to the HW structure
171 * Checks the nvm for an alternate MAC address. An alternate MAC address
172 * can be setup by pre-boot software and must be treated like a permanent
173 * address and must override the actual permanent MAC address. If an
174 * alternate MAC address is found it is programmed into RAR0, replacing
175 * the permanent address that was installed into RAR0 by the Si on reset.
176 * This function will return SUCCESS unless it encounters an error while
177 * reading the EEPROM.
179 s32
e1000_check_alt_mac_addr_generic(struct e1000_hw
*hw
)
183 u16 offset
, nvm_alt_mac_addr_offset
, nvm_data
;
184 u8 alt_mac_addr
[ETH_ALEN
];
186 ret_val
= e1000_read_nvm(hw
, NVM_COMPAT
, 1, &nvm_data
);
190 /* Check for LOM (vs. NIC) or one of two valid mezzanine cards */
191 if (!((nvm_data
& NVM_COMPAT_LOM
) ||
192 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_82571EB_SERDES_DUAL
) ||
193 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_82571EB_SERDES_QUAD
) ||
194 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_82571EB_SERDES
)))
197 ret_val
= e1000_read_nvm(hw
, NVM_ALT_MAC_ADDR_PTR
, 1,
198 &nvm_alt_mac_addr_offset
);
200 e_dbg("NVM Read Error\n");
204 if ((nvm_alt_mac_addr_offset
== 0xFFFF) ||
205 (nvm_alt_mac_addr_offset
== 0x0000))
206 /* There is no Alternate MAC Address */
209 if (hw
->bus
.func
== E1000_FUNC_1
)
210 nvm_alt_mac_addr_offset
+= E1000_ALT_MAC_ADDRESS_OFFSET_LAN1
;
211 for (i
= 0; i
< ETH_ALEN
; i
+= 2) {
212 offset
= nvm_alt_mac_addr_offset
+ (i
>> 1);
213 ret_val
= e1000_read_nvm(hw
, offset
, 1, &nvm_data
);
215 e_dbg("NVM Read Error\n");
219 alt_mac_addr
[i
] = (u8
)(nvm_data
& 0xFF);
220 alt_mac_addr
[i
+ 1] = (u8
)(nvm_data
>> 8);
223 /* if multicast bit is set, the alternate address will not be used */
224 if (is_multicast_ether_addr(alt_mac_addr
)) {
225 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
230 * We have a valid alternate MAC address, and we want to treat it the
231 * same as the normal permanent MAC address stored by the HW into the
232 * RAR. Do this by mapping this address into RAR0.
234 e1000e_rar_set(hw
, alt_mac_addr
, 0);
241 * e1000e_rar_set - Set receive address register
242 * @hw: pointer to the HW structure
243 * @addr: pointer to the receive address
244 * @index: receive address array register
246 * Sets the receive address array register at index to the address passed
249 void e1000e_rar_set(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
251 u32 rar_low
, rar_high
;
254 * HW expects these in little endian so we reverse the byte order
255 * from network order (big endian) to little endian
257 rar_low
= ((u32
) addr
[0] |
258 ((u32
) addr
[1] << 8) |
259 ((u32
) addr
[2] << 16) | ((u32
) addr
[3] << 24));
261 rar_high
= ((u32
) addr
[4] | ((u32
) addr
[5] << 8));
263 /* If MAC address zero, no need to set the AV bit */
264 if (rar_low
|| rar_high
)
265 rar_high
|= E1000_RAH_AV
;
268 * Some bridges will combine consecutive 32-bit writes into
269 * a single burst write, which will malfunction on some parts.
270 * The flushes avoid this.
272 ew32(RAL(index
), rar_low
);
274 ew32(RAH(index
), rar_high
);
279 * e1000_hash_mc_addr - Generate a multicast hash value
280 * @hw: pointer to the HW structure
281 * @mc_addr: pointer to a multicast address
283 * Generates a multicast address hash value which is used to determine
284 * the multicast filter table array address and new table value. See
285 * e1000_mta_set_generic()
287 static u32
e1000_hash_mc_addr(struct e1000_hw
*hw
, u8
*mc_addr
)
289 u32 hash_value
, hash_mask
;
292 /* Register count multiplied by bits per register */
293 hash_mask
= (hw
->mac
.mta_reg_count
* 32) - 1;
296 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
297 * where 0xFF would still fall within the hash mask.
299 while (hash_mask
>> bit_shift
!= 0xFF)
303 * The portion of the address that is used for the hash table
304 * is determined by the mc_filter_type setting.
305 * The algorithm is such that there is a total of 8 bits of shifting.
306 * The bit_shift for a mc_filter_type of 0 represents the number of
307 * left-shifts where the MSB of mc_addr[5] would still fall within
308 * the hash_mask. Case 0 does this exactly. Since there are a total
309 * of 8 bits of shifting, then mc_addr[4] will shift right the
310 * remaining number of bits. Thus 8 - bit_shift. The rest of the
311 * cases are a variation of this algorithm...essentially raising the
312 * number of bits to shift mc_addr[5] left, while still keeping the
313 * 8-bit shifting total.
315 * For example, given the following Destination MAC Address and an
316 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
317 * we can see that the bit_shift for case 0 is 4. These are the hash
318 * values resulting from each mc_filter_type...
319 * [0] [1] [2] [3] [4] [5]
323 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
324 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
325 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
326 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
328 switch (hw
->mac
.mc_filter_type
) {
343 hash_value
= hash_mask
& (((mc_addr
[4] >> (8 - bit_shift
)) |
344 (((u16
) mc_addr
[5]) << bit_shift
)));
350 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
351 * @hw: pointer to the HW structure
352 * @mc_addr_list: array of multicast addresses to program
353 * @mc_addr_count: number of multicast addresses to program
355 * Updates entire Multicast Table Array.
356 * The caller must have a packed mc_addr_list of multicast addresses.
358 void e1000e_update_mc_addr_list_generic(struct e1000_hw
*hw
,
359 u8
*mc_addr_list
, u32 mc_addr_count
)
361 u32 hash_value
, hash_bit
, hash_reg
;
364 /* clear mta_shadow */
365 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
367 /* update mta_shadow from mc_addr_list */
368 for (i
= 0; (u32
) i
< mc_addr_count
; i
++) {
369 hash_value
= e1000_hash_mc_addr(hw
, mc_addr_list
);
371 hash_reg
= (hash_value
>> 5) & (hw
->mac
.mta_reg_count
- 1);
372 hash_bit
= hash_value
& 0x1F;
374 hw
->mac
.mta_shadow
[hash_reg
] |= (1 << hash_bit
);
375 mc_addr_list
+= (ETH_ALEN
);
378 /* replace the entire MTA table */
379 for (i
= hw
->mac
.mta_reg_count
- 1; i
>= 0; i
--)
380 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, hw
->mac
.mta_shadow
[i
]);
385 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
386 * @hw: pointer to the HW structure
388 * Clears the base hardware counters by reading the counter registers.
390 void e1000e_clear_hw_cntrs_base(struct e1000_hw
*hw
)
432 * e1000e_check_for_copper_link - Check for link (Copper)
433 * @hw: pointer to the HW structure
435 * Checks to see of the link status of the hardware has changed. If a
436 * change in link status has been detected, then we read the PHY registers
437 * to get the current speed/duplex if link exists.
439 s32
e1000e_check_for_copper_link(struct e1000_hw
*hw
)
441 struct e1000_mac_info
*mac
= &hw
->mac
;
446 * We only want to go out to the PHY registers to see if Auto-Neg
447 * has completed and/or if our link status has changed. The
448 * get_link_status flag is set upon receiving a Link Status
449 * Change or Rx Sequence Error interrupt.
451 if (!mac
->get_link_status
)
455 * First we want to see if the MII Status Register reports
456 * link. If so, then we want to get the current speed/duplex
459 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
464 return ret_val
; /* No link detected */
466 mac
->get_link_status
= false;
469 * Check if there was DownShift, must be checked
470 * immediately after link-up
472 e1000e_check_downshift(hw
);
475 * If we are forcing speed/duplex, then we simply return since
476 * we have already determined whether we have link or not.
479 ret_val
= -E1000_ERR_CONFIG
;
484 * Auto-Neg is enabled. Auto Speed Detection takes care
485 * of MAC speed/duplex configuration. So we only need to
486 * configure Collision Distance in the MAC.
488 e1000e_config_collision_dist(hw
);
491 * Configure Flow Control now that Auto-Neg has completed.
