2 * linux/drivers/ide/ide-pmac.c
4 * Support for IDE interfaces on PowerMacs.
5 * These IDE interfaces are memory-mapped and have a DBDMA channel
8 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
25 #include <linux/config.h>
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/delay.h>
31 #include <linux/ide.h>
32 #include <linux/notifier.h>
33 #include <linux/reboot.h>
34 #include <linux/pci.h>
35 #include <linux/adb.h>
36 #include <linux/pmu.h>
37 #include <linux/scatterlist.h>
41 #include <asm/dbdma.h>
43 #include <asm/pci-bridge.h>
44 #include <asm/machdep.h>
45 #include <asm/pmac_feature.h>
46 #include <asm/sections.h>
50 #include <asm/mediabay.h>
53 #include "ide-timing.h"
57 #define DMA_WAIT_TIMEOUT 50
59 typedef struct pmac_ide_hwif
{
60 unsigned long regbase
;
64 unsigned cable_80
: 1;
65 unsigned mediabay
: 1;
66 unsigned broken_dma
: 1;
67 unsigned broken_dma_warn
: 1;
68 struct device_node
* node
;
69 struct macio_dev
*mdev
;
71 volatile u32 __iomem
* *kauai_fcr
;
72 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
73 /* Those fields are duplicating what is in hwif. We currently
74 * can't use the hwif ones because of some assumptions that are
75 * beeing done by the generic code about the kind of dma controller
76 * and format of the dma table. This will have to be fixed though.
78 volatile struct dbdma_regs __iomem
* dma_regs
;
79 struct dbdma_cmd
* dma_table_cpu
;
84 static pmac_ide_hwif_t pmac_ide
[MAX_HWIFS
] __pmacdata
;
85 static int pmac_ide_count
;
88 controller_ohare
, /* OHare based */
89 controller_heathrow
, /* Heathrow/Paddington */
90 controller_kl_ata3
, /* KeyLargo ATA-3 */
91 controller_kl_ata4
, /* KeyLargo ATA-4 */
92 controller_un_ata6
, /* UniNorth2 ATA-6 */
93 controller_k2_ata6
, /* K2 ATA-6 */
94 controller_sh_ata6
, /* Shasta ATA-6 */
97 static const char* model_name
[] = {
98 "OHare ATA", /* OHare based */
99 "Heathrow ATA", /* Heathrow/Paddington */
100 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
101 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
102 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
103 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
104 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
108 * Extra registers, both 32-bit little-endian
110 #define IDE_TIMING_CONFIG 0x200
111 #define IDE_INTERRUPT 0x300
113 /* Kauai (U2) ATA has different register setup */
114 #define IDE_KAUAI_PIO_CONFIG 0x200
115 #define IDE_KAUAI_ULTRA_CONFIG 0x210
116 #define IDE_KAUAI_POLL_CONFIG 0x220
119 * Timing configuration register definitions
122 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
123 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
124 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
125 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
126 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
128 /* 133Mhz cell, found in shasta.
129 * See comments about 100 Mhz Uninorth 2...
130 * Note that PIO_MASK and MDMA_MASK seem to overlap
132 #define TR_133_PIOREG_PIO_MASK 0xff000fff
133 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
134 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
135 #define TR_133_UDMAREG_UDMA_EN 0x00000001
137 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
138 * this one yet, it appears as a pci device (106b/0033) on uninorth
139 * internal PCI bus and it's clock is controlled like gem or fw. It
140 * appears to be an evolution of keylargo ATA4 with a timing register
141 * extended to 2 32bits registers and a similar DBDMA channel. Other
142 * registers seem to exist but I can't tell much about them.
144 * So far, I'm using pre-calculated tables for this extracted from
145 * the values used by the MacOS X driver.
147 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
148 * register controls the UDMA timings. At least, it seems bit 0
149 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
150 * cycle time in units of 10ns. Bits 8..15 are used by I don't
151 * know their meaning yet
153 #define TR_100_PIOREG_PIO_MASK 0xff000fff
154 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
155 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
156 #define TR_100_UDMAREG_UDMA_EN 0x00000001
159 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
160 * 40 connector cable and to 4 on 80 connector one.
161 * Clock unit is 15ns (66Mhz)
163 * 3 Values can be programmed:
164 * - Write data setup, which appears to match the cycle time. They
165 * also call it DIOW setup.
166 * - Ready to pause time (from spec)
167 * - Address setup. That one is weird. I don't see where exactly
168 * it fits in UDMA cycles, I got it's name from an obscure piece
169 * of commented out code in Darwin. They leave it to 0, we do as
170 * well, despite a comment that would lead to think it has a
172 * Apple also add 60ns to the write data setup (or cycle time ?) on
175 #define TR_66_UDMA_MASK 0xfff00000
176 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
177 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
178 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
179 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
180 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
181 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
182 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
183 #define TR_66_MDMA_MASK 0x000ffc00
184 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
185 #define TR_66_MDMA_RECOVERY_SHIFT 15
186 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
187 #define TR_66_MDMA_ACCESS_SHIFT 10
188 #define TR_66_PIO_MASK 0x000003ff
189 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
190 #define TR_66_PIO_RECOVERY_SHIFT 5
191 #define TR_66_PIO_ACCESS_MASK 0x0000001f
192 #define TR_66_PIO_ACCESS_SHIFT 0
194 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
195 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
197 * The access time and recovery time can be programmed. Some older
198 * Darwin code base limit OHare to 150ns cycle time. I decided to do
199 * the same here fore safety against broken old hardware ;)
200 * The HalfTick bit, when set, adds half a clock (15ns) to the access
201 * time and removes one from recovery. It's not supported on KeyLargo
202 * implementation afaik. The E bit appears to be set for PIO mode 0 and
203 * is used to reach long timings used in this mode.
205 #define TR_33_MDMA_MASK 0x003ff800
206 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
207 #define TR_33_MDMA_RECOVERY_SHIFT 16
208 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
209 #define TR_33_MDMA_ACCESS_SHIFT 11
210 #define TR_33_MDMA_HALFTICK 0x00200000
211 #define TR_33_PIO_MASK 0x000007ff
212 #define TR_33_PIO_E 0x00000400
213 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
214 #define TR_33_PIO_RECOVERY_SHIFT 5
215 #define TR_33_PIO_ACCESS_MASK 0x0000001f
216 #define TR_33_PIO_ACCESS_SHIFT 0
219 * Interrupt register definitions
221 #define IDE_INTR_DMA 0x80000000
222 #define IDE_INTR_DEVICE 0x40000000
225 * FCR Register on Kauai. Not sure what bit 0x4 is ...
227 #define KAUAI_FCR_UATA_MAGIC 0x00000004
228 #define KAUAI_FCR_UATA_RESET_N 0x00000002
229 #define KAUAI_FCR_UATA_ENABLE 0x00000001
231 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
233 /* Rounded Multiword DMA timings
235 * I gave up finding a generic formula for all controller
236 * types and instead, built tables based on timing values
237 * used by Apple in Darwin's implementation.
