drivers/tty/serial/pch_uart.c needs slab.h
[linux-2.6/next.git] / kernel / rcutree.c
blobf07d2f03181a9b6c296a09e5e2869ea7c5844580
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
54 #include "rcutree.h"
56 /* Data structures. */
58 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
60 #define RCU_STATE_INITIALIZER(structname) { \
61 .level = { &structname.node[0] }, \
62 .levelcnt = { \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_1, \
65 NUM_RCU_LVL_2, \
66 NUM_RCU_LVL_3, \
67 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_GP_IDLE, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
79 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
80 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
83 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85 static struct rcu_state *rcu_state;
87 int rcu_scheduler_active __read_mostly;
88 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
91 * Control variables for per-CPU and per-rcu_node kthreads. These
92 * handle all flavors of RCU.
94 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
95 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
96 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
97 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
98 static DEFINE_PER_CPU(wait_queue_head_t, rcu_cpu_wq);
99 DEFINE_PER_CPU(char, rcu_cpu_has_work);
100 static char rcu_kthreads_spawnable;
102 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
103 static void invoke_rcu_cpu_kthread(void);
105 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
108 * Track the rcutorture test sequence number and the update version
109 * number within a given test. The rcutorture_testseq is incremented
110 * on every rcutorture module load and unload, so has an odd value
111 * when a test is running. The rcutorture_vernum is set to zero
112 * when rcutorture starts and is incremented on each rcutorture update.
113 * These variables enable correlating rcutorture output with the
114 * RCU tracing information.
116 unsigned long rcutorture_testseq;
117 unsigned long rcutorture_vernum;
120 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
121 * permit this function to be invoked without holding the root rcu_node
122 * structure's ->lock, but of course results can be subject to change.
124 static int rcu_gp_in_progress(struct rcu_state *rsp)
126 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
130 * Note a quiescent state. Because we do not need to know
131 * how many quiescent states passed, just if there was at least
132 * one since the start of the grace period, this just sets a flag.
134 void rcu_sched_qs(int cpu)
136 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
138 rdp->passed_quiesc_completed = rdp->gpnum - 1;
139 barrier();
140 rdp->passed_quiesc = 1;
143 void rcu_bh_qs(int cpu)
145 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
147 rdp->passed_quiesc_completed = rdp->gpnum - 1;
148 barrier();
149 rdp->passed_quiesc = 1;
153 * Note a context switch. This is a quiescent state for RCU-sched,
154 * and requires special handling for preemptible RCU.
156 void rcu_note_context_switch(int cpu)
158 rcu_sched_qs(cpu);
159 rcu_preempt_note_context_switch(cpu);
161 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
163 #ifdef CONFIG_NO_HZ
164 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
165 .dynticks_nesting = 1,
166 .dynticks = 1,
168 #endif /* #ifdef CONFIG_NO_HZ */
170 static int blimit = 10; /* Maximum callbacks per softirq. */
171 static int qhimark = 10000; /* If this many pending, ignore blimit. */
172 static int qlowmark = 100; /* Once only this many pending, use blimit. */
174 module_param(blimit, int, 0);
175 module_param(qhimark, int, 0);
176 module_param(qlowmark, int, 0);
178 int rcu_cpu_stall_suppress __read_mostly;
179 module_param(rcu_cpu_stall_suppress, int, 0644);
181 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
182 static int rcu_pending(int cpu);
185 * Return the number of RCU-sched batches processed thus far for debug & stats.
187 long rcu_batches_completed_sched(void)
189 return rcu_sched_state.completed;
191 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
194 * Return the number of RCU BH batches processed thus far for debug & stats.
196 long rcu_batches_completed_bh(void)
198 return rcu_bh_state.completed;
200 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
203 * Force a quiescent state for RCU BH.
205 void rcu_bh_force_quiescent_state(void)
207 force_quiescent_state(&rcu_bh_state, 0);
209 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
212 * Record the number of times rcutorture tests have been initiated and
213 * terminated. This information allows the debugfs tracing stats to be
214 * correlated to the rcutorture messages, even when the rcutorture module
215 * is being repeatedly loaded and unloaded. In other words, we cannot
216 * store this state in rcutorture itself.
218 void rcutorture_record_test_transition(void)
220 rcutorture_testseq++;
221 rcutorture_vernum = 0;
223 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
226 * Record the number of writer passes through the current rcutorture test.
227 * This is also used to correlate debugfs tracing stats with the rcutorture
228 * messages.
230 void rcutorture_record_progress(unsigned long vernum)
232 rcutorture_vernum++;
234 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
237 * Force a quiescent state for RCU-sched.
239 void rcu_sched_force_quiescent_state(void)
241 force_quiescent_state(&rcu_sched_state, 0);
243 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
246 * Does the CPU have callbacks ready to be invoked?
248 static int
249 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
251 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
255 * Does the current CPU require a yet-as-unscheduled grace period?
257 static int
258 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
260 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
264 * Return the root node of the specified rcu_state structure.
266 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
268 return &rsp->node[0];
271 #ifdef CONFIG_SMP
274 * If the specified CPU is offline, tell the caller that it is in
275 * a quiescent state. Otherwise, whack it with a reschedule IPI.
276 * Grace periods can end up waiting on an offline CPU when that
277 * CPU is in the process of coming online -- it will be added to the
278 * rcu_node bitmasks before it actually makes it online. The same thing
279 * can happen while a CPU is in the process of coming online. Because this
280 * race is quite rare, we check for it after detecting that the grace
281 * period has been delayed rather than checking each and every CPU
282 * each and every time we start a new grace period.
284 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
287 * If the CPU is offline, it is in a quiescent state. We can
288 * trust its state not to change because interrupts are disabled.
290 if (cpu_is_offline(rdp->cpu)) {
291 rdp->offline_fqs++;
292 return 1;
295 /* If preemptible RCU, no point in sending reschedule IPI. */
296 if (rdp->preemptible)
297 return 0;
299 /* The CPU is online, so send it a reschedule IPI. */
300 if (rdp->cpu != smp_processor_id())
301 smp_send_reschedule(rdp->cpu);
302 else
303 set_need_resched();
304 rdp->resched_ipi++;
305 return 0;
308 #endif /* #ifdef CONFIG_SMP */
310 #ifdef CONFIG_NO_HZ
313 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
315 * Enter nohz mode, in other words, -leave- the mode in which RCU
316 * read-side critical sections can occur. (Though RCU read-side
317 * critical sections can occur in irq handlers in nohz mode, a possibility
318 * handled by rcu_irq_enter() and rcu_irq_exit()).
320 void rcu_enter_nohz(void)
322 unsigned long flags;
323 struct rcu_dynticks *rdtp;
325 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
326 local_irq_save(flags);
327 rdtp = &__get_cpu_var(rcu_dynticks);
328 rdtp->dynticks++;
329 rdtp->dynticks_nesting--;
330 WARN_ON_ONCE(rdtp->dynticks & 0x1);
331 local_irq_restore(flags);
335 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
337 * Exit nohz mode, in other words, -enter- the mode in which RCU
338 * read-side critical sections normally occur.
340 void rcu_exit_nohz(void)
342 unsigned long flags;
343 struct rcu_dynticks *rdtp;
345 local_irq_save(flags);
346 rdtp = &__get_cpu_var(rcu_dynticks);
347 rdtp->dynticks++;
348 rdtp->dynticks_nesting++;
349 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
350 local_irq_restore(flags);
351 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
355 * rcu_nmi_enter - inform RCU of entry to NMI context
357 * If the CPU was idle with dynamic ticks active, and there is no
358 * irq handler running, this updates rdtp->dynticks_nmi to let the
359 * RCU grace-period handling know that the CPU is active.
361 void rcu_nmi_enter(void)
363 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
365 if (rdtp->dynticks & 0x1)
366 return;
367 rdtp->dynticks_nmi++;
368 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
369 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
373 * rcu_nmi_exit - inform RCU of exit from NMI context
375 * If the CPU was idle with dynamic ticks active, and there is no
376 * irq handler running, this updates rdtp->dynticks_nmi to let the
377 * RCU grace-period handling know that the CPU is no longer active.
