Merge branch 'cfq-2.6.33' into for-2.6.33
[linux-2.6/next.git] / include / linux / reiserfs_fs.h
blobdd31e7bae35cd606943ca4f52bc585c42a9a65f7
1 /*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
5 /* this file has an amazingly stupid
6 name, yura please fix it to be
7 reiserfs.h, and merge all the rest
8 of our .h files that are in this
9 directory into it. */
11 #ifndef _LINUX_REISER_FS_H
12 #define _LINUX_REISER_FS_H
14 #include <linux/types.h>
15 #include <linux/magic.h>
17 #ifdef __KERNEL__
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/sched.h>
21 #include <linux/workqueue.h>
22 #include <asm/unaligned.h>
23 #include <linux/bitops.h>
24 #include <linux/proc_fs.h>
25 #include <linux/smp_lock.h>
26 #include <linux/buffer_head.h>
27 #include <linux/reiserfs_fs_i.h>
28 #include <linux/reiserfs_fs_sb.h>
29 #endif
32 * include/linux/reiser_fs.h
34 * Reiser File System constants and structures
38 /* ioctl's command */
39 #define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
40 /* define following flags to be the same as in ext2, so that chattr(1),
41 lsattr(1) will work with us. */
42 #define REISERFS_IOC_GETFLAGS FS_IOC_GETFLAGS
43 #define REISERFS_IOC_SETFLAGS FS_IOC_SETFLAGS
44 #define REISERFS_IOC_GETVERSION FS_IOC_GETVERSION
45 #define REISERFS_IOC_SETVERSION FS_IOC_SETVERSION
47 #ifdef __KERNEL__
48 /* the 32 bit compat definitions with int argument */
49 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
50 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
51 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
52 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
53 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
55 /* Locking primitives */
56 /* Right now we are still falling back to (un)lock_kernel, but eventually that
57 would evolve into real per-fs locks */
58 #define reiserfs_write_lock( sb ) lock_kernel()
59 #define reiserfs_write_unlock( sb ) unlock_kernel()
61 struct fid;
63 /* in reading the #defines, it may help to understand that they employ
64 the following abbreviations:
66 B = Buffer
67 I = Item header
68 H = Height within the tree (should be changed to LEV)
69 N = Number of the item in the node
70 STAT = stat data
71 DEH = Directory Entry Header
72 EC = Entry Count
73 E = Entry number
74 UL = Unsigned Long
75 BLKH = BLocK Header
76 UNFM = UNForMatted node
77 DC = Disk Child
78 P = Path
80 These #defines are named by concatenating these abbreviations,
81 where first comes the arguments, and last comes the return value,
82 of the macro.
86 #define USE_INODE_GENERATION_COUNTER
88 #define REISERFS_PREALLOCATE
89 #define DISPLACE_NEW_PACKING_LOCALITIES
90 #define PREALLOCATION_SIZE 9
92 /* n must be power of 2 */
93 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
95 // to be ok for alpha and others we have to align structures to 8 byte
96 // boundary.
97 // FIXME: do not change 4 by anything else: there is code which relies on that
98 #define ROUND_UP(x) _ROUND_UP(x,8LL)
100 /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
101 ** messages.
103 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
105 void __reiserfs_warning(struct super_block *s, const char *id,
106 const char *func, const char *fmt, ...);
107 #define reiserfs_warning(s, id, fmt, args...) \
108 __reiserfs_warning(s, id, __func__, fmt, ##args)
109 /* assertions handling */
111 /** always check a condition and panic if it's false. */
112 #define __RASSERT(cond, scond, format, args...) \
113 do { \
114 if (!(cond)) \
115 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
116 __FILE__ ":%i:%s: " format "\n", \
117 in_interrupt() ? -1 : task_pid_nr(current), \
118 __LINE__, __func__ , ##args); \
119 } while (0)
121 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
123 #if defined( CONFIG_REISERFS_CHECK )
124 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
125 #else
126 #define RFALSE( cond, format, args... ) do {;} while( 0 )
127 #endif
129 #define CONSTF __attribute_const__
131 * Disk Data Structures
134 /***************************************************************************/
135 /* SUPER BLOCK */
136 /***************************************************************************/
139 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
140 * the version in RAM is part of a larger structure containing fields never written to disk.
