2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <asm/traps.h> /* dotraplinkage, ... */
16 #include <asm/pgalloc.h> /* pgd_*(), ... */
17 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
20 * Page fault error code bits:
22 * bit 0 == 0: no page found 1: protection fault
23 * bit 1 == 0: read access 1: write access
24 * bit 2 == 0: kernel-mode access 1: user-mode access
25 * bit 3 == 1: use of reserved bit detected
26 * bit 4 == 1: fault was an instruction fetch
28 enum x86_pf_error_code
{
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
41 static inline int kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
43 if (unlikely(is_kmmio_active()))
44 if (kmmio_handler(regs
, addr
) == 1)
49 static inline int notify_page_fault(struct pt_regs
*regs
)
53 /* kprobe_running() needs smp_processor_id() */
54 if (kprobes_built_in() && !user_mode_vm(regs
)) {
56 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
69 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
70 * Check that here and ignore it.
74 * Sometimes the CPU reports invalid exceptions on prefetch.
75 * Check that here and ignore it.
77 * Opcode checker based on code by Richard Brunner.
80 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
81 unsigned char opcode
, int *prefetch
)
83 unsigned char instr_hi
= opcode
& 0xf0;
84 unsigned char instr_lo
= opcode
& 0x0f;
90 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
91 * In X86_64 long mode, the CPU will signal invalid
92 * opcode if some of these prefixes are present so
93 * X86_64 will never get here anyway
95 return ((instr_lo
& 7) == 0x6);
99 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
100 * Need to figure out under what instruction mode the
101 * instruction was issued. Could check the LDT for lm,
102 * but for now it's good enough to assume that long
103 * mode only uses well known segments or kernel.
105 return (!user_mode(regs
)) || (regs
->cs
== __USER_CS
);
108 /* 0x64 thru 0x67 are valid prefixes in all modes. */
109 return (instr_lo
& 0xC) == 0x4;
111 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
112 return !instr_lo
|| (instr_lo
>>1) == 1;
114 /* Prefetch instruction is 0x0F0D or 0x0F18 */
115 if (probe_kernel_address(instr
, opcode
))
118 *prefetch
= (instr_lo
== 0xF) &&
119 (opcode
== 0x0D || opcode
== 0x18);
127 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
129 unsigned char *max_instr
;
130 unsigned char *instr
;
134 * If it was a exec (instruction fetch) fault on NX page, then
135 * do not ignore the fault:
137 if (error_code
& PF_INSTR
)
140 instr
= (void *)convert_ip_to_linear(current
, regs
);
141 max_instr
= instr
+ 15;
143 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE
)
146 while (instr
< max_instr
) {
147 unsigned char opcode
;
149 if (probe_kernel_address(instr
, opcode
))
154 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
161 force_sig_info_fault(int si_signo
, int si_code
, unsigned long address
,
162 struct task_struct
*tsk
)
166 info
.si_signo
= si_signo
;
168 info
.si_code
= si_code
;
169 info
.si_addr
= (void __user
*)address
;
170 info
.si_addr_lsb
= si_code
== BUS_MCEERR_AR
? PAGE_SHIFT
: 0;
172 force_sig_info(si_signo
, &info
, tsk
);
175 DEFINE_SPINLOCK(pgd_lock
);
179 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
181 unsigned index
= pgd_index(address
);
187 pgd_k
= init_mm
.pgd
+ index
;
189 if (!pgd_present(*pgd_k
))
193 * set_pgd(pgd, *pgd_k); here would be useless on PAE
194 * and redundant with the set_pmd() on non-PAE. As would
197 pud
= pud_offset(pgd
, address
);
198 pud_k
= pud_offset(pgd_k
, address
);
199 if (!pud_present(*pud_k
))
202 pmd
= pmd_offset(pud
, address
);
203 pmd_k
= pmd_offset(pud_k
, address
);
204 if (!pmd_present(*pmd_k
))
207 if (!pmd_present(*pmd
))
208 set_pmd(pmd
, *pmd_k
);
210 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
215 void vmalloc_sync_all(void)
217 unsigned long address
;
219 if (SHARED_KERNEL_PMD
)
222 for (address
= VMALLOC_START
& PMD_MASK
;
223 address
>= TASK_SIZE
&& address
< FIXADDR_TOP
;
224 address
+= PMD_SIZE
) {
229 spin_lock_irqsave(&pgd_lock
, flags
);
230 list_for_each_entry(page
, &pgd_list
, lru
) {
231 if (!vmalloc_sync_one(page_address(page
), address
))
234 spin_unlock_irqrestore(&pgd_lock
, flags
);
241 * Handle a fault on the vmalloc or module mapping area
243 static noinline
int vmalloc_fault(unsigned long address
)
245 unsigned long pgd_paddr
;
249 /* Make sure we are in vmalloc area: */
250 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
254 * Synchronize this task's top level page-table
255 * with the 'reference' page table.
