1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/delay.h>
33 static s32
e1000_get_phy_cfg_done(struct e1000_hw
*hw
);
34 static s32
e1000_phy_force_speed_duplex(struct e1000_hw
*hw
);
35 static s32
e1000_set_d0_lplu_state(struct e1000_hw
*hw
, bool active
);
36 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
);
37 static u32
e1000_get_phy_addr_for_bm_page(u32 page
, u32 reg
);
38 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
39 u16
*data
, bool read
, bool page_set
);
40 static u32
e1000_get_phy_addr_for_hv_page(u32 page
);
41 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
42 u16
*data
, bool read
);
44 /* Cable length tables */
45 static const u16 e1000_m88_cable_length_table
[] = {
46 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
47 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48 ARRAY_SIZE(e1000_m88_cable_length_table)
50 static const u16 e1000_igp_2_cable_length_table
[] = {
51 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
52 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
53 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
54 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
55 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
56 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
57 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
59 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
60 ARRAY_SIZE(e1000_igp_2_cable_length_table)
62 #define BM_PHY_REG_PAGE(offset) \
63 ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
64 #define BM_PHY_REG_NUM(offset) \
65 ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
66 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
67 ~MAX_PHY_REG_ADDRESS)))
69 #define HV_INTC_FC_PAGE_START 768
70 #define I82578_ADDR_REG 29
71 #define I82577_ADDR_REG 16
72 #define I82577_CFG_REG 22
73 #define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
74 #define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
75 #define I82577_CTRL_REG 23
77 /* 82577 specific PHY registers */
78 #define I82577_PHY_CTRL_2 18
79 #define I82577_PHY_STATUS_2 26
80 #define I82577_PHY_DIAG_STATUS 31
82 /* I82577 PHY Status 2 */
83 #define I82577_PHY_STATUS2_REV_POLARITY 0x0400
84 #define I82577_PHY_STATUS2_MDIX 0x0800
85 #define I82577_PHY_STATUS2_SPEED_MASK 0x0300
86 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
88 /* I82577 PHY Control 2 */
89 #define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
90 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
92 /* I82577 PHY Diagnostics Status */
93 #define I82577_DSTATUS_CABLE_LENGTH 0x03FC
94 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
96 /* BM PHY Copper Specific Control 1 */
97 #define BM_CS_CTRL1 16
99 #define HV_MUX_DATA_CTRL PHY_REG(776, 16)
100 #define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
101 #define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
104 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
105 * @hw: pointer to the HW structure
107 * Read the PHY management control register and check whether a PHY reset
108 * is blocked. If a reset is not blocked return 0, otherwise
109 * return E1000_BLK_PHY_RESET (12).
111 s32
e1000e_check_reset_block_generic(struct e1000_hw
*hw
)
117 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ?
118 E1000_BLK_PHY_RESET
: 0;
122 * e1000e_get_phy_id - Retrieve the PHY ID and revision
123 * @hw: pointer to the HW structure
125 * Reads the PHY registers and stores the PHY ID and possibly the PHY
126 * revision in the hardware structure.
128 s32
e1000e_get_phy_id(struct e1000_hw
*hw
)
130 struct e1000_phy_info
*phy
= &hw
->phy
;
135 if (!(phy
->ops
.read_reg
))
138 while (retry_count
< 2) {
139 ret_val
= e1e_rphy(hw
, PHY_ID1
, &phy_id
);
143 phy
->id
= (u32
)(phy_id
<< 16);
145 ret_val
= e1e_rphy(hw
, PHY_ID2
, &phy_id
);
149 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
150 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
152 if (phy
->id
!= 0 && phy
->id
!= PHY_REVISION_MASK
)
162 * e1000e_phy_reset_dsp - Reset PHY DSP
163 * @hw: pointer to the HW structure
165 * Reset the digital signal processor.
167 s32
e1000e_phy_reset_dsp(struct e1000_hw
*hw
)
171 ret_val
= e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
175 return e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
179 * e1000e_read_phy_reg_mdic - Read MDI control register
180 * @hw: pointer to the HW structure
181 * @offset: register offset to be read
182 * @data: pointer to the read data
184 * Reads the MDI control register in the PHY at offset and stores the
185 * information read to data.
187 s32
e1000e_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
189 struct e1000_phy_info
*phy
= &hw
->phy
;
192 if (offset
> MAX_PHY_REG_ADDRESS
) {
193 e_dbg("PHY Address %d is out of range\n", offset
);
194 return -E1000_ERR_PARAM
;
198 * Set up Op-code, Phy Address, and register offset in the MDI
199 * Control register. The MAC will take care of interfacing with the
200 * PHY to retrieve the desired data.
202 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
203 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
204 (E1000_MDIC_OP_READ
));
209 * Poll the ready bit to see if the MDI read completed
210 * Increasing the time out as testing showed failures with
213 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
216 if (mdic
& E1000_MDIC_READY
)
219 if (!(mdic
& E1000_MDIC_READY
)) {
220 e_dbg("MDI Read did not complete\n");
221 return -E1000_ERR_PHY
;
223 if (mdic
& E1000_MDIC_ERROR
) {
224 e_dbg("MDI Error\n");
225 return -E1000_ERR_PHY
;
230 * Allow some time after each MDIC transaction to avoid
231 * reading duplicate data in the next MDIC transaction.
233 if (hw
->mac
.type
== e1000_pch2lan
)
240 * e1000e_write_phy_reg_mdic - Write MDI control register
241 * @hw: pointer to the HW structure
242 * @offset: register offset to write to
243 * @data: data to write to register at offset
245 * Writes data to MDI control register in the PHY at offset.
247 s32
e1000e_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
249 struct e1000_phy_info
*phy
= &hw
->phy
;
252 if (offset
> MAX_PHY_REG_ADDRESS
) {
253 e_dbg("PHY Address %d is out of range\n", offset
);
254 return -E1000_ERR_PARAM
;
258 * Set up Op-code, Phy Address, and register offset in the MDI
259 * Control register. The MAC will take care of interfacing with the
260 * PHY to retrieve the desired data.
262 mdic
= (((u32
)data
) |
263 (offset
<< E1000_MDIC_REG_SHIFT
) |
264 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
265 (E1000_MDIC_OP_WRITE
));
270 * Poll the ready bit to see if the MDI read completed
271 * Increasing the time out as testing showed failures with
274 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
277 if (mdic
& E1000_MDIC_READY
)
280 if (!(mdic
& E1000_MDIC_READY
)) {
281 e_dbg("MDI Write did not complete\n");
282 return -E1000_ERR_PHY
;
284 if (mdic
& E1000_MDIC_ERROR
) {
285 e_dbg("MDI Error\n");
286 return -E1000_ERR_PHY
;
290 * Allow some time after each MDIC transaction to avoid
291 * reading duplicate data in the next MDIC transaction.
293 if (hw
->mac
.type
== e1000_pch2lan
)
300 * e1000e_read_phy_reg_m88 - Read m88 PHY register
301 * @hw: pointer to the HW structure
302 * @offset: register offset to be read
303 * @data: pointer to the read data
305 * Acquires semaphore, if necessary, then reads the PHY register at offset
306 * and storing the retrieved information in data. Release any acquired
307 * semaphores before exiting.
309 s32
e1000e_read_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
313 ret_val
= hw
->phy
.ops
.acquire(hw
);
317 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
320 hw
->phy
.ops
.release(hw
);
326 * e1000e_write_phy_reg_m88 - Write m88 PHY register
327 * @hw: pointer to the HW structure
328 * @offset: register offset to write to
329 * @data: data to write at register offset
331 * Acquires semaphore, if necessary, then writes the data to PHY register
332 * at the offset. Release any acquired semaphores before exiting.
334 s32
e1000e_write_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16 data
)
338 ret_val
= hw
->phy
.ops
.acquire(hw
);
342 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
345 hw
->phy
.ops
.release(hw
);
351 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
352 * @hw: pointer to the HW structure
353 * @page: page to set (shifted left when necessary)
355 * Sets PHY page required for PHY register access. Assumes semaphore is
356 * already acquired. Note, this function sets phy.addr to 1 so the caller
357 * must set it appropriately (if necessary) after this function returns.
359 s32
e1000_set_page_igp(struct e1000_hw
*hw
, u16 page
)
361 e_dbg("Setting page 0x%x\n", page
);
365 return e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, page
);
369 * __e1000e_read_phy_reg_igp - Read igp PHY register
370 * @hw: pointer to the HW structure
371 * @offset: register offset to be read
372 * @data: pointer to the read data
373 * @locked: semaphore has already been acquired or not
375 * Acquires semaphore, if necessary, then reads the PHY register at offset
376 * and stores the retrieved information in data. Release any acquired
377 * semaphores before exiting.
379 static s32
__e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
385 if (!(hw
->phy
.ops
.acquire
))
388 ret_val
= hw
->phy
.ops
.acquire(hw
);
393 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
394 ret_val
= e1000e_write_phy_reg_mdic(hw
,
395 IGP01E1000_PHY_PAGE_SELECT
,
401 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
406 hw
->phy
.ops
.release(hw
);
412 * e1000e_read_phy_reg_igp - Read igp PHY register
413 * @hw: pointer to the HW structure
414 * @offset: register offset to be read
415 * @data: pointer to the read data
417 * Acquires semaphore then reads the PHY register at offset and stores the
418 * retrieved information in data.