492 * First, we need to restore the desired flow control
493 * settings because we may have had to re-autoneg with a
494 * different link partner.
496 ret_val
= e1000e_config_fc_after_link_up(hw
);
498 e_dbg("Error configuring flow control\n");
504 * e1000e_check_for_fiber_link - Check for link (Fiber)
505 * @hw: pointer to the HW structure
507 * Checks for link up on the hardware. If link is not up and we have
508 * a signal, then we need to force link up.
510 s32
e1000e_check_for_fiber_link(struct e1000_hw
*hw
)
512 struct e1000_mac_info
*mac
= &hw
->mac
;
519 status
= er32(STATUS
);
523 * If we don't have link (auto-negotiation failed or link partner
524 * cannot auto-negotiate), the cable is plugged in (we have signal),
525 * and our link partner is not trying to auto-negotiate with us (we
526 * are receiving idles or data), we need to force link up. We also
527 * need to give auto-negotiation time to complete, in case the cable
528 * was just plugged in. The autoneg_failed flag does this.
530 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
531 if ((ctrl
& E1000_CTRL_SWDPIN1
) && (!(status
& E1000_STATUS_LU
)) &&
532 (!(rxcw
& E1000_RXCW_C
))) {
533 if (mac
->autoneg_failed
== 0) {
534 mac
->autoneg_failed
= 1;
537 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
539 /* Disable auto-negotiation in the TXCW register */
540 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
542 /* Force link-up and also force full-duplex. */
544 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
547 /* Configure Flow Control after forcing link up. */
548 ret_val
= e1000e_config_fc_after_link_up(hw
);
550 e_dbg("Error configuring flow control\n");
553 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
555 * If we are forcing link and we are receiving /C/ ordered
556 * sets, re-enable auto-negotiation in the TXCW register
557 * and disable forced link in the Device Control register
558 * in an attempt to auto-negotiate with our link partner.
560 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
561 ew32(TXCW
, mac
->txcw
);
562 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
564 mac
->serdes_has_link
= true;
571 * e1000e_check_for_serdes_link - Check for link (Serdes)
572 * @hw: pointer to the HW structure
574 * Checks for link up on the hardware. If link is not up and we have
575 * a signal, then we need to force link up.
577 s32
e1000e_check_for_serdes_link(struct e1000_hw
*hw
)
579 struct e1000_mac_info
*mac
= &hw
->mac
;
586 status
= er32(STATUS
);
590 * If we don't have link (auto-negotiation failed or link partner
591 * cannot auto-negotiate), and our link partner is not trying to
592 * auto-negotiate with us (we are receiving idles or data),
593 * we need to force link up. We also need to give auto-negotiation
596 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
597 if ((!(status
& E1000_STATUS_LU
)) && (!(rxcw
& E1000_RXCW_C
))) {
598 if (mac
->autoneg_failed
== 0) {
599 mac
->autoneg_failed
= 1;
602 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
604 /* Disable auto-negotiation in the TXCW register */
605 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
607 /* Force link-up and also force full-duplex. */
609 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
612 /* Configure Flow Control after forcing link up. */
613 ret_val
= e1000e_config_fc_after_link_up(hw
);
615 e_dbg("Error configuring flow control\n");
618 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
620 * If we are forcing link and we are receiving /C/ ordered
621 * sets, re-enable auto-negotiation in the TXCW register
622 * and disable forced link in the Device Control register
623 * in an attempt to auto-negotiate with our link partner.
625 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
626 ew32(TXCW
, mac
->txcw
);
627 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
629 mac
->serdes_has_link
= true;
630 } else if (!(E1000_TXCW_ANE
& er32(TXCW
))) {
632 * If we force link for non-auto-negotiation switch, check
633 * link status based on MAC synchronization for internal
636 /* SYNCH bit and IV bit are sticky. */
639 if (rxcw
& E1000_RXCW_SYNCH
) {
640 if (!(rxcw
& E1000_RXCW_IV
)) {
641 mac
->serdes_has_link
= true;
642 e_dbg("SERDES: Link up - forced.\n");
645 mac
->serdes_has_link
= false;
646 e_dbg("SERDES: Link down - force failed.\n");
650 if (E1000_TXCW_ANE
& er32(TXCW
)) {
651 status
= er32(STATUS
);
652 if (status
& E1000_STATUS_LU
) {
653 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
656 if (rxcw
& E1000_RXCW_SYNCH
) {
657 if (!(rxcw
& E1000_RXCW_IV
)) {
658 mac
->serdes_has_link
= true;
659 e_dbg("SERDES: Link up - autoneg "
660 "completed successfully.\n");
662 mac
->serdes_has_link
= false;
663 e_dbg("SERDES: Link down - invalid"
664 "codewords detected in autoneg.\n");
667 mac
->serdes_has_link
= false;
668 e_dbg("SERDES: Link down - no sync.\n");
671 mac
->serdes_has_link
= false;
672 e_dbg("SERDES: Link down - autoneg failed\n");
680 * e1000_set_default_fc_generic - Set flow control default values
681 * @hw: pointer to the HW structure
683 * Read the EEPROM for the default values for flow control and store the
686 static s32
e1000_set_default_fc_generic(struct e1000_hw
*hw
)
692 * Read and store word 0x0F of the EEPROM. This word contains bits
693 * that determine the hardware's default PAUSE (flow control) mode,
694 * a bit that determines whether the HW defaults to enabling or
695 * disabling auto-negotiation, and the direction of the
696 * SW defined pins. If there is no SW over-ride of the flow
697 * control setting, then the variable hw->fc will
698 * be initialized based on a value in the EEPROM.
700 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &nvm_data
);
703 e_dbg("NVM Read Error\n");
707 if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) == 0)
708 hw
->fc
.requested_mode
= e1000_fc_none
;
709 else if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) ==
711 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
713 hw
->fc
.requested_mode
= e1000_fc_full
;
719 * e1000e_setup_link - Setup flow control and link settings
720 * @hw: pointer to the HW structure
722 * Determines which flow control settings to use, then configures flow
723 * control. Calls the appropriate media-specific link configuration
724 * function. Assuming the adapter has a valid link partner, a valid link
725 * should be established. Assumes the hardware has previously been reset
726 * and the transmitter and receiver are not enabled.
728 s32
e1000e_setup_link(struct e1000_hw
*hw
)
730 struct e1000_mac_info
*mac
= &hw
->mac
;
734 * In the case of the phy reset being blocked, we already have a link.
735 * We do not need to set it up again.
737 if (e1000_check_reset_block(hw
))
741 * If requested flow control is set to default, set flow control
742 * based on the EEPROM flow control settings.
744 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
745 ret_val
= e1000_set_default_fc_generic(hw
);
751 * Save off the requested flow control mode for use later. Depending
752 * on the link partner's capabilities, we may or may not use this mode.
754 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
756 e_dbg("After fix-ups FlowControl is now = %x\n",
757 hw
->fc
.current_mode
);
759 /* Call the necessary media_type subroutine to configure the link. */
760 ret_val
= mac
->ops
.setup_physical_interface(hw
);
765 * Initialize the flow control address, type, and PAUSE timer
766 * registers to their default values. This is done even if flow
767 * control is disabled, because it does not hurt anything to
768 * initialize these registers.
770 e_dbg("Initializing the Flow Control address, type and timer regs\n");
771 ew32(FCT
, FLOW_CONTROL_TYPE
);
772 ew32(FCAH
, FLOW_CONTROL_ADDRESS_HIGH
);
773 ew32(FCAL
, FLOW_CONTROL_ADDRESS_LOW
);
775 ew32(FCTTV
, hw
->fc
.pause_time
);
777 return e1000e_set_fc_watermarks(hw
);
781 * e1000_commit_fc_settings_generic - Configure flow control
782 * @hw: pointer to the HW structure
784 * Write the flow control settings to the Transmit Config Word Register (TXCW)
785 * base on the flow control settings in e1000_mac_info.
787 static s32
e1000_commit_fc_settings_generic(struct e1000_hw
*hw
)
789 struct e1000_mac_info
*mac
= &hw
->mac
;
793 * Check for a software override of the flow control settings, and
794 * setup the device accordingly. If auto-negotiation is enabled, then
795 * software will have to set the "PAUSE" bits to the correct value in
796 * the Transmit Config Word Register (TXCW) and re-start auto-
797 * negotiation. However, if auto-negotiation is disabled, then
798 * software will have to manually configure the two flow control enable
799 * bits in the CTRL register.