257 * Do _not_ use "current" here. We might be inside
258 * an interrupt in the middle of a task switch..
260 pgd_paddr
= read_cr3();
261 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
265 pte_k
= pte_offset_kernel(pmd_k
, address
);
266 if (!pte_present(*pte_k
))
273 * Did it hit the DOS screen memory VA from vm86 mode?
276 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
277 struct task_struct
*tsk
)
281 if (!v8086_mode(regs
))
284 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
286 tsk
->thread
.screen_bitmap
|= 1 << bit
;
289 static bool low_pfn(unsigned long pfn
)
291 return pfn
< max_low_pfn
;
294 static void dump_pagetable(unsigned long address
)
296 pgd_t
*base
= __va(read_cr3());
297 pgd_t
*pgd
= &base
[pgd_index(address
)];
301 #ifdef CONFIG_X86_PAE
302 printk("*pdpt = %016Lx ", pgd_val(*pgd
));
303 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
306 pmd
= pmd_offset(pud_offset(pgd
, address
), address
);
307 printk(KERN_CONT
"*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
310 * We must not directly access the pte in the highpte
311 * case if the page table is located in highmem.
312 * And let's rather not kmap-atomic the pte, just in case
313 * it's allocated already:
315 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
318 pte
= pte_offset_kernel(pmd
, address
);
319 printk("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
324 #else /* CONFIG_X86_64: */
326 void vmalloc_sync_all(void)
328 unsigned long address
;
330 for (address
= VMALLOC_START
& PGDIR_MASK
; address
<= VMALLOC_END
;
331 address
+= PGDIR_SIZE
) {
333 const pgd_t
*pgd_ref
= pgd_offset_k(address
);
337 if (pgd_none(*pgd_ref
))
340 spin_lock_irqsave(&pgd_lock
, flags
);
341 list_for_each_entry(page
, &pgd_list
, lru
) {
343 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
345 set_pgd(pgd
, *pgd_ref
);
347 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
349 spin_unlock_irqrestore(&pgd_lock
, flags
);
356 * Handle a fault on the vmalloc area
358 * This assumes no large pages in there.
360 static noinline
int vmalloc_fault(unsigned long address
)
362 pgd_t
*pgd
, *pgd_ref
;
363 pud_t
*pud
, *pud_ref
;
364 pmd_t
*pmd
, *pmd_ref
;
365 pte_t
*pte
, *pte_ref
;
367 /* Make sure we are in vmalloc area: */
368 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
372 * Copy kernel mappings over when needed. This can also
373 * happen within a race in page table update. In the later
376 pgd
= pgd_offset(current
->active_mm
, address
);
377 pgd_ref
= pgd_offset_k(address
);
378 if (pgd_none(*pgd_ref
))
382 set_pgd(pgd
, *pgd_ref
);
384 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
387 * Below here mismatches are bugs because these lower tables
391 pud
= pud_offset(pgd
, address
);
392 pud_ref
= pud_offset(pgd_ref
, address
);
393 if (pud_none(*pud_ref
))
396 if (pud_none(*pud
) || pud_page_vaddr(*pud
) != pud_page_vaddr(*pud_ref
))
399 pmd
= pmd_offset(pud
, address
);
400 pmd_ref
= pmd_offset(pud_ref
, address
);
401 if (pmd_none(*pmd_ref
))
404 if (pmd_none(*pmd
) || pmd_page(*pmd
) != pmd_page(*pmd_ref
))
407 pte_ref
= pte_offset_kernel(pmd_ref
, address
);
408 if (!pte_present(*pte_ref
))
411 pte
= pte_offset_kernel(pmd
, address
);
414 * Don't use pte_page here, because the mappings can point
415 * outside mem_map, and the NUMA hash lookup cannot handle
418 if (!pte_present(*pte
) || pte_pfn(*pte
) != pte_pfn(*pte_ref
))
424 static const char errata93_warning
[] =
426 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
427 "******* Working around it, but it may cause SEGVs or burn power.\n"
428 "******* Please consider a BIOS update.\n"
429 "******* Disabling USB legacy in the BIOS may also help.\n";
432 * No vm86 mode in 64-bit mode:
435 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