142 #define UNSET_HASH 0 // read_super will guess about, what hash names
143 // in directories were sorted with
144 #define TEA_HASH 1
145 #define YURA_HASH 2
146 #define R5_HASH 3
147 #define DEFAULT_HASH R5_HASH
149 struct journal_params {
150 __le32 jp_journal_1st_block; /* where does journal start from on its
151 * device */
152 __le32 jp_journal_dev; /* journal device st_rdev */
153 __le32 jp_journal_size; /* size of the journal */
154 __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */
155 __le32 jp_journal_magic; /* random value made on fs creation (this
156 * was sb_journal_block_count) */
157 __le32 jp_journal_max_batch; /* max number of blocks to batch into a
158 * trans */
159 __le32 jp_journal_max_commit_age; /* in seconds, how old can an async
160 * commit be */
161 __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
162 * be */
165 /* this is the super from 3.5.X, where X >= 10 */
166 struct reiserfs_super_block_v1 {
167 __le32 s_block_count; /* blocks count */
168 __le32 s_free_blocks; /* free blocks count */
169 __le32 s_root_block; /* root block number */
170 struct journal_params s_journal;
171 __le16 s_blocksize; /* block size */
172 __le16 s_oid_maxsize; /* max size of object id array, see
173 * get_objectid() commentary */
174 __le16 s_oid_cursize; /* current size of object id array */
175 __le16 s_umount_state; /* this is set to 1 when filesystem was
176 * umounted, to 2 - when not */
177 char s_magic[10]; /* reiserfs magic string indicates that
178 * file system is reiserfs:
179 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
180 __le16 s_fs_state; /* it is set to used by fsck to mark which
181 * phase of rebuilding is done */
182 __le32 s_hash_function_code; /* indicate, what hash function is being use
183 * to sort names in a directory*/
184 __le16 s_tree_height; /* height of disk tree */
185 __le16 s_bmap_nr; /* amount of bitmap blocks needed to address
186 * each block of file system */
187 __le16 s_version; /* this field is only reliable on filesystem
188 * with non-standard journal */
189 __le16 s_reserved_for_journal; /* size in blocks of journal area on main
190 * device, we need to keep after
191 * making fs with non-standard journal */
192 } __attribute__ ((__packed__));
194 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
196 /* this is the on disk super block */
197 struct reiserfs_super_block {
198 struct reiserfs_super_block_v1 s_v1;
199 __le32 s_inode_generation;
200 __le32 s_flags; /* Right now used only by inode-attributes, if enabled */
201 unsigned char s_uuid[16]; /* filesystem unique identifier */
202 unsigned char s_label[16]; /* filesystem volume label */
203 __le16 s_mnt_count; /* Count of mounts since last fsck */
204 __le16 s_max_mnt_count; /* Maximum mounts before check */
205 __le32 s_lastcheck; /* Timestamp of last fsck */
206 __le32 s_check_interval; /* Interval between checks */
207 char s_unused[76]; /* zero filled by mkreiserfs and
208 * reiserfs_convert_objectid_map_v1()
209 * so any additions must be updated
210 * there as well. */
211 } __attribute__ ((__packed__));
213 #define SB_SIZE (sizeof(struct reiserfs_super_block))
215 #define REISERFS_VERSION_1 0
216 #define REISERFS_VERSION_2 2
218 // on-disk super block fields converted to cpu form
219 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
220 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
221 #define SB_BLOCKSIZE(s) \
222 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
223 #define SB_BLOCK_COUNT(s) \
224 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
225 #define SB_FREE_BLOCKS(s) \
226 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
227 #define SB_REISERFS_MAGIC(s) \
228 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
229 #define SB_ROOT_BLOCK(s) \
230 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
231 #define SB_TREE_HEIGHT(s) \
232 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
233 #define SB_REISERFS_STATE(s) \
234 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
235 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
236 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
238 #define PUT_SB_BLOCK_COUNT(s, val) \
239 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
240 #define PUT_SB_FREE_BLOCKS(s, val) \
241 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
242 #define PUT_SB_ROOT_BLOCK(s, val) \
243 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
244 #define PUT_SB_TREE_HEIGHT(s, val) \
245 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
246 #define PUT_SB_REISERFS_STATE(s, val) \
247 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
248 #define PUT_SB_VERSION(s, val) \
249 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
250 #define PUT_SB_BMAP_NR(s, val) \
251 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
253 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
254 #define SB_ONDISK_JOURNAL_SIZE(s) \
255 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
256 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
257 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
258 #define SB_ONDISK_JOURNAL_DEVICE(s) \
259 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
260 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
261 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
263 #define is_block_in_log_or_reserved_area(s, block) \
264 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
265 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
266 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
267 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
269 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
270 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
271 int is_reiserfs_jr(struct reiserfs_super_block *rs);
273 /* ReiserFS leaves the first 64k unused, so that partition labels have
274 enough space. If someone wants to write a fancy bootloader that
275 needs more than 64k, let us know, and this will be increased in size.