801 * The possible values of the "fc" parameter are:
802 * 0: Flow control is completely disabled
803 * 1: Rx flow control is enabled (we can receive pause frames,
804 * but not send pause frames).
805 * 2: Tx flow control is enabled (we can send pause frames but we
806 * do not support receiving pause frames).
807 * 3: Both Rx and Tx flow control (symmetric) are enabled.
809 switch (hw
->fc
.current_mode
) {
811 /* Flow control completely disabled by a software over-ride. */
812 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
);
814 case e1000_fc_rx_pause
:
816 * Rx Flow control is enabled and Tx Flow control is disabled
817 * by a software over-ride. Since there really isn't a way to
818 * advertise that we are capable of Rx Pause ONLY, we will
819 * advertise that we support both symmetric and asymmetric Rx
820 * PAUSE. Later, we will disable the adapter's ability to send
823 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
825 case e1000_fc_tx_pause
:
827 * Tx Flow control is enabled, and Rx Flow control is disabled,
828 * by a software over-ride.
830 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_ASM_DIR
);
834 * Flow control (both Rx and Tx) is enabled by a software
837 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
840 e_dbg("Flow control param set incorrectly\n");
841 return -E1000_ERR_CONFIG
;
852 * e1000_poll_fiber_serdes_link_generic - Poll for link up
853 * @hw: pointer to the HW structure
855 * Polls for link up by reading the status register, if link fails to come
856 * up with auto-negotiation, then the link is forced if a signal is detected.
858 static s32
e1000_poll_fiber_serdes_link_generic(struct e1000_hw
*hw
)
860 struct e1000_mac_info
*mac
= &hw
->mac
;
865 * If we have a signal (the cable is plugged in, or assumed true for
866 * serdes media) then poll for a "Link-Up" indication in the Device
867 * Status Register. Time-out if a link isn't seen in 500 milliseconds
868 * seconds (Auto-negotiation should complete in less than 500
869 * milliseconds even if the other end is doing it in SW).
871 for (i
= 0; i
< FIBER_LINK_UP_LIMIT
; i
++) {
872 usleep_range(10000, 20000);
873 status
= er32(STATUS
);
874 if (status
& E1000_STATUS_LU
)
877 if (i
== FIBER_LINK_UP_LIMIT
) {
878 e_dbg("Never got a valid link from auto-neg!!!\n");
879 mac
->autoneg_failed
= 1;
881 * AutoNeg failed to achieve a link, so we'll call
882 * mac->check_for_link. This routine will force the
883 * link up if we detect a signal. This will allow us to
884 * communicate with non-autonegotiating link partners.
886 ret_val
= mac
->ops
.check_for_link(hw
);
888 e_dbg("Error while checking for link\n");
891 mac
->autoneg_failed
= 0;
893 mac
->autoneg_failed
= 0;
894 e_dbg("Valid Link Found\n");
901 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
902 * @hw: pointer to the HW structure
904 * Configures collision distance and flow control for fiber and serdes
905 * links. Upon successful setup, poll for link.
907 s32
e1000e_setup_fiber_serdes_link(struct e1000_hw
*hw
)
914 /* Take the link out of reset */
915 ctrl
&= ~E1000_CTRL_LRST
;
917 e1000e_config_collision_dist(hw
);
919 ret_val
= e1000_commit_fc_settings_generic(hw
);
924 * Since auto-negotiation is enabled, take the link out of reset (the
925 * link will be in reset, because we previously reset the chip). This
926 * will restart auto-negotiation. If auto-negotiation is successful
927 * then the link-up status bit will be set and the flow control enable
928 * bits (RFCE and TFCE) will be set according to their negotiated value.
930 e_dbg("Auto-negotiation enabled\n");
934 usleep_range(1000, 2000);
937 * For these adapters, the SW definable pin 1 is set when the optics
938 * detect a signal. If we have a signal, then poll for a "Link-Up"
941 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
942 (er32(CTRL
) & E1000_CTRL_SWDPIN1
)) {
943 ret_val
= e1000_poll_fiber_serdes_link_generic(hw
);
945 e_dbg("No signal detected\n");
952 * e1000e_config_collision_dist - Configure collision distance
953 * @hw: pointer to the HW structure
955 * Configures the collision distance to the default value and is used
956 * during link setup. Currently no func pointer exists and all
957 * implementations are handled in the generic version of this function.
959 void e1000e_config_collision_dist(struct e1000_hw
*hw
)
965 tctl
&= ~E1000_TCTL_COLD
;
966 tctl
|= E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
;
973 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
974 * @hw: pointer to the HW structure
976 * Sets the flow control high/low threshold (watermark) registers. If
977 * flow control XON frame transmission is enabled, then set XON frame
978 * transmission as well.
980 s32
e1000e_set_fc_watermarks(struct e1000_hw
*hw
)
982 u32 fcrtl
= 0, fcrth
= 0;
985 * Set the flow control receive threshold registers. Normally,
986 * these registers will be set to a default threshold that may be
987 * adjusted later by the driver's runtime code. However, if the
988 * ability to transmit pause frames is not enabled, then these
989 * registers will be set to 0.
991 if (hw
->fc
.current_mode
& e1000_fc_tx_pause
) {
993 * We need to set up the Receive Threshold high and low water
994 * marks as well as (optionally) enabling the transmission of
997 fcrtl
= hw
->fc
.low_water
;
998 fcrtl
|= E1000_FCRTL_XONE
;
999 fcrth
= hw
->fc
.high_water
;
1008 * e1000e_force_mac_fc - Force the MAC's flow control settings
1009 * @hw: pointer to the HW structure
1011 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
1012 * device control register to reflect the adapter settings. TFCE and RFCE
1013 * need to be explicitly set by software when a copper PHY is used because
1014 * autonegotiation is managed by the PHY rather than the MAC. Software must
1015 * also configure these bits when link is forced on a fiber connection.
1017 s32
e1000e_force_mac_fc(struct e1000_hw
*hw
)
1024 * Because we didn't get link via the internal auto-negotiation
1025 * mechanism (we either forced link or we got link via PHY
1026 * auto-neg), we have to manually enable/disable transmit an
1027 * receive flow control.
1029 * The "Case" statement below enables/disable flow control
1030 * according to the "hw->fc.current_mode" parameter.
1032 * The possible values of the "fc" parameter are:
1033 * 0: Flow control is completely disabled
1034 * 1: Rx flow control is enabled (we can receive pause
1035 * frames but not send pause frames).
1036 * 2: Tx flow control is enabled (we can send pause frames
1037 * frames but we do not receive pause frames).
1038 * 3: Both Rx and Tx flow control (symmetric) is enabled.
1039 * other: No other values should be possible at this point.
1041 e_dbg("hw->fc.current_mode = %u\n", hw
->fc
.current_mode
);
1043 switch (hw
->fc
.current_mode
) {
1045 ctrl
&= (~(E1000_CTRL_TFCE
| E1000_CTRL_RFCE
));
1047 case e1000_fc_rx_pause
:
1048 ctrl
&= (~E1000_CTRL_TFCE
);
1049 ctrl
|= E1000_CTRL_RFCE
;
1051 case e1000_fc_tx_pause
:
1052 ctrl
&= (~E1000_CTRL_RFCE
);
1053 ctrl
|= E1000_CTRL_TFCE
;
1056 ctrl
|= (E1000_CTRL_TFCE
| E1000_CTRL_RFCE
);
1059 e_dbg("Flow control param set incorrectly\n");
1060 return -E1000_ERR_CONFIG
;
1069 * e1000e_config_fc_after_link_up - Configures flow control after link
1070 * @hw: pointer to the HW structure
1072 * Checks the status of auto-negotiation after link up to ensure that the
1073 * speed and duplex were not forced. If the link needed to be forced, then
1074 * flow control needs to be forced also. If auto-negotiation is enabled
1075 * and did not fail, then we configure flow control based on our link
1078 s32
e1000e_config_fc_after_link_up(struct e1000_hw
*hw
)
1080 struct e1000_mac_info
*mac
= &hw
->mac
;
1082 u16 mii_status_reg
, mii_nway_adv_reg
, mii_nway_lp_ability_reg
;
1086 * Check for the case where we have fiber media and auto-neg failed
1087 * so we had to force link. In this case, we need to force the
1088 * configuration of the MAC to match the "fc" parameter.