436 struct task_struct
*tsk
)
440 static int bad_address(void *p
)
444 return probe_kernel_address((unsigned long *)p
, dummy
);
447 static void dump_pagetable(unsigned long address
)
449 pgd_t
*base
= __va(read_cr3() & PHYSICAL_PAGE_MASK
);
450 pgd_t
*pgd
= base
+ pgd_index(address
);
455 if (bad_address(pgd
))
458 printk("PGD %lx ", pgd_val(*pgd
));
460 if (!pgd_present(*pgd
))
463 pud
= pud_offset(pgd
, address
);
464 if (bad_address(pud
))
467 printk("PUD %lx ", pud_val(*pud
));
468 if (!pud_present(*pud
) || pud_large(*pud
))
471 pmd
= pmd_offset(pud
, address
);
472 if (bad_address(pmd
))
475 printk("PMD %lx ", pmd_val(*pmd
));
476 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
479 pte
= pte_offset_kernel(pmd
, address
);
480 if (bad_address(pte
))
483 printk("PTE %lx", pte_val(*pte
));
491 #endif /* CONFIG_X86_64 */
494 * Workaround for K8 erratum #93 & buggy BIOS.
496 * BIOS SMM functions are required to use a specific workaround
497 * to avoid corruption of the 64bit RIP register on C stepping K8.
499 * A lot of BIOS that didn't get tested properly miss this.
501 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
502 * Try to work around it here.
504 * Note we only handle faults in kernel here.
505 * Does nothing on 32-bit.
507 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
510 if (address
!= regs
->ip
)
513 if ((address
>> 32) != 0)
516 address
|= 0xffffffffUL
<< 32;
517 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
518 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
519 printk_once(errata93_warning
);
528 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
529 * to illegal addresses >4GB.
531 * We catch this in the page fault handler because these addresses
532 * are not reachable. Just detect this case and return. Any code
533 * segment in LDT is compatibility mode.
535 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
538 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
544 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
546 #ifdef CONFIG_X86_F00F_BUG
550 * Pentium F0 0F C7 C8 bug workaround:
552 if (boot_cpu_data
.f00f_bug
) {
553 nr
= (address
- idt_descr
.address
) >> 3;
556 do_invalid_op(regs
, 0);
564 static const char nx_warning
[] = KERN_CRIT
565 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
568 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
569 unsigned long address
)
571 if (!oops_may_print())
574 if (error_code
& PF_INSTR
) {
577 pte_t
*pte
= lookup_address(address
, &level
);
579 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
580 printk(nx_warning
, current_uid());
583 printk(KERN_ALERT
"BUG: unable to handle kernel ");
584 if (address
< PAGE_SIZE
)
585 printk(KERN_CONT
"NULL pointer dereference");
587 printk(KERN_CONT
"paging request");
589 printk(KERN_CONT
" at %p\n", (void *) address
);
590 printk(KERN_ALERT
"IP:");
591 printk_address(regs
->ip
, 1);
593 dump_pagetable(address
);
597 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
598 unsigned long address
)
600 struct task_struct
*tsk
;
604 flags
= oops_begin();
608 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
610 dump_pagetable(address
);
612 tsk
->thread
.cr2
= address
;
613 tsk
->thread
.trap_no
= 14;
614 tsk
->thread
.error_code
= error_code
;
616 if (__die("Bad pagetable", regs
, error_code
))
619 oops_end(flags
, regs
, sig
);
623 no_context(struct pt_regs
*regs
, unsigned long error_code
,
624 unsigned long address
)
626 struct task_struct
*tsk
= current
;
627 unsigned long *stackend
;
631 /* Are we prepared to handle this kernel fault? */
632 if (fixup_exception(regs
))
638 * Valid to do another page fault here, because if this fault
639 * had been triggered by is_prefetch fixup_exception would have
644 * Hall of shame of CPU/BIOS bugs.