276 This number must be larger than than the largest block size on any
277 platform, or code will break. -Hans */
278 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
279 #define REISERFS_FIRST_BLOCK unused_define
280 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
282 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
283 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
285 // reiserfs internal error code (used by search_by_key adn fix_nodes))
286 #define CARRY_ON 0
287 #define REPEAT_SEARCH -1
288 #define IO_ERROR -2
289 #define NO_DISK_SPACE -3
290 #define NO_BALANCING_NEEDED (-4)
291 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
292 #define QUOTA_EXCEEDED -6
294 typedef __u32 b_blocknr_t;
295 typedef __le32 unp_t;
297 struct unfm_nodeinfo {
298 unp_t unfm_nodenum;
299 unsigned short unfm_freespace;
302 /* there are two formats of keys: 3.5 and 3.6
304 #define KEY_FORMAT_3_5 0
305 #define KEY_FORMAT_3_6 1
307 /* there are two stat datas */
308 #define STAT_DATA_V1 0
309 #define STAT_DATA_V2 1
311 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
313 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
316 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
318 return sb->s_fs_info;
321 /* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
322 * which overflows on large file systems. */
323 static inline __u32 reiserfs_bmap_count(struct super_block *sb)
325 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
328 static inline int bmap_would_wrap(unsigned bmap_nr)
330 return bmap_nr > ((1LL << 16) - 1);
333 /** this says about version of key of all items (but stat data) the
334 object consists of */
335 #define get_inode_item_key_version( inode ) \
336 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
338 #define set_inode_item_key_version( inode, version ) \
339 ({ if((version)==KEY_FORMAT_3_6) \
340 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
341 else \
342 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
344 #define get_inode_sd_version(inode) \
345 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
347 #define set_inode_sd_version(inode, version) \
348 ({ if((version)==STAT_DATA_V2) \
349 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
350 else \
351 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
353 /* This is an aggressive tail suppression policy, I am hoping it
354 improves our benchmarks. The principle behind it is that percentage
355 space saving is what matters, not absolute space saving. This is
356 non-intuitive, but it helps to understand it if you consider that the
357 cost to access 4 blocks is not much more than the cost to access 1
358 block, if you have to do a seek and rotate. A tail risks a
359 non-linear disk access that is significant as a percentage of total
360 time cost for a 4 block file and saves an amount of space that is
361 less significant as a percentage of space, or so goes the hypothesis.
362 -Hans */
363 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
365 (!(n_tail_size)) || \
366 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
367 ( (n_file_size) >= (n_block_size) * 4 ) || \
368 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
369 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
370 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
371 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
372 ( ( (n_file_size) >= (n_block_size) ) && \
373 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
376 /* Another strategy for tails, this one means only create a tail if all the
377 file would fit into one DIRECT item.
378 Primary intention for this one is to increase performance by decreasing
379 seeking.