419 * Release the acquired semaphore before exiting.
421 s32
e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
423 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, false);
427 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
428 * @hw: pointer to the HW structure
429 * @offset: register offset to be read
430 * @data: pointer to the read data
432 * Reads the PHY register at offset and stores the retrieved information
433 * in data. Assumes semaphore already acquired.
435 s32
e1000e_read_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
437 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, true);
441 * e1000e_write_phy_reg_igp - Write igp PHY register
442 * @hw: pointer to the HW structure
443 * @offset: register offset to write to
444 * @data: data to write at register offset
445 * @locked: semaphore has already been acquired or not
447 * Acquires semaphore, if necessary, then writes the data to PHY register
448 * at the offset. Release any acquired semaphores before exiting.
450 static s32
__e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
,
456 if (!(hw
->phy
.ops
.acquire
))
459 ret_val
= hw
->phy
.ops
.acquire(hw
);
464 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
465 ret_val
= e1000e_write_phy_reg_mdic(hw
,
466 IGP01E1000_PHY_PAGE_SELECT
,
472 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
477 hw
->phy
.ops
.release(hw
);
484 * e1000e_write_phy_reg_igp - Write igp PHY register
485 * @hw: pointer to the HW structure
486 * @offset: register offset to write to
487 * @data: data to write at register offset
489 * Acquires semaphore then writes the data to PHY register
490 * at the offset. Release any acquired semaphores before exiting.
492 s32
e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
494 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, false);
498 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
499 * @hw: pointer to the HW structure
500 * @offset: register offset to write to
501 * @data: data to write at register offset
503 * Writes the data to PHY register at the offset.
504 * Assumes semaphore already acquired.
506 s32
e1000e_write_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
508 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, true);
512 * __e1000_read_kmrn_reg - Read kumeran register
513 * @hw: pointer to the HW structure
514 * @offset: register offset to be read
515 * @data: pointer to the read data
516 * @locked: semaphore has already been acquired or not
518 * Acquires semaphore, if necessary. Then reads the PHY register at offset
519 * using the kumeran interface. The information retrieved is stored in data.
520 * Release any acquired semaphores before exiting.
522 static s32
__e1000_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
529 if (!(hw
->phy
.ops
.acquire
))
532 ret_val
= hw
->phy
.ops
.acquire(hw
);
537 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
538 E1000_KMRNCTRLSTA_OFFSET
) | E1000_KMRNCTRLSTA_REN
;
539 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
544 kmrnctrlsta
= er32(KMRNCTRLSTA
);
545 *data
= (u16
)kmrnctrlsta
;
548 hw
->phy
.ops
.release(hw
);
555 * e1000e_read_kmrn_reg - Read kumeran register
556 * @hw: pointer to the HW structure
557 * @offset: register offset to be read
558 * @data: pointer to the read data
560 * Acquires semaphore then reads the PHY register at offset using the
561 * kumeran interface. The information retrieved is stored in data.
562 * Release the acquired semaphore before exiting.
564 s32
e1000e_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
566 return __e1000_read_kmrn_reg(hw
, offset
, data
, false);
570 * e1000e_read_kmrn_reg_locked - Read kumeran register
571 * @hw: pointer to the HW structure
572 * @offset: register offset to be read
573 * @data: pointer to the read data
575 * Reads the PHY register at offset using the kumeran interface. The
576 * information retrieved is stored in data.
577 * Assumes semaphore already acquired.
579 s32
e1000e_read_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
581 return __e1000_read_kmrn_reg(hw
, offset
, data
, true);
585 * __e1000_write_kmrn_reg - Write kumeran register
586 * @hw: pointer to the HW structure
587 * @offset: register offset to write to
588 * @data: data to write at register offset
589 * @locked: semaphore has already been acquired or not
591 * Acquires semaphore, if necessary. Then write the data to PHY register
592 * at the offset using the kumeran interface. Release any acquired semaphores
595 static s32
__e1000_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
,
602 if (!(hw
->phy
.ops
.acquire
))
605 ret_val
= hw
->phy
.ops
.acquire(hw
);
610 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
611 E1000_KMRNCTRLSTA_OFFSET
) | data
;
612 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
618 hw
->phy
.ops
.release(hw
);
625 * e1000e_write_kmrn_reg - Write kumeran register
626 * @hw: pointer to the HW structure
627 * @offset: register offset to write to
628 * @data: data to write at register offset
630 * Acquires semaphore then writes the data to the PHY register at the offset
631 * using the kumeran interface. Release the acquired semaphore before exiting.
633 s32
e1000e_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
)
635 return __e1000_write_kmrn_reg(hw
, offset
, data
, false);
639 * e1000e_write_kmrn_reg_locked - Write kumeran register
640 * @hw: pointer to the HW structure
641 * @offset: register offset to write to
642 * @data: data to write at register offset
644 * Write the data to PHY register at the offset using the kumeran interface.
645 * Assumes semaphore already acquired.
647 s32
e1000e_write_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
649 return __e1000_write_kmrn_reg(hw
, offset
, data
, true);
653 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
654 * @hw: pointer to the HW structure
656 * Sets up Carrier-sense on Transmit and downshift values.
658 s32
e1000_copper_link_setup_82577(struct e1000_hw
*hw
)
663 /* Enable CRS on Tx. This must be set for half-duplex operation. */
664 ret_val
= e1e_rphy(hw
, I82577_CFG_REG
, &phy_data
);
668 phy_data
|= I82577_CFG_ASSERT_CRS_ON_TX
;
670 /* Enable downshift */
671 phy_data
|= I82577_CFG_ENABLE_DOWNSHIFT
;
673 ret_val
= e1e_wphy(hw
, I82577_CFG_REG
, phy_data
);
680 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
681 * @hw: pointer to the HW structure
683 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
684 * and downshift values are set also.
686 s32
e1000e_copper_link_setup_m88(struct e1000_hw
*hw
)
688 struct e1000_phy_info
*phy
= &hw
->phy
;
692 /* Enable CRS on Tx. This must be set for half-duplex operation. */
693 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
697 /* For BM PHY this bit is downshift enable */
698 if (phy
->type
!= e1000_phy_bm
)
699 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
703 * MDI/MDI-X = 0 (default)
704 * 0 - Auto for all speeds
707 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
709 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
713 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
716 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
719 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
723 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
729 * disable_polarity_correction = 0 (default)
730 * Automatic Correction for Reversed Cable Polarity
734 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
735 if (phy
->disable_polarity_correction
== 1)
736 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
738 /* Enable downshift on BM (disabled by default) */
739 if (phy
->type
== e1000_phy_bm
)
740 phy_data
|= BME1000_PSCR_ENABLE_DOWNSHIFT
;
742 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
746 if ((phy
->type
== e1000_phy_m88
) &&
747 (phy
->revision
< E1000_REVISION_4
) &&
748 (phy
->id
!= BME1000_E_PHY_ID_R2
)) {
750 * Force TX_CLK in the Extended PHY Specific Control Register
753 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
757 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
759 if ((phy
->revision
== 2) &&
760 (phy
->id
== M88E1111_I_PHY_ID
)) {
761 /* 82573L PHY - set the downshift counter to 5x. */
762 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
763 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
765 /* Configure Master and Slave downshift values */
766 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
767 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
768 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
769 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
771 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
776 if ((phy
->type
== e1000_phy_bm
) && (phy
->id
== BME1000_E_PHY_ID_R2
)) {
777 /* Set PHY page 0, register 29 to 0x0003 */
778 ret_val
= e1e_wphy(hw
, 29, 0x0003);
782 /* Set PHY page 0, register 30 to 0x0000 */
783 ret_val
= e1e_wphy(hw
, 30, 0x0000);
788 /* Commit the changes. */
789 ret_val
= e1000e_commit_phy(hw
);
791 e_dbg("Error committing the PHY changes\n");
795 if (phy
->type
== e1000_phy_82578
) {
796 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
800 /* 82578 PHY - set the downshift count to 1x. */
801 phy_data
|= I82578_EPSCR_DOWNSHIFT_ENABLE
;
802 phy_data
&= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK
;
803 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
812 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
813 * @hw: pointer to the HW structure
815 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
818 s32
e1000e_copper_link_setup_igp(struct e1000_hw
*hw
)
820 struct e1000_phy_info
*phy
= &hw
->phy
;
824 ret_val
= e1000_phy_hw_reset(hw
);
826 e_dbg("Error resetting the PHY.\n");
831 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
832 * timeout issues when LFS is enabled.
836 /* disable lplu d0 during driver init */
837 ret_val
= e1000_set_d0_lplu_state(hw
, false);
839 e_dbg("Error Disabling LPLU D0\n");
842 /* Configure mdi-mdix settings */
843 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
847 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
851 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
854 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
858 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
861 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
865 /* set auto-master slave resolution settings */
866 if (hw
->mac
.autoneg
) {
868 * when autonegotiation advertisement is only 1000Mbps then we
869 * should disable SmartSpeed and enable Auto MasterSlave
870 * resolution as hardware default.
872 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
873 /* Disable SmartSpeed */
874 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
879 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
880 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
885 /* Set auto Master/Slave resolution process */
886 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &data
);
890 data
&= ~CR_1000T_MS_ENABLE
;
891 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, data
);
896 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &data
);
900 /* load defaults for future use */
901 phy
->original_ms_type
= (data
& CR_1000T_MS_ENABLE
) ?