646 if (is_prefetch(regs
, error_code
, address
))
649 if (is_errata93(regs
, address
))
653 * Oops. The kernel tried to access some bad page. We'll have to
654 * terminate things with extreme prejudice:
656 flags
= oops_begin();
658 show_fault_oops(regs
, error_code
, address
);
660 stackend
= end_of_stack(tsk
);
661 if (tsk
!= &init_task
&& *stackend
!= STACK_END_MAGIC
)
662 printk(KERN_ALERT
"Thread overran stack, or stack corrupted\n");
664 tsk
->thread
.cr2
= address
;
665 tsk
->thread
.trap_no
= 14;
666 tsk
->thread
.error_code
= error_code
;
669 if (__die("Oops", regs
, error_code
))
672 /* Executive summary in case the body of the oops scrolled away */
673 printk(KERN_EMERG
"CR2: %016lx\n", address
);
675 oops_end(flags
, regs
, sig
);
679 * Print out info about fatal segfaults, if the show_unhandled_signals
683 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
684 unsigned long address
, struct task_struct
*tsk
)
686 if (!unhandled_signal(tsk
, SIGSEGV
))
689 if (!printk_ratelimit())
692 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
693 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
694 tsk
->comm
, task_pid_nr(tsk
), address
,
695 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
697 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
699 printk(KERN_CONT
"\n");
703 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
704 unsigned long address
, int si_code
)
706 struct task_struct
*tsk
= current
;
708 /* User mode accesses just cause a SIGSEGV */
709 if (error_code
& PF_USER
) {
711 * It's possible to have interrupts off here:
716 * Valid to do another page fault here because this one came
719 if (is_prefetch(regs
, error_code
, address
))
722 if (is_errata100(regs
, address
))
725 if (unlikely(show_unhandled_signals
))
726 show_signal_msg(regs
, error_code
, address
, tsk
);
728 /* Kernel addresses are always protection faults: */
729 tsk
->thread
.cr2
= address
;
730 tsk
->thread
.error_code
= error_code
| (address
>= TASK_SIZE
);
731 tsk
->thread
.trap_no
= 14;
733 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
);
738 if (is_f00f_bug(regs
, address
))
741 no_context(regs
, error_code
, address
);
745 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
746 unsigned long address
)
748 __bad_area_nosemaphore(regs
, error_code
, address
, SEGV_MAPERR
);
752 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
753 unsigned long address
, int si_code
)
755 struct mm_struct
*mm
= current
->mm
;
758 * Something tried to access memory that isn't in our memory map..
759 * Fix it, but check if it's kernel or user first..
761 up_read(&mm
->mmap_sem
);
763 __bad_area_nosemaphore(regs
, error_code
, address
, si_code
);
767 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
769 __bad_area(regs
, error_code
, address
, SEGV_MAPERR
);
773 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
774 unsigned long address
)
776 __bad_area(regs
, error_code
, address
, SEGV_ACCERR
);
779 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
781 out_of_memory(struct pt_regs
*regs
, unsigned long error_code
,
782 unsigned long address
)
785 * We ran out of memory, call the OOM killer, and return the userspace
786 * (which will retry the fault, or kill us if we got oom-killed):
788 up_read(¤t
->mm
->mmap_sem
);
790 pagefault_out_of_memory();
794 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
797 struct task_struct
*tsk
= current
;
798 struct mm_struct
*mm
= tsk
->mm
;
799 int code
= BUS_ADRERR
;
801 up_read(&mm
->mmap_sem
);
803 /* Kernel mode? Handle exceptions or die: */
804 if (!(error_code
& PF_USER
))
805 no_context(regs
, error_code
, address
);
807 /* User-space => ok to do another page fault: */
808 if (is_prefetch(regs
, error_code
, address
))
811 tsk
->thread
.cr2
= address
;
812 tsk
->thread
.error_code
= error_code
;
813 tsk
->thread
.trap_no
= 14;
815 #ifdef CONFIG_MEMORY_FAILURE
816 if (fault
& VM_FAULT_HWPOISON
) {
818 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
819 tsk
->comm
, tsk
->pid
, address
);
820 code
= BUS_MCEERR_AR
;
823 force_sig_info_fault(SIGBUS
, code
, address
, tsk
);
827 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
828 unsigned long address
, unsigned int fault
)
830 if (fault
& VM_FAULT_OOM
) {
831 out_of_memory(regs
, error_code
, address
);
833 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
))
834 do_sigbus(regs
, error_code
, address
, fault
);
840 static int spurious_fault_check(unsigned long error_code
, pte_t
*pte
)
842 if ((error_code
& PF_WRITE
) && !pte_write(*pte
))
845 if ((error_code
& PF_INSTR
) && !pte_exec(*pte
))
852 * Handle a spurious fault caused by a stale TLB entry.
854 * This allows us to lazily refresh the TLB when increasing the
855 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
856 * eagerly is very expensive since that implies doing a full
857 * cross-processor TLB flush, even if no stale TLB entries exist
858 * on other processors.
860 * There are no security implications to leaving a stale TLB when
861 * increasing the permissions on a page.
864 spurious_fault(unsigned long error_code
, unsigned long address
)
872 /* Reserved-bit violation or user access to kernel space? */
873 if (error_code
& (PF_USER
| PF_RSVD
))
876 pgd
= init_mm
.pgd
+ pgd_index(address
);
877 if (!pgd_present(*pgd
))
880 pud
= pud_offset(pgd
, address
);
881 if (!pud_present(*pud
))
885 return spurious_fault_check(error_code
, (pte_t
*) pud
);
887 pmd
= pmd_offset(pud
, address
);
888 if (!pmd_present(*pmd
))
892 return spurious_fault_check(error_code
, (pte_t
*) pmd
);
894 pte
= pte_offset_kernel(pmd
, address
);
895 if (!pte_present(*pte
))
898 ret
= spurious_fault_check(error_code
, pte
);
903 * Make sure we have permissions in PMD.
904 * If not, then there's a bug in the page tables:
906 ret
= spurious_fault_check(error_code
, (pte_t
*) pmd
);
907 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
912 int show_unhandled_signals
= 1;
915 access_error(unsigned long error_code
, int write
, struct vm_area_struct
*vma
)
918 /* write, present and write, not present: */
919 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
925 if (unlikely(error_code
& PF_PROT
))
928 /* read, not present: */
929 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
935 static int fault_in_kernel_space(unsigned long address
)
937 return address
>= TASK_SIZE_MAX
;
941 * This routine handles page faults. It determines the address,
942 * and the problem, and then passes it off to one of the appropriate
945 dotraplinkage
void __kprobes
946 do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
948 struct vm_area_struct
*vma
;
949 struct task_struct
*tsk
;
950 unsigned long address
;
951 struct mm_struct
*mm
;
958 /* Get the faulting address: */
959 address
= read_cr2();
962 * Detect and handle instructions that would cause a page fault for
963 * both a tracked kernel page and a userspace page.
965 if (kmemcheck_active(regs
))
966 kmemcheck_hide(regs
);
967 prefetchw(&mm
->mmap_sem
);
969 if (unlikely(kmmio_fault(regs
, address
)))
973 * We fault-in kernel-space virtual memory on-demand. The
974 * 'reference' page table is init_mm.pgd.
976 * NOTE! We MUST NOT take any locks for this case. We may
977 * be in an interrupt or a critical region, and should
978 * only copy the information from the master page table,
981 * This verifies that the fault happens in kernel space
982 * (error_code & 4) == 0, and that the fault was not a
983 * protection error (error_code & 9) == 0.
985 if (unlikely(fault_in_kernel_space(address
))) {
986 if (!(error_code
& (PF_RSVD
| PF_USER
| PF_PROT
))) {
987 if (vmalloc_fault(address
) >= 0)
990 if (kmemcheck_fault(regs
, address
, error_code
))
994 /* Can handle a stale RO->RW TLB: */
995 if (spurious_fault(error_code
, address
))
998 /* kprobes don't want to hook the spurious faults: */
999 if (notify_page_fault(regs
))
1002 * Don't take the mm semaphore here. If we fixup a prefetch
1003 * fault we could otherwise deadlock:
1005 bad_area_nosemaphore(regs
, error_code
, address
);
1010 /* kprobes don't want to hook the spurious faults: */
1011 if (unlikely(notify_page_fault(regs
)))
1014 * It's safe to allow irq's after cr2 has been saved and the
1015 * vmalloc fault has been handled.
1017 * User-mode registers count as a user access even for any
1018 * potential system fault or CPU buglet:
1020 if (user_mode_vm(regs
)) {
1022 error_code
|= PF_USER
;
1024 if (regs
->flags
& X86_EFLAGS_IF
)
1028 if (unlikely(error_code
& PF_RSVD
))
1029 pgtable_bad(regs
, error_code
, address
);
1031 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, 0, regs
, address
);
1034 * If we're in an interrupt, have no user context or are running
1035 * in an atomic region then we must not take the fault:
1037 if (unlikely(in_atomic() || !mm
)) {
1038 bad_area_nosemaphore(regs
, error_code
, address
);
1043 * When running in the kernel we expect faults to occur only to
1044 * addresses in user space. All other faults represent errors in
1045 * the kernel and should generate an OOPS. Unfortunately, in the
1046 * case of an erroneous fault occurring in a code path which already
1047 * holds mmap_sem we will deadlock attempting to validate the fault
1048 * against the address space. Luckily the kernel only validly
1049 * references user space from well defined areas of code, which are
1050 * listed in the exceptions table.
1052 * As the vast majority of faults will be valid we will only perform
1053 * the source reference check when there is a possibility of a
1054 * deadlock. Attempt to lock the address space, if we cannot we then
1055 * validate the source. If this is invalid we can skip the address
1056 * space check, thus avoiding the deadlock:
1058 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1059 if ((error_code
& PF_USER
) == 0 &&
1060 !search_exception_tables(regs
->ip
)) {
1061 bad_area_nosemaphore(regs
, error_code
, address
);
1064 down_read(&mm
->mmap_sem
);
1067 * The above down_read_trylock() might have succeeded in
1068 * which case we'll have missed the might_sleep() from
1074 vma
= find_vma(mm
, address
);
1075 if (unlikely(!vma
)) {
1076 bad_area(regs
, error_code
, address
);
1079 if (likely(vma
->vm_start
<= address
))
1081 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1082 bad_area(regs
, error_code
, address
);
1085 if (error_code
& PF_USER
) {
1087 * Accessing the stack below %sp is always a bug.
1088 * The large cushion allows instructions like enter
1089 * and pusha to work. ("enter $65535, $31" pushes
1090 * 32 pointers and then decrements %sp by 65535.)
1092 if (unlikely(address
+ 65536 + 32 * sizeof(unsigned long) < regs
->sp
)) {
1093 bad_area(regs
, error_code
, address
);
1097 if (unlikely(expand_stack(vma
, address
))) {
1098 bad_area(regs
, error_code
, address
);
1103 * Ok, we have a good vm_area for this memory access, so
1104 * we can handle it..
1107 write
= error_code
& PF_WRITE
;
1109 if (unlikely(access_error(error_code
, write
, vma
))) {
1110 bad_area_access_error(regs
, error_code
, address
);
1115 * If for any reason at all we couldn't handle the fault,
1116 * make sure we exit gracefully rather than endlessly redo
1119 fault
= handle_mm_fault(mm
, vma
, address
, write
? FAULT_FLAG_WRITE
: 0);
1121 if (unlikely(fault
& VM_FAULT_ERROR
)) {
1122 mm_fault_error(regs
, error_code
, address
, fault
);
1126 if (fault
& VM_FAULT_MAJOR
) {
1128 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, 0,
1132 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, 0,
1136 check_v8086_mode(regs
, address
, tsk
);
1138 up_read(&mm
->mmap_sem
);