239 struct mdma_timings_t
{
245 struct mdma_timings_t mdma_timings_33
[] __pmacdata
=
258 struct mdma_timings_t mdma_timings_33k
[] __pmacdata
=
271 struct mdma_timings_t mdma_timings_66
[] __pmacdata
=
284 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
286 int addrSetup
; /* ??? */
289 } kl66_udma_timings
[] __pmacdata
=
291 { 0, 180, 120 }, /* Mode 0 */
292 { 0, 150, 90 }, /* 1 */
293 { 0, 120, 60 }, /* 2 */
294 { 0, 90, 45 }, /* 3 */
295 { 0, 90, 30 } /* 4 */
298 /* UniNorth 2 ATA/100 timings */
299 struct kauai_timing
{
304 static struct kauai_timing kauai_pio_timings
[] __pmacdata
=
306 { 930 , 0x08000fff },
307 { 600 , 0x08000a92 },
308 { 383 , 0x0800060f },
309 { 360 , 0x08000492 },
310 { 330 , 0x0800048f },
311 { 300 , 0x080003cf },
312 { 270 , 0x080003cc },
313 { 240 , 0x0800038b },
314 { 239 , 0x0800030c },
315 { 180 , 0x05000249 },
319 static struct kauai_timing kauai_mdma_timings
[] __pmacdata
=
321 { 1260 , 0x00fff000 },
322 { 480 , 0x00618000 },
323 { 360 , 0x00492000 },
324 { 270 , 0x0038e000 },
325 { 240 , 0x0030c000 },
326 { 210 , 0x002cb000 },
327 { 180 , 0x00249000 },
328 { 150 , 0x00209000 },
329 { 120 , 0x00148000 },
333 static struct kauai_timing kauai_udma_timings
[] __pmacdata
=
335 { 120 , 0x000070c0 },
344 static struct kauai_timing shasta_pio_timings
[] __pmacdata
=
346 { 930 , 0x08000fff },
347 { 600 , 0x0A000c97 },
348 { 383 , 0x07000712 },
349 { 360 , 0x040003cd },
350 { 330 , 0x040003cd },
351 { 300 , 0x040003cd },
352 { 270 , 0x040003cd },
353 { 240 , 0x040003cd },
354 { 239 , 0x040003cd },
355 { 180 , 0x0400028b },
359 static struct kauai_timing shasta_mdma_timings
[] __pmacdata
=
361 { 1260 , 0x00fff000 },
362 { 480 , 0x00820800 },
363 { 360 , 0x00820800 },
364 { 270 , 0x00820800 },
365 { 240 , 0x00820800 },
366 { 210 , 0x00820800 },
367 { 180 , 0x00820800 },
368 { 150 , 0x0028b000 },
369 { 120 , 0x001ca000 },
373 static struct kauai_timing shasta_udma133_timings
[] __pmacdata
=
375 { 120 , 0x00035901, },
376 { 90 , 0x000348b1, },
377 { 60 , 0x00033881, },
378 { 45 , 0x00033861, },
379 { 30 , 0x00033841, },
380 { 20 , 0x00033031, },
381 { 15 , 0x00033021, },
387 kauai_lookup_timing(struct kauai_timing
* table
, int cycle_time
)
391 for (i
=0; table
[i
].cycle_time
; i
++)
392 if (cycle_time
> table
[i
+1].cycle_time
)
393 return table
[i
].timing_reg
;
397 /* allow up to 256 DBDMA commands per xfer */
398 #define MAX_DCMDS 256
401 * Wait 1s for disk to answer on IDE bus after a hard reset
402 * of the device (via GPIO/FCR).
404 * Some devices seem to "pollute" the bus even after dropping
405 * the BSY bit (typically some combo drives slave on the UDMA
406 * bus) after a hard reset. Since we hard reset all drives on
407 * KeyLargo ATA66, we have to keep that delay around. I may end
408 * up not hard resetting anymore on these and keep the delay only
409 * for older interfaces instead (we have to reset when coming
410 * from MacOS...) --BenH.
412 #define IDE_WAKEUP_DELAY (1*HZ)
414 static void pmac_ide_setup_dma(pmac_ide_hwif_t
*pmif
, ide_hwif_t
*hwif
);
415 static int pmac_ide_build_dmatable(ide_drive_t
*drive
, struct request
*rq
);
416 static int pmac_ide_tune_chipset(ide_drive_t
*drive
, u8 speed
);
417 static void pmac_ide_tuneproc(ide_drive_t
*drive
, u8 pio
);
418 static void pmac_ide_selectproc(ide_drive_t
*drive
);
419 static void pmac_ide_kauai_selectproc(ide_drive_t
*drive
);
421 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
424 * Below is the code for blinking the laptop LED along with hard
428 #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
430 /* Set to 50ms minimum led-on time (also used to limit frequency
431 * of requests sent to the PMU
433 #define PMU_HD_BLINK_TIME (HZ/50)
435 static struct adb_request pmu_blink_on
, pmu_blink_off
;
436 static spinlock_t pmu_blink_lock
;
437 static unsigned long pmu_blink_stoptime
;
438 static int pmu_blink_ledstate
;
439 static struct timer_list pmu_blink_timer
;
440 static int pmu_ide_blink_enabled
;
444 pmu_hd_blink_timeout(unsigned long data
)
448 spin_lock_irqsave(&pmu_blink_lock
, flags
);
450 /* We may have been triggered again in a racy way, check
451 * that we really want to switch it off
453 if (time_after(pmu_blink_stoptime
, jiffies
))
456 /* Previous req. not complete, try 100ms more */
457 if (pmu_blink_off
.complete
== 0)
458 mod_timer(&pmu_blink_timer
, jiffies
+ PMU_HD_BLINK_TIME
);
459 else if (pmu_blink_ledstate
) {
460 pmu_request(&pmu_blink_off
, NULL
, 4, 0xee, 4, 0, 0);
461 pmu_blink_ledstate
= 0;
464 spin_unlock_irqrestore(&pmu_blink_lock
, flags
);
468 pmu_hd_kick_blink(void *data
, int rw
)
472 pmu_blink_stoptime
= jiffies
+ PMU_HD_BLINK_TIME
;
474 mod_timer(&pmu_blink_timer
, pmu_blink_stoptime
);
475 /* Fast path when LED is already ON */
476 if (pmu_blink_ledstate
== 1)
478 spin_lock_irqsave(&pmu_blink_lock
, flags
);
479 if (pmu_blink_on
.complete
&& !pmu_blink_ledstate
) {
480 pmu_request(&pmu_blink_on
, NULL
, 4, 0xee, 4, 0, 1);
481 pmu_blink_ledstate
= 1;
483 spin_unlock_irqrestore(&pmu_blink_lock
, flags
);
487 pmu_hd_blink_init(void)
489 struct device_node
*dt
;
492 /* Currently, I only enable this feature on KeyLargo based laptops,
493 * older laptops may support it (at least heathrow/paddington) but
494 * I don't feel like loading those venerable old machines with so
495 * much additional interrupt & PMU activity...
497 if (pmu_get_model() != PMU_KEYLARGO_BASED
)
500 dt
= find_devices("device-tree");
503 model
= (const char *)get_property(dt
, "model", NULL
);
506 if (strncmp(model
, "PowerBook", strlen("PowerBook")) != 0 &&
507 strncmp(model
, "iBook", strlen("iBook")) != 0)
510 pmu_blink_on
.complete
= 1;
511 pmu_blink_off
.complete
= 1;
512 spin_lock_init(&pmu_blink_lock
);
513 init_timer(&pmu_blink_timer
);
514 pmu_blink_timer
.function
= pmu_hd_blink_timeout
;
519 #endif /* CONFIG_BLK_DEV_IDE_PMAC_BLINK */
522 * N.B. this can't be an initfunc, because the media-bay task can
523 * call ide_[un]register at any time.
526 pmac_ide_init_hwif_ports(hw_regs_t
*hw
,
527 unsigned long data_port
, unsigned long ctrl_port
,
535 for (ix
= 0; ix
< MAX_HWIFS
; ++ix
)
536 if (data_port
== pmac_ide
[ix
].regbase
)
539 if (ix
>= MAX_HWIFS
) {
540 /* Probably a PCI interface... */
541 for (i
= IDE_DATA_OFFSET
; i
<= IDE_STATUS_OFFSET
; ++i
)
542 hw
->io_ports
[i
] = data_port
+ i
- IDE_DATA_OFFSET
;
543 hw
->io_ports
[IDE_CONTROL_OFFSET
] = ctrl_port
;
547 for (i
= 0; i
< 8; ++i
)
548 hw
->io_ports
[i
] = data_port
+ i
* 0x10;
549 hw
->io_ports
[8] = data_port
+ 0x160;
552 *irq
= pmac_ide
[ix
].irq
;
555 #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
558 * Apply the timings of the proper unit (master/slave) to the shared
559 * timing register when selecting that unit. This version is for
560 * ASICs with a single timing register
563 pmac_ide_selectproc(ide_drive_t
*drive
)
565 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
570 if (drive
->select
.b
.unit
& 0x01)
571 writel(pmif
->timings
[1], PMAC_IDE_REG(IDE_TIMING_CONFIG
));
573 writel(pmif
->timings
[0], PMAC_IDE_REG(IDE_TIMING_CONFIG
));
574 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
578 * Apply the timings of the proper unit (master/slave) to the shared
579 * timing register when selecting that unit. This version is for
580 * ASICs with a dual timing register (Kauai)
583 pmac_ide_kauai_selectproc(ide_drive_t
*drive
)
585 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
590 if (drive
->select
.b
.unit
& 0x01) {
591 writel(pmif
->timings
[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
592 writel(pmif
->timings
[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG
));
594 writel(pmif
->timings
[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
595 writel(pmif
->timings
[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG
));
597 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
601 * Force an update of controller timing values for a given drive
604 pmac_ide_do_update_timings(ide_drive_t
*drive
)
606 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
611 if (pmif
->kind
== controller_sh_ata6
||
612 pmif
->kind
== controller_un_ata6
||
613 pmif
->kind
== controller_k2_ata6
)
614 pmac_ide_kauai_selectproc(drive
);
616 pmac_ide_selectproc(drive
);
620 pmac_outbsync(ide_drive_t
*drive
, u8 value
, unsigned long port
)
624 writeb(value
, (void __iomem
*) port
);
625 tmp
= readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
629 * Send the SET_FEATURE IDE command to the drive and update drive->id with
630 * the new state. We currently don't use the generic routine as it used to
631 * cause various trouble, especially with older mediabays.