902 ((data
& CR_1000T_MS_VALUE
) ?
903 e1000_ms_force_master
:
904 e1000_ms_force_slave
) :
907 switch (phy
->ms_type
) {
908 case e1000_ms_force_master
:
909 data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
911 case e1000_ms_force_slave
:
912 data
|= CR_1000T_MS_ENABLE
;
913 data
&= ~(CR_1000T_MS_VALUE
);
916 data
&= ~CR_1000T_MS_ENABLE
;
920 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, data
);
927 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
928 * @hw: pointer to the HW structure
930 * Reads the MII auto-neg advertisement register and/or the 1000T control
931 * register and if the PHY is already setup for auto-negotiation, then
932 * return successful. Otherwise, setup advertisement and flow control to
933 * the appropriate values for the wanted auto-negotiation.
935 static s32
e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
937 struct e1000_phy_info
*phy
= &hw
->phy
;
939 u16 mii_autoneg_adv_reg
;
940 u16 mii_1000t_ctrl_reg
= 0;
942 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
944 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
945 ret_val
= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
949 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
950 /* Read the MII 1000Base-T Control Register (Address 9). */
951 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &mii_1000t_ctrl_reg
);
957 * Need to parse both autoneg_advertised and fc and set up
958 * the appropriate PHY registers. First we will parse for
959 * autoneg_advertised software override. Since we can advertise
960 * a plethora of combinations, we need to check each bit
965 * First we clear all the 10/100 mb speed bits in the Auto-Neg
966 * Advertisement Register (Address 4) and the 1000 mb speed bits in
967 * the 1000Base-T Control Register (Address 9).
969 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
970 NWAY_AR_100TX_HD_CAPS
|
971 NWAY_AR_10T_FD_CAPS
|
972 NWAY_AR_10T_HD_CAPS
);
973 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
975 e_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
977 /* Do we want to advertise 10 Mb Half Duplex? */
978 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
979 e_dbg("Advertise 10mb Half duplex\n");
980 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
983 /* Do we want to advertise 10 Mb Full Duplex? */
984 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
985 e_dbg("Advertise 10mb Full duplex\n");
986 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
989 /* Do we want to advertise 100 Mb Half Duplex? */
990 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
991 e_dbg("Advertise 100mb Half duplex\n");
992 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
995 /* Do we want to advertise 100 Mb Full Duplex? */
996 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
997 e_dbg("Advertise 100mb Full duplex\n");
998 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
1001 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1002 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
1003 e_dbg("Advertise 1000mb Half duplex request denied!\n");
1005 /* Do we want to advertise 1000 Mb Full Duplex? */
1006 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
1007 e_dbg("Advertise 1000mb Full duplex\n");
1008 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
1012 * Check for a software override of the flow control settings, and
1013 * setup the PHY advertisement registers accordingly. If
1014 * auto-negotiation is enabled, then software will have to set the
1015 * "PAUSE" bits to the correct value in the Auto-Negotiation
1016 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1019 * The possible values of the "fc" parameter are:
1020 * 0: Flow control is completely disabled
1021 * 1: Rx flow control is enabled (we can receive pause frames
1022 * but not send pause frames).
1023 * 2: Tx flow control is enabled (we can send pause frames
1024 * but we do not support receiving pause frames).
1025 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1026 * other: No software override. The flow control configuration
1027 * in the EEPROM is used.
1029 switch (hw
->fc
.current_mode
) {
1032 * Flow control (Rx & Tx) is completely disabled by a
1033 * software over-ride.
1035 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1037 case e1000_fc_rx_pause
:
1039 * Rx Flow control is enabled, and Tx Flow control is
1040 * disabled, by a software over-ride.
1042 * Since there really isn't a way to advertise that we are
1043 * capable of Rx Pause ONLY, we will advertise that we
1044 * support both symmetric and asymmetric Rx PAUSE. Later
1045 * (in e1000e_config_fc_after_link_up) we will disable the
1046 * hw's ability to send PAUSE frames.
1048 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1050 case e1000_fc_tx_pause
:
1052 * Tx Flow control is enabled, and Rx Flow control is
1053 * disabled, by a software over-ride.
1055 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
1056 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
1060 * Flow control (both Rx and Tx) is enabled by a software
1063 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1066 e_dbg("Flow control param set incorrectly\n");
1067 ret_val
= -E1000_ERR_CONFIG
;
1071 ret_val
= e1e_wphy(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
1075 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1077 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
)
1078 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, mii_1000t_ctrl_reg
);
1084 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1085 * @hw: pointer to the HW structure
1087 * Performs initial bounds checking on autoneg advertisement parameter, then
1088 * configure to advertise the full capability. Setup the PHY to autoneg
1089 * and restart the negotiation process between the link partner. If
1090 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1092 static s32
e1000_copper_link_autoneg(struct e1000_hw
*hw
)
1094 struct e1000_phy_info
*phy
= &hw
->phy
;
1099 * Perform some bounds checking on the autoneg advertisement
1102 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
1105 * If autoneg_advertised is zero, we assume it was not defaulted
1106 * by the calling code so we set to advertise full capability.
1108 if (phy
->autoneg_advertised
== 0)
1109 phy
->autoneg_advertised
= phy
->autoneg_mask
;
1111 e_dbg("Reconfiguring auto-neg advertisement params\n");
1112 ret_val
= e1000_phy_setup_autoneg(hw
);
1114 e_dbg("Error Setting up Auto-Negotiation\n");
1117 e_dbg("Restarting Auto-Neg\n");
1120 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1121 * the Auto Neg Restart bit in the PHY control register.
1123 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_ctrl
);
1127 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
1128 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_ctrl
);
1133 * Does the user want to wait for Auto-Neg to complete here, or
1134 * check at a later time (for example, callback routine).
1136 if (phy
->autoneg_wait_to_complete
) {
1137 ret_val
= e1000_wait_autoneg(hw
);
1139 e_dbg("Error while waiting for "
1140 "autoneg to complete\n");
1145 hw
->mac
.get_link_status
= 1;
1151 * e1000e_setup_copper_link - Configure copper link settings
1152 * @hw: pointer to the HW structure
1154 * Calls the appropriate function to configure the link for auto-neg or forced
1155 * speed and duplex. Then we check for link, once link is established calls
1156 * to configure collision distance and flow control are called. If link is
1157 * not established, we return -E1000_ERR_PHY (-2).
1159 s32
e1000e_setup_copper_link(struct e1000_hw
*hw
)
1164 if (hw
->mac
.autoneg
) {
1166 * Setup autoneg and flow control advertisement and perform
1169 ret_val
= e1000_copper_link_autoneg(hw
);
1174 * PHY will be set to 10H, 10F, 100H or 100F
1175 * depending on user settings.
1177 e_dbg("Forcing Speed and Duplex\n");
1178 ret_val
= e1000_phy_force_speed_duplex(hw
);
1180 e_dbg("Error Forcing Speed and Duplex\n");
1186 * Check link status. Wait up to 100 microseconds for link to become
1189 ret_val
= e1000e_phy_has_link_generic(hw
,
1190 COPPER_LINK_UP_LIMIT
,
1197 e_dbg("Valid link established!!!\n");
1198 e1000e_config_collision_dist(hw
);
1199 ret_val
= e1000e_config_fc_after_link_up(hw
);
1201 e_dbg("Unable to establish link!!!\n");
1208 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1209 * @hw: pointer to the HW structure
1211 * Calls the PHY setup function to force speed and duplex. Clears the
1212 * auto-crossover to force MDI manually. Waits for link and returns
1213 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1215 s32
e1000e_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1217 struct e1000_phy_info
*phy
= &hw
->phy
;
1222 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
1226 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1228 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
1233 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1234 * forced whenever speed and duplex are forced.
1236 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1240 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1241 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1243 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1247 e_dbg("IGP PSCR: %X\n", phy_data
);
1251 if (phy
->autoneg_wait_to_complete
) {
1252 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1254 ret_val
= e1000e_phy_has_link_generic(hw
,
1262 e_dbg("Link taking longer than expected.\n");
1265 ret_val
= e1000e_phy_has_link_generic(hw
,
1277 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1278 * @hw: pointer to the HW structure
1280 * Calls the PHY setup function to force speed and duplex. Clears the
1281 * auto-crossover to force MDI manually. Resets the PHY to commit the
1282 * changes. If time expires while waiting for link up, we reset the DSP.
1283 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1284 * successful completion, else return corresponding error code.
1286 s32
e1000e_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1288 struct e1000_phy_info
*phy
= &hw
->phy
;
1294 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1295 * forced whenever speed and duplex are forced.
1297 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1301 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1302 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1306 e_dbg("M88E1000 PSCR: %X\n", phy_data
);
1308 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
1312 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1314 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
1318 /* Reset the phy to commit changes. */
1319 ret_val
= e1000e_commit_phy(hw
);
1323 if (phy
->autoneg_wait_to_complete
) {
1324 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1326 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1332 if (hw
->phy
.type
!= e1000_phy_m88
) {
1333 e_dbg("Link taking longer than expected.\n");
1336 * We didn't get link.
1337 * Reset the DSP and cross our fingers.
1339 ret_val
= e1e_wphy(hw
, M88E1000_PHY_PAGE_SELECT
,
1343 ret_val
= e1000e_phy_reset_dsp(hw
);
1350 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1356 if (hw
->phy
.type
!= e1000_phy_m88
)
1359 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1364 * Resetting the phy means we need to re-force TX_CLK in the
1365 * Extended PHY Specific Control Register to 25MHz clock from
1366 * the reset value of 2.5MHz.