1090 if (mac
->autoneg_failed
) {
1091 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1092 hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1093 ret_val
= e1000e_force_mac_fc(hw
);
1095 if (hw
->phy
.media_type
== e1000_media_type_copper
)
1096 ret_val
= e1000e_force_mac_fc(hw
);
1100 e_dbg("Error forcing flow control settings\n");
1105 * Check for the case where we have copper media and auto-neg is
1106 * enabled. In this case, we need to check and see if Auto-Neg
1107 * has completed, and if so, how the PHY and link partner has
1108 * flow control configured.
1110 if ((hw
->phy
.media_type
== e1000_media_type_copper
) && mac
->autoneg
) {
1112 * Read the MII Status Register and check to see if AutoNeg
1113 * has completed. We read this twice because this reg has
1114 * some "sticky" (latched) bits.
1116 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &mii_status_reg
);
1119 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &mii_status_reg
);
1123 if (!(mii_status_reg
& MII_SR_AUTONEG_COMPLETE
)) {
1124 e_dbg("Copper PHY and Auto Neg "
1125 "has not completed.\n");
1130 * The AutoNeg process has completed, so we now need to
1131 * read both the Auto Negotiation Advertisement
1132 * Register (Address 4) and the Auto_Negotiation Base
1133 * Page Ability Register (Address 5) to determine how
1134 * flow control was negotiated.
1136 ret_val
= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &mii_nway_adv_reg
);
1140 e1e_rphy(hw
, PHY_LP_ABILITY
, &mii_nway_lp_ability_reg
);
1145 * Two bits in the Auto Negotiation Advertisement Register
1146 * (Address 4) and two bits in the Auto Negotiation Base
1147 * Page Ability Register (Address 5) determine flow control
1148 * for both the PHY and the link partner. The following
1149 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1150 * 1999, describes these PAUSE resolution bits and how flow
1151 * control is determined based upon these settings.
1152 * NOTE: DC = Don't Care
1154 * LOCAL DEVICE | LINK PARTNER
1155 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1156 *-------|---------|-------|---------|--------------------
1157 * 0 | 0 | DC | DC | e1000_fc_none
1158 * 0 | 1 | 0 | DC | e1000_fc_none
1159 * 0 | 1 | 1 | 0 | e1000_fc_none
1160 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1161 * 1 | 0 | 0 | DC | e1000_fc_none
1162 * 1 | DC | 1 | DC | e1000_fc_full
1163 * 1 | 1 | 0 | 0 | e1000_fc_none
1164 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1166 * Are both PAUSE bits set to 1? If so, this implies
1167 * Symmetric Flow Control is enabled at both ends. The
1168 * ASM_DIR bits are irrelevant per the spec.
1170 * For Symmetric Flow Control:
1172 * LOCAL DEVICE | LINK PARTNER
1173 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1174 *-------|---------|-------|---------|--------------------
1175 * 1 | DC | 1 | DC | E1000_fc_full
1178 if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1179 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
)) {
1181 * Now we need to check if the user selected Rx ONLY
1182 * of pause frames. In this case, we had to advertise
1183 * FULL flow control because we could not advertise Rx
1184 * ONLY. Hence, we must now check to see if we need to
1185 * turn OFF the TRANSMISSION of PAUSE frames.
1187 if (hw
->fc
.requested_mode
== e1000_fc_full
) {
1188 hw
->fc
.current_mode
= e1000_fc_full
;
1189 e_dbg("Flow Control = FULL.\r\n");
1191 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1192 e_dbg("Flow Control = "
1193 "Rx PAUSE frames only.\r\n");
1197 * For receiving PAUSE frames ONLY.
1199 * LOCAL DEVICE | LINK PARTNER
1200 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1201 *-------|---------|-------|---------|--------------------
1202 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1204 else if (!(mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1205 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1206 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1207 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1208 hw
->fc
.current_mode
= e1000_fc_tx_pause
;
1209 e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
1212 * For transmitting PAUSE frames ONLY.
1214 * LOCAL DEVICE | LINK PARTNER
1215 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1216 *-------|---------|-------|---------|--------------------
1217 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1219 else if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1220 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1221 !(mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1222 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1223 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1224 e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
1227 * Per the IEEE spec, at this point flow control
1228 * should be disabled.
1230 hw
->fc
.current_mode
= e1000_fc_none
;
1231 e_dbg("Flow Control = NONE.\r\n");
1235 * Now we need to do one last check... If we auto-
1236 * negotiated to HALF DUPLEX, flow control should not be
1237 * enabled per IEEE 802.3 spec.
1239 ret_val
= mac
->ops
.get_link_up_info(hw
, &speed
, &duplex
);
1241 e_dbg("Error getting link speed and duplex\n");
1245 if (duplex
== HALF_DUPLEX
)
1246 hw
->fc
.current_mode
= e1000_fc_none
;
1249 * Now we call a subroutine to actually force the MAC
1250 * controller to use the correct flow control settings.
1252 ret_val
= e1000e_force_mac_fc(hw
);
1254 e_dbg("Error forcing flow control settings\n");
1263 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1264 * @hw: pointer to the HW structure
1265 * @speed: stores the current speed
1266 * @duplex: stores the current duplex
1268 * Read the status register for the current speed/duplex and store the current
1269 * speed and duplex for copper connections.
1271 s32
e1000e_get_speed_and_duplex_copper(struct e1000_hw
*hw
, u16
*speed
, u16
*duplex
)
1275 status
= er32(STATUS
);
1276 if (status
& E1000_STATUS_SPEED_1000
)
1277 *speed
= SPEED_1000
;
1278 else if (status
& E1000_STATUS_SPEED_100
)
1283 if (status
& E1000_STATUS_FD
)
1284 *duplex
= FULL_DUPLEX
;
1286 *duplex
= HALF_DUPLEX
;
1288 e_dbg("%u Mbps, %s Duplex\n",
1289 *speed
== SPEED_1000
? 1000 : *speed
== SPEED_100
? 100 : 10,
1290 *duplex
== FULL_DUPLEX
? "Full" : "Half");
1296 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1297 * @hw: pointer to the HW structure
1298 * @speed: stores the current speed
1299 * @duplex: stores the current duplex
1301 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1302 * for fiber/serdes links.
1304 s32
e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw
*hw
, u16
*speed
, u16
*duplex
)
1306 *speed
= SPEED_1000
;
1307 *duplex
= FULL_DUPLEX
;
1313 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1314 * @hw: pointer to the HW structure
1316 * Acquire the HW semaphore to access the PHY or NVM
1318 s32
e1000e_get_hw_semaphore(struct e1000_hw
*hw
)
1321 s32 timeout
= hw
->nvm
.word_size
+ 1;
1324 /* Get the SW semaphore */
1325 while (i
< timeout
) {
1327 if (!(swsm
& E1000_SWSM_SMBI
))
1335 e_dbg("Driver can't access device - SMBI bit is set.\n");
1336 return -E1000_ERR_NVM
;
1339 /* Get the FW semaphore. */
1340 for (i
= 0; i
< timeout
; i
++) {
1342 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
1344 /* Semaphore acquired if bit latched */
1345 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
1352 /* Release semaphores */
1353 e1000e_put_hw_semaphore(hw
);
1354 e_dbg("Driver can't access the NVM\n");
1355 return -E1000_ERR_NVM
;
1362 * e1000e_put_hw_semaphore - Release hardware semaphore
1363 * @hw: pointer to the HW structure
1365 * Release hardware semaphore used to access the PHY or NVM
1367 void e1000e_put_hw_semaphore(struct e1000_hw
*hw
)
1372 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
1377 * e1000e_get_auto_rd_done - Check for auto read completion
1378 * @hw: pointer to the HW structure
1380 * Check EEPROM for Auto Read done bit.
1382 s32
e1000e_get_auto_rd_done(struct e1000_hw
*hw
)
1386 while (i
< AUTO_READ_DONE_TIMEOUT
) {
1387 if (er32(EECD
) & E1000_EECD_AUTO_RD
)
1389 usleep_range(1000, 2000);
1393 if (i
== AUTO_READ_DONE_TIMEOUT
) {
1394 e_dbg("Auto read by HW from NVM has not completed.\n");
1395 return -E1000_ERR_RESET
;
1402 * e1000e_valid_led_default - Verify a valid default LED config
1403 * @hw: pointer to the HW structure
1404 * @data: pointer to the NVM (EEPROM)
1406 * Read the EEPROM for the current default LED configuration. If the
1407 * LED configuration is not valid, set to a valid LED configuration.