381 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
383 (!(n_tail_size)) || \
384 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
388 * values for s_umount_state field
390 #define REISERFS_VALID_FS 1
391 #define REISERFS_ERROR_FS 2
394 // there are 5 item types currently
396 #define TYPE_STAT_DATA 0
397 #define TYPE_INDIRECT 1
398 #define TYPE_DIRECT 2
399 #define TYPE_DIRENTRY 3
400 #define TYPE_MAXTYPE 3
401 #define TYPE_ANY 15 // FIXME: comment is required
403 /***************************************************************************/
404 /* KEY & ITEM HEAD */
405 /***************************************************************************/
408 // directories use this key as well as old files
410 struct offset_v1 {
411 __le32 k_offset;
412 __le32 k_uniqueness;
413 } __attribute__ ((__packed__));
415 struct offset_v2 {
416 __le64 v;
417 } __attribute__ ((__packed__));
419 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
421 __u8 type = le64_to_cpu(v2->v) >> 60;
422 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
425 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
427 v2->v =
428 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
431 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
433 return le64_to_cpu(v2->v) & (~0ULL >> 4);
436 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
438 offset &= (~0ULL >> 4);
439 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
442 /* Key of an item determines its location in the S+tree, and
443 is composed of 4 components */
444 struct reiserfs_key {
445 __le32 k_dir_id; /* packing locality: by default parent
446 directory object id */
447 __le32 k_objectid; /* object identifier */
448 union {
449 struct offset_v1 k_offset_v1;
450 struct offset_v2 k_offset_v2;
451 } __attribute__ ((__packed__)) u;
452 } __attribute__ ((__packed__));
454 struct in_core_key {
455 __u32 k_dir_id; /* packing locality: by default parent
456 directory object id */
457 __u32 k_objectid; /* object identifier */
458 __u64 k_offset;
459 __u8 k_type;
462 struct cpu_key {
463 struct in_core_key on_disk_key;
464 int version;
465 int key_length; /* 3 in all cases but direct2indirect and
466 indirect2direct conversion */
469 /* Our function for comparing keys can compare keys of different
470 lengths. It takes as a parameter the length of the keys it is to
471 compare. These defines are used in determining what is to be passed
472 to it as that parameter. */
473 #define REISERFS_FULL_KEY_LEN 4
474 #define REISERFS_SHORT_KEY_LEN 2
476 /* The result of the key compare */
477 #define FIRST_GREATER 1
478 #define SECOND_GREATER -1
479 #define KEYS_IDENTICAL 0
480 #define KEY_FOUND 1
481 #define KEY_NOT_FOUND 0
483 #define KEY_SIZE (sizeof(struct reiserfs_key))
484 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
486 /* return values for search_by_key and clones */
487 #define ITEM_FOUND 1
488 #define ITEM_NOT_FOUND 0
489 #define ENTRY_FOUND 1
490 #define ENTRY_NOT_FOUND 0
491 #define DIRECTORY_NOT_FOUND -1
492 #define REGULAR_FILE_FOUND -2
493 #define DIRECTORY_FOUND -3
494 #define BYTE_FOUND 1
495 #define BYTE_NOT_FOUND 0
496 #define FILE_NOT_FOUND -1
498 #define POSITION_FOUND 1
499 #define POSITION_NOT_FOUND 0
501 // return values for reiserfs_find_entry and search_by_entry_key
502 #define NAME_FOUND 1
503 #define NAME_NOT_FOUND 0
504 #define GOTO_PREVIOUS_ITEM 2
505 #define NAME_FOUND_INVISIBLE 3
507 /* Everything in the filesystem is stored as a set of items. The
508 item head contains the key of the item, its free space (for
509 indirect items) and specifies the location of the item itself
510 within the block. */
512 struct item_head {
513 /* Everything in the tree is found by searching for it based on
514 * its key.*/
515 struct reiserfs_key ih_key;
516 union {
517 /* The free space in the last unformatted node of an
518 indirect item if this is an indirect item. This
519 equals 0xFFFF iff this is a direct item or stat data
520 item. Note that the key, not this field, is used to
521 determine the item type, and thus which field this
522 union contains. */
523 __le16 ih_free_space_reserved;
524 /* Iff this is a directory item, this field equals the
525 number of directory entries in the directory item. */
526 __le16 ih_entry_count;
527 } __attribute__ ((__packed__)) u;
528 __le16 ih_item_len; /* total size of the item body */
529 __le16 ih_item_location; /* an offset to the item body
530 * within the block */
531 __le16 ih_version; /* 0 for all old items, 2 for new
532 ones. Highest bit is set by fsck
533 temporary, cleaned after all
534 done */
535 } __attribute__ ((__packed__));
536 /* size of item header */
537 #define IH_SIZE (sizeof(struct item_head))
539 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
540 #define ih_version(ih) le16_to_cpu((ih)->ih_version)
541 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
542 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
543 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
545 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
546 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
547 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
548 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
549 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
551 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
553 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
554 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
556 /* these operate on indirect items, where you've got an array of ints
557 ** at a possibly unaligned location. These are a noop on ia32
559 ** p is the array of __u32, i is the index into the array, v is the value
560 ** to store there.