1368 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1369 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1374 * In addition, we must re-enable CRS on Tx for both half and full
1377 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1381 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1382 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1388 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1389 * @hw: pointer to the HW structure
1391 * Forces the speed and duplex settings of the PHY.
1392 * This is a function pointer entry point only called by
1393 * PHY setup routines.
1395 s32
e1000_phy_force_speed_duplex_ife(struct e1000_hw
*hw
)
1397 struct e1000_phy_info
*phy
= &hw
->phy
;
1402 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &data
);
1406 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
1408 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, data
);
1412 /* Disable MDI-X support for 10/100 */
1413 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
1417 data
&= ~IFE_PMC_AUTO_MDIX
;
1418 data
&= ~IFE_PMC_FORCE_MDIX
;
1420 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
1424 e_dbg("IFE PMC: %X\n", data
);
1428 if (phy
->autoneg_wait_to_complete
) {
1429 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1431 ret_val
= e1000e_phy_has_link_generic(hw
,
1439 e_dbg("Link taking longer than expected.\n");
1442 ret_val
= e1000e_phy_has_link_generic(hw
,
1455 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1456 * @hw: pointer to the HW structure
1457 * @phy_ctrl: pointer to current value of PHY_CONTROL
1459 * Forces speed and duplex on the PHY by doing the following: disable flow
1460 * control, force speed/duplex on the MAC, disable auto speed detection,
1461 * disable auto-negotiation, configure duplex, configure speed, configure
1462 * the collision distance, write configuration to CTRL register. The
1463 * caller must write to the PHY_CONTROL register for these settings to
1466 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw
*hw
, u16
*phy_ctrl
)
1468 struct e1000_mac_info
*mac
= &hw
->mac
;
1471 /* Turn off flow control when forcing speed/duplex */
1472 hw
->fc
.current_mode
= e1000_fc_none
;
1474 /* Force speed/duplex on the mac */
1476 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1477 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1479 /* Disable Auto Speed Detection */
1480 ctrl
&= ~E1000_CTRL_ASDE
;
1482 /* Disable autoneg on the phy */
1483 *phy_ctrl
&= ~MII_CR_AUTO_NEG_EN
;
1485 /* Forcing Full or Half Duplex? */
1486 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1487 ctrl
&= ~E1000_CTRL_FD
;
1488 *phy_ctrl
&= ~MII_CR_FULL_DUPLEX
;
1489 e_dbg("Half Duplex\n");
1491 ctrl
|= E1000_CTRL_FD
;
1492 *phy_ctrl
|= MII_CR_FULL_DUPLEX
;
1493 e_dbg("Full Duplex\n");
1496 /* Forcing 10mb or 100mb? */
1497 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1498 ctrl
|= E1000_CTRL_SPD_100
;
1499 *phy_ctrl
|= MII_CR_SPEED_100
;
1500 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
1501 e_dbg("Forcing 100mb\n");
1503 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1504 *phy_ctrl
|= MII_CR_SPEED_10
;
1505 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
1506 e_dbg("Forcing 10mb\n");
1509 e1000e_config_collision_dist(hw
);
1515 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1516 * @hw: pointer to the HW structure
1517 * @active: boolean used to enable/disable lplu
1519 * Success returns 0, Failure returns 1
1521 * The low power link up (lplu) state is set to the power management level D3
1522 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1523 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1524 * is used during Dx states where the power conservation is most important.
1525 * During driver activity, SmartSpeed should be enabled so performance is
1528 s32
e1000e_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1530 struct e1000_phy_info
*phy
= &hw
->phy
;
1534 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1539 data
&= ~IGP02E1000_PM_D3_LPLU
;
1540 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1544 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1545 * during Dx states where the power conservation is most
1546 * important. During driver activity we should enable
1547 * SmartSpeed, so performance is maintained.
1549 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1550 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1555 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1556 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1560 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1561 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1566 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1567 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1572 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1573 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1574 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1575 data
|= IGP02E1000_PM_D3_LPLU
;
1576 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1580 /* When LPLU is enabled, we should disable SmartSpeed */
1581 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1585 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1586 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1593 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1594 * @hw: pointer to the HW structure
1596 * Success returns 0, Failure returns 1
1598 * A downshift is detected by querying the PHY link health.
1600 s32
e1000e_check_downshift(struct e1000_hw
*hw
)
1602 struct e1000_phy_info
*phy
= &hw
->phy
;
1604 u16 phy_data
, offset
, mask
;
1606 switch (phy
->type
) {
1608 case e1000_phy_gg82563
:
1610 case e1000_phy_82578
:
1611 offset
= M88E1000_PHY_SPEC_STATUS
;
1612 mask
= M88E1000_PSSR_DOWNSHIFT
;
1614 case e1000_phy_igp_2
:
1615 case e1000_phy_igp_3
:
1616 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1617 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1620 /* speed downshift not supported */
1621 phy
->speed_downgraded
= false;
1625 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1628 phy
->speed_downgraded
= (phy_data
& mask
);
1634 * e1000_check_polarity_m88 - Checks the polarity.
1635 * @hw: pointer to the HW structure
1637 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1639 * Polarity is determined based on the PHY specific status register.
1641 s32
e1000_check_polarity_m88(struct e1000_hw
*hw
)
1643 struct e1000_phy_info
*phy
= &hw
->phy
;
1647 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1650 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1651 ? e1000_rev_polarity_reversed
1652 : e1000_rev_polarity_normal
;
1658 * e1000_check_polarity_igp - Checks the polarity.
1659 * @hw: pointer to the HW structure
1661 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1663 * Polarity is determined based on the PHY port status register, and the
1664 * current speed (since there is no polarity at 100Mbps).
1666 s32
e1000_check_polarity_igp(struct e1000_hw
*hw
)
1668 struct e1000_phy_info
*phy
= &hw
->phy
;
1670 u16 data
, offset
, mask
;
1673 * Polarity is determined based on the speed of
1676 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1680 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1681 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1682 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1683 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1686 * This really only applies to 10Mbps since
1687 * there is no polarity for 100Mbps (always 0).
1689 offset
= IGP01E1000_PHY_PORT_STATUS
;
1690 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1693 ret_val
= e1e_rphy(hw
, offset
, &data
);
1696 phy
->cable_polarity
= (data
& mask
)
1697 ? e1000_rev_polarity_reversed
1698 : e1000_rev_polarity_normal
;
1704 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1705 * @hw: pointer to the HW structure
1707 * Polarity is determined on the polarity reversal feature being enabled.
1709 s32
e1000_check_polarity_ife(struct e1000_hw
*hw
)
1711 struct e1000_phy_info
*phy
= &hw
->phy
;
1713 u16 phy_data
, offset
, mask
;
1716 * Polarity is determined based on the reversal feature being enabled.
1718 if (phy
->polarity_correction
) {
1719 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
1720 mask
= IFE_PESC_POLARITY_REVERSED
;
1722 offset
= IFE_PHY_SPECIAL_CONTROL
;
1723 mask
= IFE_PSC_FORCE_POLARITY
;
1726 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1729 phy
->cable_polarity
= (phy_data
& mask
)
1730 ? e1000_rev_polarity_reversed
1731 : e1000_rev_polarity_normal
;
1737 * e1000_wait_autoneg - Wait for auto-neg completion
1738 * @hw: pointer to the HW structure
1740 * Waits for auto-negotiation to complete or for the auto-negotiation time
1741 * limit to expire, which ever happens first.
1743 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
)
1748 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1749 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1750 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1753 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1756 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
1762 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1769 * e1000e_phy_has_link_generic - Polls PHY for link
1770 * @hw: pointer to the HW structure
1771 * @iterations: number of times to poll for link
1772 * @usec_interval: delay between polling attempts
1773 * @success: pointer to whether polling was successful or not
1775 * Polls the PHY status register for link, 'iterations' number of times.
1777 s32
e1000e_phy_has_link_generic(struct e1000_hw
*hw
, u32 iterations
,
1778 u32 usec_interval
, bool *success
)
1783 for (i
= 0; i
< iterations
; i
++) {
1785 * Some PHYs require the PHY_STATUS register to be read
1786 * twice due to the link bit being sticky. No harm doing
1787 * it across the board.
1789 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1792 * If the first read fails, another entity may have
1793 * ownership of the resources, wait and try again to
1794 * see if they have relinquished the resources yet.