1409 s32
e1000e_valid_led_default(struct e1000_hw
*hw
, u16
*data
)
1413 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1415 e_dbg("NVM Read Error\n");
1419 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
1420 *data
= ID_LED_DEFAULT
;
1426 * e1000e_id_led_init -
1427 * @hw: pointer to the HW structure
1430 s32
e1000e_id_led_init(struct e1000_hw
*hw
)
1432 struct e1000_mac_info
*mac
= &hw
->mac
;
1434 const u32 ledctl_mask
= 0x000000FF;
1435 const u32 ledctl_on
= E1000_LEDCTL_MODE_LED_ON
;
1436 const u32 ledctl_off
= E1000_LEDCTL_MODE_LED_OFF
;
1438 const u16 led_mask
= 0x0F;
1440 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
1444 mac
->ledctl_default
= er32(LEDCTL
);
1445 mac
->ledctl_mode1
= mac
->ledctl_default
;
1446 mac
->ledctl_mode2
= mac
->ledctl_default
;
1448 for (i
= 0; i
< 4; i
++) {
1449 temp
= (data
>> (i
<< 2)) & led_mask
;
1451 case ID_LED_ON1_DEF2
:
1452 case ID_LED_ON1_ON2
:
1453 case ID_LED_ON1_OFF2
:
1454 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1455 mac
->ledctl_mode1
|= ledctl_on
<< (i
<< 3);
1457 case ID_LED_OFF1_DEF2
:
1458 case ID_LED_OFF1_ON2
:
1459 case ID_LED_OFF1_OFF2
:
1460 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1461 mac
->ledctl_mode1
|= ledctl_off
<< (i
<< 3);
1468 case ID_LED_DEF1_ON2
:
1469 case ID_LED_ON1_ON2
:
1470 case ID_LED_OFF1_ON2
:
1471 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1472 mac
->ledctl_mode2
|= ledctl_on
<< (i
<< 3);
1474 case ID_LED_DEF1_OFF2
:
1475 case ID_LED_ON1_OFF2
:
1476 case ID_LED_OFF1_OFF2
:
1477 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1478 mac
->ledctl_mode2
|= ledctl_off
<< (i
<< 3);
1490 * e1000e_setup_led_generic - Configures SW controllable LED
1491 * @hw: pointer to the HW structure
1493 * This prepares the SW controllable LED for use and saves the current state
1494 * of the LED so it can be later restored.
1496 s32
e1000e_setup_led_generic(struct e1000_hw
*hw
)
1500 if (hw
->mac
.ops
.setup_led
!= e1000e_setup_led_generic
)
1501 return -E1000_ERR_CONFIG
;
1503 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1504 ledctl
= er32(LEDCTL
);
1505 hw
->mac
.ledctl_default
= ledctl
;
1507 ledctl
&= ~(E1000_LEDCTL_LED0_IVRT
|
1508 E1000_LEDCTL_LED0_BLINK
|
1509 E1000_LEDCTL_LED0_MODE_MASK
);
1510 ledctl
|= (E1000_LEDCTL_MODE_LED_OFF
<<
1511 E1000_LEDCTL_LED0_MODE_SHIFT
);
1512 ew32(LEDCTL
, ledctl
);
1513 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1514 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
1521 * e1000e_cleanup_led_generic - Set LED config to default operation
1522 * @hw: pointer to the HW structure
1524 * Remove the current LED configuration and set the LED configuration
1525 * to the default value, saved from the EEPROM.
1527 s32
e1000e_cleanup_led_generic(struct e1000_hw
*hw
)
1529 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
1534 * e1000e_blink_led_generic - Blink LED
1535 * @hw: pointer to the HW structure
1537 * Blink the LEDs which are set to be on.
1539 s32
e1000e_blink_led_generic(struct e1000_hw
*hw
)
1541 u32 ledctl_blink
= 0;
1544 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1545 /* always blink LED0 for PCI-E fiber */
1546 ledctl_blink
= E1000_LEDCTL_LED0_BLINK
|
1547 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED0_MODE_SHIFT
);
1550 * set the blink bit for each LED that's "on" (0x0E)
1553 ledctl_blink
= hw
->mac
.ledctl_mode2
;
1554 for (i
= 0; i
< 4; i
++)
1555 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1556 E1000_LEDCTL_MODE_LED_ON
)
1557 ledctl_blink
|= (E1000_LEDCTL_LED0_BLINK
<<
1561 ew32(LEDCTL
, ledctl_blink
);
1567 * e1000e_led_on_generic - Turn LED on
1568 * @hw: pointer to the HW structure
1572 s32
e1000e_led_on_generic(struct e1000_hw
*hw
)
1576 switch (hw
->phy
.media_type
) {
1577 case e1000_media_type_fiber
:
1579 ctrl
&= ~E1000_CTRL_SWDPIN0
;
1580 ctrl
|= E1000_CTRL_SWDPIO0
;
1583 case e1000_media_type_copper
:
1584 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
1594 * e1000e_led_off_generic - Turn LED off
1595 * @hw: pointer to the HW structure
1599 s32
e1000e_led_off_generic(struct e1000_hw
*hw
)
1603 switch (hw
->phy
.media_type
) {
1604 case e1000_media_type_fiber
:
1606 ctrl
|= E1000_CTRL_SWDPIN0
;
1607 ctrl
|= E1000_CTRL_SWDPIO0
;
1610 case e1000_media_type_copper
:
1611 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
1621 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1622 * @hw: pointer to the HW structure
1623 * @no_snoop: bitmap of snoop events
1625 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1627 void e1000e_set_pcie_no_snoop(struct e1000_hw
*hw
, u32 no_snoop
)
1633 gcr
&= ~(PCIE_NO_SNOOP_ALL
);
1640 * e1000e_disable_pcie_master - Disables PCI-express master access
1641 * @hw: pointer to the HW structure
1643 * Returns 0 if successful, else returns -10
1644 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1645 * the master requests to be disabled.
1647 * Disables PCI-Express master access and verifies there are no pending
1650 s32
e1000e_disable_pcie_master(struct e1000_hw
*hw
)
1653 s32 timeout
= MASTER_DISABLE_TIMEOUT
;
1656 ctrl
|= E1000_CTRL_GIO_MASTER_DISABLE
;
1660 if (!(er32(STATUS
) &
1661 E1000_STATUS_GIO_MASTER_ENABLE
))
1668 e_dbg("Master requests are pending.\n");
1669 return -E1000_ERR_MASTER_REQUESTS_PENDING
;
1676 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1677 * @hw: pointer to the HW structure
1679 * Reset the Adaptive Interframe Spacing throttle to default values.
1681 void e1000e_reset_adaptive(struct e1000_hw
*hw
)
1683 struct e1000_mac_info
*mac
= &hw
->mac
;
1685 if (!mac
->adaptive_ifs
) {
1686 e_dbg("Not in Adaptive IFS mode!\n");
1690 mac
->current_ifs_val
= 0;
1691 mac
->ifs_min_val
= IFS_MIN
;
1692 mac
->ifs_max_val
= IFS_MAX
;
1693 mac
->ifs_step_size
= IFS_STEP
;
1694 mac
->ifs_ratio
= IFS_RATIO
;
1696 mac
->in_ifs_mode
= false;
1703 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1704 * @hw: pointer to the HW structure
1706 * Update the Adaptive Interframe Spacing Throttle value based on the
1707 * time between transmitted packets and time between collisions.
1709 void e1000e_update_adaptive(struct e1000_hw
*hw
)
1711 struct e1000_mac_info
*mac
= &hw
->mac
;
1713 if (!mac
->adaptive_ifs
) {
1714 e_dbg("Not in Adaptive IFS mode!\n");
1718 if ((mac
->collision_delta
* mac
->ifs_ratio
) > mac
->tx_packet_delta
) {
1719 if (mac
->tx_packet_delta
> MIN_NUM_XMITS
) {
1720 mac
->in_ifs_mode
= true;
1721 if (mac
->current_ifs_val
< mac
->ifs_max_val
) {
1722 if (!mac
->current_ifs_val
)
1723 mac
->current_ifs_val
= mac
->ifs_min_val
;
1725 mac
->current_ifs_val
+=
1727 ew32(AIT
, mac
->current_ifs_val
);
1731 if (mac
->in_ifs_mode
&&
1732 (mac
->tx_packet_delta
<= MIN_NUM_XMITS
)) {
1733 mac
->current_ifs_val
= 0;
1734 mac
->in_ifs_mode
= false;
1743 * e1000_raise_eec_clk - Raise EEPROM clock
1744 * @hw: pointer to the HW structure
1745 * @eecd: pointer to the EEPROM
1747 * Enable/Raise the EEPROM clock bit.