379 void rcu_nmi_exit(void)
381 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
383 if (rdtp->dynticks & 0x1)
384 return;
385 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
386 rdtp->dynticks_nmi++;
387 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
391 * rcu_irq_enter - inform RCU of entry to hard irq context
393 * If the CPU was idle with dynamic ticks active, this updates the
394 * rdtp->dynticks to let the RCU handling know that the CPU is active.
396 void rcu_irq_enter(void)
398 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
400 if (rdtp->dynticks_nesting++)
401 return;
402 rdtp->dynticks++;
403 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
404 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
408 * rcu_irq_exit - inform RCU of exit from hard irq context
410 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
411 * to put let the RCU handling be aware that the CPU is going back to idle
412 * with no ticks.
414 void rcu_irq_exit(void)
416 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
418 if (--rdtp->dynticks_nesting)
419 return;
420 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
421 rdtp->dynticks++;
422 WARN_ON_ONCE(rdtp->dynticks & 0x1);
424 /* If the interrupt queued a callback, get out of dyntick mode. */
425 if (__this_cpu_read(rcu_sched_data.nxtlist) ||
426 __this_cpu_read(rcu_bh_data.nxtlist))
427 set_need_resched();
430 #ifdef CONFIG_SMP
433 * Snapshot the specified CPU's dynticks counter so that we can later
434 * credit them with an implicit quiescent state. Return 1 if this CPU
435 * is in dynticks idle mode, which is an extended quiescent state.
437 static int dyntick_save_progress_counter(struct rcu_data *rdp)
439 int ret;
440 int snap;
441 int snap_nmi;
443 snap = rdp->dynticks->dynticks;
444 snap_nmi = rdp->dynticks->dynticks_nmi;
445 smp_mb(); /* Order sampling of snap with end of grace period. */
446 rdp->dynticks_snap = snap;
447 rdp->dynticks_nmi_snap = snap_nmi;
448 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
449 if (ret)
450 rdp->dynticks_fqs++;
451 return ret;
455 * Return true if the specified CPU has passed through a quiescent
456 * state by virtue of being in or having passed through an dynticks
457 * idle state since the last call to dyntick_save_progress_counter()
458 * for this same CPU.
460 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
462 long curr;
463 long curr_nmi;
464 long snap;
465 long snap_nmi;
467 curr = rdp->dynticks->dynticks;
468 snap = rdp->dynticks_snap;
469 curr_nmi = rdp->dynticks->dynticks_nmi;
470 snap_nmi = rdp->dynticks_nmi_snap;
471 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
474 * If the CPU passed through or entered a dynticks idle phase with
475 * no active irq/NMI handlers, then we can safely pretend that the CPU
476 * already acknowledged the request to pass through a quiescent
477 * state. Either way, that CPU cannot possibly be in an RCU
478 * read-side critical section that started before the beginning
479 * of the current RCU grace period.
481 if ((curr != snap || (curr & 0x1) == 0) &&
482 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
483 rdp->dynticks_fqs++;
484 return 1;
487 /* Go check for the CPU being offline. */
488 return rcu_implicit_offline_qs(rdp);
491 #endif /* #ifdef CONFIG_SMP */
493 #else /* #ifdef CONFIG_NO_HZ */
495 #ifdef CONFIG_SMP
497 static int dyntick_save_progress_counter(struct rcu_data *rdp)
499 return 0;
502 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
504 return rcu_implicit_offline_qs(rdp);
507 #endif /* #ifdef CONFIG_SMP */
509 #endif /* #else #ifdef CONFIG_NO_HZ */
511 int rcu_cpu_stall_suppress __read_mostly;
513 static void record_gp_stall_check_time(struct rcu_state *rsp)
515 rsp->gp_start = jiffies;
516 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
519 static void print_other_cpu_stall(struct rcu_state *rsp)
521 int cpu;
522 long delta;
523 unsigned long flags;
524 struct rcu_node *rnp = rcu_get_root(rsp);
526 /* Only let one CPU complain about others per time interval. */
528 raw_spin_lock_irqsave(&rnp->lock, flags);
529 delta = jiffies - rsp->jiffies_stall;
530 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
531 raw_spin_unlock_irqrestore(&rnp->lock, flags);
532 return;
534 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
537 * Now rat on any tasks that got kicked up to the root rcu_node
538 * due to CPU offlining.
540 rcu_print_task_stall(rnp);
541 raw_spin_unlock_irqrestore(&rnp->lock, flags);
544 * OK, time to rat on our buddy...
545 * See Documentation/RCU/stallwarn.txt for info on how to debug
546 * RCU CPU stall warnings.
548 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
549 rsp->name);
550 rcu_for_each_leaf_node(rsp, rnp) {
551 raw_spin_lock_irqsave(&rnp->lock, flags);
552 rcu_print_task_stall(rnp);
553 raw_spin_unlock_irqrestore(&rnp->lock, flags);
554 if (rnp->qsmask == 0)
555 continue;
556 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
557 if (rnp->qsmask & (1UL << cpu))
558 printk(" %d", rnp->grplo + cpu);
560 printk("} (detected by %d, t=%ld jiffies)\n",
561 smp_processor_id(), (long)(jiffies - rsp->gp_start));
562 trigger_all_cpu_backtrace();
564 /* If so configured, complain about tasks blocking the grace period. */
566 rcu_print_detail_task_stall(rsp);
568 force_quiescent_state(rsp, 0); /* Kick them all. */
571 static void print_cpu_stall(struct rcu_state *rsp)
573 unsigned long flags;
574 struct rcu_node *rnp = rcu_get_root(rsp);
577 * OK, time to rat on ourselves...
578 * See Documentation/RCU/stallwarn.txt for info on how to debug
579 * RCU CPU stall warnings.
581 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
582 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
583 trigger_all_cpu_backtrace();
585 raw_spin_lock_irqsave(&rnp->lock, flags);
586 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
587 rsp->jiffies_stall =
588 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
589 raw_spin_unlock_irqrestore(&rnp->lock, flags);
591 set_need_resched(); /* kick ourselves to get things going. */
594 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
596 unsigned long j;
597 unsigned long js;
598 struct rcu_node *rnp;
600 if (rcu_cpu_stall_suppress)
601 return;
602 j = ACCESS_ONCE(jiffies);
603 js = ACCESS_ONCE(rsp->jiffies_stall);
604 rnp = rdp->mynode;
605 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
607 /* We haven't checked in, so go dump stack. */
608 print_cpu_stall(rsp);
610 } else if (rcu_gp_in_progress(rsp) &&
611 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
613 /* They had a few time units to dump stack, so complain. */
614 print_other_cpu_stall(rsp);
618 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
620 rcu_cpu_stall_suppress = 1;
621 return NOTIFY_DONE;
625 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
627 * Set the stall-warning timeout way off into the future, thus preventing
628 * any RCU CPU stall-warning messages from appearing in the current set of
629 * RCU grace periods.
631 * The caller must disable hard irqs.
633 void rcu_cpu_stall_reset(void)
635 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
636 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
637 rcu_preempt_stall_reset();
640 static struct notifier_block rcu_panic_block = {
641 .notifier_call = rcu_panic,
644 static void __init check_cpu_stall_init(void)
646 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
650 * Update CPU-local rcu_data state to record the newly noticed grace period.
651 * This is used both when we started the grace period and when we notice
652 * that someone else started the grace period. The caller must hold the
653 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
654 * and must have irqs disabled.
656 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
658 if (rdp->gpnum != rnp->gpnum) {
660 * If the current grace period is waiting for this CPU,
661 * set up to detect a quiescent state, otherwise don't
662 * go looking for one.
664 rdp->gpnum = rnp->gpnum;
665 if (rnp->qsmask & rdp->grpmask) {
666 rdp->qs_pending = 1;
667 rdp->passed_quiesc = 0;
668 } else
669 rdp->qs_pending = 0;
673 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
675 unsigned long flags;
676 struct rcu_node *rnp;
678 local_irq_save(flags);
679 rnp = rdp->mynode;
680 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
681 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
682 local_irq_restore(flags);
683 return;
685 __note_new_gpnum(rsp, rnp, rdp);
686 raw_spin_unlock_irqrestore(&rnp->lock, flags);
690 * Did someone else start a new RCU grace period start since we last
691 * checked? Update local state appropriately if so. Must be called
692 * on the CPU corresponding to rdp.