1796 udelay(usec_interval
);
1797 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1800 if (phy_status
& MII_SR_LINK_STATUS
)
1802 if (usec_interval
>= 1000)
1803 mdelay(usec_interval
/1000);
1805 udelay(usec_interval
);
1808 *success
= (i
< iterations
);
1814 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1815 * @hw: pointer to the HW structure
1817 * Reads the PHY specific status register to retrieve the cable length
1818 * information. The cable length is determined by averaging the minimum and
1819 * maximum values to get the "average" cable length. The m88 PHY has four
1820 * possible cable length values, which are:
1821 * Register Value Cable Length
1825 * 3 110 - 140 meters
1828 s32
e1000e_get_cable_length_m88(struct e1000_hw
*hw
)
1830 struct e1000_phy_info
*phy
= &hw
->phy
;
1832 u16 phy_data
, index
;
1834 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1838 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1839 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1840 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
- 1) {
1841 ret_val
= -E1000_ERR_PHY
;
1845 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1846 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1848 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1855 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1856 * @hw: pointer to the HW structure
1858 * The automatic gain control (agc) normalizes the amplitude of the
1859 * received signal, adjusting for the attenuation produced by the
1860 * cable. By reading the AGC registers, which represent the
1861 * combination of coarse and fine gain value, the value can be put
1862 * into a lookup table to obtain the approximate cable length
1865 s32
e1000e_get_cable_length_igp_2(struct e1000_hw
*hw
)
1867 struct e1000_phy_info
*phy
= &hw
->phy
;
1869 u16 phy_data
, i
, agc_value
= 0;
1870 u16 cur_agc_index
, max_agc_index
= 0;
1871 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1872 static const u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] = {
1873 IGP02E1000_PHY_AGC_A
,
1874 IGP02E1000_PHY_AGC_B
,
1875 IGP02E1000_PHY_AGC_C
,
1876 IGP02E1000_PHY_AGC_D
1879 /* Read the AGC registers for all channels */
1880 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1881 ret_val
= e1e_rphy(hw
, agc_reg_array
[i
], &phy_data
);
1886 * Getting bits 15:9, which represent the combination of
1887 * coarse and fine gain values. The result is a number
1888 * that can be put into the lookup table to obtain the
1889 * approximate cable length.
1891 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1892 IGP02E1000_AGC_LENGTH_MASK
;
1894 /* Array index bound check. */
1895 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1896 (cur_agc_index
== 0))
1897 return -E1000_ERR_PHY
;
1899 /* Remove min & max AGC values from calculation. */
1900 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1901 e1000_igp_2_cable_length_table
[cur_agc_index
])
1902 min_agc_index
= cur_agc_index
;
1903 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1904 e1000_igp_2_cable_length_table
[cur_agc_index
])
1905 max_agc_index
= cur_agc_index
;
1907 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1910 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1911 e1000_igp_2_cable_length_table
[max_agc_index
]);
1912 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1914 /* Calculate cable length with the error range of +/- 10 meters. */
1915 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1916 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1917 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1919 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1925 * e1000e_get_phy_info_m88 - Retrieve PHY information
1926 * @hw: pointer to the HW structure
1928 * Valid for only copper links. Read the PHY status register (sticky read)
1929 * to verify that link is up. Read the PHY special control register to
1930 * determine the polarity and 10base-T extended distance. Read the PHY
1931 * special status register to determine MDI/MDIx and current speed. If
1932 * speed is 1000, then determine cable length, local and remote receiver.
1934 s32
e1000e_get_phy_info_m88(struct e1000_hw
*hw
)
1936 struct e1000_phy_info
*phy
= &hw
->phy
;
1941 if (phy
->media_type
!= e1000_media_type_copper
) {
1942 e_dbg("Phy info is only valid for copper media\n");
1943 return -E1000_ERR_CONFIG
;
1946 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1951 e_dbg("Phy info is only valid if link is up\n");
1952 return -E1000_ERR_CONFIG
;
1955 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1959 phy
->polarity_correction
= (phy_data
&
1960 M88E1000_PSCR_POLARITY_REVERSAL
);
1962 ret_val
= e1000_check_polarity_m88(hw
);
1966 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1970 phy
->is_mdix
= (phy_data
& M88E1000_PSSR_MDIX
);
1972 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1973 ret_val
= e1000_get_cable_length(hw
);
1977 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_data
);
1981 phy
->local_rx
= (phy_data
& SR_1000T_LOCAL_RX_STATUS
)
1982 ? e1000_1000t_rx_status_ok
1983 : e1000_1000t_rx_status_not_ok
;
1985 phy
->remote_rx
= (phy_data
& SR_1000T_REMOTE_RX_STATUS
)
1986 ? e1000_1000t_rx_status_ok
1987 : e1000_1000t_rx_status_not_ok
;
1989 /* Set values to "undefined" */
1990 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1991 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1992 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1999 * e1000e_get_phy_info_igp - Retrieve igp PHY information
2000 * @hw: pointer to the HW structure
2002 * Read PHY status to determine if link is up. If link is up, then
2003 * set/determine 10base-T extended distance and polarity correction. Read
2004 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2005 * determine on the cable length, local and remote receiver.
2007 s32
e1000e_get_phy_info_igp(struct e1000_hw
*hw
)
2009 struct e1000_phy_info
*phy
= &hw
->phy
;
2014 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2019 e_dbg("Phy info is only valid if link is up\n");
2020 return -E1000_ERR_CONFIG
;
2023 phy
->polarity_correction
= true;
2025 ret_val
= e1000_check_polarity_igp(hw
);
2029 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
2033 phy
->is_mdix
= (data
& IGP01E1000_PSSR_MDIX
);
2035 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
2036 IGP01E1000_PSSR_SPEED_1000MBPS
) {
2037 ret_val
= e1000_get_cable_length(hw
);
2041 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &data
);
2045 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
2046 ? e1000_1000t_rx_status_ok
2047 : e1000_1000t_rx_status_not_ok
;
2049 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
2050 ? e1000_1000t_rx_status_ok
2051 : e1000_1000t_rx_status_not_ok
;
2053 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2054 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2055 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2062 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2063 * @hw: pointer to the HW structure
2065 * Populates "phy" structure with various feature states.
2067 s32
e1000_get_phy_info_ife(struct e1000_hw
*hw
)
2069 struct e1000_phy_info
*phy
= &hw
->phy
;
2074 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2079 e_dbg("Phy info is only valid if link is up\n");
2080 ret_val
= -E1000_ERR_CONFIG
;
2084 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
2087 phy
->polarity_correction
= (data
& IFE_PSC_AUTO_POLARITY_DISABLE
)
2090 if (phy
->polarity_correction
) {
2091 ret_val
= e1000_check_polarity_ife(hw
);
2095 /* Polarity is forced */
2096 phy
->cable_polarity
= (data
& IFE_PSC_FORCE_POLARITY
)
2097 ? e1000_rev_polarity_reversed
2098 : e1000_rev_polarity_normal
;
2101 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
2105 phy
->is_mdix
= (data
& IFE_PMC_MDIX_STATUS
) ? true : false;
2107 /* The following parameters are undefined for 10/100 operation. */
2108 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2109 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2110 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2117 * e1000e_phy_sw_reset - PHY software reset
2118 * @hw: pointer to the HW structure
2120 * Does a software reset of the PHY by reading the PHY control register and
2121 * setting/write the control register reset bit to the PHY.
2123 s32
e1000e_phy_sw_reset(struct e1000_hw
*hw
)
2128 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_ctrl
);
2132 phy_ctrl
|= MII_CR_RESET
;
2133 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_ctrl
);
2143 * e1000e_phy_hw_reset_generic - PHY hardware reset
2144 * @hw: pointer to the HW structure
2146 * Verify the reset block is not blocking us from resetting. Acquire
2147 * semaphore (if necessary) and read/set/write the device control reset
2148 * bit in the PHY. Wait the appropriate delay time for the device to
2149 * reset and release the semaphore (if necessary).
2151 s32
e1000e_phy_hw_reset_generic(struct e1000_hw
*hw
)
2153 struct e1000_phy_info
*phy
= &hw
->phy
;
2157 ret_val
= e1000_check_reset_block(hw
);
2161 ret_val
= phy
->ops
.acquire(hw
);
2166 ew32(CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
2169 udelay(phy
->reset_delay_us
);
2176 phy
->ops
.release(hw
);
2178 return e1000_get_phy_cfg_done(hw
);
2182 * e1000e_get_cfg_done - Generic configuration done
2183 * @hw: pointer to the HW structure
2185 * Generic function to wait 10 milli-seconds for configuration to complete
2186 * and return success.