632 * This code is sometimes triggering a spurrious interrupt though, I need
633 * to sort that out sooner or later and see if I can finally get the
634 * common version to work properly in all cases
637 pmac_ide_do_setfeature(ide_drive_t
*drive
, u8 command
)
639 ide_hwif_t
*hwif
= HWIF(drive
);
642 disable_irq_nosync(hwif
->irq
);
645 SELECT_MASK(drive
, 0);
647 /* Get rid of pending error state */
648 (void) hwif
->INB(IDE_STATUS_REG
);
649 /* Timeout bumped for some powerbooks */
650 if (wait_for_ready(drive
, 2000)) {
651 /* Timeout bumped for some powerbooks */
652 printk(KERN_ERR
"%s: pmac_ide_do_setfeature disk not ready "
653 "before SET_FEATURE!\n", drive
->name
);
657 hwif
->OUTB(drive
->ctl
| 2, IDE_CONTROL_REG
);
658 hwif
->OUTB(command
, IDE_NSECTOR_REG
);
659 hwif
->OUTB(SETFEATURES_XFER
, IDE_FEATURE_REG
);
660 hwif
->OUTBSYNC(drive
, WIN_SETFEATURES
, IDE_COMMAND_REG
);
662 /* Timeout bumped for some powerbooks */
663 result
= wait_for_ready(drive
, 2000);
664 hwif
->OUTB(drive
->ctl
, IDE_CONTROL_REG
);
666 printk(KERN_ERR
"%s: pmac_ide_do_setfeature disk not ready "
667 "after SET_FEATURE !\n", drive
->name
);
669 SELECT_MASK(drive
, 0);
671 drive
->id
->dma_ultra
&= ~0xFF00;
672 drive
->id
->dma_mword
&= ~0x0F00;
673 drive
->id
->dma_1word
&= ~0x0F00;
676 drive
->id
->dma_ultra
|= 0x8080; break;
678 drive
->id
->dma_ultra
|= 0x4040; break;
680 drive
->id
->dma_ultra
|= 0x2020; break;
682 drive
->id
->dma_ultra
|= 0x1010; break;
684 drive
->id
->dma_ultra
|= 0x0808; break;
686 drive
->id
->dma_ultra
|= 0x0404; break;
688 drive
->id
->dma_ultra
|= 0x0202; break;
690 drive
->id
->dma_ultra
|= 0x0101; break;
692 drive
->id
->dma_mword
|= 0x0404; break;
694 drive
->id
->dma_mword
|= 0x0202; break;
696 drive
->id
->dma_mword
|= 0x0101; break;
698 drive
->id
->dma_1word
|= 0x0404; break;
700 drive
->id
->dma_1word
|= 0x0202; break;
702 drive
->id
->dma_1word
|= 0x0101; break;
706 enable_irq(hwif
->irq
);
711 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
714 pmac_ide_tuneproc(ide_drive_t
*drive
, u8 pio
)
718 unsigned accessTicks
, recTicks
;
719 unsigned accessTime
, recTime
;
720 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
725 /* which drive is it ? */
726 timings
= &pmif
->timings
[drive
->select
.b
.unit
& 0x01];
728 pio
= ide_get_best_pio_mode(drive
, pio
, 4, &d
);
730 switch (pmif
->kind
) {
731 case controller_sh_ata6
: {
733 u32 tr
= kauai_lookup_timing(shasta_pio_timings
, d
.cycle_time
);
736 *timings
= ((*timings
) & ~TR_133_PIOREG_PIO_MASK
) | tr
;
739 case controller_un_ata6
:
740 case controller_k2_ata6
: {
742 u32 tr
= kauai_lookup_timing(kauai_pio_timings
, d
.cycle_time
);
745 *timings
= ((*timings
) & ~TR_100_PIOREG_PIO_MASK
) | tr
;
748 case controller_kl_ata4
:
750 recTime
= d
.cycle_time
- ide_pio_timings
[pio
].active_time
751 - ide_pio_timings
[pio
].setup_time
;
752 recTime
= max(recTime
, 150U);
753 accessTime
= ide_pio_timings
[pio
].active_time
;
754 accessTime
= max(accessTime
, 150U);
755 accessTicks
= SYSCLK_TICKS_66(accessTime
);
756 accessTicks
= min(accessTicks
, 0x1fU
);
757 recTicks
= SYSCLK_TICKS_66(recTime
);
758 recTicks
= min(recTicks
, 0x1fU
);
759 *timings
= ((*timings
) & ~TR_66_PIO_MASK
) |
760 (accessTicks
<< TR_66_PIO_ACCESS_SHIFT
) |
761 (recTicks
<< TR_66_PIO_RECOVERY_SHIFT
);
766 recTime
= d
.cycle_time
- ide_pio_timings
[pio
].active_time
767 - ide_pio_timings
[pio
].setup_time
;
768 recTime
= max(recTime
, 150U);
769 accessTime
= ide_pio_timings
[pio
].active_time
;
770 accessTime
= max(accessTime
, 150U);
771 accessTicks
= SYSCLK_TICKS(accessTime
);
772 accessTicks
= min(accessTicks
, 0x1fU
);
773 accessTicks
= max(accessTicks
, 4U);
774 recTicks
= SYSCLK_TICKS(recTime
);
775 recTicks
= min(recTicks
, 0x1fU
);
776 recTicks
= max(recTicks
, 5U) - 4;
778 recTicks
--; /* guess, but it's only for PIO0, so... */
781 *timings
= ((*timings
) & ~TR_33_PIO_MASK
) |
782 (accessTicks
<< TR_33_PIO_ACCESS_SHIFT
) |
783 (recTicks
<< TR_33_PIO_RECOVERY_SHIFT
);
785 *timings
|= TR_33_PIO_E
;
790 #ifdef IDE_PMAC_DEBUG
791 printk(KERN_ERR
"%s: Set PIO timing for mode %d, reg: 0x%08x\n",
792 drive
->name
, pio
, *timings
);
795 if (drive
->select
.all
== HWIF(drive
)->INB(IDE_SELECT_REG
))
796 pmac_ide_do_update_timings(drive
);
799 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
802 * Calculate KeyLargo ATA/66 UDMA timings
805 set_timings_udma_ata4(u32
*timings
, u8 speed
)
807 unsigned rdyToPauseTicks
, wrDataSetupTicks
, addrTicks
;
809 if (speed
> XFER_UDMA_4
)
812 rdyToPauseTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].rdy2pause
);
813 wrDataSetupTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].wrDataSetup
);
814 addrTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].addrSetup
);
816 *timings
= ((*timings
) & ~(TR_66_UDMA_MASK
| TR_66_MDMA_MASK
)) |
817 (wrDataSetupTicks
<< TR_66_UDMA_WRDATASETUP_SHIFT
) |
818 (rdyToPauseTicks
<< TR_66_UDMA_RDY2PAUS_SHIFT
) |
819 (addrTicks
<<TR_66_UDMA_ADDRSETUP_SHIFT
) |
821 #ifdef IDE_PMAC_DEBUG
822 printk(KERN_ERR
"ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
823 speed
& 0xf, *timings
);
830 * Calculate Kauai ATA/100 UDMA timings
833 set_timings_udma_ata6(u32
*pio_timings
, u32
*ultra_timings
, u8 speed
)
835 struct ide_timing
*t
= ide_timing_find_mode(speed
);
838 if (speed
> XFER_UDMA_5
|| t
== NULL
)
840 tr
= kauai_lookup_timing(kauai_udma_timings
, (int)t
->udma
);
843 *ultra_timings
= ((*ultra_timings
) & ~TR_100_UDMAREG_UDMA_MASK
) | tr
;
844 *ultra_timings
= (*ultra_timings
) | TR_100_UDMAREG_UDMA_EN
;
850 * Calculate Shasta ATA/133 UDMA timings
853 set_timings_udma_shasta(u32
*pio_timings
, u32
*ultra_timings
, u8 speed
)
855 struct ide_timing
*t
= ide_timing_find_mode(speed
);
858 if (speed
> XFER_UDMA_6
|| t
== NULL
)
860 tr
= kauai_lookup_timing(shasta_udma133_timings
, (int)t
->udma
);
863 *ultra_timings
= ((*ultra_timings
) & ~TR_133_UDMAREG_UDMA_MASK
) | tr
;
864 *ultra_timings
= (*ultra_timings
) | TR_133_UDMAREG_UDMA_EN
;
870 * Calculate MDMA timings for all cells
873 set_timings_mdma(ide_drive_t
*drive
, int intf_type
, u32
*timings
, u32
*timings2
,
874 u8 speed
, int drive_cycle_time
)
876 int cycleTime
, accessTime
= 0, recTime
= 0;
877 unsigned accessTicks
, recTicks
;
878 struct mdma_timings_t
* tm
= NULL
;
881 /* Get default cycle time for mode */
