2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
17 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
19 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_xprt
*xprt
);
20 static int svc_deferred_recv(struct svc_rqst
*rqstp
);
21 static struct cache_deferred_req
*svc_defer(struct cache_req
*req
);
22 static void svc_age_temp_xprts(unsigned long closure
);
24 /* apparently the "standard" is that clients close
25 * idle connections after 5 minutes, servers after
27 * http://www.connectathon.org/talks96/nfstcp.pdf
29 static int svc_conn_age_period
= 6*60;
31 /* List of registered transport classes */
32 static DEFINE_SPINLOCK(svc_xprt_class_lock
);
33 static LIST_HEAD(svc_xprt_class_list
);
35 /* SMP locking strategy:
37 * svc_pool->sp_lock protects most of the fields of that pool.
38 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
39 * when both need to be taken (rare), svc_serv->sv_lock is first.
40 * BKL protects svc_serv->sv_nrthread.
41 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
42 * and the ->sk_info_authunix cache.
44 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
45 * enqueued multiply. During normal transport processing this bit
46 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
47 * Providers should not manipulate this bit directly.
49 * Some flags can be set to certain values at any time
50 * providing that certain rules are followed:
53 * - Can be set or cleared at any time.
54 * - After a set, svc_xprt_enqueue must be called to enqueue
55 * the transport for processing.
56 * - After a clear, the transport must be read/accepted.
57 * If this succeeds, it must be set again.
59 * - Can set at any time. It is never cleared.
61 * - Can only be set while XPT_BUSY is held which ensures
62 * that no other thread will be using the transport or will
63 * try to set XPT_DEAD.
66 int svc_reg_xprt_class(struct svc_xprt_class
*xcl
)
68 struct svc_xprt_class
*cl
;
71 dprintk("svc: Adding svc transport class '%s'\n", xcl
->xcl_name
);
73 INIT_LIST_HEAD(&xcl
->xcl_list
);
74 spin_lock(&svc_xprt_class_lock
);
75 /* Make sure there isn't already a class with the same name */
76 list_for_each_entry(cl
, &svc_xprt_class_list
, xcl_list
) {
77 if (strcmp(xcl
->xcl_name
, cl
->xcl_name
) == 0)
80 list_add_tail(&xcl
->xcl_list
, &svc_xprt_class_list
);
83 spin_unlock(&svc_xprt_class_lock
);
86 EXPORT_SYMBOL_GPL(svc_reg_xprt_class
);
88 void svc_unreg_xprt_class(struct svc_xprt_class
*xcl
)
90 dprintk("svc: Removing svc transport class '%s'\n", xcl
->xcl_name
);
91 spin_lock(&svc_xprt_class_lock
);
92 list_del_init(&xcl
->xcl_list
);
93 spin_unlock(&svc_xprt_class_lock
);
95 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class
);
98 * Format the transport list for printing
100 int svc_print_xprts(char *buf
, int maxlen
)
102 struct svc_xprt_class
*xcl
;
107 spin_lock(&svc_xprt_class_lock
);
108 list_for_each_entry(xcl
, &svc_xprt_class_list
, xcl_list
) {
111 sprintf(tmpstr
, "%s %d\n", xcl
->xcl_name
, xcl
->xcl_max_payload
);
112 slen
= strlen(tmpstr
);
113 if (len
+ slen
> maxlen
)
118 spin_unlock(&svc_xprt_class_lock
);
123 static void svc_xprt_free(struct kref
*kref
)
125 struct svc_xprt
*xprt
=
126 container_of(kref
, struct svc_xprt
, xpt_ref
);
127 struct module
*owner
= xprt
->xpt_class
->xcl_owner
;
128 if (test_bit(XPT_CACHE_AUTH
, &xprt
->xpt_flags
))
129 svcauth_unix_info_release(xprt
);
130 put_net(xprt
->xpt_net
);
131 xprt
->xpt_ops
->xpo_free(xprt
);
135 void svc_xprt_put(struct svc_xprt
*xprt
)
137 kref_put(&xprt
->xpt_ref
, svc_xprt_free
);
139 EXPORT_SYMBOL_GPL(svc_xprt_put
);
142 * Called by transport drivers to initialize the transport independent
143 * portion of the transport instance.