2188 s32
e1000e_get_cfg_done(struct e1000_hw
*hw
)
2195 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2196 * @hw: pointer to the HW structure
2198 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2200 s32
e1000e_phy_init_script_igp3(struct e1000_hw
*hw
)
2202 e_dbg("Running IGP 3 PHY init script\n");
2204 /* PHY init IGP 3 */
2205 /* Enable rise/fall, 10-mode work in class-A */
2206 e1e_wphy(hw
, 0x2F5B, 0x9018);
2207 /* Remove all caps from Replica path filter */
2208 e1e_wphy(hw
, 0x2F52, 0x0000);
2209 /* Bias trimming for ADC, AFE and Driver (Default) */
2210 e1e_wphy(hw
, 0x2FB1, 0x8B24);
2211 /* Increase Hybrid poly bias */
2212 e1e_wphy(hw
, 0x2FB2, 0xF8F0);
2213 /* Add 4% to Tx amplitude in Gig mode */
2214 e1e_wphy(hw
, 0x2010, 0x10B0);
2215 /* Disable trimming (TTT) */
2216 e1e_wphy(hw
, 0x2011, 0x0000);
2217 /* Poly DC correction to 94.6% + 2% for all channels */
2218 e1e_wphy(hw
, 0x20DD, 0x249A);
2219 /* ABS DC correction to 95.9% */
2220 e1e_wphy(hw
, 0x20DE, 0x00D3);
2221 /* BG temp curve trim */
2222 e1e_wphy(hw
, 0x28B4, 0x04CE);
2223 /* Increasing ADC OPAMP stage 1 currents to max */
2224 e1e_wphy(hw
, 0x2F70, 0x29E4);
2225 /* Force 1000 ( required for enabling PHY regs configuration) */
2226 e1e_wphy(hw
, 0x0000, 0x0140);
2227 /* Set upd_freq to 6 */
2228 e1e_wphy(hw
, 0x1F30, 0x1606);
2230 e1e_wphy(hw
, 0x1F31, 0xB814);
2231 /* Disable adaptive fixed FFE (Default) */
2232 e1e_wphy(hw
, 0x1F35, 0x002A);
2233 /* Enable FFE hysteresis */
2234 e1e_wphy(hw
, 0x1F3E, 0x0067);
2235 /* Fixed FFE for short cable lengths */
2236 e1e_wphy(hw
, 0x1F54, 0x0065);
2237 /* Fixed FFE for medium cable lengths */
2238 e1e_wphy(hw
, 0x1F55, 0x002A);
2239 /* Fixed FFE for long cable lengths */
2240 e1e_wphy(hw
, 0x1F56, 0x002A);
2241 /* Enable Adaptive Clip Threshold */
2242 e1e_wphy(hw
, 0x1F72, 0x3FB0);
2243 /* AHT reset limit to 1 */
2244 e1e_wphy(hw
, 0x1F76, 0xC0FF);
2245 /* Set AHT master delay to 127 msec */
2246 e1e_wphy(hw
, 0x1F77, 0x1DEC);
2247 /* Set scan bits for AHT */
2248 e1e_wphy(hw
, 0x1F78, 0xF9EF);
2249 /* Set AHT Preset bits */
2250 e1e_wphy(hw
, 0x1F79, 0x0210);
2251 /* Change integ_factor of channel A to 3 */
2252 e1e_wphy(hw
, 0x1895, 0x0003);
2253 /* Change prop_factor of channels BCD to 8 */
2254 e1e_wphy(hw
, 0x1796, 0x0008);
2255 /* Change cg_icount + enable integbp for channels BCD */
2256 e1e_wphy(hw
, 0x1798, 0xD008);
2258 * Change cg_icount + enable integbp + change prop_factor_master
2259 * to 8 for channel A
2261 e1e_wphy(hw
, 0x1898, 0xD918);
2262 /* Disable AHT in Slave mode on channel A */
2263 e1e_wphy(hw
, 0x187A, 0x0800);
2265 * Enable LPLU and disable AN to 1000 in non-D0a states,
2268 e1e_wphy(hw
, 0x0019, 0x008D);
2269 /* Enable restart AN on an1000_dis change */
2270 e1e_wphy(hw
, 0x001B, 0x2080);
2271 /* Enable wh_fifo read clock in 10/100 modes */
2272 e1e_wphy(hw
, 0x0014, 0x0045);
2273 /* Restart AN, Speed selection is 1000 */
2274 e1e_wphy(hw
, 0x0000, 0x1340);
2279 /* Internal function pointers */
2282 * e1000_get_phy_cfg_done - Generic PHY configuration done
2283 * @hw: pointer to the HW structure
2285 * Return success if silicon family did not implement a family specific
2286 * get_cfg_done function.
2288 static s32
e1000_get_phy_cfg_done(struct e1000_hw
*hw
)
2290 if (hw
->phy
.ops
.get_cfg_done
)
2291 return hw
->phy
.ops
.get_cfg_done(hw
);
2297 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2298 * @hw: pointer to the HW structure
2300 * When the silicon family has not implemented a forced speed/duplex
2301 * function for the PHY, simply return 0.
2303 static s32
e1000_phy_force_speed_duplex(struct e1000_hw
*hw
)
2305 if (hw
->phy
.ops
.force_speed_duplex
)
2306 return hw
->phy
.ops
.force_speed_duplex(hw
);
2312 * e1000e_get_phy_type_from_id - Get PHY type from id
2313 * @phy_id: phy_id read from the phy
2315 * Returns the phy type from the id.
2317 enum e1000_phy_type
e1000e_get_phy_type_from_id(u32 phy_id
)
2319 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2322 case M88E1000_I_PHY_ID
:
2323 case M88E1000_E_PHY_ID
:
2324 case M88E1111_I_PHY_ID
:
2325 case M88E1011_I_PHY_ID
:
2326 phy_type
= e1000_phy_m88
;
2328 case IGP01E1000_I_PHY_ID
: /* IGP 1 & 2 share this */
2329 phy_type
= e1000_phy_igp_2
;
2331 case GG82563_E_PHY_ID
:
2332 phy_type
= e1000_phy_gg82563
;
2334 case IGP03E1000_E_PHY_ID
:
2335 phy_type
= e1000_phy_igp_3
;
2338 case IFE_PLUS_E_PHY_ID
:
2339 case IFE_C_E_PHY_ID
:
2340 phy_type
= e1000_phy_ife
;
2342 case BME1000_E_PHY_ID
:
2343 case BME1000_E_PHY_ID_R2
:
2344 phy_type
= e1000_phy_bm
;
2346 case I82578_E_PHY_ID
:
2347 phy_type
= e1000_phy_82578
;
2349 case I82577_E_PHY_ID
:
2350 phy_type
= e1000_phy_82577
;
2352 case I82579_E_PHY_ID
:
2353 phy_type
= e1000_phy_82579
;
2356 phy_type
= e1000_phy_unknown
;
2363 * e1000e_determine_phy_address - Determines PHY address.
2364 * @hw: pointer to the HW structure
2366 * This uses a trial and error method to loop through possible PHY
2367 * addresses. It tests each by reading the PHY ID registers and
2368 * checking for a match.
2370 s32
e1000e_determine_phy_address(struct e1000_hw
*hw
)
2372 s32 ret_val
= -E1000_ERR_PHY_TYPE
;
2375 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2377 hw
->phy
.id
= phy_type
;
2379 for (phy_addr
= 0; phy_addr
< E1000_MAX_PHY_ADDR
; phy_addr
++) {
2380 hw
->phy
.addr
= phy_addr
;
2384 e1000e_get_phy_id(hw
);
2385 phy_type
= e1000e_get_phy_type_from_id(hw
->phy
.id
);
2388 * If phy_type is valid, break - we found our
2391 if (phy_type
!= e1000_phy_unknown
) {
2395 usleep_range(1000, 2000);
2405 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2406 * @page: page to access
2408 * Returns the phy address for the page requested.
2410 static u32
e1000_get_phy_addr_for_bm_page(u32 page
, u32 reg
)
2414 if ((page
>= 768) || (page
== 0 && reg
== 25) || (reg
== 31))
2421 * e1000e_write_phy_reg_bm - Write BM PHY register
2422 * @hw: pointer to the HW structure
2423 * @offset: register offset to write to
2424 * @data: data to write at register offset
2426 * Acquires semaphore, if necessary, then writes the data to PHY register
2427 * at the offset. Release any acquired semaphores before exiting.
2429 s32
e1000e_write_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2432 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2434 ret_val
= hw
->phy
.ops
.acquire(hw
);
2438 /* Page 800 works differently than the rest so it has its own func */
2439 if (page
== BM_WUC_PAGE
) {
2440 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2445 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2447 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2448 u32 page_shift
, page_select
;
2451 * Page select is register 31 for phy address 1 and 22 for
2452 * phy address 2 and 3. Page select is shifted only for
2455 if (hw
->phy
.addr
== 1) {
2456 page_shift
= IGP_PAGE_SHIFT
;
2457 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2460 page_select
= BM_PHY_PAGE_SELECT
;
2463 /* Page is shifted left, PHY expects (page x 32) */
2464 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2465 (page
<< page_shift
));
2470 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2474 hw
->phy
.ops
.release(hw
);
2479 * e1000e_read_phy_reg_bm - Read BM PHY register
2480 * @hw: pointer to the HW structure
2481 * @offset: register offset to be read
2482 * @data: pointer to the read data
2484 * Acquires semaphore, if necessary, then reads the PHY register at offset
2485 * and storing the retrieved information in data. Release any acquired
2486 * semaphores before exiting.
2488 s32
e1000e_read_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2491 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2493 ret_val
= hw
->phy
.ops
.acquire(hw
);
2497 /* Page 800 works differently than the rest so it has its own func */
2498 if (page
== BM_WUC_PAGE
) {
2499 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2504 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2506 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2507 u32 page_shift
, page_select
;
2510 * Page select is register 31 for phy address 1 and 22 for
2511 * phy address 2 and 3. Page select is shifted only for
2514 if (hw
->phy
.addr
== 1) {
2515 page_shift
= IGP_PAGE_SHIFT
;
2516 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2519 page_select
= BM_PHY_PAGE_SELECT
;
2522 /* Page is shifted left, PHY expects (page x 32) */
2523 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2524 (page
<< page_shift
));
2529 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2532 hw
->phy
.ops
.release(hw
);
2537 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2538 * @hw: pointer to the HW structure
2539 * @offset: register offset to be read
2540 * @data: pointer to the read data
2542 * Acquires semaphore, if necessary, then reads the PHY register at offset
2543 * and storing the retrieved information in data. Release any acquired
2544 * semaphores before exiting.