694 static int
695 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
697 unsigned long flags;
698 int ret = 0;
700 local_irq_save(flags);
701 if (rdp->gpnum != rsp->gpnum) {
702 note_new_gpnum(rsp, rdp);
703 ret = 1;
705 local_irq_restore(flags);
706 return ret;
710 * Advance this CPU's callbacks, but only if the current grace period
711 * has ended. This may be called only from the CPU to whom the rdp
712 * belongs. In addition, the corresponding leaf rcu_node structure's
713 * ->lock must be held by the caller, with irqs disabled.
715 static void
716 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
718 /* Did another grace period end? */
719 if (rdp->completed != rnp->completed) {
721 /* Advance callbacks. No harm if list empty. */
722 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
723 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
724 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
726 /* Remember that we saw this grace-period completion. */
727 rdp->completed = rnp->completed;
730 * If we were in an extended quiescent state, we may have
731 * missed some grace periods that others CPUs handled on
732 * our behalf. Catch up with this state to avoid noting
733 * spurious new grace periods. If another grace period
734 * has started, then rnp->gpnum will have advanced, so
735 * we will detect this later on.
737 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
738 rdp->gpnum = rdp->completed;
741 * If RCU does not need a quiescent state from this CPU,
742 * then make sure that this CPU doesn't go looking for one.
744 if ((rnp->qsmask & rdp->grpmask) == 0)
745 rdp->qs_pending = 0;
750 * Advance this CPU's callbacks, but only if the current grace period
751 * has ended. This may be called only from the CPU to whom the rdp
752 * belongs.
754 static void
755 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
757 unsigned long flags;
758 struct rcu_node *rnp;
760 local_irq_save(flags);
761 rnp = rdp->mynode;
762 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
763 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
764 local_irq_restore(flags);
765 return;
767 __rcu_process_gp_end(rsp, rnp, rdp);
768 raw_spin_unlock_irqrestore(&rnp->lock, flags);
772 * Do per-CPU grace-period initialization for running CPU. The caller
773 * must hold the lock of the leaf rcu_node structure corresponding to
774 * this CPU.
776 static void
777 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
779 /* Prior grace period ended, so advance callbacks for current CPU. */
780 __rcu_process_gp_end(rsp, rnp, rdp);
783 * Because this CPU just now started the new grace period, we know
784 * that all of its callbacks will be covered by this upcoming grace
785 * period, even the ones that were registered arbitrarily recently.
786 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
788 * Other CPUs cannot be sure exactly when the grace period started.
789 * Therefore, their recently registered callbacks must pass through
790 * an additional RCU_NEXT_READY stage, so that they will be handled
791 * by the next RCU grace period.
793 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
794 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
796 /* Set state so that this CPU will detect the next quiescent state. */
797 __note_new_gpnum(rsp, rnp, rdp);
801 * Start a new RCU grace period if warranted, re-initializing the hierarchy
802 * in preparation for detecting the next grace period. The caller must hold
803 * the root node's ->lock, which is released before return. Hard irqs must
804 * be disabled.
806 static void
807 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
808 __releases(rcu_get_root(rsp)->lock)
810 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
811 struct rcu_node *rnp = rcu_get_root(rsp);
813 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
814 if (cpu_needs_another_gp(rsp, rdp))
815 rsp->fqs_need_gp = 1;
816 if (rnp->completed == rsp->completed) {
817 raw_spin_unlock_irqrestore(&rnp->lock, flags);
818 return;
820 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
823 * Propagate new ->completed value to rcu_node structures
824 * so that other CPUs don't have to wait until the start
825 * of the next grace period to process their callbacks.
827 rcu_for_each_node_breadth_first(rsp, rnp) {
828 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
829 rnp->completed = rsp->completed;
830 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
832 local_irq_restore(flags);
833 return;
836 /* Advance to a new grace period and initialize state. */
837 rsp->gpnum++;
838 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
839 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
840 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
841 record_gp_stall_check_time(rsp);
843 /* Special-case the common single-level case. */
844 if (NUM_RCU_NODES == 1) {
845 rcu_preempt_check_blocked_tasks(rnp);
846 rnp->qsmask = rnp->qsmaskinit;
847 rnp->gpnum = rsp->gpnum;
848 rnp->completed = rsp->completed;
849 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
850 rcu_start_gp_per_cpu(rsp, rnp, rdp);
851 rcu_preempt_boost_start_gp(rnp);
852 raw_spin_unlock_irqrestore(&rnp->lock, flags);
853 return;
856 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
859 /* Exclude any concurrent CPU-hotplug operations. */
860 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
863 * Set the quiescent-state-needed bits in all the rcu_node
864 * structures for all currently online CPUs in breadth-first
865 * order, starting from the root rcu_node structure. This
866 * operation relies on the layout of the hierarchy within the
867 * rsp->node[] array. Note that other CPUs will access only
868 * the leaves of the hierarchy, which still indicate that no
869 * grace period is in progress, at least until the corresponding
870 * leaf node has been initialized. In addition, we have excluded
871 * CPU-hotplug operations.
873 * Note that the grace period cannot complete until we finish
874 * the initialization process, as there will be at least one
875 * qsmask bit set in the root node until that time, namely the
876 * one corresponding to this CPU, due to the fact that we have
877 * irqs disabled.
879 rcu_for_each_node_breadth_first(rsp, rnp) {
880 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
881 rcu_preempt_check_blocked_tasks(rnp);
882 rnp->qsmask = rnp->qsmaskinit;
883 rnp->gpnum = rsp->gpnum;
884 rnp->completed = rsp->completed;
885 if (rnp == rdp->mynode)
886 rcu_start_gp_per_cpu(rsp, rnp, rdp);
887 rcu_preempt_boost_start_gp(rnp);
888 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
891 rnp = rcu_get_root(rsp);
892 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
893 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
894 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
895 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
899 * Report a full set of quiescent states to the specified rcu_state
900 * data structure. This involves cleaning up after the prior grace
901 * period and letting rcu_start_gp() start up the next grace period
902 * if one is needed. Note that the caller must hold rnp->lock, as
903 * required by rcu_start_gp(), which will release it.
905 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
906 __releases(rcu_get_root(rsp)->lock)
908 unsigned long gp_duration;
910 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
911 gp_duration = jiffies - rsp->gp_start;
912 if (gp_duration > rsp->gp_max)
913 rsp->gp_max = gp_duration;
914 rsp->completed = rsp->gpnum;
915 rsp->signaled = RCU_GP_IDLE;
916 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
920 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
921 * Allows quiescent states for a group of CPUs to be reported at one go
922 * to the specified rcu_node structure, though all the CPUs in the group
923 * must be represented by the same rcu_node structure (which need not be
924 * a leaf rcu_node structure, though it often will be). That structure's
925 * lock must be held upon entry, and it is released before return.
927 static void
928 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
929 struct rcu_node *rnp, unsigned long flags)
930 __releases(rnp->lock)
932 struct rcu_node *rnp_c;
934 /* Walk up the rcu_node hierarchy. */
935 for (;;) {
936 if (!(rnp->qsmask & mask)) {
938 /* Our bit has already been cleared, so done. */
939 raw_spin_unlock_irqrestore(&rnp->lock, flags);
940 return;
942 rnp->qsmask &= ~mask;
943 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
945 /* Other bits still set at this level, so done. */
946 raw_spin_unlock_irqrestore(&rnp->lock, flags);
947 return;
949 mask = rnp->grpmask;
950 if (rnp->parent == NULL) {
952 /* No more levels. Exit loop holding root lock. */
954 break;
956 raw_spin_unlock_irqrestore(&rnp->lock, flags);
957 rnp_c = rnp;
958 rnp = rnp->parent;
959 raw_spin_lock_irqsave(&rnp->lock, flags);
960 WARN_ON_ONCE(rnp_c->qsmask);
964 * Get here if we are the last CPU to pass through a quiescent
965 * state for this grace period. Invoke rcu_report_qs_rsp()
966 * to clean up and start the next grace period if one is needed.
968 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
972 * Record a quiescent state for the specified CPU to that CPU's rcu_data
973 * structure. This must be either called from the specified CPU, or
974 * called when the specified CPU is known to be offline (and when it is
975 * also known that no other CPU is concurrently trying to help the offline
976 * CPU). The lastcomp argument is used to make sure we are still in the
977 * grace period of interest. We don't want to end the current grace period
978 * based on quiescent states detected in an earlier grace period!