145 void svc_xprt_init(struct svc_xprt_class
*xcl
, struct svc_xprt
*xprt
,
146 struct svc_serv
*serv
)
148 memset(xprt
, 0, sizeof(*xprt
));
149 xprt
->xpt_class
= xcl
;
150 xprt
->xpt_ops
= xcl
->xcl_ops
;
151 kref_init(&xprt
->xpt_ref
);
152 xprt
->xpt_server
= serv
;
153 INIT_LIST_HEAD(&xprt
->xpt_list
);
154 INIT_LIST_HEAD(&xprt
->xpt_ready
);
155 INIT_LIST_HEAD(&xprt
->xpt_deferred
);
156 INIT_LIST_HEAD(&xprt
->xpt_users
);
157 mutex_init(&xprt
->xpt_mutex
);
158 spin_lock_init(&xprt
->xpt_lock
);
159 set_bit(XPT_BUSY
, &xprt
->xpt_flags
);
160 rpc_init_wait_queue(&xprt
->xpt_bc_pending
, "xpt_bc_pending");
161 xprt
->xpt_net
= get_net(&init_net
);
163 EXPORT_SYMBOL_GPL(svc_xprt_init
);
165 static struct svc_xprt
*__svc_xpo_create(struct svc_xprt_class
*xcl
,
166 struct svc_serv
*serv
,
169 const unsigned short port
,
172 struct sockaddr_in sin
= {
173 .sin_family
= AF_INET
,
174 .sin_addr
.s_addr
= htonl(INADDR_ANY
),
175 .sin_port
= htons(port
),
177 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
178 struct sockaddr_in6 sin6
= {
179 .sin6_family
= AF_INET6
,
180 .sin6_addr
= IN6ADDR_ANY_INIT
,
181 .sin6_port
= htons(port
),
183 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
184 struct sockaddr
*sap
;
189 sap
= (struct sockaddr
*)&sin
;
192 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
194 sap
= (struct sockaddr
*)&sin6
;
197 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
199 return ERR_PTR(-EAFNOSUPPORT
);
202 return xcl
->xcl_ops
->xpo_create(serv
, net
, sap
, len
, flags
);
205 int svc_create_xprt(struct svc_serv
*serv
, const char *xprt_name
,
206 struct net
*net
, const int family
,
207 const unsigned short port
, int flags
)
209 struct svc_xprt_class
*xcl
;
211 dprintk("svc: creating transport %s[%d]\n", xprt_name
, port
);
212 spin_lock(&svc_xprt_class_lock
);
213 list_for_each_entry(xcl
, &svc_xprt_class_list
, xcl_list
) {
214 struct svc_xprt
*newxprt
;
216 if (strcmp(xprt_name
, xcl
->xcl_name
))
219 if (!try_module_get(xcl
->xcl_owner
))
222 spin_unlock(&svc_xprt_class_lock
);
223 newxprt
= __svc_xpo_create(xcl
, serv
, net
, family
, port
, flags
);
224 if (IS_ERR(newxprt
)) {
225 module_put(xcl
->xcl_owner
);
226 return PTR_ERR(newxprt
);
229 clear_bit(XPT_TEMP
, &newxprt
->xpt_flags
);
230 spin_lock_bh(&serv
->sv_lock
);
231 list_add(&newxprt
->xpt_list
, &serv
->sv_permsocks
);
232 spin_unlock_bh(&serv
->sv_lock
);
233 clear_bit(XPT_BUSY
, &newxprt
->xpt_flags
);
234 return svc_xprt_local_port(newxprt
);
237 spin_unlock(&svc_xprt_class_lock
);
238 dprintk("svc: transport %s not found\n", xprt_name
);
240 /* This errno is exposed to user space. Provide a reasonable
241 * perror msg for a bad transport. */
242 return -EPROTONOSUPPORT
;
244 EXPORT_SYMBOL_GPL(svc_create_xprt
);
247 * Copy the local and remote xprt addresses to the rqstp structure
249 void svc_xprt_copy_addrs(struct svc_rqst
*rqstp
, struct svc_xprt
*xprt
)
251 struct sockaddr
*sin
;
253 memcpy(&rqstp
->rq_addr
, &xprt
->xpt_remote
, xprt
->xpt_remotelen
);
254 rqstp
->rq_addrlen
= xprt
->xpt_remotelen
;
257 * Destination address in request is needed for binding the
258 * source address in RPC replies/callbacks later.
260 sin
= (struct sockaddr
*)&xprt
->xpt_local
;
261 switch (sin
->sa_family
) {
263 rqstp
->rq_daddr
.addr
= ((struct sockaddr_in
*)sin
)->sin_addr
;
266 rqstp
->rq_daddr
.addr6
= ((struct sockaddr_in6
*)sin
)->sin6_addr
;
270 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs
);
273 * svc_print_addr - Format rq_addr field for printing
274 * @rqstp: svc_rqst struct containing address to print
275 * @buf: target buffer for formatted address
276 * @len: length of target buffer
279 char *svc_print_addr(struct svc_rqst
*rqstp
, char *buf
, size_t len
)
281 return __svc_print_addr(svc_addr(rqstp
), buf
, len
);
283 EXPORT_SYMBOL_GPL(svc_print_addr
);
286 * Queue up an idle server thread. Must have pool->sp_lock held.
287 * Note: this is really a stack rather than a queue, so that we only
288 * use as many different threads as we need, and the rest don't pollute
291 static void svc_thread_enqueue(struct svc_pool
*pool
, struct svc_rqst
*rqstp
)
293 list_add(&rqstp
->rq_list
, &pool
->sp_threads
);
297 * Dequeue an nfsd thread. Must have pool->sp_lock held.
299 static void svc_thread_dequeue(struct svc_pool
*pool
, struct svc_rqst
*rqstp
)
301 list_del(&rqstp
->rq_list
);
305 * Queue up a transport with data pending. If there are idle nfsd
306 * processes, wake 'em up.
309 void svc_xprt_enqueue(struct svc_xprt
*xprt
)
311 struct svc_serv
*serv
= xprt
->xpt_server
;
312 struct svc_pool
*pool
;
313 struct svc_rqst
*rqstp
;
316 if (!(xprt
->xpt_flags
&
317 ((1<<XPT_CONN
)|(1<<XPT_DATA
)|(1<<XPT_CLOSE
)|(1<<XPT_DEFERRED
))))
321 pool
= svc_pool_for_cpu(xprt
->xpt_server
, cpu
);
324 spin_lock_bh(&pool
->sp_lock
);
326 if (!list_empty(&pool
->sp_threads
) &&
327 !list_empty(&pool
->sp_sockets
))
330 "threads and transports both waiting??\n");
332 pool
->sp_stats
.packets
++;
334 /* Mark transport as busy. It will remain in this state until
335 * the provider calls svc_xprt_received. We update XPT_BUSY
336 * atomically because it also guards against trying to enqueue
337 * the transport twice.
339 if (test_and_set_bit(XPT_BUSY
, &xprt
->xpt_flags
)) {
340 /* Don't enqueue transport while already enqueued */
341 dprintk("svc: transport %p busy, not enqueued\n", xprt
);
344 BUG_ON(xprt
->xpt_pool
!= NULL
);
345 xprt
->xpt_pool
= pool
;
347 /* Handle pending connection */
348 if (test_bit(XPT_CONN
, &xprt
->xpt_flags
))
351 /* Handle close in-progress */
352 if (test_bit(XPT_CLOSE
, &xprt
->xpt_flags
))
355 /* Check if we have space to reply to a request */
356 if (!xprt
->xpt_ops
->xpo_has_wspace(xprt
)) {
357 /* Don't enqueue while not enough space for reply */
358 dprintk("svc: no write space, transport %p not enqueued\n",
360 xprt
->xpt_pool
= NULL
;
361 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
366 if (!list_empty(&pool
->sp_threads
)) {
367 rqstp
= list_entry(pool
->sp_threads
.next
,
370 dprintk("svc: transport %p served by daemon %p\n",
372 svc_thread_dequeue(pool
, rqstp
);
375 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
376 rqstp
, rqstp
->rq_xprt
);
377 rqstp
->rq_xprt
= xprt
;
379 rqstp
->rq_reserved
= serv
->sv_max_mesg
;
380 atomic_add(rqstp
->rq_reserved
, &xprt
->xpt_reserved
);
381 pool
->sp_stats
.threads_woken
++;
382 BUG_ON(xprt
->xpt_pool
!= pool
);
383 wake_up(&rqstp
->rq_wait
);
385 dprintk("svc: transport %p put into queue\n", xprt
);
386 list_add_tail(&xprt
->xpt_ready
, &pool
->sp_sockets
);
387 pool
->sp_stats
.sockets_queued
++;
388 BUG_ON(xprt
->xpt_pool
!= pool
);
392 spin_unlock_bh(&pool
->sp_lock
);
394 EXPORT_SYMBOL_GPL(svc_xprt_enqueue
);
397 * Dequeue the first transport. Must be called with the pool->sp_lock held.
399 static struct svc_xprt
*svc_xprt_dequeue(struct svc_pool
*pool
)
401 struct svc_xprt
*xprt
;
403 if (list_empty(&pool
->sp_sockets
))
406 xprt
= list_entry(pool
->sp_sockets
.next
,
407 struct svc_xprt
, xpt_ready
);
408 list_del_init(&xprt
->xpt_ready
);
410 dprintk("svc: transport %p dequeued, inuse=%d\n",
411 xprt
, atomic_read(&xprt
->xpt_ref
.refcount
));
417 * svc_xprt_received conditionally queues the transport for processing
418 * by another thread. The caller must hold the XPT_BUSY bit and must
419 * not thereafter touch transport data.
421 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
422 * insufficient) data.
424 void svc_xprt_received(struct svc_xprt
*xprt
)
426 BUG_ON(!test_bit(XPT_BUSY
, &xprt
->xpt_flags
));
427 xprt
->xpt_pool
= NULL
;
428 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
429 svc_xprt_enqueue(xprt
);
431 EXPORT_SYMBOL_GPL(svc_xprt_received
);
434 * svc_reserve - change the space reserved for the reply to a request.
435 * @rqstp: The request in question
436 * @space: new max space to reserve
438 * Each request reserves some space on the output queue of the transport
439 * to make sure the reply fits. This function reduces that reserved
440 * space to be the amount of space used already, plus @space.
443 void svc_reserve(struct svc_rqst
*rqstp
, int space
)
445 space
+= rqstp
->rq_res
.head
[0].iov_len
;
447 if (space
< rqstp
->rq_reserved
) {
448 struct svc_xprt
*xprt
= rqstp
->rq_xprt
;
449 atomic_sub((rqstp
->rq_reserved
- space
), &xprt
->xpt_reserved
);
450 rqstp
->rq_reserved
= space
;
452 svc_xprt_enqueue(xprt
);
455 EXPORT_SYMBOL_GPL(svc_reserve
);
457 static void svc_xprt_release(struct svc_rqst
*rqstp
)
459 struct svc_xprt
*xprt
= rqstp
->rq_xprt
;
461 rqstp
->rq_xprt
->xpt_ops
->xpo_release_rqst(rqstp
);
463 kfree(rqstp
->rq_deferred
);
464 rqstp
->rq_deferred
= NULL
;
466 svc_free_res_pages(rqstp
);
467 rqstp
->rq_res
.page_len
= 0;
468 rqstp
->rq_res
.page_base
= 0;
470 /* Reset response buffer and release
472 * But first, check that enough space was reserved
473 * for the reply, otherwise we have a bug!
475 if ((rqstp
->rq_res
.len
) > rqstp
->rq_reserved
)
476 printk(KERN_ERR
"RPC request reserved %d but used %d\n",
480 rqstp
->rq_res
.head
[0].iov_len
= 0;
481 svc_reserve(rqstp
, 0);
482 rqstp
->rq_xprt
= NULL
;
488 * External function to wake up a server waiting for data
489 * This really only makes sense for services like lockd
490 * which have exactly one thread anyway.
492 void svc_wake_up(struct svc_serv
*serv
)
494 struct svc_rqst
*rqstp
;
496 struct svc_pool
*pool
;
498 for (i
= 0; i
< serv
->sv_nrpools
; i
++) {
499 pool
= &serv
->sv_pools
[i
];
501 spin_lock_bh(&pool
->sp_lock
);
502 if (!list_empty(&pool
->sp_threads
)) {
503 rqstp
= list_entry(pool
->sp_threads
.next
,
506 dprintk("svc: daemon %p woken up.\n", rqstp
);
508 svc_thread_dequeue(pool, rqstp);
509 rqstp->rq_xprt = NULL;
511 wake_up(&rqstp
->rq_wait
);
513 spin_unlock_bh(&pool
->sp_lock
);
516 EXPORT_SYMBOL_GPL(svc_wake_up
);
518 int svc_port_is_privileged(struct sockaddr
*sin
)
520 switch (sin
->sa_family
) {
522 return ntohs(((struct sockaddr_in
*)sin
)->sin_port
)
525 return ntohs(((struct sockaddr_in6
*)sin
)->sin6_port
)
533 * Make sure that we don't have too many active connections. If we have,
534 * something must be dropped. It's not clear what will happen if we allow
535 * "too many" connections, but when dealing with network-facing software,
536 * we have to code defensively. Here we do that by imposing hard limits.
538 * There's no point in trying to do random drop here for DoS
539 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
540 * attacker can easily beat that.
542 * The only somewhat efficient mechanism would be if drop old
543 * connections from the same IP first. But right now we don't even
544 * record the client IP in svc_sock.
546 * single-threaded services that expect a lot of clients will probably
547 * need to set sv_maxconn to override the default value which is based
548 * on the number of threads
550 static void svc_check_conn_limits(struct svc_serv
*serv
)
552 unsigned int limit
= serv
->sv_maxconn
? serv
->sv_maxconn
:
553 (serv
->sv_nrthreads
+3) * 20;
555 if (serv
->sv_tmpcnt
> limit
) {
556 struct svc_xprt
*xprt
= NULL
;
557 spin_lock_bh(&serv
->sv_lock
);
558 if (!list_empty(&serv
->sv_tempsocks
)) {
559 if (net_ratelimit()) {
560 /* Try to help the admin */
561 printk(KERN_NOTICE
"%s: too many open "
562 "connections, consider increasing %s\n",
563 serv
->sv_name
, serv
->sv_maxconn
?
564 "the max number of connections." :
565 "the number of threads.");
568 * Always select the oldest connection. It's not fair,
571 xprt
= list_entry(serv
->sv_tempsocks
.prev
,
574 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
577 spin_unlock_bh(&serv
->sv_lock
);
580 svc_xprt_enqueue(xprt
);
587 * Receive the next request on any transport. This code is carefully
588 * organised not to touch any cachelines in the shared svc_serv
589 * structure, only cachelines in the local svc_pool.
591 int svc_recv(struct svc_rqst
*rqstp
, long timeout
)
593 struct svc_xprt
*xprt
= NULL
;
594 struct svc_serv
*serv
= rqstp
->rq_server
;
595 struct svc_pool
*pool
= rqstp
->rq_pool
;
599 DECLARE_WAITQUEUE(wait
, current
);
602 dprintk("svc: server %p waiting for data (to = %ld)\n",
607 "svc_recv: service %p, transport not NULL!\n",
609 if (waitqueue_active(&rqstp
->rq_wait
))
611 "svc_recv: service %p, wait queue active!\n",
614 /* now allocate needed pages. If we get a failure, sleep briefly */
615 pages
= (serv
->sv_max_mesg
+ PAGE_SIZE
) / PAGE_SIZE
;
616 for (i
= 0; i
< pages
; i
++)
617 while (rqstp
->rq_pages
[i
] == NULL
) {
618 struct page
*p
= alloc_page(GFP_KERNEL
);
620 set_current_state(TASK_INTERRUPTIBLE
);
621 if (signalled() || kthread_should_stop()) {
622 set_current_state(TASK_RUNNING
);
625 schedule_timeout(msecs_to_jiffies(500));
627 rqstp
->rq_pages
[i
] = p
;
629 rqstp
->rq_pages
[i
++] = NULL
; /* this might be seen in nfs_read_actor */
630 BUG_ON(pages
>= RPCSVC_MAXPAGES
);
632 /* Make arg->head point to first page and arg->pages point to rest */
633 arg
= &rqstp
->rq_arg
;
634 arg
->head
[0].iov_base
= page_address(rqstp
->rq_pages
[0]);
635 arg
->head
[0].iov_len
= PAGE_SIZE
;
636 arg
->pages
= rqstp
->rq_pages
+ 1;
638 /* save at least one page for response */
639 arg
->page_len
= (pages
-2)*PAGE_SIZE
;
640 arg
->len
= (pages
-1)*PAGE_SIZE
;
641 arg
->tail
[0].iov_len
= 0;
645 if (signalled() || kthread_should_stop())
648 /* Normally we will wait up to 5 seconds for any required
649 * cache information to be provided.
651 rqstp
->rq_chandle
.thread_wait
= 5*HZ
;
653 spin_lock_bh(&pool
->sp_lock
);
654 xprt
= svc_xprt_dequeue(pool
);
656 rqstp
->rq_xprt
= xprt
;
658 rqstp
->rq_reserved
= serv
->sv_max_mesg
;
659 atomic_add(rqstp
->rq_reserved
, &xprt
->xpt_reserved
);
661 /* As there is a shortage of threads and this request
662 * had to be queued, don't allow the thread to wait so
663 * long for cache updates.
665 rqstp
->rq_chandle
.thread_wait
= 1*HZ
;
667 /* No data pending. Go to sleep */
668 svc_thread_enqueue(pool
, rqstp
);
671 * We have to be able to interrupt this wait
672 * to bring down the daemons ...
674 set_current_state(TASK_INTERRUPTIBLE
);
677 * checking kthread_should_stop() here allows us to avoid
678 * locking and signalling when stopping kthreads that call
679 * svc_recv. If the thread has already been woken up, then
680 * we can exit here without sleeping. If not, then it
681 * it'll be woken up quickly during the schedule_timeout
683 if (kthread_should_stop()) {
684 set_current_state(TASK_RUNNING
);
685 spin_unlock_bh(&pool
->sp_lock
);
689 add_wait_queue(&rqstp
->rq_wait
, &wait
);
690 spin_unlock_bh(&pool
->sp_lock
);
692 time_left
= schedule_timeout(timeout
);
696 spin_lock_bh(&pool
->sp_lock
);
697 remove_wait_queue(&rqstp
->rq_wait
, &wait
);
699 pool
->sp_stats
.threads_timedout
++;
701 xprt
= rqstp
->rq_xprt
;
703 svc_thread_dequeue(pool
, rqstp
);
704 spin_unlock_bh(&pool
->sp_lock
);
705 dprintk("svc: server %p, no data yet\n", rqstp
);
706 if (signalled() || kthread_should_stop())
712 spin_unlock_bh(&pool
->sp_lock
);
715 if (test_bit(XPT_CLOSE
, &xprt
->xpt_flags
)) {
716 dprintk("svc_recv: found XPT_CLOSE\n");
717 svc_delete_xprt(xprt
);
718 } else if (test_bit(XPT_LISTENER
, &xprt
->xpt_flags
)) {
719 struct svc_xprt
*newxpt
;
720 newxpt
= xprt
->xpt_ops
->xpo_accept(xprt
);
723 * We know this module_get will succeed because the
724 * listener holds a reference too
726 __module_get(newxpt
->xpt_class
->xcl_owner
);
727 svc_check_conn_limits(xprt
->xpt_server
);
728 spin_lock_bh(&serv
->sv_lock
);
729 set_bit(XPT_TEMP
, &newxpt
->xpt_flags
);
730 list_add(&newxpt
->xpt_list
, &serv
->sv_tempsocks
);
732 if (serv
->sv_temptimer
.function
== NULL
) {
733 /* setup timer to age temp transports */
734 setup_timer(&serv
->sv_temptimer
,
736 (unsigned long)serv
);
737 mod_timer(&serv
->sv_temptimer
,
738 jiffies
+ svc_conn_age_period
* HZ
);
740 spin_unlock_bh(&serv
->sv_lock
);
741 svc_xprt_received(newxpt
);
743 svc_xprt_received(xprt
);
745 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
746 rqstp
, pool
->sp_id
, xprt
,
747 atomic_read(&xprt
->xpt_ref
.refcount
));
748 rqstp
->rq_deferred
= svc_deferred_dequeue(xprt
);
749 if (rqstp
->rq_deferred
) {
750 svc_xprt_received(xprt
);
751 len
= svc_deferred_recv(rqstp
);
753 len
= xprt
->xpt_ops
->xpo_recvfrom(rqstp
);
754 svc_xprt_received(xprt
);
756 dprintk("svc: got len=%d\n", len
);
759 /* No data, incomplete (TCP) read, or accept() */
760 if (len
== 0 || len
== -EAGAIN
) {
761 rqstp
->rq_res
.len
= 0;
762 svc_xprt_release(rqstp
);
765 clear_bit(XPT_OLD
, &xprt
->xpt_flags
);
767 rqstp
->rq_secure
= svc_port_is_privileged(svc_addr(rqstp
));
768 rqstp
->rq_chandle
.defer
= svc_defer
;
771 serv
->sv_stats
->netcnt
++;
774 EXPORT_SYMBOL_GPL(svc_recv
);
779 void svc_drop(struct svc_rqst
*rqstp
)
781 dprintk("svc: xprt %p dropped request\n", rqstp
->rq_xprt
);
782 svc_xprt_release(rqstp
);
784 EXPORT_SYMBOL_GPL(svc_drop
);
787 * Return reply to client.
789 int svc_send(struct svc_rqst
*rqstp
)
791 struct svc_xprt
*xprt
;
795 xprt
= rqstp
->rq_xprt
;
799 /* release the receive skb before sending the reply */
800 rqstp
->rq_xprt
->xpt_ops
->xpo_release_rqst(rqstp
);
802 /* calculate over-all length */
804 xb
->len
= xb
->head
[0].iov_len
+
808 /* Grab mutex to serialize outgoing data. */
809 mutex_lock(&xprt
->xpt_mutex
);
810 if (test_bit(XPT_DEAD
, &xprt
->xpt_flags
))
813 len
= xprt
->xpt_ops
->xpo_sendto(rqstp
);
814 mutex_unlock(&xprt
->xpt_mutex
);
815 rpc_wake_up(&xprt
->xpt_bc_pending
);
816 svc_xprt_release(rqstp
);
818 if (len
== -ECONNREFUSED
|| len
== -ENOTCONN
|| len
== -EAGAIN
)
824 * Timer function to close old temporary transports, using
825 * a mark-and-sweep algorithm.
827 static void svc_age_temp_xprts(unsigned long closure
)
829 struct svc_serv
*serv
= (struct svc_serv
*)closure
;
830 struct svc_xprt
*xprt
;
831 struct list_head
*le
, *next
;
832 LIST_HEAD(to_be_aged
);
834 dprintk("svc_age_temp_xprts\n");
836 if (!spin_trylock_bh(&serv
->sv_lock
)) {
837 /* busy, try again 1 sec later */
838 dprintk("svc_age_temp_xprts: busy\n");
839 mod_timer(&serv
->sv_temptimer
, jiffies
+ HZ
);
843 list_for_each_safe(le
, next
, &serv
->sv_tempsocks
) {
844 xprt
= list_entry(le
, struct svc_xprt
, xpt_list
);
846 /* First time through, just mark it OLD. Second time
847 * through, close it. */
848 if (!test_and_set_bit(XPT_OLD
, &xprt
->xpt_flags
))
850 if (atomic_read(&xprt
->xpt_ref
.refcount
) > 1 ||
851 test_bit(XPT_BUSY
, &xprt
->xpt_flags
))
854 list_move(le
, &to_be_aged
);
855 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
856 set_bit(XPT_DETACHED
, &xprt
->xpt_flags
);
858 spin_unlock_bh(&serv
->sv_lock
);
860 while (!list_empty(&to_be_aged
)) {
861 le
= to_be_aged
.next
;
862 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
864 xprt
= list_entry(le
, struct svc_xprt
, xpt_list
);
866 dprintk("queuing xprt %p for closing\n", xprt
);
868 /* a thread will dequeue and close it soon */
869 svc_xprt_enqueue(xprt
);
873 mod_timer(&serv
->sv_temptimer
, jiffies
+ svc_conn_age_period
* HZ
);
876 static void call_xpt_users(struct svc_xprt
*xprt
)
878 struct svc_xpt_user
*u
;
880 spin_lock(&xprt
->xpt_lock
);
881 while (!list_empty(&xprt
->xpt_users
)) {
882 u
= list_first_entry(&xprt
->xpt_users
, struct svc_xpt_user
, list
);
886 spin_unlock(&xprt
->xpt_lock
);
890 * Remove a dead transport
892 void svc_delete_xprt(struct svc_xprt
*xprt
)
894 struct svc_serv
*serv
= xprt
->xpt_server
;
895 struct svc_deferred_req
*dr
;
897 /* Only do this once */
898 if (test_and_set_bit(XPT_DEAD
, &xprt
->xpt_flags
))
901 dprintk("svc: svc_delete_xprt(%p)\n", xprt
);
902 xprt
->xpt_ops
->xpo_detach(xprt
);
904 spin_lock_bh(&serv
->sv_lock
);
905 if (!test_and_set_bit(XPT_DETACHED
, &xprt
->xpt_flags
))
906 list_del_init(&xprt
->xpt_list
);
908 * We used to delete the transport from whichever list
909 * it's sk_xprt.xpt_ready node was on, but we don't actually
910 * need to. This is because the only time we're called
911 * while still attached to a queue, the queue itself
912 * is about to be destroyed (in svc_destroy).
914 if (test_bit(XPT_TEMP
, &xprt
->xpt_flags
))
916 spin_unlock_bh(&serv
->sv_lock
);
918 while ((dr
= svc_deferred_dequeue(xprt
)) != NULL
)
921 call_xpt_users(xprt
);
925 void svc_close_xprt(struct svc_xprt
*xprt
)
927 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
928 if (test_and_set_bit(XPT_BUSY
, &xprt
->xpt_flags
))
929 /* someone else will have to effect the close */
932 svc_delete_xprt(xprt
);
934 EXPORT_SYMBOL_GPL(svc_close_xprt
);
936 void svc_close_all(struct list_head
*xprt_list
)
938 struct svc_xprt
*xprt
;
939 struct svc_xprt
*tmp
;
941 list_for_each_entry_safe(xprt
, tmp
, xprt_list
, xpt_list
) {
942 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
943 if (test_bit(XPT_BUSY
, &xprt
->xpt_flags
)) {
944 /* Waiting to be processed, but no threads left,
945 * So just remove it from the waiting list
947 list_del_init(&xprt
->xpt_ready
);
948 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
950 svc_close_xprt(xprt
);
955 * Handle defer and revisit of requests
958 static void svc_revisit(struct cache_deferred_req
*dreq
, int too_many
)
960 struct svc_deferred_req
*dr
=
961 container_of(dreq
, struct svc_deferred_req
, handle
);
962 struct svc_xprt
*xprt
= dr
->xprt
;
964 spin_lock(&xprt
->xpt_lock
);
965 set_bit(XPT_DEFERRED
, &xprt
->xpt_flags
);
966 if (too_many
|| test_bit(XPT_DEAD
, &xprt
->xpt_flags
)) {
967 spin_unlock(&xprt
->xpt_lock
);
968 dprintk("revisit canceled\n");
973 dprintk("revisit queued\n");
975 list_add(&dr
->handle
.recent
, &xprt
->xpt_deferred
);
976 spin_unlock(&xprt
->xpt_lock
);
977 svc_xprt_enqueue(xprt
);
982 * Save the request off for later processing. The request buffer looks
985 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
987 * This code can only handle requests that consist of an xprt-header
990 static struct cache_deferred_req
*svc_defer(struct cache_req
*req
)
992 struct svc_rqst
*rqstp
= container_of(req
, struct svc_rqst
, rq_chandle
);
993 struct svc_deferred_req
*dr
;
995 if (rqstp
->rq_arg
.page_len
|| !rqstp
->rq_usedeferral
)
996 return NULL
; /* if more than a page, give up FIXME */
997 if (rqstp
->rq_deferred
) {
998 dr
= rqstp
->rq_deferred
;
999 rqstp
->rq_deferred
= NULL
;
1003 /* FIXME maybe discard if size too large */
1004 size
= sizeof(struct svc_deferred_req
) + rqstp
->rq_arg
.len
;
1005 dr
= kmalloc(size
, GFP_KERNEL
);
1009 dr
->handle
.owner
= rqstp
->rq_server
;
1010 dr
->prot
= rqstp
->rq_prot
;
1011 memcpy(&dr
->addr
, &rqstp
->rq_addr
, rqstp
->rq_addrlen
);
1012 dr
->addrlen
= rqstp
->rq_addrlen
;
1013 dr
->daddr
= rqstp
->rq_daddr
;
1014 dr
->argslen
= rqstp
->rq_arg
.len
>> 2;
1015 dr
->xprt_hlen
= rqstp
->rq_xprt_hlen
;
1017 /* back up head to the start of the buffer and copy */
1018 skip
= rqstp
->rq_arg
.len
- rqstp
->rq_arg
.head
[0].iov_len
;
1019 memcpy(dr
->args
, rqstp
->rq_arg
.head
[0].iov_base
- skip
,
1022 svc_xprt_get(rqstp
->rq_xprt
);
1023 dr
->xprt
= rqstp
->rq_xprt
;
1025 dr
->handle
.revisit
= svc_revisit
;
1030 * recv data from a deferred request into an active one
1032 static int svc_deferred_recv(struct svc_rqst
*rqstp
)
1034 struct svc_deferred_req
*dr
= rqstp
->rq_deferred
;
1036 /* setup iov_base past transport header */
1037 rqstp
->rq_arg
.head
[0].iov_base
= dr
->args
+ (dr
->xprt_hlen
>>2);
1038 /* The iov_len does not include the transport header bytes */
1039 rqstp
->rq_arg
.head
[0].iov_len
= (dr
->argslen
<<2) - dr
->xprt_hlen
;
1040 rqstp
->rq_arg
.page_len
= 0;
1041 /* The rq_arg.len includes the transport header bytes */
1042 rqstp
->rq_arg
.len
= dr
->argslen
<<2;
1043 rqstp
->rq_prot
= dr
->prot
;
1044 memcpy(&rqstp
->rq_addr
, &dr
->addr
, dr
->addrlen
);
1045 rqstp
->rq_addrlen
= dr
->addrlen
;
1046 /* Save off transport header len in case we get deferred again */
1047 rqstp
->rq_xprt_hlen
= dr
->xprt_hlen
;
1048 rqstp
->rq_daddr
= dr
->daddr
;
1049 rqstp
->rq_respages
= rqstp
->rq_pages
;
1050 return (dr
->argslen
<<2) - dr
->xprt_hlen
;
1054 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_xprt
*xprt
)
1056 struct svc_deferred_req
*dr
= NULL
;
1058 if (!test_bit(XPT_DEFERRED
, &xprt
->xpt_flags
))
1060 spin_lock(&xprt
->xpt_lock
);
1061 clear_bit(XPT_DEFERRED
, &xprt
->xpt_flags
);
1062 if (!list_empty(&xprt
->xpt_deferred
)) {
1063 dr
= list_entry(xprt
->xpt_deferred
.next
,
1064 struct svc_deferred_req
,
1066 list_del_init(&dr
->handle
.recent
);
1067 set_bit(XPT_DEFERRED
, &xprt
->xpt_flags
);
1069 spin_unlock(&xprt
->xpt_lock
);
1074 * svc_find_xprt - find an RPC transport instance
1075 * @serv: pointer to svc_serv to search
1076 * @xcl_name: C string containing transport's class name
1077 * @af: Address family of transport's local address
1078 * @port: transport's IP port number
1080 * Return the transport instance pointer for the endpoint accepting
1081 * connections/peer traffic from the specified transport class,
1082 * address family and port.
1084 * Specifying 0 for the address family or port is effectively a
1085 * wild-card, and will result in matching the first transport in the
1086 * service's list that has a matching class name.
1088 struct svc_xprt
*svc_find_xprt(struct svc_serv
*serv
, const char *xcl_name
,
1089 const sa_family_t af
, const unsigned short port
)
1091 struct svc_xprt
*xprt
;
1092 struct svc_xprt
*found
= NULL
;
1094 /* Sanity check the args */
1095 if (serv
== NULL
|| xcl_name
== NULL
)
1098 spin_lock_bh(&serv
->sv_lock
);
1099 list_for_each_entry(xprt
, &serv
->sv_permsocks
, xpt_list
) {
1100 if (strcmp(xprt
->xpt_class
->xcl_name
, xcl_name
))
1102 if (af
!= AF_UNSPEC
&& af
!= xprt
->xpt_local
.ss_family
)
1104 if (port
!= 0 && port
!= svc_xprt_local_port(xprt
))
1110 spin_unlock_bh(&serv
->sv_lock
);
1113 EXPORT_SYMBOL_GPL(svc_find_xprt
);
1115 static int svc_one_xprt_name(const struct svc_xprt
*xprt
,
1116 char *pos
, int remaining
)
1120 len
= snprintf(pos
, remaining
, "%s %u\n",
1121 xprt
->xpt_class
->xcl_name
,
1122 svc_xprt_local_port(xprt
));
1123 if (len
>= remaining
)
1124 return -ENAMETOOLONG
;
1129 * svc_xprt_names - format a buffer with a list of transport names
1130 * @serv: pointer to an RPC service
1131 * @buf: pointer to a buffer to be filled in
1132 * @buflen: length of buffer to be filled in
1134 * Fills in @buf with a string containing a list of transport names,
1135 * each name terminated with '\n'.
1137 * Returns positive length of the filled-in string on success; otherwise
1138 * a negative errno value is returned if an error occurs.
1140 int svc_xprt_names(struct svc_serv
*serv
, char *buf
, const int buflen
)
1142 struct svc_xprt
*xprt
;
1146 /* Sanity check args */
1150 spin_lock_bh(&serv
->sv_lock
);
1154 list_for_each_entry(xprt
, &serv
->sv_permsocks
, xpt_list
) {
1155 len
= svc_one_xprt_name(xprt
, pos
, buflen
- totlen
);
1167 spin_unlock_bh(&serv
->sv_lock
);
1170 EXPORT_SYMBOL_GPL(svc_xprt_names
);
1173 /*----------------------------------------------------------------------------*/
1175 static void *svc_pool_stats_start(struct seq_file
*m
, loff_t
*pos
)
1177 unsigned int pidx
= (unsigned int)*pos
;
1178 struct svc_serv
*serv
= m
->private;
1180 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx
);
1183 return SEQ_START_TOKEN
;
1184 return (pidx
> serv
->sv_nrpools
? NULL
: &serv
->sv_pools
[pidx
-1]);
1187 static void *svc_pool_stats_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1189 struct svc_pool
*pool
= p
;
1190 struct svc_serv
*serv
= m
->private;
1192 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos
);
1194 if (p
== SEQ_START_TOKEN
) {
1195 pool
= &serv
->sv_pools
[0];
1197 unsigned int pidx
= (pool
- &serv
->sv_pools
[0]);
1198 if (pidx
< serv
->sv_nrpools
-1)
1199 pool
= &serv
->sv_pools
[pidx
+1];
1207 static void svc_pool_stats_stop(struct seq_file
*m
, void *p
)
1211 static int svc_pool_stats_show(struct seq_file
*m
, void *p
)
1213 struct svc_pool
*pool
= p
;
1215 if (p
== SEQ_START_TOKEN
) {
1216 seq_puts(m
, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1220 seq_printf(m
, "%u %lu %lu %lu %lu\n",
1222 pool
->sp_stats
.packets
,
1223 pool
->sp_stats
.sockets_queued
,
1224 pool
->sp_stats
.threads_woken
,
1225 pool
->sp_stats
.threads_timedout
);
1230 static const struct seq_operations svc_pool_stats_seq_ops
= {
1231 .start
= svc_pool_stats_start
,
1232 .next
= svc_pool_stats_next
,
1233 .stop
= svc_pool_stats_stop
,
1234 .show
= svc_pool_stats_show
,
1237 int svc_pool_stats_open(struct svc_serv
*serv
, struct file
*file
)
1241 err
= seq_open(file
, &svc_pool_stats_seq_ops
);
1243 ((struct seq_file
*) file
->private_data
)->private = serv
;
1246 EXPORT_SYMBOL(svc_pool_stats_open
);
1248 /*----------------------------------------------------------------------------*/