882 switch(speed
& 0xf) {
883 case 0: cycleTime
= 480; break;
884 case 1: cycleTime
= 150; break;
885 case 2: cycleTime
= 120; break;
889 /* Adjust for drive */
890 if (drive_cycle_time
&& drive_cycle_time
> cycleTime
)
891 cycleTime
= drive_cycle_time
;
892 /* OHare limits according to some old Apple sources */
893 if ((intf_type
== controller_ohare
) && (cycleTime
< 150))
895 /* Get the proper timing array for this controller */
897 case controller_sh_ata6
:
898 case controller_un_ata6
:
899 case controller_k2_ata6
:
901 case controller_kl_ata4
:
902 tm
= mdma_timings_66
;
904 case controller_kl_ata3
:
905 tm
= mdma_timings_33k
;
908 tm
= mdma_timings_33
;
912 /* Lookup matching access & recovery times */
915 if (tm
[i
+1].cycleTime
< cycleTime
)
921 cycleTime
= tm
[i
].cycleTime
;
922 accessTime
= tm
[i
].accessTime
;
923 recTime
= tm
[i
].recoveryTime
;
925 #ifdef IDE_PMAC_DEBUG
926 printk(KERN_ERR
"%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
927 drive
->name
, cycleTime
, accessTime
, recTime
);
931 case controller_sh_ata6
: {
933 u32 tr
= kauai_lookup_timing(shasta_mdma_timings
, cycleTime
);
936 *timings
= ((*timings
) & ~TR_133_PIOREG_MDMA_MASK
) | tr
;
937 *timings2
= (*timings2
) & ~TR_133_UDMAREG_UDMA_EN
;
939 case controller_un_ata6
:
940 case controller_k2_ata6
: {
942 u32 tr
= kauai_lookup_timing(kauai_mdma_timings
, cycleTime
);
945 *timings
= ((*timings
) & ~TR_100_PIOREG_MDMA_MASK
) | tr
;
946 *timings2
= (*timings2
) & ~TR_100_UDMAREG_UDMA_EN
;
949 case controller_kl_ata4
:
951 accessTicks
= SYSCLK_TICKS_66(accessTime
);
952 accessTicks
= min(accessTicks
, 0x1fU
);
953 accessTicks
= max(accessTicks
, 0x1U
);
954 recTicks
= SYSCLK_TICKS_66(recTime
);
955 recTicks
= min(recTicks
, 0x1fU
);
956 recTicks
= max(recTicks
, 0x3U
);
957 /* Clear out mdma bits and disable udma */
958 *timings
= ((*timings
) & ~(TR_66_MDMA_MASK
| TR_66_UDMA_MASK
)) |
959 (accessTicks
<< TR_66_MDMA_ACCESS_SHIFT
) |
960 (recTicks
<< TR_66_MDMA_RECOVERY_SHIFT
);
962 case controller_kl_ata3
:
963 /* 33Mhz cell on KeyLargo */
964 accessTicks
= SYSCLK_TICKS(accessTime
);
965 accessTicks
= max(accessTicks
, 1U);
966 accessTicks
= min(accessTicks
, 0x1fU
);
967 accessTime
= accessTicks
* IDE_SYSCLK_NS
;
968 recTicks
= SYSCLK_TICKS(recTime
);
969 recTicks
= max(recTicks
, 1U);
970 recTicks
= min(recTicks
, 0x1fU
);
971 *timings
= ((*timings
) & ~TR_33_MDMA_MASK
) |
972 (accessTicks
<< TR_33_MDMA_ACCESS_SHIFT
) |
973 (recTicks
<< TR_33_MDMA_RECOVERY_SHIFT
);
976 /* 33Mhz cell on others */
978 int origAccessTime
= accessTime
;
979 int origRecTime
= recTime
;
981 accessTicks
= SYSCLK_TICKS(accessTime
);
982 accessTicks
= max(accessTicks
, 1U);
983 accessTicks
= min(accessTicks
, 0x1fU
);
984 accessTime
= accessTicks
* IDE_SYSCLK_NS
;
985 recTicks
= SYSCLK_TICKS(recTime
);
986 recTicks
= max(recTicks
, 2U) - 1;
987 recTicks
= min(recTicks
, 0x1fU
);
988 recTime
= (recTicks
+ 1) * IDE_SYSCLK_NS
;
989 if ((accessTicks
> 1) &&
990 ((accessTime
- IDE_SYSCLK_NS
/2) >= origAccessTime
) &&
991 ((recTime
- IDE_SYSCLK_NS
/2) >= origRecTime
)) {
995 *timings
= ((*timings
) & ~TR_33_MDMA_MASK
) |
996 (accessTicks
<< TR_33_MDMA_ACCESS_SHIFT
) |
997 (recTicks
<< TR_33_MDMA_RECOVERY_SHIFT
);
999 *timings
|= TR_33_MDMA_HALFTICK
;
1002 #ifdef IDE_PMAC_DEBUG
1003 printk(KERN_ERR
"%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
1004 drive
->name
, speed
& 0xf, *timings
);
1008 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
1011 * Speedproc. This function is called by the core to set any of the standard
1012 * timing (PIO, MDMA or UDMA) to both the drive and the controller.
1013 * You may notice we don't use this function on normal "dma check" operation,
1014 * our dedicated function is more precise as it uses the drive provided
1015 * cycle time value. We should probably fix this one to deal with that too...
1018 pmac_ide_tune_chipset (ide_drive_t
*drive
, byte speed
)
1020 int unit
= (drive
->select
.b
.unit
& 0x01);
1022 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
1023 u32
*timings
, *timings2
;
1028 timings
= &pmif
->timings
[unit
];
1029 timings2
= &pmif
->timings
[unit
+2];
1032 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1034 if (pmif
->kind
!= controller_sh_ata6
)
1037 if (pmif
->kind
!= controller_un_ata6
&&
1038 pmif
->kind
!= controller_k2_ata6
&&
1039 pmif
->kind
!= controller_sh_ata6
)
1043 if (HWIF(drive
)->udma_four
== 0)
1048 if (pmif
->kind
== controller_kl_ata4
)
1049 ret
= set_timings_udma_ata4(timings
, speed
);
1050 else if (pmif
->kind
== controller_un_ata6
1051 || pmif
->kind
== controller_k2_ata6
)
1052 ret
= set_timings_udma_ata6(timings
, timings2
, speed
);
1053 else if (pmif
->kind
== controller_sh_ata6
)
1054 ret
= set_timings_udma_shasta(timings
, timings2
, speed
);
1061 ret
= set_timings_mdma(drive
, pmif
->kind
, timings
, timings2
, speed
, 0);
1067 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1073 pmac_ide_tuneproc(drive
, speed
& 0x07);
1081 ret
= pmac_ide_do_setfeature(drive
, speed
);
1085 pmac_ide_do_update_timings(drive
);
1086 drive
->current_speed
= speed
;
1092 * Blast some well known "safe" values to the timing registers at init or
1093 * wakeup from sleep time, before we do real calculation
1096 sanitize_timings(pmac_ide_hwif_t
*pmif
)
1098 unsigned int value
, value2
= 0;
1100 switch(pmif
->kind
) {
1101 case controller_sh_ata6
:
1103 value2
= 0x00033031;
1105 case controller_un_ata6
:
1106 case controller_k2_ata6
:
1108 value2
= 0x00002921;
1110 case controller_kl_ata4
:
1113 case controller_kl_ata3
:
1116 case controller_heathrow
:
1117 case controller_ohare
:
1122 pmif
->timings
[0] = pmif
->timings
[1] = value
;
1123 pmif
->timings
[2] = pmif
->timings
[3] = value2
;
1126 unsigned long __pmac
1127 pmac_ide_get_base(int index
)
1129 return pmac_ide
[index
].regbase
;
1133 pmac_ide_check_base(unsigned long base
)
1137 for (ix
= 0; ix
< MAX_HWIFS
; ++ix
)
1138 if (base
== pmac_ide
[ix
].regbase
)
1144 pmac_ide_get_irq(unsigned long base
)
1148 for (ix
= 0; ix
< MAX_HWIFS
; ++ix
)
1149 if (base
== pmac_ide
[ix
].regbase
)
1150 return pmac_ide
[ix
].irq
;
1154 static int ide_majors
[] __pmacdata
= { 3, 22, 33, 34, 56, 57 };
1157 pmac_find_ide_boot(char *bootdevice
, int n
)
1162 * Look through the list of IDE interfaces for this one.