562 #define get_block_num(p, i) get_unaligned_le32((p) + (i))
563 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
566 // in old version uniqueness field shows key type
568 #define V1_SD_UNIQUENESS 0
569 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
570 #define V1_DIRECT_UNIQUENESS 0xffffffff
571 #define V1_DIRENTRY_UNIQUENESS 500
572 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
575 // here are conversion routines
577 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
578 static inline int uniqueness2type(__u32 uniqueness)
580 switch ((int)uniqueness) {
581 case V1_SD_UNIQUENESS:
582 return TYPE_STAT_DATA;
583 case V1_INDIRECT_UNIQUENESS:
584 return TYPE_INDIRECT;
585 case V1_DIRECT_UNIQUENESS:
586 return TYPE_DIRECT;
587 case V1_DIRENTRY_UNIQUENESS:
588 return TYPE_DIRENTRY;
589 case V1_ANY_UNIQUENESS:
590 default:
591 return TYPE_ANY;
595 static inline __u32 type2uniqueness(int type) CONSTF;
596 static inline __u32 type2uniqueness(int type)
598 switch (type) {
599 case TYPE_STAT_DATA:
600 return V1_SD_UNIQUENESS;
601 case TYPE_INDIRECT:
602 return V1_INDIRECT_UNIQUENESS;
603 case TYPE_DIRECT:
604 return V1_DIRECT_UNIQUENESS;
605 case TYPE_DIRENTRY:
606 return V1_DIRENTRY_UNIQUENESS;
607 case TYPE_ANY:
608 default:
609 return V1_ANY_UNIQUENESS;
614 // key is pointer to on disk key which is stored in le, result is cpu,
615 // there is no way to get version of object from key, so, provide
616 // version to these defines
618 static inline loff_t le_key_k_offset(int version,
619 const struct reiserfs_key *key)
621 return (version == KEY_FORMAT_3_5) ?
622 le32_to_cpu(key->u.k_offset_v1.k_offset) :
623 offset_v2_k_offset(&(key->u.k_offset_v2));
626 static inline loff_t le_ih_k_offset(const struct item_head *ih)
628 return le_key_k_offset(ih_version(ih), &(ih->ih_key));
631 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
633 return (version == KEY_FORMAT_3_5) ?
634 uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
635 offset_v2_k_type(&(key->u.k_offset_v2));
638 static inline loff_t le_ih_k_type(const struct item_head *ih)
640 return le_key_k_type(ih_version(ih), &(ih->ih_key));
643 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
644 loff_t offset)
646 (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */
647 (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
650 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
652 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
655 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
656 int type)
658 (version == KEY_FORMAT_3_5) ?
659 (void)(key->u.k_offset_v1.k_uniqueness =
660 cpu_to_le32(type2uniqueness(type)))
661 : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
664 static inline void set_le_ih_k_type(struct item_head *ih, int type)
666 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
669 static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
671 return le_key_k_type(version, key) == TYPE_DIRENTRY;
674 static inline int is_direct_le_key(int version, struct reiserfs_key *key)
676 return le_key_k_type(version, key) == TYPE_DIRECT;
679 static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
681 return le_key_k_type(version, key) == TYPE_INDIRECT;
684 static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
686 return le_key_k_type(version, key) == TYPE_STAT_DATA;
690 // item header has version.
692 static inline int is_direntry_le_ih(struct item_head *ih)
694 return is_direntry_le_key(ih_version(ih), &ih->ih_key);
697 static inline int is_direct_le_ih(struct item_head *ih)
699 return is_direct_le_key(ih_version(ih), &ih->ih_key);
702 static inline int is_indirect_le_ih(struct item_head *ih)
704 return is_indirect_le_key(ih_version(ih), &ih->ih_key);
707 static inline int is_statdata_le_ih(struct item_head *ih)
709 return is_statdata_le_key(ih_version(ih), &ih->ih_key);
713 // key is pointer to cpu key, result is cpu
715 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
717 return key->on_disk_key.k_offset;
720 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
722 return key->on_disk_key.k_type;
725 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
727 key->on_disk_key.k_offset = offset;
730 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
732 key->on_disk_key.k_type = type;
735 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
737 key->on_disk_key.k_offset--;
740 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
741 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
742 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
743 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
745 /* are these used ? */
746 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
747 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
748 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
749 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
751 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
752 (!COMP_SHORT_KEYS(ih, key) && \
753 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
755 /* maximal length of item */
756 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
757 #define MIN_ITEM_LEN 1
759 /* object identifier for root dir */
760 #define REISERFS_ROOT_OBJECTID 2
761 #define REISERFS_ROOT_PARENT_OBJECTID 1
763 extern struct reiserfs_key root_key;
766 * Picture represents a leaf of the S+tree
767 * ______________________________________________________
768 * | | Array of | | |
769 * |Block | Object-Item | F r e e | Objects- |
770 * | head | Headers | S p a c e | Items |
771 * |______|_______________|___________________|___________|
774 /* Header of a disk block. More precisely, header of a formatted leaf
775 or internal node, and not the header of an unformatted node. */
776 struct block_head {
777 __le16 blk_level; /* Level of a block in the tree. */
778 __le16 blk_nr_item; /* Number of keys/items in a block. */
779 __le16 blk_free_space; /* Block free space in bytes. */
780 __le16 blk_reserved;
781 /* dump this in v4/planA */
782 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
785 #define BLKH_SIZE (sizeof(struct block_head))
786 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
787 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