1749 static void e1000_raise_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
1751 *eecd
= *eecd
| E1000_EECD_SK
;
1754 udelay(hw
->nvm
.delay_usec
);
1758 * e1000_lower_eec_clk - Lower EEPROM clock
1759 * @hw: pointer to the HW structure
1760 * @eecd: pointer to the EEPROM
1762 * Clear/Lower the EEPROM clock bit.
1764 static void e1000_lower_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
1766 *eecd
= *eecd
& ~E1000_EECD_SK
;
1769 udelay(hw
->nvm
.delay_usec
);
1773 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
1774 * @hw: pointer to the HW structure
1775 * @data: data to send to the EEPROM
1776 * @count: number of bits to shift out
1778 * We need to shift 'count' bits out to the EEPROM. So, the value in the
1779 * "data" parameter will be shifted out to the EEPROM one bit at a time.
1780 * In order to do this, "data" must be broken down into bits.
1782 static void e1000_shift_out_eec_bits(struct e1000_hw
*hw
, u16 data
, u16 count
)
1784 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1785 u32 eecd
= er32(EECD
);
1788 mask
= 0x01 << (count
- 1);
1789 if (nvm
->type
== e1000_nvm_eeprom_spi
)
1790 eecd
|= E1000_EECD_DO
;
1793 eecd
&= ~E1000_EECD_DI
;
1796 eecd
|= E1000_EECD_DI
;
1801 udelay(nvm
->delay_usec
);
1803 e1000_raise_eec_clk(hw
, &eecd
);
1804 e1000_lower_eec_clk(hw
, &eecd
);
1809 eecd
&= ~E1000_EECD_DI
;
1814 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
1815 * @hw: pointer to the HW structure
1816 * @count: number of bits to shift in
1818 * In order to read a register from the EEPROM, we need to shift 'count' bits
1819 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
1820 * the EEPROM (setting the SK bit), and then reading the value of the data out
1821 * "DO" bit. During this "shifting in" process the data in "DI" bit should
1824 static u16
e1000_shift_in_eec_bits(struct e1000_hw
*hw
, u16 count
)
1832 eecd
&= ~(E1000_EECD_DO
| E1000_EECD_DI
);
1835 for (i
= 0; i
< count
; i
++) {
1837 e1000_raise_eec_clk(hw
, &eecd
);
1841 eecd
&= ~E1000_EECD_DI
;
1842 if (eecd
& E1000_EECD_DO
)
1845 e1000_lower_eec_clk(hw
, &eecd
);
1852 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1853 * @hw: pointer to the HW structure
1854 * @ee_reg: EEPROM flag for polling
1856 * Polls the EEPROM status bit for either read or write completion based
1857 * upon the value of 'ee_reg'.
1859 s32
e1000e_poll_eerd_eewr_done(struct e1000_hw
*hw
, int ee_reg
)
1861 u32 attempts
= 100000;
1864 for (i
= 0; i
< attempts
; i
++) {
1865 if (ee_reg
== E1000_NVM_POLL_READ
)
1870 if (reg
& E1000_NVM_RW_REG_DONE
)
1876 return -E1000_ERR_NVM
;
1880 * e1000e_acquire_nvm - Generic request for access to EEPROM
1881 * @hw: pointer to the HW structure
1883 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1884 * Return successful if access grant bit set, else clear the request for
1885 * EEPROM access and return -E1000_ERR_NVM (-1).
1887 s32
e1000e_acquire_nvm(struct e1000_hw
*hw
)
1889 u32 eecd
= er32(EECD
);
1890 s32 timeout
= E1000_NVM_GRANT_ATTEMPTS
;
1892 ew32(EECD
, eecd
| E1000_EECD_REQ
);
1896 if (eecd
& E1000_EECD_GNT
)
1904 eecd
&= ~E1000_EECD_REQ
;
1906 e_dbg("Could not acquire NVM grant\n");
1907 return -E1000_ERR_NVM
;
1914 * e1000_standby_nvm - Return EEPROM to standby state
1915 * @hw: pointer to the HW structure
1917 * Return the EEPROM to a standby state.
1919 static void e1000_standby_nvm(struct e1000_hw
*hw
)
1921 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1922 u32 eecd
= er32(EECD
);
1924 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
1925 /* Toggle CS to flush commands */
1926 eecd
|= E1000_EECD_CS
;
1929 udelay(nvm
->delay_usec
);
1930 eecd
&= ~E1000_EECD_CS
;
1933 udelay(nvm
->delay_usec
);
1938 * e1000_stop_nvm - Terminate EEPROM command
1939 * @hw: pointer to the HW structure
1941 * Terminates the current command by inverting the EEPROM's chip select pin.
1943 static void e1000_stop_nvm(struct e1000_hw
*hw
)
1948 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
1950 eecd
|= E1000_EECD_CS
;
1951 e1000_lower_eec_clk(hw
, &eecd
);
1956 * e1000e_release_nvm - Release exclusive access to EEPROM
1957 * @hw: pointer to the HW structure
1959 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
1961 void e1000e_release_nvm(struct e1000_hw
*hw
)
1968 eecd
&= ~E1000_EECD_REQ
;
1973 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
1974 * @hw: pointer to the HW structure
1976 * Setups the EEPROM for reading and writing.
1978 static s32
e1000_ready_nvm_eeprom(struct e1000_hw
*hw
)
1980 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1981 u32 eecd
= er32(EECD
);
1984 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
1985 u16 timeout
= NVM_MAX_RETRY_SPI
;
1987 /* Clear SK and CS */
1988 eecd
&= ~(E1000_EECD_CS
| E1000_EECD_SK
);
1994 * Read "Status Register" repeatedly until the LSB is cleared.
1995 * The EEPROM will signal that the command has been completed
1996 * by clearing bit 0 of the internal status register. If it's
1997 * not cleared within 'timeout', then error out.
2000 e1000_shift_out_eec_bits(hw
, NVM_RDSR_OPCODE_SPI
,
2001 hw
->nvm
.opcode_bits
);
2002 spi_stat_reg
= (u8
)e1000_shift_in_eec_bits(hw
, 8);
2003 if (!(spi_stat_reg
& NVM_STATUS_RDY_SPI
))
2007 e1000_standby_nvm(hw
);
2012 e_dbg("SPI NVM Status error\n");
2013 return -E1000_ERR_NVM
;
2021 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
2022 * @hw: pointer to the HW structure
2023 * @offset: offset of word in the EEPROM to read
2024 * @words: number of words to read
2025 * @data: word read from the EEPROM
2027 * Reads a 16 bit word from the EEPROM using the EERD register.
2029 s32
e1000e_read_nvm_eerd(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
2031 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2036 * A check for invalid values: offset too large, too many words,
2037 * too many words for the offset, and not enough words.
2039 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
2041 e_dbg("nvm parameter(s) out of bounds\n");
2042 return -E1000_ERR_NVM
;
2045 for (i
= 0; i
< words
; i
++) {
2046 eerd
= ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) +
2047 E1000_NVM_RW_REG_START
;
2050 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_READ
);
2054 data
[i
] = (er32(EERD
) >> E1000_NVM_RW_REG_DATA
);
2061 * e1000e_write_nvm_spi - Write to EEPROM using SPI
2062 * @hw: pointer to the HW structure
2063 * @offset: offset within the EEPROM to be written to
2064 * @words: number of words to write
2065 * @data: 16 bit word(s) to be written to the EEPROM
2067 * Writes data to EEPROM at offset using SPI interface.
2069 * If e1000e_update_nvm_checksum is not called after this function , the
2070 * EEPROM will most likely contain an invalid checksum.
2072 s32
e1000e_write_nvm_spi(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
2074 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2079 * A check for invalid values: offset too large, too many words,
2080 * and not enough words.