1164 for (i
= 0; i
< pmac_ide_count
; ++i
) {
1166 if (!pmac_ide
[i
].node
|| !pmac_ide
[i
].node
->full_name
)
1168 name
= pmac_ide
[i
].node
->full_name
;
1169 if (memcmp(name
, bootdevice
, n
) == 0 && name
[n
] == 0) {
1170 /* XXX should cope with the 2nd drive as well... */
1171 return MKDEV(ide_majors
[i
], 0);
1178 /* Suspend call back, should be called after the child devices
1179 * have actually been suspended
1182 pmac_ide_do_suspend(ide_hwif_t
*hwif
)
1184 pmac_ide_hwif_t
*pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1186 /* We clear the timings */
1187 pmif
->timings
[0] = 0;
1188 pmif
->timings
[1] = 0;
1190 #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
1191 /* Note: This code will be called for every hwif, thus we'll
1192 * try several time to stop the LED blinker timer, but that
1193 * should be harmless
1195 if (pmu_ide_blink_enabled
) {
1196 unsigned long flags
;
1198 /* Make sure we don't hit the PMU blink */
1199 spin_lock_irqsave(&pmu_blink_lock
, flags
);
1200 if (pmu_blink_ledstate
)
1201 del_timer(&pmu_blink_timer
);
1202 pmu_blink_ledstate
= 0;
1203 spin_unlock_irqrestore(&pmu_blink_lock
, flags
);
1205 #endif /* CONFIG_BLK_DEV_IDE_PMAC_BLINK */
1207 disable_irq(pmif
->irq
);
1209 /* The media bay will handle itself just fine */
1213 /* Kauai has bus control FCRs directly here */
1214 if (pmif
->kauai_fcr
) {
1215 u32 fcr
= readl(pmif
->kauai_fcr
);
1216 fcr
&= ~(KAUAI_FCR_UATA_RESET_N
| KAUAI_FCR_UATA_ENABLE
);
1217 writel(fcr
, pmif
->kauai_fcr
);
1220 /* Disable the bus on older machines and the cell on kauai */
1221 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, pmif
->node
, pmif
->aapl_bus_id
,
1227 /* Resume call back, should be called before the child devices
1231 pmac_ide_do_resume(ide_hwif_t
*hwif
)
1233 pmac_ide_hwif_t
*pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1235 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
1236 if (!pmif
->mediabay
) {
1237 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, pmif
->node
, pmif
->aapl_bus_id
, 1);
1238 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, pmif
->node
, pmif
->aapl_bus_id
, 1);
1240 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, pmif
->node
, pmif
->aapl_bus_id
, 0);
1242 /* Kauai has it different */
1243 if (pmif
->kauai_fcr
) {
1244 u32 fcr
= readl(pmif
->kauai_fcr
);
1245 fcr
|= KAUAI_FCR_UATA_RESET_N
| KAUAI_FCR_UATA_ENABLE
;
1246 writel(fcr
, pmif
->kauai_fcr
);
1249 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY
));
1252 /* Sanitize drive timings */
1253 sanitize_timings(pmif
);
1255 enable_irq(pmif
->irq
);
1261 * Setup, register & probe an IDE channel driven by this driver, this is
1262 * called by one of the 2 probe functions (macio or PCI). Note that a channel
1263 * that ends up beeing free of any device is not kept around by this driver
1264 * (it is kept in 2.4). This introduce an interface numbering change on some
1265 * rare machines unfortunately, but it's better this way.
1268 pmac_ide_setup_device(pmac_ide_hwif_t
*pmif
, ide_hwif_t
*hwif
)
1270 struct device_node
*np
= pmif
->node
;
1274 pmif
->broken_dma
= pmif
->broken_dma_warn
= 0;
1275 if (device_is_compatible(np
, "shasta-ata"))
1276 pmif
->kind
= controller_sh_ata6
;
1277 else if (device_is_compatible(np
, "kauai-ata"))
1278 pmif
->kind
= controller_un_ata6
;
1279 else if (device_is_compatible(np
, "K2-UATA"))
1280 pmif
->kind
= controller_k2_ata6
;
1281 else if (device_is_compatible(np
, "keylargo-ata")) {
1282 if (strcmp(np
->name
, "ata-4") == 0)
1283 pmif
->kind
= controller_kl_ata4
;
1285 pmif
->kind
= controller_kl_ata3
;
1286 } else if (device_is_compatible(np
, "heathrow-ata"))
1287 pmif
->kind
= controller_heathrow
;
1289 pmif
->kind
= controller_ohare
;
1290 pmif
->broken_dma
= 1;
1293 bidp
= (int *)get_property(np
, "AAPL,bus-id", NULL
);
1294 pmif
->aapl_bus_id
= bidp
? *bidp
: 0;
1296 /* Get cable type from device-tree */
1297 if (pmif
->kind
== controller_kl_ata4
|| pmif
->kind
== controller_un_ata6
1298 || pmif
->kind
== controller_k2_ata6
1299 || pmif
->kind
== controller_sh_ata6
) {
1300 char* cable
= get_property(np
, "cable-type", NULL
);
1301 if (cable
&& !strncmp(cable
, "80-", 3))
1304 /* G5's seem to have incorrect cable type in device-tree. Let's assume
1305 * they have a 80 conductor cable, this seem to be always the case unless
1306 * the user mucked around
1308 if (device_is_compatible(np
, "K2-UATA") ||
1309 device_is_compatible(np
, "shasta-ata"))
1312 /* On Kauai-type controllers, we make sure the FCR is correct */
1313 if (pmif
->kauai_fcr
)
1314 writel(KAUAI_FCR_UATA_MAGIC
|
1315 KAUAI_FCR_UATA_RESET_N
|
1316 KAUAI_FCR_UATA_ENABLE
, pmif
->kauai_fcr
);
1320 /* Make sure we have sane timings */
1321 sanitize_timings(pmif
);
1323 #ifndef CONFIG_PPC64
1324 /* XXX FIXME: Media bay stuff need re-organizing */
1325 if (np
->parent
&& np
->parent
->name
1326 && strcasecmp(np
->parent
->name
, "media-bay") == 0) {
1327 #ifdef CONFIG_PMAC_MEDIABAY
1328 media_bay_set_ide_infos(np
->parent
, pmif
->regbase
, pmif
->irq
, hwif
->index
);
1329 #endif /* CONFIG_PMAC_MEDIABAY */
1332 pmif
->aapl_bus_id
= 1;
1333 } else if (pmif
->kind
== controller_ohare
) {
1334 /* The code below is having trouble on some ohare machines
1335 * (timing related ?). Until I can put my hand on one of these
1336 * units, I keep the old way
1338 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, np
, 0, 1);
1342 /* This is necessary to enable IDE when net-booting */
1343 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, np
, pmif
->aapl_bus_id
, 1);
1344 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, np
, pmif
->aapl_bus_id
, 1);
1346 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, np
, pmif
->aapl_bus_id
, 0);
1347 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY
));
1350 /* Setup MMIO ops */
1351 default_hwif_mmiops(hwif
);
1352 hwif
->OUTBSYNC
= pmac_outbsync
;
1354 /* Tell common code _not_ to mess with resources */
1356 hwif
->hwif_data
= pmif
;
1357 pmac_ide_init_hwif_ports(&hwif
->hw
, pmif
->regbase
, 0, &hwif
->irq
);
1358 memcpy(hwif
->io_ports
, hwif
->hw
.io_ports
, sizeof(hwif
->io_ports
));
1359 hwif
->chipset
= ide_pmac
;
1360 hwif
->noprobe
= !hwif
->io_ports
[IDE_DATA_OFFSET
] || pmif
->mediabay
;
1361 hwif
->hold
= pmif
->mediabay
;
1362 hwif
->udma_four
= pmif
->cable_80
;
1363 hwif
->drives
[0].unmask
= 1;
1364 hwif
->drives
[1].unmask
= 1;
1365 hwif
->tuneproc
= pmac_ide_tuneproc
;
1366 if (pmif
->kind
== controller_un_ata6
1367 || pmif
->kind
== controller_k2_ata6
1368 || pmif
->kind
== controller_sh_ata6
)
1369 hwif
->selectproc
= pmac_ide_kauai_selectproc
;
1371 hwif
->selectproc
= pmac_ide_selectproc
;
1372 hwif
->speedproc
= pmac_ide_tune_chipset
;
1374 #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
1375 pmu_ide_blink_enabled
= pmu_hd_blink_init();
1377 if (pmu_ide_blink_enabled
)
1378 hwif
->led_act
= pmu_hd_kick_blink
;
1381 printk(KERN_INFO
"ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1382 hwif
->index
, model_name
[pmif
->kind
], pmif
->aapl_bus_id
,
1383 pmif
->mediabay
? " (mediabay)" : "", hwif
->irq
);
1385 #ifdef CONFIG_PMAC_MEDIABAY
1386 if (pmif
->mediabay
&& check_media_bay_by_base(pmif
->regbase
, MB_CD
) == 0)
1388 #endif /* CONFIG_PMAC_MEDIABAY */
1390 hwif
->sg_max_nents
= MAX_DCMDS
;