788 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
789 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
790 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
791 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
792 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
793 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
794 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
795 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
798 * values for blk_level field of the struct block_head
801 #define FREE_LEVEL 0 /* when node gets removed from the tree its
802 blk_level is set to FREE_LEVEL. It is then
803 used to see whether the node is still in the
804 tree */
806 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
808 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
809 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data))
810 /* Number of items that are in buffer. */
811 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh)))
812 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh)))
813 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh)))
815 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
816 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
817 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
819 /* Get right delimiting key. -- little endian */
820 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh))))
822 /* Does the buffer contain a disk leaf. */
823 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
825 /* Does the buffer contain a disk internal node */
826 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
827 && B_LEVEL(bh) <= MAX_HEIGHT)
829 /***************************************************************************/
830 /* STAT DATA */
831 /***************************************************************************/
834 // old stat data is 32 bytes long. We are going to distinguish new one by
835 // different size
837 struct stat_data_v1 {
838 __le16 sd_mode; /* file type, permissions */
839 __le16 sd_nlink; /* number of hard links */
840 __le16 sd_uid; /* owner */
841 __le16 sd_gid; /* group */
842 __le32 sd_size; /* file size */
843 __le32 sd_atime; /* time of last access */
844 __le32 sd_mtime; /* time file was last modified */
845 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
846 union {
847 __le32 sd_rdev;
848 __le32 sd_blocks; /* number of blocks file uses */
849 } __attribute__ ((__packed__)) u;
850 __le32 sd_first_direct_byte; /* first byte of file which is stored
851 in a direct item: except that if it
852 equals 1 it is a symlink and if it
853 equals ~(__u32)0 there is no
854 direct item. The existence of this
855 field really grates on me. Let's
856 replace it with a macro based on
857 sd_size and our tail suppression
858 policy. Someday. -Hans */
859 } __attribute__ ((__packed__));
861 #define SD_V1_SIZE (sizeof(struct stat_data_v1))
862 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
863 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
864 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
865 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
866 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
867 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
868 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
869 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
870 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
871 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
872 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
873 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
874 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
875 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
876 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
877 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
878 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
879 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
880 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
881 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
882 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
883 #define sd_v1_first_direct_byte(sdp) \
884 (le32_to_cpu((sdp)->sd_first_direct_byte))
885 #define set_sd_v1_first_direct_byte(sdp,v) \
886 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
888 /* inode flags stored in sd_attrs (nee sd_reserved) */
890 /* we want common flags to have the same values as in ext2,
891 so chattr(1) will work without problems */
892 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
893 #define REISERFS_APPEND_FL FS_APPEND_FL
894 #define REISERFS_SYNC_FL FS_SYNC_FL
895 #define REISERFS_NOATIME_FL FS_NOATIME_FL
896 #define REISERFS_NODUMP_FL FS_NODUMP_FL
897 #define REISERFS_SECRM_FL FS_SECRM_FL
898 #define REISERFS_UNRM_FL FS_UNRM_FL
899 #define REISERFS_COMPR_FL FS_COMPR_FL
900 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL
902 /* persistent flags that file inherits from the parent directory */
903 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
904 REISERFS_SYNC_FL | \
905 REISERFS_NOATIME_FL | \
906 REISERFS_NODUMP_FL | \
907 REISERFS_SECRM_FL | \
908 REISERFS_COMPR_FL | \
909 REISERFS_NOTAIL_FL )
911 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
912 address blocks) */
913 struct stat_data {
914 __le16 sd_mode; /* file type, permissions */
915 __le16 sd_attrs; /* persistent inode flags */
916 __le32 sd_nlink; /* number of hard links */
917 __le64 sd_size; /* file size */
918 __le32 sd_uid; /* owner */
919 __le32 sd_gid; /* group */
920 __le32 sd_atime; /* time of last access */
921 __le32 sd_mtime; /* time file was last modified */
922 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
923 __le32 sd_blocks;
924 union {
925 __le32 sd_rdev;
926 __le32 sd_generation;
927 //__le32 sd_first_direct_byte;
928 /* first byte of file which is stored in a
929 direct item: except that if it equals 1
930 it is a symlink and if it equals
931 ~(__u32)0 there is no direct item. The
932 existence of this field really grates
933 on me. Let's replace it with a macro
934 based on sd_size and our tail
935 suppression policy? */
936 } __attribute__ ((__packed__)) u;
937 } __attribute__ ((__packed__));