2082 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
2084 e_dbg("nvm parameter(s) out of bounds\n");
2085 return -E1000_ERR_NVM
;
2088 ret_val
= nvm
->ops
.acquire(hw
);
2092 while (widx
< words
) {
2093 u8 write_opcode
= NVM_WRITE_OPCODE_SPI
;
2095 ret_val
= e1000_ready_nvm_eeprom(hw
);
2097 nvm
->ops
.release(hw
);
2101 e1000_standby_nvm(hw
);
2103 /* Send the WRITE ENABLE command (8 bit opcode) */
2104 e1000_shift_out_eec_bits(hw
, NVM_WREN_OPCODE_SPI
,
2107 e1000_standby_nvm(hw
);
2110 * Some SPI eeproms use the 8th address bit embedded in the
2113 if ((nvm
->address_bits
== 8) && (offset
>= 128))
2114 write_opcode
|= NVM_A8_OPCODE_SPI
;
2116 /* Send the Write command (8-bit opcode + addr) */
2117 e1000_shift_out_eec_bits(hw
, write_opcode
, nvm
->opcode_bits
);
2118 e1000_shift_out_eec_bits(hw
, (u16
)((offset
+ widx
) * 2),
2121 /* Loop to allow for up to whole page write of eeprom */
2122 while (widx
< words
) {
2123 u16 word_out
= data
[widx
];
2124 word_out
= (word_out
>> 8) | (word_out
<< 8);
2125 e1000_shift_out_eec_bits(hw
, word_out
, 16);
2128 if ((((offset
+ widx
) * 2) % nvm
->page_size
) == 0) {
2129 e1000_standby_nvm(hw
);
2135 usleep_range(10000, 20000);
2136 nvm
->ops
.release(hw
);
2141 * e1000_read_pba_string_generic - Read device part number
2142 * @hw: pointer to the HW structure
2143 * @pba_num: pointer to device part number
2144 * @pba_num_size: size of part number buffer
2146 * Reads the product board assembly (PBA) number from the EEPROM and stores
2147 * the value in pba_num.
2149 s32
e1000_read_pba_string_generic(struct e1000_hw
*hw
, u8
*pba_num
,
2158 if (pba_num
== NULL
) {
2159 e_dbg("PBA string buffer was null\n");
2160 ret_val
= E1000_ERR_INVALID_ARGUMENT
;
2164 ret_val
= e1000_read_nvm(hw
, NVM_PBA_OFFSET_0
, 1, &nvm_data
);
2166 e_dbg("NVM Read Error\n");
2170 ret_val
= e1000_read_nvm(hw
, NVM_PBA_OFFSET_1
, 1, &pba_ptr
);
2172 e_dbg("NVM Read Error\n");
2177 * if nvm_data is not ptr guard the PBA must be in legacy format which
2178 * means pba_ptr is actually our second data word for the PBA number
2179 * and we can decode it into an ascii string
2181 if (nvm_data
!= NVM_PBA_PTR_GUARD
) {
2182 e_dbg("NVM PBA number is not stored as string\n");
2184 /* we will need 11 characters to store the PBA */
2185 if (pba_num_size
< 11) {
2186 e_dbg("PBA string buffer too small\n");
2187 return E1000_ERR_NO_SPACE
;
2190 /* extract hex string from data and pba_ptr */
2191 pba_num
[0] = (nvm_data
>> 12) & 0xF;
2192 pba_num
[1] = (nvm_data
>> 8) & 0xF;
2193 pba_num
[2] = (nvm_data
>> 4) & 0xF;
2194 pba_num
[3] = nvm_data
& 0xF;
2195 pba_num
[4] = (pba_ptr
>> 12) & 0xF;
2196 pba_num
[5] = (pba_ptr
>> 8) & 0xF;
2199 pba_num
[8] = (pba_ptr
>> 4) & 0xF;
2200 pba_num
[9] = pba_ptr
& 0xF;
2202 /* put a null character on the end of our string */
2205 /* switch all the data but the '-' to hex char */
2206 for (offset
= 0; offset
< 10; offset
++) {
2207 if (pba_num
[offset
] < 0xA)
2208 pba_num
[offset
] += '0';
2209 else if (pba_num
[offset
] < 0x10)
2210 pba_num
[offset
] += 'A' - 0xA;
2216 ret_val
= e1000_read_nvm(hw
, pba_ptr
, 1, &length
);
2218 e_dbg("NVM Read Error\n");
2222 if (length
== 0xFFFF || length
== 0) {
2223 e_dbg("NVM PBA number section invalid length\n");
2224 ret_val
= E1000_ERR_NVM_PBA_SECTION
;
2227 /* check if pba_num buffer is big enough */
2228 if (pba_num_size
< (((u32
)length
* 2) - 1)) {
2229 e_dbg("PBA string buffer too small\n");
2230 ret_val
= E1000_ERR_NO_SPACE
;
2234 /* trim pba length from start of string */
2238 for (offset
= 0; offset
< length
; offset
++) {
2239 ret_val
= e1000_read_nvm(hw
, pba_ptr
+ offset
, 1, &nvm_data
);
2241 e_dbg("NVM Read Error\n");
2244 pba_num
[offset
* 2] = (u8
)(nvm_data
>> 8);
2245 pba_num
[(offset
* 2) + 1] = (u8
)(nvm_data
& 0xFF);
2247 pba_num
[offset
* 2] = '\0';
2254 * e1000_read_mac_addr_generic - Read device MAC address
2255 * @hw: pointer to the HW structure
2257 * Reads the device MAC address from the EEPROM and stores the value.
2258 * Since devices with two ports use the same EEPROM, we increment the
2259 * last bit in the MAC address for the second port.
2261 s32
e1000_read_mac_addr_generic(struct e1000_hw
*hw
)
2267 rar_high
= er32(RAH(0));
2268 rar_low
= er32(RAL(0));
2270 for (i
= 0; i
< E1000_RAL_MAC_ADDR_LEN
; i
++)
2271 hw
->mac
.perm_addr
[i
] = (u8
)(rar_low
>> (i
*8));
2273 for (i
= 0; i
< E1000_RAH_MAC_ADDR_LEN
; i
++)
2274 hw
->mac
.perm_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
2276 for (i
= 0; i
< ETH_ALEN
; i
++)
2277 hw
->mac
.addr
[i
] = hw
->mac
.perm_addr
[i
];
2283 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
2284 * @hw: pointer to the HW structure
2286 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2287 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2289 s32
e1000e_validate_nvm_checksum_generic(struct e1000_hw
*hw
)
2295 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
2296 ret_val
= e1000_read_nvm(hw
, i
, 1, &nvm_data
);
2298 e_dbg("NVM Read Error\n");
2301 checksum
+= nvm_data
;
2304 if (checksum
!= (u16
) NVM_SUM
) {
2305 e_dbg("NVM Checksum Invalid\n");
2306 return -E1000_ERR_NVM
;
2313 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
2314 * @hw: pointer to the HW structure
2316 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2317 * up to the checksum. Then calculates the EEPROM checksum and writes the
2318 * value to the EEPROM.
2320 s32
e1000e_update_nvm_checksum_generic(struct e1000_hw
*hw
)
2326 for (i
= 0; i
< NVM_CHECKSUM_REG
; i
++) {
2327 ret_val
= e1000_read_nvm(hw
, i
, 1, &nvm_data
);
2329 e_dbg("NVM Read Error while updating checksum.\n");
2332 checksum
+= nvm_data
;
2334 checksum
= (u16
) NVM_SUM
- checksum
;
2335 ret_val
= e1000_write_nvm(hw
, NVM_CHECKSUM_REG
, 1, &checksum
);
2337 e_dbg("NVM Write Error while updating checksum.\n");
2343 * e1000e_reload_nvm - Reloads EEPROM
2344 * @hw: pointer to the HW structure
2346 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
2347 * extended control register.
2349 void e1000e_reload_nvm(struct e1000_hw
*hw
)
2354 ctrl_ext
= er32(CTRL_EXT
);
2355 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
2356 ew32(CTRL_EXT
, ctrl_ext
);
2361 * e1000_calculate_checksum - Calculate checksum for buffer
2362 * @buffer: pointer to EEPROM
2363 * @length: size of EEPROM to calculate a checksum for
2365 * Calculates the checksum for some buffer on a specified length. The
2366 * checksum calculated is returned.
2368 static u8
e1000_calculate_checksum(u8
*buffer
, u32 length
)
2376 for (i
= 0; i
< length
; i
++)
2379 return (u8
) (0 - sum
);
2383 * e1000_mng_enable_host_if - Checks host interface is enabled
2384 * @hw: pointer to the HW structure
2386 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
2388 * This function checks whether the HOST IF is enabled for command operation
2389 * and also checks whether the previous command is completed. It busy waits
2390 * in case of previous command is not completed.