1392 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1393 /* has a DBDMA controller channel */
1395 pmac_ide_setup_dma(pmif
, hwif
);
1396 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1398 /* We probe the hwif now */
1399 probe_hwif_init(hwif
);
1401 /* The code IDE code will have set hwif->present if we have devices attached,
1402 * if we don't, the discard the interface except if we are on a media bay slot
1404 if (!hwif
->present
&& !pmif
->mediabay
) {
1405 printk(KERN_INFO
"ide%d: Bus empty, interface released.\n",
1407 default_hwif_iops(hwif
);
1408 for (i
= IDE_DATA_OFFSET
; i
<= IDE_CONTROL_OFFSET
; ++i
)
1409 hwif
->io_ports
[i
] = 0;
1410 hwif
->chipset
= ide_unknown
;
1419 * Attach to a macio probed interface
1421 static int __devinit
1422 pmac_ide_macio_attach(struct macio_dev
*mdev
, const struct of_device_id
*match
)
1425 unsigned long regbase
;
1428 pmac_ide_hwif_t
*pmif
;
1432 while (i
< MAX_HWIFS
&& (ide_hwifs
[i
].io_ports
[IDE_DATA_OFFSET
] != 0
1433 || pmac_ide
[i
].node
!= NULL
))
1435 if (i
>= MAX_HWIFS
) {
1436 printk(KERN_ERR
"ide-pmac: MacIO interface attach with no slot\n");
1437 printk(KERN_ERR
" %s\n", mdev
->ofdev
.node
->full_name
);
1441 pmif
= &pmac_ide
[i
];
1442 hwif
= &ide_hwifs
[i
];
1444 if (mdev
->ofdev
.node
->n_addrs
== 0) {
1445 printk(KERN_WARNING
"ide%d: no address for %s\n",
1446 i
, mdev
->ofdev
.node
->full_name
);
1450 /* Request memory resource for IO ports */
1451 if (macio_request_resource(mdev
, 0, "ide-pmac (ports)")) {
1452 printk(KERN_ERR
"ide%d: can't request mmio resource !\n", i
);
1456 /* XXX This is bogus. Should be fixed in the registry by checking
1457 * the kind of host interrupt controller, a bit like gatwick
1458 * fixes in irq.c. That works well enough for the single case
1459 * where that happens though...
1461 if (macio_irq_count(mdev
) == 0) {
1462 printk(KERN_WARNING
"ide%d: no intrs for device %s, using 13\n",
1463 i
, mdev
->ofdev
.node
->full_name
);
1466 irq
= macio_irq(mdev
, 0);
1468 base
= ioremap(macio_resource_start(mdev
, 0), 0x400);
1469 regbase
= (unsigned long) base
;
1471 hwif
->pci_dev
= mdev
->bus
->pdev
;
1472 hwif
->gendev
.parent
= &mdev
->ofdev
.dev
;
1475 pmif
->node
= mdev
->ofdev
.node
;
1476 pmif
->regbase
= regbase
;
1478 pmif
->kauai_fcr
= NULL
;
1479 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1480 if (macio_resource_count(mdev
) >= 2) {
1481 if (macio_request_resource(mdev
, 1, "ide-pmac (dma)"))
1482 printk(KERN_WARNING
"ide%d: can't request DMA resource !\n", i
);
1484 pmif
->dma_regs
= ioremap(macio_resource_start(mdev
, 1), 0x1000);
1486 pmif
->dma_regs
= NULL
;
1487 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1488 dev_set_drvdata(&mdev
->ofdev
.dev
, hwif
);
1490 rc
= pmac_ide_setup_device(pmif
, hwif
);
1492 /* The inteface is released to the common IDE layer */
1493 dev_set_drvdata(&mdev
->ofdev
.dev
, NULL
);
1496 iounmap(pmif
->dma_regs
);
1497 memset(pmif
, 0, sizeof(*pmif
));
1498 macio_release_resource(mdev
, 0);
1500 macio_release_resource(mdev
, 1);
1507 pmac_ide_macio_suspend(struct macio_dev
*mdev
, u32 state
)
1509 ide_hwif_t
*hwif
= (ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1512 if (state
!= mdev
->ofdev
.dev
.power
.power_state
&& state
>= 2) {
1513 rc
= pmac_ide_do_suspend(hwif
);
1515 mdev
->ofdev
.dev
.power
.power_state
= state
;
1522 pmac_ide_macio_resume(struct macio_dev
*mdev
)
1524 ide_hwif_t
*hwif
= (ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1527 if (mdev
->ofdev
.dev
.power
.power_state
!= 0) {
1528 rc
= pmac_ide_do_resume(hwif
);
1530 mdev
->ofdev
.dev
.power
.power_state
= 0;
1537 * Attach to a PCI probed interface
1539 static int __devinit
1540 pmac_ide_pci_attach(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
1543 struct device_node
*np
;
1544 pmac_ide_hwif_t
*pmif
;
1546 unsigned long rbase
, rlen
;
1549 np
= pci_device_to_OF_node(pdev
);
1551 printk(KERN_ERR
"ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1555 while (i
< MAX_HWIFS
&& (ide_hwifs
[i
].io_ports
[IDE_DATA_OFFSET
] != 0
1556 || pmac_ide
[i
].node
!= NULL
))
1558 if (i
>= MAX_HWIFS
) {
1559 printk(KERN_ERR
"ide-pmac: PCI interface attach with no slot\n");
1560 printk(KERN_ERR
" %s\n", np
->full_name
);
1564 pmif
= &pmac_ide
[i
];
1565 hwif
= &ide_hwifs
[i
];
1567 if (pci_enable_device(pdev
)) {
1568 printk(KERN_WARNING
"ide%i: Can't enable PCI device for %s\n",
1572 pci_set_master(pdev
);
1574 if (pci_request_regions(pdev
, "Kauai ATA")) {
1575 printk(KERN_ERR
"ide%d: Cannot obtain PCI resources for %s\n",
1580 hwif
->pci_dev
= pdev
;
1581 hwif
->gendev
.parent
= &pdev
->dev
;
1585 rbase
= pci_resource_start(pdev
, 0);
1586 rlen
= pci_resource_len(pdev
, 0);
1588 base
= ioremap(rbase
, rlen
);
1589 pmif
->regbase
= (unsigned long) base
+ 0x2000;
1590 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1591 pmif
->dma_regs
= base
+ 0x1000;
1592 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1593 pmif
->kauai_fcr
= base
;
1594 pmif
->irq
= pdev
->irq
;
1596 pci_set_drvdata(pdev
, hwif
);
1598 rc
= pmac_ide_setup_device(pmif
, hwif
);
1600 /* The inteface is released to the common IDE layer */
1601 pci_set_drvdata(pdev
, NULL
);
1603 memset(pmif
, 0, sizeof(*pmif
));
1604 pci_release_regions(pdev
);
1611 pmac_ide_pci_suspend(struct pci_dev
*pdev
, u32 state
)
1613 ide_hwif_t
*hwif
= (ide_hwif_t
*)pci_get_drvdata(pdev
);
1616 if (state
!= pdev
->dev
.power
.power_state
&& state
>= 2) {
1617 rc
= pmac_ide_do_suspend(hwif
);
1619 pdev
->dev
.power
.power_state
= state
;
1626 pmac_ide_pci_resume(struct pci_dev
*pdev
)
1628 ide_hwif_t
*hwif
= (ide_hwif_t
*)pci_get_drvdata(pdev
);
1631 if (pdev
->dev
.power
.power_state
!= 0) {
1632 rc
= pmac_ide_do_resume(hwif
);
1634 pdev
->dev
.power
.power_state
= 0;
1640 static struct of_device_id pmac_ide_macio_match
[] =
1657 static struct macio_driver pmac_ide_macio_driver
=
1660 .match_table
= pmac_ide_macio_match
,
1661 .probe
= pmac_ide_macio_attach
,
1662 .suspend
= pmac_ide_macio_suspend
,
1663 .resume
= pmac_ide_macio_resume
,
1666 static struct pci_device_id pmac_ide_pci_match
[] = {
1667 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_ATA
, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1668 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID_ATA100
, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1669 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_ATA100
, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1670 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_ATA
,
1671 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1674 static struct pci_driver pmac_ide_pci_driver
= {
1676 .id_table
= pmac_ide_pci_match
,
1677 .probe
= pmac_ide_pci_attach
,
1678 .suspend
= pmac_ide_pci_suspend
,
1679 .resume
= pmac_ide_pci_resume
,
1681 MODULE_DEVICE_TABLE(pci
, pmac_ide_pci_match
);
1684 pmac_ide_probe(void)
1686 if (_machine
!= _MACH_Pmac
)
1689 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1690 pci_register_driver(&pmac_ide_pci_driver
);
1691 macio_register_driver(&pmac_ide_macio_driver
);
1693 macio_register_driver(&pmac_ide_macio_driver
);
1694 pci_register_driver(&pmac_ide_pci_driver
);
1698 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1701 * pmac_ide_build_dmatable builds the DBDMA command list
1702 * for a transfer and sets the DBDMA channel to point to it.