2546 s32
e1000e_read_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2549 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2551 ret_val
= hw
->phy
.ops
.acquire(hw
);
2555 /* Page 800 works differently than the rest so it has its own func */
2556 if (page
== BM_WUC_PAGE
) {
2557 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2564 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2566 /* Page is shifted left, PHY expects (page x 32) */
2567 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2574 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2577 hw
->phy
.ops
.release(hw
);
2582 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2583 * @hw: pointer to the HW structure
2584 * @offset: register offset to write to
2585 * @data: data to write at register offset
2587 * Acquires semaphore, if necessary, then writes the data to PHY register
2588 * at the offset. Release any acquired semaphores before exiting.
2590 s32
e1000e_write_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2593 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2595 ret_val
= hw
->phy
.ops
.acquire(hw
);
2599 /* Page 800 works differently than the rest so it has its own func */
2600 if (page
== BM_WUC_PAGE
) {
2601 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2608 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2609 /* Page is shifted left, PHY expects (page x 32) */
2610 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2617 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2621 hw
->phy
.ops
.release(hw
);
2626 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2627 * @hw: pointer to the HW structure
2628 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2630 * Assumes semaphore already acquired and phy_reg points to a valid memory
2631 * address to store contents of the BM_WUC_ENABLE_REG register.
2633 s32
e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2638 /* All page select, port ctrl and wakeup registers use phy address 1 */
2641 /* Select Port Control Registers page */
2642 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2644 e_dbg("Could not set Port Control page\n");
2648 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
2650 e_dbg("Could not read PHY register %d.%d\n",
2651 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2656 * Enable both PHY wakeup mode and Wakeup register page writes.
2657 * Prevent a power state change by disabling ME and Host PHY wakeup.
2660 temp
|= BM_WUC_ENABLE_BIT
;
2661 temp
&= ~(BM_WUC_ME_WU_BIT
| BM_WUC_HOST_WU_BIT
);
2663 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, temp
);
2665 e_dbg("Could not write PHY register %d.%d\n",
2666 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2670 /* Select Host Wakeup Registers page */
2671 ret_val
= e1000_set_page_igp(hw
, (BM_WUC_PAGE
<< IGP_PAGE_SHIFT
));
2673 /* caller now able to write registers on the Wakeup registers page */
2679 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2680 * @hw: pointer to the HW structure
2681 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2683 * Restore BM_WUC_ENABLE_REG to its original value.
2685 * Assumes semaphore already acquired and *phy_reg is the contents of the
2686 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2689 s32
e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2693 /* Select Port Control Registers page */
2694 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2696 e_dbg("Could not set Port Control page\n");
2700 /* Restore 769.17 to its original value */
2701 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, *phy_reg
);
2703 e_dbg("Could not restore PHY register %d.%d\n",
2704 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2710 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2711 * @hw: pointer to the HW structure
2712 * @offset: register offset to be read or written
2713 * @data: pointer to the data to read or write
2714 * @read: determines if operation is read or write
2715 * @page_set: BM_WUC_PAGE already set and access enabled
2717 * Read the PHY register at offset and store the retrieved information in
2718 * data, or write data to PHY register at offset. Note the procedure to
2719 * access the PHY wakeup registers is different than reading the other PHY
2720 * registers. It works as such:
2721 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2722 * 2) Set page to 800 for host (801 if we were manageability)
2723 * 3) Write the address using the address opcode (0x11)
2724 * 4) Read or write the data using the data opcode (0x12)
2725 * 5) Restore 769.17.2 to its original value
2727 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2728 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2730 * Assumes semaphore is already acquired. When page_set==true, assumes
2731 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2732 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2734 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
2735 u16
*data
, bool read
, bool page_set
)
2738 u16 reg
= BM_PHY_REG_NUM(offset
);
2739 u16 page
= BM_PHY_REG_PAGE(offset
);
2742 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2743 if ((hw
->mac
.type
== e1000_pchlan
) &&
2744 (!(er32(PHY_CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)))
2745 e_dbg("Attempting to access page %d while gig enabled.\n",
2749 /* Enable access to PHY wakeup registers */
2750 ret_val
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2752 e_dbg("Could not enable PHY wakeup reg access\n");
2757 e_dbg("Accessing PHY page %d reg 0x%x\n", page
, reg
);
2759 /* Write the Wakeup register page offset value using opcode 0x11 */
2760 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ADDRESS_OPCODE
, reg
);
2762 e_dbg("Could not write address opcode to page %d\n", page
);
2767 /* Read the Wakeup register page value using opcode 0x12 */
2768 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2771 /* Write the Wakeup register page value using opcode 0x12 */
2772 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2777 e_dbg("Could not access PHY reg %d.%d\n", page
, reg
);
2782 ret_val
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2789 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2790 * @hw: pointer to the HW structure
2792 * In the case of a PHY power down to save power, or to turn off link during a
2793 * driver unload, or wake on lan is not enabled, restore the link to previous
2796 void e1000_power_up_phy_copper(struct e1000_hw
*hw
)
2800 /* The PHY will retain its settings across a power down/up cycle */
2801 e1e_rphy(hw
, PHY_CONTROL
, &mii_reg
);
2802 mii_reg
&= ~MII_CR_POWER_DOWN
;
2803 e1e_wphy(hw
, PHY_CONTROL
, mii_reg
);
2807 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2808 * @hw: pointer to the HW structure
2810 * In the case of a PHY power down to save power, or to turn off link during a
2811 * driver unload, or wake on lan is not enabled, restore the link to previous
2814 void e1000_power_down_phy_copper(struct e1000_hw
*hw
)
2818 /* The PHY will retain its settings across a power down/up cycle */
2819 e1e_rphy(hw
, PHY_CONTROL
, &mii_reg
);
2820 mii_reg
|= MII_CR_POWER_DOWN
;
2821 e1e_wphy(hw
, PHY_CONTROL
, mii_reg
);
2822 usleep_range(1000, 2000);
2826 * e1000e_commit_phy - Soft PHY reset
2827 * @hw: pointer to the HW structure
2829 * Performs a soft PHY reset on those that apply. This is a function pointer
2830 * entry point called by drivers.
2832 s32
e1000e_commit_phy(struct e1000_hw
*hw
)
2834 if (hw
->phy
.ops
.commit
)
2835 return hw
->phy
.ops
.commit(hw
);
2841 * e1000_set_d0_lplu_state - Sets low power link up state for D0
2842 * @hw: pointer to the HW structure
2843 * @active: boolean used to enable/disable lplu
2845 * Success returns 0, Failure returns 1
2847 * The low power link up (lplu) state is set to the power management level D0
2848 * and SmartSpeed is disabled when active is true, else clear lplu for D0
2849 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2850 * is used during Dx states where the power conservation is most important.
2851 * During driver activity, SmartSpeed should be enabled so performance is
2852 * maintained. This is a function pointer entry point called by drivers.
2854 static s32
e1000_set_d0_lplu_state(struct e1000_hw
*hw
, bool active
)
2856 if (hw
->phy
.ops
.set_d0_lplu_state
)
2857 return hw
->phy
.ops
.set_d0_lplu_state(hw
, active
);
2863 * __e1000_read_phy_reg_hv - Read HV PHY register
2864 * @hw: pointer to the HW structure
2865 * @offset: register offset to be read
2866 * @data: pointer to the read data
2867 * @locked: semaphore has already been acquired or not
2869 * Acquires semaphore, if necessary, then reads the PHY register at offset
2870 * and stores the retrieved information in data. Release any acquired
2871 * semaphore before exiting.
2873 static s32
__e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
2874 bool locked
, bool page_set
)
2877 u16 page
= BM_PHY_REG_PAGE(offset
);
2878 u16 reg
= BM_PHY_REG_NUM(offset
);
2879 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2882 ret_val
= hw
->phy
.ops
.acquire(hw
);
2887 /* Page 800 works differently than the rest so it has its own func */
2888 if (page
== BM_WUC_PAGE
) {
2889 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2894 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2895 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2901 if (page
== HV_INTC_FC_PAGE_START
)
2904 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2905 /* Page is shifted left, PHY expects (page x 32) */
2906 ret_val
= e1000_set_page_igp(hw
,
2907 (page
<< IGP_PAGE_SHIFT
));
2909 hw
->phy
.addr
= phy_addr
;
2916 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
2917 page
<< IGP_PAGE_SHIFT
, reg
);
2919 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
,
2923 hw
->phy
.ops
.release(hw
);
2929 * e1000_read_phy_reg_hv - Read HV PHY register
2930 * @hw: pointer to the HW structure
2931 * @offset: register offset to be read
2932 * @data: pointer to the read data
2934 * Acquires semaphore then reads the PHY register at offset and stores
2935 * the retrieved information in data. Release the acquired semaphore
2938 s32
e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2940 return __e1000_read_phy_reg_hv(hw
, offset
, data
, false, false);
2944 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2945 * @hw: pointer to the HW structure
2946 * @offset: register offset to be read
2947 * @data: pointer to the read data
2949 * Reads the PHY register at offset and stores the retrieved information
2950 * in data. Assumes semaphore already acquired.
2952 s32
e1000_read_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2954 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, false);
2958 * e1000_read_phy_reg_page_hv - Read HV PHY register
2959 * @hw: pointer to the HW structure
2960 * @offset: register offset to write to
2961 * @data: data to write at register offset
2963 * Reads the PHY register at offset and stores the retrieved information
2964 * in data. Assumes semaphore already acquired and page already set.