2392 static s32
e1000_mng_enable_host_if(struct e1000_hw
*hw
)
2397 if (!(hw
->mac
.arc_subsystem_valid
)) {
2398 e_dbg("ARC subsystem not valid.\n");
2399 return -E1000_ERR_HOST_INTERFACE_COMMAND
;
2402 /* Check that the host interface is enabled. */
2404 if ((hicr
& E1000_HICR_EN
) == 0) {
2405 e_dbg("E1000_HOST_EN bit disabled.\n");
2406 return -E1000_ERR_HOST_INTERFACE_COMMAND
;
2408 /* check the previous command is completed */
2409 for (i
= 0; i
< E1000_MNG_DHCP_COMMAND_TIMEOUT
; i
++) {
2411 if (!(hicr
& E1000_HICR_C
))
2416 if (i
== E1000_MNG_DHCP_COMMAND_TIMEOUT
) {
2417 e_dbg("Previous command timeout failed .\n");
2418 return -E1000_ERR_HOST_INTERFACE_COMMAND
;
2425 * e1000e_check_mng_mode_generic - check management mode
2426 * @hw: pointer to the HW structure
2428 * Reads the firmware semaphore register and returns true (>0) if
2429 * manageability is enabled, else false (0).
2431 bool e1000e_check_mng_mode_generic(struct e1000_hw
*hw
)
2433 u32 fwsm
= er32(FWSM
);
2435 return (fwsm
& E1000_FWSM_MODE_MASK
) ==
2436 (E1000_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
);
2440 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
2441 * @hw: pointer to the HW structure
2443 * Enables packet filtering on transmit packets if manageability is enabled
2444 * and host interface is enabled.
2446 bool e1000e_enable_tx_pkt_filtering(struct e1000_hw
*hw
)
2448 struct e1000_host_mng_dhcp_cookie
*hdr
= &hw
->mng_cookie
;
2449 u32
*buffer
= (u32
*)&hw
->mng_cookie
;
2451 s32 ret_val
, hdr_csum
, csum
;
2454 hw
->mac
.tx_pkt_filtering
= true;
2456 /* No manageability, no filtering */
2457 if (!e1000e_check_mng_mode(hw
)) {
2458 hw
->mac
.tx_pkt_filtering
= false;
2463 * If we can't read from the host interface for whatever
2464 * reason, disable filtering.
2466 ret_val
= e1000_mng_enable_host_if(hw
);
2468 hw
->mac
.tx_pkt_filtering
= false;
2472 /* Read in the header. Length and offset are in dwords. */
2473 len
= E1000_MNG_DHCP_COOKIE_LENGTH
>> 2;
2474 offset
= E1000_MNG_DHCP_COOKIE_OFFSET
>> 2;
2475 for (i
= 0; i
< len
; i
++)
2476 *(buffer
+ i
) = E1000_READ_REG_ARRAY(hw
, E1000_HOST_IF
, offset
+ i
);
2477 hdr_csum
= hdr
->checksum
;
2479 csum
= e1000_calculate_checksum((u8
*)hdr
,
2480 E1000_MNG_DHCP_COOKIE_LENGTH
);
2482 * If either the checksums or signature don't match, then
2483 * the cookie area isn't considered valid, in which case we
2484 * take the safe route of assuming Tx filtering is enabled.
2486 if ((hdr_csum
!= csum
) || (hdr
->signature
!= E1000_IAMT_SIGNATURE
)) {
2487 hw
->mac
.tx_pkt_filtering
= true;
2491 /* Cookie area is valid, make the final check for filtering. */
2492 if (!(hdr
->status
& E1000_MNG_DHCP_COOKIE_STATUS_PARSING
)) {
2493 hw
->mac
.tx_pkt_filtering
= false;
2498 return hw
->mac
.tx_pkt_filtering
;
2502 * e1000_mng_write_cmd_header - Writes manageability command header
2503 * @hw: pointer to the HW structure
2504 * @hdr: pointer to the host interface command header
2506 * Writes the command header after does the checksum calculation.
2508 static s32
e1000_mng_write_cmd_header(struct e1000_hw
*hw
,
2509 struct e1000_host_mng_command_header
*hdr
)
2511 u16 i
, length
= sizeof(struct e1000_host_mng_command_header
);
2513 /* Write the whole command header structure with new checksum. */
2515 hdr
->checksum
= e1000_calculate_checksum((u8
*)hdr
, length
);
2518 /* Write the relevant command block into the ram area. */
2519 for (i
= 0; i
< length
; i
++) {
2520 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, i
,
2521 *((u32
*) hdr
+ i
));
2529 * e1000_mng_host_if_write - Write to the manageability host interface
2530 * @hw: pointer to the HW structure
2531 * @buffer: pointer to the host interface buffer
2532 * @length: size of the buffer
2533 * @offset: location in the buffer to write to
2534 * @sum: sum of the data (not checksum)
2536 * This function writes the buffer content at the offset given on the host if.
2537 * It also does alignment considerations to do the writes in most efficient
2538 * way. Also fills up the sum of the buffer in *buffer parameter.
2540 static s32
e1000_mng_host_if_write(struct e1000_hw
*hw
, u8
*buffer
,
2541 u16 length
, u16 offset
, u8
*sum
)
2544 u8
*bufptr
= buffer
;
2546 u16 remaining
, i
, j
, prev_bytes
;
2548 /* sum = only sum of the data and it is not checksum */
2550 if (length
== 0 || offset
+ length
> E1000_HI_MAX_MNG_DATA_LENGTH
)
2551 return -E1000_ERR_PARAM
;
2554 prev_bytes
= offset
& 0x3;
2558 data
= E1000_READ_REG_ARRAY(hw
, E1000_HOST_IF
, offset
);
2559 for (j
= prev_bytes
; j
< sizeof(u32
); j
++) {
2560 *(tmp
+ j
) = *bufptr
++;
2563 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, offset
, data
);
2564 length
-= j
- prev_bytes
;
2568 remaining
= length
& 0x3;
2569 length
-= remaining
;
2571 /* Calculate length in DWORDs */
2575 * The device driver writes the relevant command block into the
2578 for (i
= 0; i
< length
; i
++) {
2579 for (j
= 0; j
< sizeof(u32
); j
++) {
2580 *(tmp
+ j
) = *bufptr
++;
2584 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, offset
+ i
, data
);
2587 for (j
= 0; j
< sizeof(u32
); j
++) {
2589 *(tmp
+ j
) = *bufptr
++;
2595 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, offset
+ i
, data
);
2602 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
2603 * @hw: pointer to the HW structure
2604 * @buffer: pointer to the host interface
2605 * @length: size of the buffer
2607 * Writes the DHCP information to the host interface.
2609 s32
e1000e_mng_write_dhcp_info(struct e1000_hw
*hw
, u8
*buffer
, u16 length
)
2611 struct e1000_host_mng_command_header hdr
;
2615 hdr
.command_id
= E1000_MNG_DHCP_TX_PAYLOAD_CMD
;
2616 hdr
.command_length
= length
;
2621 /* Enable the host interface */
2622 ret_val
= e1000_mng_enable_host_if(hw
);
2626 /* Populate the host interface with the contents of "buffer". */
2627 ret_val
= e1000_mng_host_if_write(hw
, buffer
, length
,
2628 sizeof(hdr
), &(hdr
.checksum
));
2632 /* Write the manageability command header */
2633 ret_val
= e1000_mng_write_cmd_header(hw
, &hdr
);
2637 /* Tell the ARC a new command is pending. */
2639 ew32(HICR
, hicr
| E1000_HICR_C
);
2645 * e1000e_enable_mng_pass_thru - Check if management passthrough is needed
2646 * @hw: pointer to the HW structure
2648 * Verifies the hardware needs to leave interface enabled so that frames can
2649 * be directed to and from the management interface.
2651 bool e1000e_enable_mng_pass_thru(struct e1000_hw
*hw
)
2655 bool ret_val
= false;
2659 if (!(manc
& E1000_MANC_RCV_TCO_EN
))
2662 if (hw
->mac
.has_fwsm
) {
2664 factps
= er32(FACTPS
);
2666 if (!(factps
& E1000_FACTPS_MNGCG
) &&
2667 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
2668 (e1000_mng_mode_pt
<< E1000_FWSM_MODE_SHIFT
))) {
2672 } else if ((hw
->mac
.type
== e1000_82574
) ||
2673 (hw
->mac
.type
== e1000_82583
)) {
2676 factps
= er32(FACTPS
);
2677 e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &data
);
2679 if (!(factps
& E1000_FACTPS_MNGCG
) &&
2680 ((data
& E1000_NVM_INIT_CTRL2_MNGM
) ==
2681 (e1000_mng_mode_pt
<< 13))) {
2685 } else if ((manc
& E1000_MANC_SMBUS_EN
) &&
2686 !(manc
& E1000_MANC_ASF_EN
)) {