1705 pmac_ide_build_dmatable(ide_drive_t
*drive
, struct request
*rq
)
1707 struct dbdma_cmd
*table
;
1709 ide_hwif_t
*hwif
= HWIF(drive
);
1710 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1711 volatile struct dbdma_regs __iomem
*dma
= pmif
->dma_regs
;
1712 struct scatterlist
*sg
;
1713 int wr
= (rq_data_dir(rq
) == WRITE
);
1715 /* DMA table is already aligned */
1716 table
= (struct dbdma_cmd
*) pmif
->dma_table_cpu
;
1718 /* Make sure DMA controller is stopped (necessary ?) */
1719 writel((RUN
|PAUSE
|FLUSH
|WAKE
|DEAD
) << 16, &dma
->control
);
1720 while (readl(&dma
->status
) & RUN
)
1723 hwif
->sg_nents
= i
= ide_build_sglist(drive
, rq
);
1728 /* Build DBDMA commands list */
1729 sg
= hwif
->sg_table
;
1730 while (i
&& sg_dma_len(sg
)) {
1734 cur_addr
= sg_dma_address(sg
);
1735 cur_len
= sg_dma_len(sg
);
1737 if (pmif
->broken_dma
&& cur_addr
& (L1_CACHE_BYTES
- 1)) {
1738 if (pmif
->broken_dma_warn
== 0) {
1739 printk(KERN_WARNING
"%s: DMA on non aligned address,"
1740 "switching to PIO on Ohare chipset\n", drive
->name
);
1741 pmif
->broken_dma_warn
= 1;
1743 goto use_pio_instead
;
1746 unsigned int tc
= (cur_len
< 0xfe00)? cur_len
: 0xfe00;
1748 if (count
++ >= MAX_DCMDS
) {
1749 printk(KERN_WARNING
"%s: DMA table too small\n",
1751 goto use_pio_instead
;
1753 st_le16(&table
->command
, wr
? OUTPUT_MORE
: INPUT_MORE
);
1754 st_le16(&table
->req_count
, tc
);
1755 st_le32(&table
->phy_addr
, cur_addr
);
1757 table
->xfer_status
= 0;
1758 table
->res_count
= 0;
1767 /* convert the last command to an input/output last command */
1769 st_le16(&table
[-1].command
, wr
? OUTPUT_LAST
: INPUT_LAST
);
1770 /* add the stop command to the end of the list */
1771 memset(table
, 0, sizeof(struct dbdma_cmd
));
1772 st_le16(&table
->command
, DBDMA_STOP
);
1774 writel(hwif
->dmatable_dma
, &dma
->cmdptr
);
1778 printk(KERN_DEBUG
"%s: empty DMA table?\n", drive
->name
);
1780 pci_unmap_sg(hwif
->pci_dev
,
1783 hwif
->sg_dma_direction
);
1784 return 0; /* revert to PIO for this request */
1787 /* Teardown mappings after DMA has completed. */
1789 pmac_ide_destroy_dmatable (ide_drive_t
*drive
)
1791 ide_hwif_t
*hwif
= drive
->hwif
;
1792 struct pci_dev
*dev
= HWIF(drive
)->pci_dev
;
1793 struct scatterlist
*sg
= hwif
->sg_table
;
1794 int nents
= hwif
->sg_nents
;
1797 pci_unmap_sg(dev
, sg
, nents
, hwif
->sg_dma_direction
);
1803 * Pick up best MDMA timing for the drive and apply it
1806 pmac_ide_mdma_enable(ide_drive_t
*drive
, u16 mode
)
1808 ide_hwif_t
*hwif
= HWIF(drive
);
1809 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1810 int drive_cycle_time
;
1811 struct hd_driveid
*id
= drive
->id
;
1812 u32
*timings
, *timings2
;
1813 u32 timing_local
[2];
1816 /* which drive is it ? */
1817 timings
= &pmif
->timings
[drive
->select
.b
.unit
& 0x01];
1818 timings2
= &pmif
->timings
[(drive
->select
.b
.unit
& 0x01) + 2];
1820 /* Check if drive provide explicit cycle time */
1821 if ((id
->field_valid
& 2) && (id
->eide_dma_time
))
1822 drive_cycle_time
= id
->eide_dma_time
;
1824 drive_cycle_time
= 0;
1826 /* Copy timings to local image */
1827 timing_local
[0] = *timings
;
1828 timing_local
[1] = *timings2
;
1830 /* Calculate controller timings */
1831 ret
= set_timings_mdma( drive
, pmif
->kind
,
1839 /* Set feature on drive */
1840 printk(KERN_INFO
"%s: Enabling MultiWord DMA %d\n", drive
->name
, mode
& 0xf);
1841 ret
= pmac_ide_do_setfeature(drive
, mode
);
1843 printk(KERN_WARNING
"%s: Failed !\n", drive
->name
);
1847 /* Apply timings to controller */
1848 *timings
= timing_local
[0];
1849 *timings2
= timing_local
[1];
1851 /* Set speed info in drive */
1852 drive
->current_speed
= mode
;
1853 if (!drive
->init_speed
)
1854 drive
->init_speed
= mode
;
1860 * Pick up best UDMA timing for the drive and apply it
1863 pmac_ide_udma_enable(ide_drive_t
*drive
, u16 mode
)
1865 ide_hwif_t
*hwif
= HWIF(drive
);
1866 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1867 u32
*timings
, *timings2
;
1868 u32 timing_local
[2];
1871 /* which drive is it ? */
1872 timings
= &pmif
->timings
[drive
->select
.b
.unit
& 0x01];
1873 timings2
= &pmif
->timings
[(drive
->select
.b
.unit
& 0x01) + 2];
1875 /* Copy timings to local image */
1876 timing_local
[0] = *timings
;
1877 timing_local
[1] = *timings2
;
1879 /* Calculate timings for interface */
1880 if (pmif
->kind
== controller_un_ata6
1881 || pmif
->kind
== controller_k2_ata6
)
1882 ret
= set_timings_udma_ata6( &timing_local
[0],
1885 else if (pmif
->kind
== controller_sh_ata6
)
1886 ret
= set_timings_udma_shasta( &timing_local
[0],
1890 ret
= set_timings_udma_ata4(&timing_local
[0], mode
);
1894 /* Set feature on drive */
1895 printk(KERN_INFO
"%s: Enabling Ultra DMA %d\n", drive
->name
, mode
& 0x0f);
1896 ret
= pmac_ide_do_setfeature(drive
, mode
);
1898 printk(KERN_WARNING
"%s: Failed !\n", drive
->name
);
1902 /* Apply timings to controller */
1903 *timings
= timing_local
[0];
1904 *timings2
= timing_local
[1];
1906 /* Set speed info in drive */
1907 drive
->current_speed
= mode
;
1908 if (!drive
->init_speed
)
1909 drive
->init_speed
= mode
;
1915 * Check what is the best DMA timing setting for the drive and
1916 * call appropriate functions to apply it.