2966 s32
e1000_read_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2968 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, true);
2972 * __e1000_write_phy_reg_hv - Write HV PHY register
2973 * @hw: pointer to the HW structure
2974 * @offset: register offset to write to
2975 * @data: data to write at register offset
2976 * @locked: semaphore has already been acquired or not
2978 * Acquires semaphore, if necessary, then writes the data to PHY register
2979 * at the offset. Release any acquired semaphores before exiting.
2981 static s32
__e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
,
2982 bool locked
, bool page_set
)
2985 u16 page
= BM_PHY_REG_PAGE(offset
);
2986 u16 reg
= BM_PHY_REG_NUM(offset
);
2987 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2990 ret_val
= hw
->phy
.ops
.acquire(hw
);
2995 /* Page 800 works differently than the rest so it has its own func */
2996 if (page
== BM_WUC_PAGE
) {
2997 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
3002 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
3003 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
3009 if (page
== HV_INTC_FC_PAGE_START
)
3013 * Workaround MDIO accesses being disabled after entering IEEE
3014 * Power Down (when bit 11 of the PHY Control register is set)
3016 if ((hw
->phy
.type
== e1000_phy_82578
) &&
3017 (hw
->phy
.revision
>= 1) &&
3018 (hw
->phy
.addr
== 2) &&
3019 ((MAX_PHY_REG_ADDRESS
& reg
) == 0) && (data
& (1 << 11))) {
3021 ret_val
= e1000_access_phy_debug_regs_hv(hw
,
3028 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
3029 /* Page is shifted left, PHY expects (page x 32) */
3030 ret_val
= e1000_set_page_igp(hw
,
3031 (page
<< IGP_PAGE_SHIFT
));
3033 hw
->phy
.addr
= phy_addr
;
3040 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
3041 page
<< IGP_PAGE_SHIFT
, reg
);
3043 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
,
3048 hw
->phy
.ops
.release(hw
);
3054 * e1000_write_phy_reg_hv - Write HV PHY register
3055 * @hw: pointer to the HW structure
3056 * @offset: register offset to write to
3057 * @data: data to write at register offset
3059 * Acquires semaphore then writes the data to PHY register at the offset.
3060 * Release the acquired semaphores before exiting.
3062 s32
e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
3064 return __e1000_write_phy_reg_hv(hw
, offset
, data
, false, false);
3068 * e1000_write_phy_reg_hv_locked - Write HV PHY register
3069 * @hw: pointer to the HW structure
3070 * @offset: register offset to write to
3071 * @data: data to write at register offset
3073 * Writes the data to PHY register at the offset. Assumes semaphore
3076 s32
e1000_write_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
3078 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, false);
3082 * e1000_write_phy_reg_page_hv - Write HV PHY register
3083 * @hw: pointer to the HW structure
3084 * @offset: register offset to write to
3085 * @data: data to write at register offset
3087 * Writes the data to PHY register at the offset. Assumes semaphore
3088 * already acquired and page already set.
3090 s32
e1000_write_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
3092 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, true);
3096 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3097 * @page: page to be accessed
3099 static u32
e1000_get_phy_addr_for_hv_page(u32 page
)
3103 if (page
>= HV_INTC_FC_PAGE_START
)
3110 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3111 * @hw: pointer to the HW structure
3112 * @offset: register offset to be read or written
3113 * @data: pointer to the data to be read or written
3114 * @read: determines if operation is read or write
3116 * Reads the PHY register at offset and stores the retreived information
3117 * in data. Assumes semaphore already acquired. Note that the procedure
3118 * to access these regs uses the address port and data port to read/write.
3119 * These accesses done with PHY address 2 and without using pages.
3121 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
3122 u16
*data
, bool read
)
3128 /* This takes care of the difference with desktop vs mobile phy */
3129 addr_reg
= (hw
->phy
.type
== e1000_phy_82578
) ?
3130 I82578_ADDR_REG
: I82577_ADDR_REG
;
3131 data_reg
= addr_reg
+ 1;
3133 /* All operations in this function are phy address 2 */
3136 /* masking with 0x3F to remove the page from offset */
3137 ret_val
= e1000e_write_phy_reg_mdic(hw
, addr_reg
, (u16
)offset
& 0x3F);
3139 e_dbg("Could not write the Address Offset port register\n");
3143 /* Read or write the data value next */
3145 ret_val
= e1000e_read_phy_reg_mdic(hw
, data_reg
, data
);
3147 ret_val
= e1000e_write_phy_reg_mdic(hw
, data_reg
, *data
);
3150 e_dbg("Could not access the Data port register\n");
3159 * e1000_link_stall_workaround_hv - Si workaround
3160 * @hw: pointer to the HW structure
3162 * This function works around a Si bug where the link partner can get
3163 * a link up indication before the PHY does. If small packets are sent
3164 * by the link partner they can be placed in the packet buffer without
3165 * being properly accounted for by the PHY and will stall preventing
3166 * further packets from being received. The workaround is to clear the
3167 * packet buffer after the PHY detects link up.
3169 s32
e1000_link_stall_workaround_hv(struct e1000_hw
*hw
)
3174 if (hw
->phy
.type
!= e1000_phy_82578
)
3177 /* Do not apply workaround if in PHY loopback bit 14 set */
3178 e1e_rphy(hw
, PHY_CONTROL
, &data
);
3179 if (data
& PHY_CONTROL_LB
)
3182 /* check if link is up and at 1Gbps */
3183 ret_val
= e1e_rphy(hw
, BM_CS_STATUS
, &data
);
3187 data
&= BM_CS_STATUS_LINK_UP
|
3188 BM_CS_STATUS_RESOLVED
|
3189 BM_CS_STATUS_SPEED_MASK
;
3191 if (data
!= (BM_CS_STATUS_LINK_UP
|
3192 BM_CS_STATUS_RESOLVED
|
3193 BM_CS_STATUS_SPEED_1000
))
3198 /* flush the packets in the fifo buffer */
3199 ret_val
= e1e_wphy(hw
, HV_MUX_DATA_CTRL
, HV_MUX_DATA_CTRL_GEN_TO_MAC
|
3200 HV_MUX_DATA_CTRL_FORCE_SPEED
);
3204 ret_val
= e1e_wphy(hw
, HV_MUX_DATA_CTRL
, HV_MUX_DATA_CTRL_GEN_TO_MAC
);
3211 * e1000_check_polarity_82577 - Checks the polarity.
3212 * @hw: pointer to the HW structure
3214 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3216 * Polarity is determined based on the PHY specific status register.
3218 s32
e1000_check_polarity_82577(struct e1000_hw
*hw
)
3220 struct e1000_phy_info
*phy
= &hw
->phy
;
3224 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3227 phy
->cable_polarity
= (data
& I82577_PHY_STATUS2_REV_POLARITY
)
3228 ? e1000_rev_polarity_reversed
3229 : e1000_rev_polarity_normal
;
3235 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3236 * @hw: pointer to the HW structure
3238 * Calls the PHY setup function to force speed and duplex.
3240 s32
e1000_phy_force_speed_duplex_82577(struct e1000_hw
*hw
)
3242 struct e1000_phy_info
*phy
= &hw
->phy
;
3247 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
3251 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
3253 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
3259 if (phy
->autoneg_wait_to_complete
) {
3260 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3262 ret_val
= e1000e_phy_has_link_generic(hw
,
3270 e_dbg("Link taking longer than expected.\n");
3273 ret_val
= e1000e_phy_has_link_generic(hw
,
3286 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3287 * @hw: pointer to the HW structure
3289 * Read PHY status to determine if link is up. If link is up, then
3290 * set/determine 10base-T extended distance and polarity correction. Read
3291 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3292 * determine on the cable length, local and remote receiver.
3294 s32
e1000_get_phy_info_82577(struct e1000_hw
*hw
)
3296 struct e1000_phy_info
*phy
= &hw
->phy
;
3301 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3306 e_dbg("Phy info is only valid if link is up\n");
3307 ret_val
= -E1000_ERR_CONFIG
;
3311 phy
->polarity_correction
= true;
3313 ret_val
= e1000_check_polarity_82577(hw
);
3317 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3321 phy
->is_mdix
= (data
& I82577_PHY_STATUS2_MDIX
) ? true : false;
3323 if ((data
& I82577_PHY_STATUS2_SPEED_MASK
) ==
3324 I82577_PHY_STATUS2_SPEED_1000MBPS
) {
3325 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
3329 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &data
);
3333 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
3334 ? e1000_1000t_rx_status_ok
3335 : e1000_1000t_rx_status_not_ok
;
3337 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
3338 ? e1000_1000t_rx_status_ok
3339 : e1000_1000t_rx_status_not_ok
;
3341 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
3342 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
3343 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
3351 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3352 * @hw: pointer to the HW structure
3354 * Reads the diagnostic status register and verifies result is valid before
3355 * placing it in the phy_cable_length field.
3357 s32
e1000_get_cable_length_82577(struct e1000_hw
*hw
)
3359 struct e1000_phy_info
*phy
= &hw
->phy
;
3361 u16 phy_data
, length
;
3363 ret_val
= e1e_rphy(hw
, I82577_PHY_DIAG_STATUS
, &phy_data
);
3367 length
= (phy_data
& I82577_DSTATUS_CABLE_LENGTH
) >>
3368 I82577_DSTATUS_CABLE_LENGTH_SHIFT
;
3370 if (length
== E1000_CABLE_LENGTH_UNDEFINED
)
3371 ret_val
= -E1000_ERR_PHY
;
3373 phy
->cable_length
= length
;