939 // this is 44 bytes long
941 #define SD_SIZE (sizeof(struct stat_data))
942 #define SD_V2_SIZE SD_SIZE
943 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
944 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
945 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
946 /* sd_reserved */
947 /* set_sd_reserved */
948 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
949 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
950 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
951 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
952 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
953 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
954 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
955 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
956 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
957 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
958 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
959 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
960 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
961 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
962 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
963 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
964 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
965 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
966 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
967 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
968 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
969 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
971 /***************************************************************************/
972 /* DIRECTORY STRUCTURE */
973 /***************************************************************************/
975 Picture represents the structure of directory items
976 ________________________________________________
977 | Array of | | | | | |
978 | directory |N-1| N-2 | .... | 1st |0th|
979 | entry headers | | | | | |
980 |_______________|___|_____|________|_______|___|
981 <---- directory entries ------>
983 First directory item has k_offset component 1. We store "." and ".."
984 in one item, always, we never split "." and ".." into differing
985 items. This makes, among other things, the code for removing
986 directories simpler. */
987 #define SD_OFFSET 0
988 #define SD_UNIQUENESS 0
989 #define DOT_OFFSET 1
990 #define DOT_DOT_OFFSET 2
991 #define DIRENTRY_UNIQUENESS 500
993 /* */
994 #define FIRST_ITEM_OFFSET 1
997 Q: How to get key of object pointed to by entry from entry?
999 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
1000 of object, entry points to */
1002 /* NOT IMPLEMENTED:
1003 Directory will someday contain stat data of object */
1005 struct reiserfs_de_head {
1006 __le32 deh_offset; /* third component of the directory entry key */
1007 __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
1008 by directory entry */
1009 __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
1010 __le16 deh_location; /* offset of name in the whole item */
1011 __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
1012 entry is hidden (unlinked) */
1013 } __attribute__ ((__packed__));
1014 #define DEH_SIZE sizeof(struct reiserfs_de_head)
1015 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1016 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1017 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1018 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1019 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1021 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1022 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1023 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1024 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1025 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1027 /* empty directory contains two entries "." and ".." and their headers */
1028 #define EMPTY_DIR_SIZE \
1029 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1031 /* old format directories have this size when empty */
1032 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1034 #define DEH_Statdata 0 /* not used now */
1035 #define DEH_Visible 2
1037 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1038 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1039 # define ADDR_UNALIGNED_BITS (3)
1040 #endif
1042 /* These are only used to manipulate deh_state.
1043 * Because of this, we'll use the ext2_ bit routines,
1044 * since they are little endian */
1045 #ifdef ADDR_UNALIGNED_BITS
1047 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1048 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1050 # define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1051 # define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1052 # define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1054 #else
1056 # define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
1057 # define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
1058 # define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
1060 #endif
1062 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1063 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1064 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1065 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1067 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1068 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1069 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1071 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1072 __le32 par_dirid, __le32 par_objid);
1073 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1074 __le32 par_dirid, __le32 par_objid);
1076 /* array of the entry headers */
1077 /* get item body */
1078 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1079 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1081 /* length of the directory entry in directory item. This define
1082 calculates length of i-th directory entry using directory entry
1083 locations from dir entry head. When it calculates length of 0-th
1084 directory entry, it uses length of whole item in place of entry
1085 location of the non-existent following entry in the calculation.