980 static void
981 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
983 unsigned long flags;
984 unsigned long mask;
985 struct rcu_node *rnp;
987 rnp = rdp->mynode;
988 raw_spin_lock_irqsave(&rnp->lock, flags);
989 if (lastcomp != rnp->completed) {
992 * Someone beat us to it for this grace period, so leave.
993 * The race with GP start is resolved by the fact that we
994 * hold the leaf rcu_node lock, so that the per-CPU bits
995 * cannot yet be initialized -- so we would simply find our
996 * CPU's bit already cleared in rcu_report_qs_rnp() if this
997 * race occurred.
999 rdp->passed_quiesc = 0; /* try again later! */
1000 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1001 return;
1003 mask = rdp->grpmask;
1004 if ((rnp->qsmask & mask) == 0) {
1005 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1006 } else {
1007 rdp->qs_pending = 0;
1010 * This GP can't end until cpu checks in, so all of our
1011 * callbacks can be processed during the next GP.
1013 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1015 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1020 * Check to see if there is a new grace period of which this CPU
1021 * is not yet aware, and if so, set up local rcu_data state for it.
1022 * Otherwise, see if this CPU has just passed through its first
1023 * quiescent state for this grace period, and record that fact if so.
1025 static void
1026 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1028 /* If there is now a new grace period, record and return. */
1029 if (check_for_new_grace_period(rsp, rdp))
1030 return;
1033 * Does this CPU still need to do its part for current grace period?
1034 * If no, return and let the other CPUs do their part as well.
1036 if (!rdp->qs_pending)
1037 return;
1040 * Was there a quiescent state since the beginning of the grace
1041 * period? If no, then exit and wait for the next call.
1043 if (!rdp->passed_quiesc)
1044 return;
1047 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1048 * judge of that).
1050 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1053 #ifdef CONFIG_HOTPLUG_CPU
1056 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1057 * Synchronization is not required because this function executes
1058 * in stop_machine() context.
1060 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1062 int i;
1063 /* current DYING CPU is cleared in the cpu_online_mask */
1064 int receive_cpu = cpumask_any(cpu_online_mask);
1065 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1066 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1068 if (rdp->nxtlist == NULL)
1069 return; /* irqs disabled, so comparison is stable. */
1071 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1072 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1073 receive_rdp->qlen += rdp->qlen;
1074 receive_rdp->n_cbs_adopted += rdp->qlen;
1075 rdp->n_cbs_orphaned += rdp->qlen;
1077 rdp->nxtlist = NULL;
1078 for (i = 0; i < RCU_NEXT_SIZE; i++)
1079 rdp->nxttail[i] = &rdp->nxtlist;
1080 rdp->qlen = 0;
1084 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1085 * and move all callbacks from the outgoing CPU to the current one.
1086 * There can only be one CPU hotplug operation at a time, so no other
1087 * CPU can be attempting to update rcu_cpu_kthread_task.
1089 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1091 unsigned long flags;
1092 unsigned long mask;
1093 int need_report = 0;
1094 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1095 struct rcu_node *rnp;
1096 struct task_struct *t;
1098 /* Stop the CPU's kthread. */
1099 t = per_cpu(rcu_cpu_kthread_task, cpu);
1100 if (t != NULL) {
1101 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1102 kthread_stop(t);
1105 /* Exclude any attempts to start a new grace period. */
1106 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1108 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1109 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1110 mask = rdp->grpmask; /* rnp->grplo is constant. */
1111 do {
1112 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1113 rnp->qsmaskinit &= ~mask;
1114 if (rnp->qsmaskinit != 0) {
1115 if (rnp != rdp->mynode)
1116 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1117 break;
1119 if (rnp == rdp->mynode)
1120 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1121 else
1122 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1123 mask = rnp->grpmask;
1124 rnp = rnp->parent;
1125 } while (rnp != NULL);
1128 * We still hold the leaf rcu_node structure lock here, and
1129 * irqs are still disabled. The reason for this subterfuge is
1130 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1131 * held leads to deadlock.
1133 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1134 rnp = rdp->mynode;
1135 if (need_report & RCU_OFL_TASKS_NORM_GP)
1136 rcu_report_unblock_qs_rnp(rnp, flags);
1137 else
1138 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1139 if (need_report & RCU_OFL_TASKS_EXP_GP)
1140 rcu_report_exp_rnp(rsp, rnp);
1141 rcu_node_kthread_setaffinity(rnp, -1);
1145 * Remove the specified CPU from the RCU hierarchy and move any pending
1146 * callbacks that it might have to the current CPU. This code assumes
1147 * that at least one CPU in the system will remain running at all times.
1148 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1150 static void rcu_offline_cpu(int cpu)
1152 __rcu_offline_cpu(cpu, &rcu_sched_state);
1153 __rcu_offline_cpu(cpu, &rcu_bh_state);
1154 rcu_preempt_offline_cpu(cpu);
1157 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1159 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1163 static void rcu_offline_cpu(int cpu)
1167 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1170 * Invoke any RCU callbacks that have made it to the end of their grace
1171 * period. Thottle as specified by rdp->blimit.
1173 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1175 unsigned long flags;
1176 struct rcu_head *next, *list, **tail;
1177 int count;
1179 /* If no callbacks are ready, just return.*/
1180 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1181 return;
1184 * Extract the list of ready callbacks, disabling to prevent
1185 * races with call_rcu() from interrupt handlers.
1187 local_irq_save(flags);
1188 list = rdp->nxtlist;
1189 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1190 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1191 tail = rdp->nxttail[RCU_DONE_TAIL];
1192 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1193 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1194 rdp->nxttail[count] = &rdp->nxtlist;
1195 local_irq_restore(flags);
1197 /* Invoke callbacks. */
1198 count = 0;
1199 while (list) {
1200 next = list->next;
1201 prefetch(next);
1202 debug_rcu_head_unqueue(list);
1203 __rcu_reclaim(list);
1204 list = next;
1205 if (++count >= rdp->blimit)
1206 break;
1209 local_irq_save(flags);
1211 /* Update count, and requeue any remaining callbacks. */
1212 rdp->qlen -= count;
1213 rdp->n_cbs_invoked += count;
1214 if (list != NULL) {
1215 *tail = rdp->nxtlist;
1216 rdp->nxtlist = list;
1217 for (count = 0; count < RCU_NEXT_SIZE; count++)
1218 if (&rdp->nxtlist == rdp->nxttail[count])
1219 rdp->nxttail[count] = tail;
1220 else
1221 break;
1224 /* Reinstate batch limit if we have worked down the excess. */
1225 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1226 rdp->blimit = blimit;
1228 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1229 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1230 rdp->qlen_last_fqs_check = 0;
1231 rdp->n_force_qs_snap = rsp->n_force_qs;
1232 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1233 rdp->qlen_last_fqs_check = rdp->qlen;
1235 local_irq_restore(flags);
1237 /* Re-raise the RCU softirq if there are callbacks remaining. */
1238 if (cpu_has_callbacks_ready_to_invoke(rdp))
1239 invoke_rcu_cpu_kthread();
1243 * Check to see if this CPU is in a non-context-switch quiescent state
1244 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1245 * Also schedule the RCU softirq handler.
1247 * This function must be called with hardirqs disabled. It is normally
1248 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1249 * false, there is no point in invoking rcu_check_callbacks().
1251 void rcu_check_callbacks(int cpu, int user)
1253 if (user ||
1254 (idle_cpu(cpu) && rcu_scheduler_active &&
1255 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1258 * Get here if this CPU took its interrupt from user
1259 * mode or from the idle loop, and if this is not a
1260 * nested interrupt. In this case, the CPU is in
1261 * a quiescent state, so note it.
1263 * No memory barrier is required here because both
1264 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1265 * variables that other CPUs neither access nor modify,
1266 * at least not while the corresponding CPU is online.
1269 rcu_sched_qs(cpu);
1270 rcu_bh_qs(cpu);
1272 } else if (!in_softirq()) {
1275 * Get here if this CPU did not take its interrupt from
1276 * softirq, in other words, if it is not interrupting
1277 * a rcu_bh read-side critical section. This is an _bh
1278 * critical section, so note it.