1919 pmac_ide_dma_check(ide_drive_t
*drive
)
1921 struct hd_driveid
*id
= drive
->id
;
1922 ide_hwif_t
*hwif
= HWIF(drive
);
1923 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1926 drive
->using_dma
= 0;
1928 if (drive
->media
== ide_floppy
)
1930 if (((id
->capability
& 1) == 0) && !__ide_dma_good_drive(drive
))
1932 if (__ide_dma_bad_drive(drive
))
1939 if (pmif
->kind
== controller_kl_ata4
1940 || pmif
->kind
== controller_un_ata6
1941 || pmif
->kind
== controller_k2_ata6
1942 || pmif
->kind
== controller_sh_ata6
) {
1944 if (pmif
->cable_80
) {
1945 map
|= XFER_UDMA_66
;
1946 if (pmif
->kind
== controller_un_ata6
||
1947 pmif
->kind
== controller_k2_ata6
||
1948 pmif
->kind
== controller_sh_ata6
)
1949 map
|= XFER_UDMA_100
;
1950 if (pmif
->kind
== controller_sh_ata6
)
1951 map
|= XFER_UDMA_133
;
1954 mode
= ide_find_best_mode(drive
, map
);
1955 if (mode
& XFER_UDMA
)
1956 drive
->using_dma
= pmac_ide_udma_enable(drive
, mode
);
1957 else if (mode
& XFER_MWDMA
)
1958 drive
->using_dma
= pmac_ide_mdma_enable(drive
, mode
);
1959 hwif
->OUTB(0, IDE_CONTROL_REG
);
1960 /* Apply settings to controller */
1961 pmac_ide_do_update_timings(drive
);
1967 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1968 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1971 pmac_ide_dma_setup(ide_drive_t
*drive
)
1973 ide_hwif_t
*hwif
= HWIF(drive
);
1974 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1975 struct request
*rq
= HWGROUP(drive
)->rq
;
1976 u8 unit
= (drive
->select
.b
.unit
& 0x01);
1981 ata4
= (pmif
->kind
== controller_kl_ata4
);
1983 if (!pmac_ide_build_dmatable(drive
, rq
)) {
1984 ide_map_sg(drive
, rq
);
1988 /* Apple adds 60ns to wrDataSetup on reads */
1989 if (ata4
&& (pmif
->timings
[unit
] & TR_66_UDMA_EN
)) {
1990 writel(pmif
->timings
[unit
] + (!rq_data_dir(rq
) ? 0x00800000UL
: 0),
1991 PMAC_IDE_REG(IDE_TIMING_CONFIG
));
1992 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
1995 drive
->waiting_for_dma
= 1;
2001 pmac_ide_dma_exec_cmd(ide_drive_t
*drive
, u8 command
)
2003 /* issue cmd to drive */
2004 ide_execute_command(drive
, command
, &ide_dma_intr
, 2*WAIT_CMD
, NULL
);
2008 * Kick the DMA controller into life after the DMA command has been issued
2012 pmac_ide_dma_start(ide_drive_t
*drive
)
2014 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
2015 volatile struct dbdma_regs __iomem
*dma
;
2017 dma
= pmif
->dma_regs
;
2019 writel((RUN
<< 16) | RUN
, &dma
->control
);
2020 /* Make sure it gets to the controller right now */
2021 (void)readl(&dma
->control
);
2025 * After a DMA transfer, make sure the controller is stopped
2028 pmac_ide_dma_end (ide_drive_t
*drive
)
2030 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
2031 volatile struct dbdma_regs __iomem
*dma
;
2036 dma
= pmif
->dma_regs
;
2038 drive
->waiting_for_dma
= 0;
2039 dstat
= readl(&dma
->status
);
2040 writel(((RUN
|WAKE
|DEAD
) << 16), &dma
->control
);
2041 pmac_ide_destroy_dmatable(drive
);
2042 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
2043 * in theory, but with ATAPI decices doing buffer underruns, that would
2044 * cause us to disable DMA, which isn't what we want
2046 return (dstat
& (RUN
|DEAD
)) != RUN
;
2050 * Check out that the interrupt we got was for us. We can't always know this
2051 * for sure with those Apple interfaces (well, we could on the recent ones but
2052 * that's not implemented yet), on the other hand, we don't have shared interrupts
2053 * so it's not really a problem
2056 pmac_ide_dma_test_irq (ide_drive_t
*drive
)
2058 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
2059 volatile struct dbdma_regs __iomem
*dma
;
2060 unsigned long status
, timeout
;
2064 dma
= pmif
->dma_regs
;
2066 /* We have to things to deal with here:
2068 * - The dbdma won't stop if the command was started
2069 * but completed with an error without transferring all
2070 * datas. This happens when bad blocks are met during
2071 * a multi-block transfer.
2073 * - The dbdma fifo hasn't yet finished flushing to
2074 * to system memory when the disk interrupt occurs.
2078 /* If ACTIVE is cleared, the STOP command have passed and
2079 * transfer is complete.
2081 status
= readl(&dma
->status
);
2082 if (!(status
& ACTIVE
))
2084 if (!drive
->waiting_for_dma
)
2085 printk(KERN_WARNING
"ide%d, ide_dma_test_irq \
2086 called while not waiting\n", HWIF(drive
)->index
);
2088 /* If dbdma didn't execute the STOP command yet, the
2089 * active bit is still set. We consider that we aren't
2090 * sharing interrupts (which is hopefully the case with
2091 * those controllers) and so we just try to flush the
2092 * channel for pending data in the fifo
2095 writel((FLUSH
<< 16) | FLUSH
, &dma
->control
);
2099 status
= readl(&dma
->status
);
2100 if ((status
& FLUSH
) == 0)
2102 if (++timeout
> 100) {
2103 printk(KERN_WARNING
"ide%d, ide_dma_test_irq \
2104 timeout flushing channel\n", HWIF(drive
)->index
);
2112 pmac_ide_dma_host_off (ide_drive_t
*drive
)
2118 pmac_ide_dma_host_on (ide_drive_t
*drive
)
2124 pmac_ide_dma_lostirq (ide_drive_t
*drive
)
2126 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
2127 volatile struct dbdma_regs __iomem
*dma
;
2128 unsigned long status
;
2132 dma
= pmif
->dma_regs
;
2134 status
= readl(&dma
->status
);
2135 printk(KERN_ERR
"ide-pmac lost interrupt, dma status: %lx\n", status
);
2140 * Allocate the data structures needed for using DMA with an interface
2141 * and fill the proper list of functions pointers
2144 pmac_ide_setup_dma(pmac_ide_hwif_t
*pmif
, ide_hwif_t
*hwif
)
2146 /* We won't need pci_dev if we switch to generic consistent
2149 if (hwif
->pci_dev
== NULL
)
2152 * Allocate space for the DBDMA commands.
2153 * The +2 is +1 for the stop command and +1 to allow for
2154 * aligning the start address to a multiple of 16 bytes.
2156 pmif
->dma_table_cpu
= (struct dbdma_cmd
*)pci_alloc_consistent(
2158 (MAX_DCMDS
+ 2) * sizeof(struct dbdma_cmd
),
2159 &hwif
->dmatable_dma
);
2160 if (pmif
->dma_table_cpu
== NULL
) {
2161 printk(KERN_ERR
"%s: unable to allocate DMA command list\n",
2166 hwif
->ide_dma_off_quietly
= &__ide_dma_off_quietly
;
2167 hwif
->ide_dma_on
= &__ide_dma_on
;
2168 hwif
->ide_dma_check
= &pmac_ide_dma_check
;
2169 hwif
->dma_setup
= &pmac_ide_dma_setup
;
2170 hwif
->dma_exec_cmd
= &pmac_ide_dma_exec_cmd
;
2171 hwif
->dma_start
= &pmac_ide_dma_start
;
2172 hwif
->ide_dma_end
= &pmac_ide_dma_end
;
2173 hwif
->ide_dma_test_irq
= &pmac_ide_dma_test_irq
;
2174 hwif
->ide_dma_host_off
= &pmac_ide_dma_host_off
;
2175 hwif
->ide_dma_host_on
= &pmac_ide_dma_host_on
;
2176 hwif
->ide_dma_timeout
= &__ide_dma_timeout
;
2177 hwif
->ide_dma_lostirq
= &pmac_ide_dma_lostirq
;
2179 hwif
->atapi_dma
= 1;
2180 switch(pmif
->kind
) {
2181 case controller_sh_ata6
:
2182 hwif
->ultra_mask
= pmif
->cable_80
? 0x7f : 0x07;
2183 hwif
->mwdma_mask
= 0x07;
2184 hwif
->swdma_mask
= 0x00;
2186 case controller_un_ata6
:
2187 case controller_k2_ata6
:
2188 hwif
->ultra_mask
= pmif
->cable_80
? 0x3f : 0x07;
2189 hwif
->mwdma_mask
= 0x07;
2190 hwif
->swdma_mask
= 0x00;
2192 case controller_kl_ata4
:
2193 hwif
->ultra_mask
= pmif
->cable_80
? 0x1f : 0x07;
2194 hwif
->mwdma_mask
= 0x07;
2195 hwif
->swdma_mask
= 0x00;
2198 hwif
->ultra_mask
= 0x00;
2199 hwif
->mwdma_mask
= 0x07;
2200 hwif
->swdma_mask
= 0x00;
2205 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */