P-state software coordination for acpi-cpufreq
[linux-2.6/next.git] / kernel / profile.c
blobf89248e6d70479f73e34e78faf62fefa6fb532fe
1 /*
2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9 * Red Hat, July 2004
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
16 #include <linux/config.h>
17 #include <linux/module.h>
18 #include <linux/profile.h>
19 #include <linux/bootmem.h>
20 #include <linux/notifier.h>
21 #include <linux/mm.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpu.h>
24 #include <linux/profile.h>
25 #include <linux/highmem.h>
26 #include <asm/sections.h>
27 #include <asm/semaphore.h>
29 struct profile_hit {
30 u32 pc, hits;
32 #define PROFILE_GRPSHIFT 3
33 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
34 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
35 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
37 /* Oprofile timer tick hook */
38 int (*timer_hook)(struct pt_regs *) __read_mostly;
40 static atomic_t *prof_buffer;
41 static unsigned long prof_len, prof_shift;
42 static int prof_on __read_mostly;
43 static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
44 #ifdef CONFIG_SMP
45 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
46 static DEFINE_PER_CPU(int, cpu_profile_flip);
47 static DECLARE_MUTEX(profile_flip_mutex);
48 #endif /* CONFIG_SMP */
50 static int __init profile_setup(char * str)
52 static char __initdata schedstr[] = "schedule";
53 int par;
55 if (!strncmp(str, schedstr, strlen(schedstr))) {
56 prof_on = SCHED_PROFILING;
57 if (str[strlen(schedstr)] == ',')
58 str += strlen(schedstr) + 1;
59 if (get_option(&str, &par))
60 prof_shift = par;
61 printk(KERN_INFO
62 "kernel schedule profiling enabled (shift: %ld)\n",
63 prof_shift);
64 } else if (get_option(&str, &par)) {
65 prof_shift = par;
66 prof_on = CPU_PROFILING;
67 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
68 prof_shift);
70 return 1;
72 __setup("profile=", profile_setup);
75 void __init profile_init(void)
77 if (!prof_on)
78 return;
80 /* only text is profiled */
81 prof_len = (_etext - _stext) >> prof_shift;
82 prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
85 /* Profile event notifications */
87 #ifdef CONFIG_PROFILING
89 static DECLARE_RWSEM(profile_rwsem);
90 static DEFINE_RWLOCK(handoff_lock);
91 static struct notifier_block * task_exit_notifier;
92 static struct notifier_block * task_free_notifier;
93 static struct notifier_block * munmap_notifier;
95 void profile_task_exit(struct task_struct * task)
97 down_read(&profile_rwsem);
98 notifier_call_chain(&task_exit_notifier, 0, task);
99 up_read(&profile_rwsem);
102 int profile_handoff_task(struct task_struct * task)
104 int ret;
105 read_lock(&handoff_lock);
106 ret = notifier_call_chain(&task_free_notifier, 0, task);
107 read_unlock(&handoff_lock);
108 return (ret == NOTIFY_OK) ? 1 : 0;
111 void profile_munmap(unsigned long addr)
113 down_read(&profile_rwsem);
114 notifier_call_chain(&munmap_notifier, 0, (void *)addr);
115 up_read(&profile_rwsem);
118 int task_handoff_register(struct notifier_block * n)
120 int err = -EINVAL;
122 write_lock(&handoff_lock);
123 err = notifier_chain_register(&task_free_notifier, n);
124 write_unlock(&handoff_lock);
125 return err;
128 int task_handoff_unregister(struct notifier_block * n)
130 int err = -EINVAL;
132 write_lock(&handoff_lock);
133 err = notifier_chain_unregister(&task_free_notifier, n);
134 write_unlock(&handoff_lock);
135 return err;
138 int profile_event_register(enum profile_type type, struct notifier_block * n)
140 int err = -EINVAL;
142 down_write(&profile_rwsem);
144 switch (type) {
145 case PROFILE_TASK_EXIT:
146 err = notifier_chain_register(&task_exit_notifier, n);
147 break;
148 case PROFILE_MUNMAP:
149 err = notifier_chain_register(&munmap_notifier, n);
150 break;
153 up_write(&profile_rwsem);
155 return err;
159 int profile_event_unregister(enum profile_type type, struct notifier_block * n)
161 int err = -EINVAL;
163 down_write(&profile_rwsem);
165 switch (type) {
166 case PROFILE_TASK_EXIT:
167 err = notifier_chain_unregister(&task_exit_notifier, n);
168 break;
169 case PROFILE_MUNMAP:
170 err = notifier_chain_unregister(&munmap_notifier, n);
171 break;
174 up_write(&profile_rwsem);
175 return err;
178 int register_timer_hook(int (*hook)(struct pt_regs *))
180 if (timer_hook)
181 return -EBUSY;
182 timer_hook = hook;
183 return 0;
186 void unregister_timer_hook(int (*hook)(struct pt_regs *))
188 WARN_ON(hook != timer_hook);
189 timer_hook = NULL;
190 /* make sure all CPUs see the NULL hook */
191 synchronize_sched(); /* Allow ongoing interrupts to complete. */
194 EXPORT_SYMBOL_GPL(register_timer_hook);
195 EXPORT_SYMBOL_GPL(unregister_timer_hook);
196 EXPORT_SYMBOL_GPL(task_handoff_register);
197 EXPORT_SYMBOL_GPL(task_handoff_unregister);
199 #endif /* CONFIG_PROFILING */
201 EXPORT_SYMBOL_GPL(profile_event_register);
202 EXPORT_SYMBOL_GPL(profile_event_unregister);
204 #ifdef CONFIG_SMP
206 * Each cpu has a pair of open-addressed hashtables for pending
207 * profile hits. read_profile() IPI's all cpus to request them
208 * to flip buffers and flushes their contents to prof_buffer itself.
209 * Flip requests are serialized by the profile_flip_mutex. The sole
210 * use of having a second hashtable is for avoiding cacheline
211 * contention that would otherwise happen during flushes of pending
212 * profile hits required for the accuracy of reported profile hits
213 * and so resurrect the interrupt livelock issue.
215 * The open-addressed hashtables are indexed by profile buffer slot
216 * and hold the number of pending hits to that profile buffer slot on
217 * a cpu in an entry. When the hashtable overflows, all pending hits
218 * are accounted to their corresponding profile buffer slots with
219 * atomic_add() and the hashtable emptied. As numerous pending hits
220 * may be accounted to a profile buffer slot in a hashtable entry,
221 * this amortizes a number of atomic profile buffer increments likely
222 * to be far larger than the number of entries in the hashtable,
223 * particularly given that the number of distinct profile buffer
224 * positions to which hits are accounted during short intervals (e.g.
225 * several seconds) is usually very small. Exclusion from buffer
226 * flipping is provided by interrupt disablement (note that for
227 * SCHED_PROFILING profile_hit() may be called from process context).
228 * The hash function is meant to be lightweight as opposed to strong,
229 * and was vaguely inspired by ppc64 firmware-supported inverted
230 * pagetable hash functions, but uses a full hashtable full of finite
231 * collision chains, not just pairs of them.
233 * -- wli
235 static void __profile_flip_buffers(void *unused)
237 int cpu = smp_processor_id();
239 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
242 static void profile_flip_buffers(void)
244 int i, j, cpu;
246 down(&profile_flip_mutex);
247 j = per_cpu(cpu_profile_flip, get_cpu());
248 put_cpu();
249 on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
250 for_each_online_cpu(cpu) {
251 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
252 for (i = 0; i < NR_PROFILE_HIT; ++i) {
253 if (!hits[i].hits) {
254 if (hits[i].pc)
255 hits[i].pc = 0;
256 continue;
258 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
259 hits[i].hits = hits[i].pc = 0;
262 up(&profile_flip_mutex);
265 static void profile_discard_flip_buffers(void)
267 int i, cpu;
269 down(&profile_flip_mutex);
270 i = per_cpu(cpu_profile_flip, get_cpu());
271 put_cpu();
272 on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
273 for_each_online_cpu(cpu) {
274 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
275 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
277 up(&profile_flip_mutex);
280 void profile_hit(int type, void *__pc)
282 unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
283 int i, j, cpu;
284 struct profile_hit *hits;
286 if (prof_on != type || !prof_buffer)
287 return;
288 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
289 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
290 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
291 cpu = get_cpu();
292 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
293 if (!hits) {
294 put_cpu();
295 return;
297 local_irq_save(flags);
298 do {
299 for (j = 0; j < PROFILE_GRPSZ; ++j) {
300 if (hits[i + j].pc == pc) {
301 hits[i + j].hits++;
302 goto out;
303 } else if (!hits[i + j].hits) {
304 hits[i + j].pc = pc;
305 hits[i + j].hits = 1;
306 goto out;
309 i = (i + secondary) & (NR_PROFILE_HIT - 1);
310 } while (i != primary);
311 atomic_inc(&prof_buffer[pc]);
312 for (i = 0; i < NR_PROFILE_HIT; ++i) {
313 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
314 hits[i].pc = hits[i].hits = 0;
316 out:
317 local_irq_restore(flags);
318 put_cpu();
321 #ifdef CONFIG_HOTPLUG_CPU
322 static int __devinit profile_cpu_callback(struct notifier_block *info,
323 unsigned long action, void *__cpu)
325 int node, cpu = (unsigned long)__cpu;
326 struct page *page;
328 switch (action) {
329 case CPU_UP_PREPARE:
330 node = cpu_to_node(cpu);
331 per_cpu(cpu_profile_flip, cpu) = 0;
332 if (!per_cpu(cpu_profile_hits, cpu)[1]) {
333 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
334 if (!page)
335 return NOTIFY_BAD;
336 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
338 if (!per_cpu(cpu_profile_hits, cpu)[0]) {
339 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
340 if (!page)
341 goto out_free;
342 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
344 break;
345 out_free:
346 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
347 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
348 __free_page(page);
349 return NOTIFY_BAD;
350 case CPU_ONLINE:
351 cpu_set(cpu, prof_cpu_mask);
352 break;
353 case CPU_UP_CANCELED:
354 case CPU_DEAD:
355 cpu_clear(cpu, prof_cpu_mask);
356 if (per_cpu(cpu_profile_hits, cpu)[0]) {
357 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
358 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
359 __free_page(page);
361 if (per_cpu(cpu_profile_hits, cpu)[1]) {
362 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
363 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
364 __free_page(page);
366 break;
368 return NOTIFY_OK;
370 #endif /* CONFIG_HOTPLUG_CPU */
371 #else /* !CONFIG_SMP */
372 #define profile_flip_buffers() do { } while (0)
373 #define profile_discard_flip_buffers() do { } while (0)
375 void profile_hit(int type, void *__pc)
377 unsigned long pc;
379 if (prof_on != type || !prof_buffer)
380 return;
381 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
382 atomic_inc(&prof_buffer[min(pc, prof_len - 1)]);
384 #endif /* !CONFIG_SMP */
386 void profile_tick(int type, struct pt_regs *regs)
388 if (type == CPU_PROFILING && timer_hook)
389 timer_hook(regs);
390 if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
391 profile_hit(type, (void *)profile_pc(regs));
394 #ifdef CONFIG_PROC_FS
395 #include <linux/proc_fs.h>
396 #include <asm/uaccess.h>
397 #include <asm/ptrace.h>
399 static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
400 int count, int *eof, void *data)
402 int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
403 if (count - len < 2)
404 return -EINVAL;
405 len += sprintf(page + len, "\n");
406 return len;
409 static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer,
410 unsigned long count, void *data)
412 cpumask_t *mask = (cpumask_t *)data;
413 unsigned long full_count = count, err;
414 cpumask_t new_value;
416 err = cpumask_parse(buffer, count, new_value);
417 if (err)
418 return err;
420 *mask = new_value;
421 return full_count;
424 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
426 struct proc_dir_entry *entry;
428 /* create /proc/irq/prof_cpu_mask */
429 if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir)))
430 return;
431 entry->nlink = 1;
432 entry->data = (void *)&prof_cpu_mask;
433 entry->read_proc = prof_cpu_mask_read_proc;
434 entry->write_proc = prof_cpu_mask_write_proc;
438 * This function accesses profiling information. The returned data is
439 * binary: the sampling step and the actual contents of the profile
440 * buffer. Use of the program readprofile is recommended in order to
441 * get meaningful info out of these data.
443 static ssize_t
444 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
446 unsigned long p = *ppos;
447 ssize_t read;
448 char * pnt;
449 unsigned int sample_step = 1 << prof_shift;
451 profile_flip_buffers();
452 if (p >= (prof_len+1)*sizeof(unsigned int))
453 return 0;
454 if (count > (prof_len+1)*sizeof(unsigned int) - p)
455 count = (prof_len+1)*sizeof(unsigned int) - p;
456 read = 0;
458 while (p < sizeof(unsigned int) && count > 0) {
459 put_user(*((char *)(&sample_step)+p),buf);
460 buf++; p++; count--; read++;
462 pnt = (char *)prof_buffer + p - sizeof(atomic_t);
463 if (copy_to_user(buf,(void *)pnt,count))
464 return -EFAULT;
465 read += count;
466 *ppos += read;
467 return read;
471 * Writing to /proc/profile resets the counters
473 * Writing a 'profiling multiplier' value into it also re-sets the profiling
474 * interrupt frequency, on architectures that support this.
476 static ssize_t write_profile(struct file *file, const char __user *buf,
477 size_t count, loff_t *ppos)
479 #ifdef CONFIG_SMP
480 extern int setup_profiling_timer (unsigned int multiplier);
482 if (count == sizeof(int)) {
483 unsigned int multiplier;
485 if (copy_from_user(&multiplier, buf, sizeof(int)))
486 return -EFAULT;
488 if (setup_profiling_timer(multiplier))
489 return -EINVAL;
491 #endif
492 profile_discard_flip_buffers();
493 memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
494 return count;
497 static struct file_operations proc_profile_operations = {
498 .read = read_profile,
499 .write = write_profile,
502 #ifdef CONFIG_SMP
503 static void __init profile_nop(void *unused)
507 static int __init create_hash_tables(void)
509 int cpu;
511 for_each_online_cpu(cpu) {
512 int node = cpu_to_node(cpu);
513 struct page *page;
515 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
516 if (!page)
517 goto out_cleanup;
518 per_cpu(cpu_profile_hits, cpu)[1]
519 = (struct profile_hit *)page_address(page);
520 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
521 if (!page)
522 goto out_cleanup;
523 per_cpu(cpu_profile_hits, cpu)[0]
524 = (struct profile_hit *)page_address(page);
526 return 0;
527 out_cleanup:
528 prof_on = 0;
529 smp_mb();
530 on_each_cpu(profile_nop, NULL, 0, 1);
531 for_each_online_cpu(cpu) {
532 struct page *page;
534 if (per_cpu(cpu_profile_hits, cpu)[0]) {
535 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
536 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
537 __free_page(page);
539 if (per_cpu(cpu_profile_hits, cpu)[1]) {
540 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
541 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
542 __free_page(page);
545 return -1;
547 #else
548 #define create_hash_tables() ({ 0; })
549 #endif
551 static int __init create_proc_profile(void)
553 struct proc_dir_entry *entry;
555 if (!prof_on)
556 return 0;
557 if (create_hash_tables())
558 return -1;
559 if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL)))
560 return 0;
561 entry->proc_fops = &proc_profile_operations;
562 entry->size = (1+prof_len) * sizeof(atomic_t);
563 hotcpu_notifier(profile_cpu_callback, 0);
564 return 0;
566 module_init(create_proc_profile);
567 #endif /* CONFIG_PROC_FS */