1281 rcu_bh_qs(cpu);
1283 rcu_preempt_check_callbacks(cpu);
1284 if (rcu_pending(cpu))
1285 invoke_rcu_cpu_kthread();
1288 #ifdef CONFIG_SMP
1291 * Scan the leaf rcu_node structures, processing dyntick state for any that
1292 * have not yet encountered a quiescent state, using the function specified.
1293 * Also initiate boosting for any threads blocked on the root rcu_node.
1295 * The caller must have suppressed start of new grace periods.
1297 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1299 unsigned long bit;
1300 int cpu;
1301 unsigned long flags;
1302 unsigned long mask;
1303 struct rcu_node *rnp;
1305 rcu_for_each_leaf_node(rsp, rnp) {
1306 mask = 0;
1307 raw_spin_lock_irqsave(&rnp->lock, flags);
1308 if (!rcu_gp_in_progress(rsp)) {
1309 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1310 return;
1312 if (rnp->qsmask == 0) {
1313 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1314 continue;
1316 cpu = rnp->grplo;
1317 bit = 1;
1318 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1319 if ((rnp->qsmask & bit) != 0 &&
1320 f(per_cpu_ptr(rsp->rda, cpu)))
1321 mask |= bit;
1323 if (mask != 0) {
1325 /* rcu_report_qs_rnp() releases rnp->lock. */
1326 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1327 continue;
1329 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1331 rnp = rcu_get_root(rsp);
1332 if (rnp->qsmask == 0) {
1333 raw_spin_lock_irqsave(&rnp->lock, flags);
1334 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1339 * Force quiescent states on reluctant CPUs, and also detect which
1340 * CPUs are in dyntick-idle mode.
1342 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1344 unsigned long flags;
1345 struct rcu_node *rnp = rcu_get_root(rsp);
1347 if (!rcu_gp_in_progress(rsp))
1348 return; /* No grace period in progress, nothing to force. */
1349 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1350 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1351 return; /* Someone else is already on the job. */
1353 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1354 goto unlock_fqs_ret; /* no emergency and done recently. */
1355 rsp->n_force_qs++;
1356 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1357 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1358 if(!rcu_gp_in_progress(rsp)) {
1359 rsp->n_force_qs_ngp++;
1360 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1361 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1363 rsp->fqs_active = 1;
1364 switch (rsp->signaled) {
1365 case RCU_GP_IDLE:
1366 case RCU_GP_INIT:
1368 break; /* grace period idle or initializing, ignore. */
1370 case RCU_SAVE_DYNTICK:
1371 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1372 break; /* So gcc recognizes the dead code. */
1374 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1376 /* Record dyntick-idle state. */
1377 force_qs_rnp(rsp, dyntick_save_progress_counter);
1378 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1379 if (rcu_gp_in_progress(rsp))
1380 rsp->signaled = RCU_FORCE_QS;
1381 break;
1383 case RCU_FORCE_QS:
1385 /* Check dyntick-idle state, send IPI to laggarts. */
1386 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1387 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1389 /* Leave state in case more forcing is required. */
1391 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1392 break;
1394 rsp->fqs_active = 0;
1395 if (rsp->fqs_need_gp) {
1396 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1397 rsp->fqs_need_gp = 0;
1398 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1399 return;
1401 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1402 unlock_fqs_ret:
1403 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1406 #else /* #ifdef CONFIG_SMP */
1408 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1410 set_need_resched();
1413 #endif /* #else #ifdef CONFIG_SMP */
1416 * This does the RCU processing work from softirq context for the
1417 * specified rcu_state and rcu_data structures. This may be called
1418 * only from the CPU to whom the rdp belongs.
1420 static void
1421 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1423 unsigned long flags;
1425 WARN_ON_ONCE(rdp->beenonline == 0);
1428 * If an RCU GP has gone long enough, go check for dyntick
1429 * idle CPUs and, if needed, send resched IPIs.
1431 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1432 force_quiescent_state(rsp, 1);
1435 * Advance callbacks in response to end of earlier grace
1436 * period that some other CPU ended.
1438 rcu_process_gp_end(rsp, rdp);
1440 /* Update RCU state based on any recent quiescent states. */
1441 rcu_check_quiescent_state(rsp, rdp);
1443 /* Does this CPU require a not-yet-started grace period? */
1444 if (cpu_needs_another_gp(rsp, rdp)) {
1445 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1446 rcu_start_gp(rsp, flags); /* releases above lock */
1449 /* If there are callbacks ready, invoke them. */
1450 rcu_do_batch(rsp, rdp);
1454 * Do softirq processing for the current CPU.
1456 static void rcu_process_callbacks(void)
1459 * Memory references from any prior RCU read-side critical sections
1460 * executed by the interrupted code must be seen before any RCU
1461 * grace-period manipulations below.
1463 smp_mb(); /* See above block comment. */
1465 __rcu_process_callbacks(&rcu_sched_state,
1466 &__get_cpu_var(rcu_sched_data));
1467 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1468 rcu_preempt_process_callbacks();
1471 * Memory references from any later RCU read-side critical sections
1472 * executed by the interrupted code must be seen after any RCU
1473 * grace-period manipulations above.
1475 smp_mb(); /* See above block comment. */
1477 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1478 rcu_needs_cpu_flush();
1482 * Wake up the current CPU's kthread. This replaces raise_softirq()
1483 * in earlier versions of RCU. Note that because we are running on
1484 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1485 * cannot disappear out from under us.
1487 static void invoke_rcu_cpu_kthread(void)
1489 unsigned long flags;
1491 local_irq_save(flags);
1492 __this_cpu_write(rcu_cpu_has_work, 1);
1493 if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) {
1494 local_irq_restore(flags);
1495 return;
1497 wake_up(&__get_cpu_var(rcu_cpu_wq));
1498 local_irq_restore(flags);
1502 * Wake up the specified per-rcu_node-structure kthread.
1503 * Because the per-rcu_node kthreads are immortal, we don't need
1504 * to do anything to keep them alive.
1506 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1508 struct task_struct *t;
1510 t = rnp->node_kthread_task;
1511 if (t != NULL)
1512 wake_up_process(t);
1516 * Set the specified CPU's kthread to run RT or not, as specified by
1517 * the to_rt argument. The CPU-hotplug locks are held, so the task
1518 * is not going away.
1520 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1522 int policy;
1523 struct sched_param sp;
1524 struct task_struct *t;
1526 t = per_cpu(rcu_cpu_kthread_task, cpu);
1527 if (t == NULL)
1528 return;
1529 if (to_rt) {
1530 policy = SCHED_FIFO;
1531 sp.sched_priority = RCU_KTHREAD_PRIO;
1532 } else {
1533 policy = SCHED_NORMAL;
1534 sp.sched_priority = 0;
1536 sched_setscheduler_nocheck(t, policy, &sp);
1540 * Timer handler to initiate the waking up of per-CPU kthreads that
1541 * have yielded the CPU due to excess numbers of RCU callbacks.
1542 * We wake up the per-rcu_node kthread, which in turn will wake up
1543 * the booster kthread.
1545 static void rcu_cpu_kthread_timer(unsigned long arg)
1547 unsigned long flags;
1548 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1549 struct rcu_node *rnp = rdp->mynode;
1551 raw_spin_lock_irqsave(&rnp->lock, flags);
1552 rnp->wakemask |= rdp->grpmask;
1553 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1554 invoke_rcu_node_kthread(rnp);
1558 * Drop to non-real-time priority and yield, but only after posting a
1559 * timer that will cause us to regain our real-time priority if we
1560 * remain preempted. Either way, we restore our real-time priority
1561 * before returning.
1563 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1565 struct sched_param sp;
1566 struct timer_list yield_timer;
1568 setup_timer_on_stack(&yield_timer, f, arg);
1569 mod_timer(&yield_timer, jiffies + 2);
1570 sp.sched_priority = 0;
1571 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1572 set_user_nice(current, 19);
1573 schedule();
1574 sp.sched_priority = RCU_KTHREAD_PRIO;
1575 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1576 del_timer(&yield_timer);
1580 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1581 * This can happen while the corresponding CPU is either coming online
1582 * or going offline. We cannot wait until the CPU is fully online
1583 * before starting the kthread, because the various notifier functions
1584 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1585 * the corresponding CPU is online.
1587 * Return 1 if the kthread needs to stop, 0 otherwise.
1589 * Caller must disable bh. This function can momentarily enable it.
1591 static int rcu_cpu_kthread_should_stop(int cpu)
1593 while (cpu_is_offline(cpu) ||
1594 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1595 smp_processor_id() != cpu) {
1596 if (kthread_should_stop())
1597 return 1;
1598 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1599 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1600 local_bh_enable();
1601 schedule_timeout_uninterruptible(1);
1602 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1603 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1604 local_bh_disable();
1606 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1607 return 0;
1611 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1612 * earlier RCU softirq.
1614 static int rcu_cpu_kthread(void *arg)
1616 int cpu = (int)(long)arg;
1617 unsigned long flags;
1618 int spincnt = 0;
1619 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1620 wait_queue_head_t *wqp = &per_cpu(rcu_cpu_wq, cpu);
1621 char work;
1622 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1624 for (;;) {
1625 *statusp = RCU_KTHREAD_WAITING;
1626 wait_event_interruptible(*wqp,
1627 *workp != 0 || kthread_should_stop());
1628 local_bh_disable();
1629 if (rcu_cpu_kthread_should_stop(cpu)) {
1630 local_bh_enable();
1631 break;
1633 *statusp = RCU_KTHREAD_RUNNING;
1634 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1635 local_irq_save(flags);
1636 work = *workp;
1637 *workp = 0;
1638 local_irq_restore(flags);
1639 if (work)
1640 rcu_process_callbacks();
1641 local_bh_enable();
1642 if (*workp != 0)
1643 spincnt++;
1644 else
1645 spincnt = 0;
1646 if (spincnt > 10) {
1647 *statusp = RCU_KTHREAD_YIELDING;
1648 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1649 spincnt = 0;
1652 *statusp = RCU_KTHREAD_STOPPED;
1653 return 0;
1657 * Spawn a per-CPU kthread, setting up affinity and priority.
1658 * Because the CPU hotplug lock is held, no other CPU will be attempting
1659 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1660 * attempting to access it during boot, but the locking in kthread_bind()
1661 * will enforce sufficient ordering.
1663 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1665 struct sched_param sp;
1666 struct task_struct *t;
1668 if (!rcu_kthreads_spawnable ||
1669 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1670 return 0;
1671 t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
1672 if (IS_ERR(t))
1673 return PTR_ERR(t);
1674 kthread_bind(t, cpu);
1675 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1676 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1677 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1678 wake_up_process(t);
1679 sp.sched_priority = RCU_KTHREAD_PRIO;
1680 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1681 return 0;
1685 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1686 * kthreads when needed. We ignore requests to wake up kthreads
1687 * for offline CPUs, which is OK because force_quiescent_state()
1688 * takes care of this case.
1690 static int rcu_node_kthread(void *arg)
1692 int cpu;
1693 unsigned long flags;
1694 unsigned long mask;
1695 struct rcu_node *rnp = (struct rcu_node *)arg;
1696 struct sched_param sp;
1697 struct task_struct *t;
1699 for (;;) {
1700 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1701 wait_event_interruptible(rnp->node_wq, rnp->wakemask != 0);
1702 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1703 raw_spin_lock_irqsave(&rnp->lock, flags);
1704 mask = rnp->wakemask;
1705 rnp->wakemask = 0;
1706 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1707 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1708 if ((mask & 0x1) == 0)
1709 continue;
1710 preempt_disable();
1711 t = per_cpu(rcu_cpu_kthread_task, cpu);
1712 if (!cpu_online(cpu) || t == NULL) {
1713 preempt_enable();
1714 continue;
1716 per_cpu(rcu_cpu_has_work, cpu) = 1;
1717 sp.sched_priority = RCU_KTHREAD_PRIO;
1718 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1719 preempt_enable();
1722 /* NOTREACHED */
1723 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1724 return 0;
1728 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1729 * served by the rcu_node in question. The CPU hotplug lock is still
1730 * held, so the value of rnp->qsmaskinit will be stable.
1732 * We don't include outgoingcpu in the affinity set, use -1 if there is
1733 * no outgoing CPU. If there are no CPUs left in the affinity set,
1734 * this function allows the kthread to execute on any CPU.
1736 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1738 cpumask_var_t cm;
1739 int cpu;
1740 unsigned long mask = rnp->qsmaskinit;
1742 if (rnp->node_kthread_task == NULL)
1743 return;
1744 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1745 return;
1746 cpumask_clear(cm);
1747 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1748 if ((mask & 0x1) && cpu != outgoingcpu)
1749 cpumask_set_cpu(cpu, cm);
1750 if (cpumask_weight(cm) == 0) {
1751 cpumask_setall(cm);
1752 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1753 cpumask_clear_cpu(cpu, cm);
1754 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1756 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1757 rcu_boost_kthread_setaffinity(rnp, cm);
1758 free_cpumask_var(cm);
1762 * Spawn a per-rcu_node kthread, setting priority and affinity.
1763 * Called during boot before online/offline can happen, or, if
1764 * during runtime, with the main CPU-hotplug locks held. So only
1765 * one of these can be executing at a time.
1767 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1768 struct rcu_node *rnp)
1770 unsigned long flags;
1771 int rnp_index = rnp - &rsp->node[0];
1772 struct sched_param sp;
1773 struct task_struct *t;
1775 if (!rcu_kthreads_spawnable ||
1776 rnp->qsmaskinit == 0)
1777 return 0;
1778 if (rnp->node_kthread_task == NULL) {
1779 t = kthread_create(rcu_node_kthread, (void *)rnp,
1780 "rcun%d", rnp_index);
1781 if (IS_ERR(t))
1782 return PTR_ERR(t);
1783 raw_spin_lock_irqsave(&rnp->lock, flags);
1784 rnp->node_kthread_task = t;
1785 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1786 wake_up_process(t);
1787 sp.sched_priority = 99;
1788 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1790 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1794 * Spawn all kthreads -- called as soon as the scheduler is running.
1796 static int __init rcu_spawn_kthreads(void)
1798 int cpu;
1799 struct rcu_node *rnp;
1801 rcu_kthreads_spawnable = 1;
1802 for_each_possible_cpu(cpu) {
1803 init_waitqueue_head(&per_cpu(rcu_cpu_wq, cpu));
1804 per_cpu(rcu_cpu_has_work, cpu) = 0;
1805 if (cpu_online(cpu))
1806 (void)rcu_spawn_one_cpu_kthread(cpu);
1808 rnp = rcu_get_root(rcu_state);
1809 init_waitqueue_head(&rnp->node_wq);
1810 rcu_init_boost_waitqueue(rnp);
1811 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1812 if (NUM_RCU_NODES > 1)
1813 rcu_for_each_leaf_node(rcu_state, rnp) {
1814 init_waitqueue_head(&rnp->node_wq);
1815 rcu_init_boost_waitqueue(rnp);
1816 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1818 return 0;
1820 early_initcall(rcu_spawn_kthreads);
1822 static void
1823 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1824 struct rcu_state *rsp)
1826 unsigned long flags;
1827 struct rcu_data *rdp;
1829 debug_rcu_head_queue(head);
1830 head->func = func;
1831 head->next = NULL;
1833 smp_mb(); /* Ensure RCU update seen before callback registry. */
1836 * Opportunistically note grace-period endings and beginnings.
1837 * Note that we might see a beginning right after we see an
1838 * end, but never vice versa, since this CPU has to pass through
1839 * a quiescent state betweentimes.
1841 local_irq_save(flags);
1842 rdp = this_cpu_ptr(rsp->rda);
1844 /* Add the callback to our list. */
1845 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1846 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1847 rdp->qlen++;
1849 /* If interrupts were disabled, don't dive into RCU core. */
1850 if (irqs_disabled_flags(flags)) {
1851 local_irq_restore(flags);
1852 return;
1856 * Force the grace period if too many callbacks or too long waiting.
1857 * Enforce hysteresis, and don't invoke force_quiescent_state()
1858 * if some other CPU has recently done so. Also, don't bother
1859 * invoking force_quiescent_state() if the newly enqueued callback
1860 * is the only one waiting for a grace period to complete.
1862 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1864 /* Are we ignoring a completed grace period? */
1865 rcu_process_gp_end(rsp, rdp);
1866 check_for_new_grace_period(rsp, rdp);
1868 /* Start a new grace period if one not already started. */
1869 if (!rcu_gp_in_progress(rsp)) {
1870 unsigned long nestflag;
1871 struct rcu_node *rnp_root = rcu_get_root(rsp);
1873 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1874 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1875 } else {
1876 /* Give the grace period a kick. */
1877 rdp->blimit = LONG_MAX;
1878 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1879 *rdp->nxttail[RCU_DONE_TAIL] != head)
1880 force_quiescent_state(rsp, 0);
1881 rdp->n_force_qs_snap = rsp->n_force_qs;
1882 rdp->qlen_last_fqs_check = rdp->qlen;
1884 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1885 force_quiescent_state(rsp, 1);
1886 local_irq_restore(flags);
1890 * Queue an RCU-sched callback for invocation after a grace period.
1892 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1894 __call_rcu(head, func, &rcu_sched_state);
1896 EXPORT_SYMBOL_GPL(call_rcu_sched);
1899 * Queue an RCU for invocation after a quicker grace period.
1901 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1903 __call_rcu(head, func, &rcu_bh_state);
1905 EXPORT_SYMBOL_GPL(call_rcu_bh);
1908 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1910 * Control will return to the caller some time after a full rcu-sched
1911 * grace period has elapsed, in other words after all currently executing
1912 * rcu-sched read-side critical sections have completed. These read-side
1913 * critical sections are delimited by rcu_read_lock_sched() and
1914 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1915 * local_irq_disable(), and so on may be used in place of
1916 * rcu_read_lock_sched().
1918 * This means that all preempt_disable code sequences, including NMI and
1919 * hardware-interrupt handlers, in progress on entry will have completed
1920 * before this primitive returns. However, this does not guarantee that
1921 * softirq handlers will have completed, since in some kernels, these
1922 * handlers can run in process context, and can block.
1924 * This primitive provides the guarantees made by the (now removed)
1925 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1926 * guarantees that rcu_read_lock() sections will have completed.
1927 * In "classic RCU", these two guarantees happen to be one and
1928 * the same, but can differ in realtime RCU implementations.
1930 void synchronize_sched(void)
1932 struct rcu_synchronize rcu;
1934 if (rcu_blocking_is_gp())
1935 return;
1937 init_rcu_head_on_stack(&rcu.head);
1938 init_completion(&rcu.completion);
1939 /* Will wake me after RCU finished. */
1940 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1941 /* Wait for it. */
1942 wait_for_completion(&rcu.completion);
1943 destroy_rcu_head_on_stack(&rcu.head);
1945 EXPORT_SYMBOL_GPL(synchronize_sched);
1948 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1950 * Control will return to the caller some time after a full rcu_bh grace
1951 * period has elapsed, in other words after all currently executing rcu_bh
1952 * read-side critical sections have completed. RCU read-side critical
1953 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1954 * and may be nested.
1956 void synchronize_rcu_bh(void)
1958 struct rcu_synchronize rcu;
1960 if (rcu_blocking_is_gp())
1961 return;
1963 init_rcu_head_on_stack(&rcu.head);
1964 init_completion(&rcu.completion);
1965 /* Will wake me after RCU finished. */
1966 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1967 /* Wait for it. */
1968 wait_for_completion(&rcu.completion);
1969 destroy_rcu_head_on_stack(&rcu.head);
1971 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1974 * Check to see if there is any immediate RCU-related work to be done
1975 * by the current CPU, for the specified type of RCU, returning 1 if so.
1976 * The checks are in order of increasing expense: checks that can be
1977 * carried out against CPU-local state are performed first. However,
1978 * we must check for CPU stalls first, else we might not get a chance.
1980 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1982 struct rcu_node *rnp = rdp->mynode;
1984 rdp->n_rcu_pending++;
1986 /* Check for CPU stalls, if enabled. */
1987 check_cpu_stall(rsp, rdp);
1989 /* Is the RCU core waiting for a quiescent state from this CPU? */
1990 if (rdp->qs_pending && !rdp->passed_quiesc) {
1993 * If force_quiescent_state() coming soon and this CPU
1994 * needs a quiescent state, and this is either RCU-sched
1995 * or RCU-bh, force a local reschedule.
1997 rdp->n_rp_qs_pending++;
1998 if (!rdp->preemptible &&
1999 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2000 jiffies))
2001 set_need_resched();
2002 } else if (rdp->qs_pending && rdp->passed_quiesc) {
2003 rdp->n_rp_report_qs++;
2004 return 1;
2007 /* Does this CPU have callbacks ready to invoke? */
2008 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2009 rdp->n_rp_cb_ready++;
2010 return 1;
2013 /* Has RCU gone idle with this CPU needing another grace period? */
2014 if (cpu_needs_another_gp(rsp, rdp)) {
2015 rdp->n_rp_cpu_needs_gp++;
2016 return 1;
2019 /* Has another RCU grace period completed? */
2020 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2021 rdp->n_rp_gp_completed++;
2022 return 1;
2025 /* Has a new RCU grace period started? */
2026 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2027 rdp->n_rp_gp_started++;
2028 return 1;
2031 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2032 if (rcu_gp_in_progress(rsp) &&
2033 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2034 rdp->n_rp_need_fqs++;
2035 return 1;
2038 /* nothing to do */
2039 rdp->n_rp_need_nothing++;
2040 return 0;
2044 * Check to see if there is any immediate RCU-related work to be done
2045 * by the current CPU, returning 1 if so. This function is part of the
2046 * RCU implementation; it is -not- an exported member of the RCU API.
2048 static int rcu_pending(int cpu)
2050 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2051 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2052 rcu_preempt_pending(cpu);
2056 * Check to see if any future RCU-related work will need to be done
2057 * by the current CPU, even if none need be done immediately, returning
2058 * 1 if so.
2060 static int rcu_needs_cpu_quick_check(int cpu)
2062 /* RCU callbacks either ready or pending? */
2063 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2064 per_cpu(rcu_bh_data, cpu).nxtlist ||
2065 rcu_preempt_needs_cpu(cpu);
2068 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2069 static atomic_t rcu_barrier_cpu_count;
2070 static DEFINE_MUTEX(rcu_barrier_mutex);
2071 static struct completion rcu_barrier_completion;
2073 static void rcu_barrier_callback(struct rcu_head *notused)
2075 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2076 complete(&rcu_barrier_completion);
2080 * Called with preemption disabled, and from cross-cpu IRQ context.
2082 static void rcu_barrier_func(void *type)
2084 int cpu = smp_processor_id();
2085 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2086 void (*call_rcu_func)(struct rcu_head *head,
2087 void (*func)(struct rcu_head *head));
2089 atomic_inc(&rcu_barrier_cpu_count);
2090 call_rcu_func = type;
2091 call_rcu_func(head, rcu_barrier_callback);
2095 * Orchestrate the specified type of RCU barrier, waiting for all
2096 * RCU callbacks of the specified type to complete.
2098 static void _rcu_barrier(struct rcu_state *rsp,
2099 void (*call_rcu_func)(struct rcu_head *head,
2100 void (*func)(struct rcu_head *head)))
2102 BUG_ON(in_interrupt());
2103 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2104 mutex_lock(&rcu_barrier_mutex);
2105 init_completion(&rcu_barrier_completion);
2107 * Initialize rcu_barrier_cpu_count to 1, then invoke
2108 * rcu_barrier_func() on each CPU, so that each CPU also has
2109 * incremented rcu_barrier_cpu_count. Only then is it safe to
2110 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2111 * might complete its grace period before all of the other CPUs
2112 * did their increment, causing this function to return too
2113 * early. Note that on_each_cpu() disables irqs, which prevents
2114 * any CPUs from coming online or going offline until each online
2115 * CPU has queued its RCU-barrier callback.
2117 atomic_set(&rcu_barrier_cpu_count, 1);
2118 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2119 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2120 complete(&rcu_barrier_completion);
2121 wait_for_completion(&rcu_barrier_completion);
2122 mutex_unlock(&rcu_barrier_mutex);
2126 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2128 void rcu_barrier_bh(void)
2130 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2132 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2135 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2137 void rcu_barrier_sched(void)
2139 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2141 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2144 * Do boot-time initialization of a CPU's per-CPU RCU data.
2146 static void __init
2147 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2149 unsigned long flags;
2150 int i;
2151 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2152 struct rcu_node *rnp = rcu_get_root(rsp);
2154 /* Set up local state, ensuring consistent view of global state. */
2155 raw_spin_lock_irqsave(&rnp->lock, flags);
2156 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2157 rdp->nxtlist = NULL;
2158 for (i = 0; i < RCU_NEXT_SIZE; i++)
2159 rdp->nxttail[i] = &rdp->nxtlist;
2160 rdp->qlen = 0;
2161 #ifdef CONFIG_NO_HZ
2162 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2163 #endif /* #ifdef CONFIG_NO_HZ */
2164 rdp->cpu = cpu;
2165 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2169 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2170 * offline event can be happening at a given time. Note also that we
2171 * can accept some slop in the rsp->completed access due to the fact
2172 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2174 static void __cpuinit
2175 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2177 unsigned long flags;
2178 unsigned long mask;
2179 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2180 struct rcu_node *rnp = rcu_get_root(rsp);
2182 /* Set up local state, ensuring consistent view of global state. */
2183 raw_spin_lock_irqsave(&rnp->lock, flags);
2184 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
2185 rdp->qs_pending = 1; /* so set up to respond to current GP. */
2186 rdp->beenonline = 1; /* We have now been online. */
2187 rdp->preemptible = preemptible;
2188 rdp->qlen_last_fqs_check = 0;
2189 rdp->n_force_qs_snap = rsp->n_force_qs;
2190 rdp->blimit = blimit;
2191 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2194 * A new grace period might start here. If so, we won't be part
2195 * of it, but that is OK, as we are currently in a quiescent state.
2198 /* Exclude any attempts to start a new GP on large systems. */
2199 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2201 /* Add CPU to rcu_node bitmasks. */
2202 rnp = rdp->mynode;
2203 mask = rdp->grpmask;
2204 do {
2205 /* Exclude any attempts to start a new GP on small systems. */
2206 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2207 rnp->qsmaskinit |= mask;
2208 mask = rnp->grpmask;
2209 if (rnp == rdp->mynode) {
2210 rdp->gpnum = rnp->completed; /* if GP in progress... */
2211 rdp->completed = rnp->completed;
2212 rdp->passed_quiesc_completed = rnp->completed - 1;
2214 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2215 rnp = rnp->parent;
2216 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2218 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2221 static void __cpuinit rcu_online_cpu(int cpu)
2223 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2224 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2225 rcu_preempt_init_percpu_data(cpu);
2228 static void __cpuinit rcu_online_kthreads(int cpu)
2230 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2231 struct rcu_node *rnp = rdp->mynode;
2233 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2234 if (rcu_kthreads_spawnable) {
2235 (void)rcu_spawn_one_cpu_kthread(cpu);
2236 if (rnp->node_kthread_task == NULL)
2237 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
2242 * Handle CPU online/offline notification events.
2244 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2245 unsigned long action, void *hcpu)
2247 long cpu = (long)hcpu;
2248 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2249 struct rcu_node *rnp = rdp->mynode;
2251 switch (action) {
2252 case CPU_UP_PREPARE:
2253 case CPU_UP_PREPARE_FROZEN:
2254 rcu_online_cpu(cpu);
2255 rcu_online_kthreads(cpu);
2256 break;
2257 case CPU_ONLINE:
2258 case CPU_DOWN_FAILED:
2259 rcu_node_kthread_setaffinity(rnp, -1);
2260 rcu_cpu_kthread_setrt(cpu, 1);
2261 break;
2262 case CPU_DOWN_PREPARE:
2263 rcu_node_kthread_setaffinity(rnp, cpu);
2264 rcu_cpu_kthread_setrt(cpu, 0);
2265 break;
2266 case CPU_DYING:
2267 case CPU_DYING_FROZEN:
2269 * The whole machine is "stopped" except this CPU, so we can
2270 * touch any data without introducing corruption. We send the
2271 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2273 rcu_send_cbs_to_online(&rcu_bh_state);
2274 rcu_send_cbs_to_online(&rcu_sched_state);
2275 rcu_preempt_send_cbs_to_online();
2276 break;
2277 case CPU_DEAD:
2278 case CPU_DEAD_FROZEN:
2279 case CPU_UP_CANCELED:
2280 case CPU_UP_CANCELED_FROZEN:
2281 rcu_offline_cpu(cpu);
2282 break;
2283 default:
2284 break;
2286 return NOTIFY_OK;
2290 * This function is invoked towards the end of the scheduler's initialization
2291 * process. Before this is called, the idle task might contain
2292 * RCU read-side critical sections (during which time, this idle
2293 * task is booting the system). After this function is called, the
2294 * idle tasks are prohibited from containing RCU read-side critical
2295 * sections. This function also enables RCU lockdep checking.
2297 void rcu_scheduler_starting(void)
2299 WARN_ON(num_online_cpus() != 1);
2300 WARN_ON(nr_context_switches() > 0);
2301 rcu_scheduler_active = 1;
2305 * Compute the per-level fanout, either using the exact fanout specified
2306 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2308 #ifdef CONFIG_RCU_FANOUT_EXACT
2309 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2311 int i;
2313 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2314 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2315 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2317 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2318 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2320 int ccur;
2321 int cprv;
2322 int i;
2324 cprv = NR_CPUS;
2325 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2326 ccur = rsp->levelcnt[i];
2327 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2328 cprv = ccur;
2331 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2334 * Helper function for rcu_init() that initializes one rcu_state structure.
2336 static void __init rcu_init_one(struct rcu_state *rsp,
2337 struct rcu_data __percpu *rda)
2339 static char *buf[] = { "rcu_node_level_0",
2340 "rcu_node_level_1",
2341 "rcu_node_level_2",
2342 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2343 int cpustride = 1;
2344 int i;
2345 int j;
2346 struct rcu_node *rnp;
2348 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2350 /* Initialize the level-tracking arrays. */
2352 for (i = 1; i < NUM_RCU_LVLS; i++)
2353 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2354 rcu_init_levelspread(rsp);
2356 /* Initialize the elements themselves, starting from the leaves. */
2358 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2359 cpustride *= rsp->levelspread[i];
2360 rnp = rsp->level[i];
2361 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2362 raw_spin_lock_init(&rnp->lock);
2363 lockdep_set_class_and_name(&rnp->lock,
2364 &rcu_node_class[i], buf[i]);
2365 rnp->gpnum = 0;
2366 rnp->qsmask = 0;
2367 rnp->qsmaskinit = 0;
2368 rnp->grplo = j * cpustride;
2369 rnp->grphi = (j + 1) * cpustride - 1;
2370 if (rnp->grphi >= NR_CPUS)
2371 rnp->grphi = NR_CPUS - 1;
2372 if (i == 0) {
2373 rnp->grpnum = 0;
2374 rnp->grpmask = 0;
2375 rnp->parent = NULL;
2376 } else {
2377 rnp->grpnum = j % rsp->levelspread[i - 1];
2378 rnp->grpmask = 1UL << rnp->grpnum;
2379 rnp->parent = rsp->level[i - 1] +
2380 j / rsp->levelspread[i - 1];
2382 rnp->level = i;
2383 INIT_LIST_HEAD(&rnp->blkd_tasks);
2387 rsp->rda = rda;
2388 rnp = rsp->level[NUM_RCU_LVLS - 1];
2389 for_each_possible_cpu(i) {
2390 while (i > rnp->grphi)
2391 rnp++;
2392 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2393 rcu_boot_init_percpu_data(i, rsp);
2397 void __init rcu_init(void)
2399 int cpu;
2401 rcu_bootup_announce();
2402 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2403 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2404 __rcu_init_preempt();
2407 * We don't need protection against CPU-hotplug here because
2408 * this is called early in boot, before either interrupts
2409 * or the scheduler are operational.
2411 cpu_notifier(rcu_cpu_notify, 0);
2412 for_each_online_cpu(cpu)
2413 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2414 check_cpu_stall_init();
2417 #include "rcutree_plugin.h"