1086 See picture above.*/
1088 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1089 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1091 static inline int entry_length(const struct buffer_head *bh,
1092 const struct item_head *ih, int pos_in_item)
1094 struct reiserfs_de_head *deh;
1096 deh = B_I_DEH(bh, ih) + pos_in_item;
1097 if (pos_in_item)
1098 return deh_location(deh - 1) - deh_location(deh);
1100 return ih_item_len(ih) - deh_location(deh);
1103 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1104 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1106 /* name by bh, ih and entry_num */
1107 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1109 // two entries per block (at least)
1110 #define REISERFS_MAX_NAME(block_size) 255
1112 /* this structure is used for operations on directory entries. It is
1113 not a disk structure. */
1114 /* When reiserfs_find_entry or search_by_entry_key find directory
1115 entry, they return filled reiserfs_dir_entry structure */
1116 struct reiserfs_dir_entry {
1117 struct buffer_head *de_bh;
1118 int de_item_num;
1119 struct item_head *de_ih;
1120 int de_entry_num;
1121 struct reiserfs_de_head *de_deh;
1122 int de_entrylen;
1123 int de_namelen;
1124 char *de_name;
1125 unsigned long *de_gen_number_bit_string;
1127 __u32 de_dir_id;
1128 __u32 de_objectid;
1130 struct cpu_key de_entry_key;
1133 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1135 /* pointer to file name, stored in entry */
1136 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1138 /* length of name */
1139 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1140 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1142 /* hash value occupies bits from 7 up to 30 */
1143 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1144 /* generation number occupies 7 bits starting from 0 up to 6 */
1145 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1146 #define MAX_GENERATION_NUMBER 127
1148 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1151 * Picture represents an internal node of the reiserfs tree
1152 * ______________________________________________________
1153 * | | Array of | Array of | Free |
1154 * |block | keys | pointers | space |
1155 * | head | N | N+1 | |
1156 * |______|_______________|___________________|___________|
1159 /***************************************************************************/
1160 /* DISK CHILD */
1161 /***************************************************************************/
1162 /* Disk child pointer: The pointer from an internal node of the tree
1163 to a node that is on disk. */
1164 struct disk_child {
1165 __le32 dc_block_number; /* Disk child's block number. */
1166 __le16 dc_size; /* Disk child's used space. */
1167 __le16 dc_reserved;
1170 #define DC_SIZE (sizeof(struct disk_child))
1171 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1172 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1173 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1174 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1176 /* Get disk child by buffer header and position in the tree node. */
1177 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\
1178 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
1180 /* Get disk child number by buffer header and position in the tree node. */
1181 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
1182 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
1183 (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
1185 /* maximal value of field child_size in structure disk_child */
1186 /* child size is the combined size of all items and their headers */
1187 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1189 /* amount of used space in buffer (not including block head) */
1190 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1192 /* max and min number of keys in internal node */
1193 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1194 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1196 /***************************************************************************/
1197 /* PATH STRUCTURES AND DEFINES */
1198 /***************************************************************************/
1200 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1201 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1202 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1203 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1204 position of the block_number of the next node if it is looking through an internal node. If it
1205 is looking through a leaf node bin_search will find the position of the item which has key either
1206 equal to given key, or which is the maximal key less than the given key. */
1208 struct path_element {
1209 struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */
1210 int pe_position; /* Position in the tree node which is placed in the */
1211 /* buffer above. */
1214 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1215 #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1216 #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1218 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1219 #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1221 /* We need to keep track of who the ancestors of nodes are. When we
1222 perform a search we record which nodes were visited while
1223 descending the tree looking for the node we searched for. This list
1224 of nodes is called the path. This information is used while
1225 performing balancing. Note that this path information may become
1226 invalid, and this means we must check it when using it to see if it
1227 is still valid. You'll need to read search_by_key and the comments
1228 in it, especially about decrement_counters_in_path(), to understand
1229 this structure.
1231 Paths make the code so much harder to work with and debug.... An
1232 enormous number of bugs are due to them, and trying to write or modify
1233 code that uses them just makes my head hurt. They are based on an
1234 excessive effort to avoid disturbing the precious VFS code.:-( The
1235 gods only know how we are going to SMP the code that uses them.
1236 znodes are the way! */
1238 #define PATH_READA 0x1 /* do read ahead */
1239 #define PATH_READA_BACK 0x2 /* read backwards */
1241 struct treepath {
1242 int path_length; /* Length of the array above. */
1243 int reada;
1244 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1245 int pos_in_item;
1248 #define pos_in_item(path) ((path)->pos_in_item)
1250 #define INITIALIZE_PATH(var) \
1251 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1253 /* Get path element by path and path position. */
1254 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
1256 /* Get buffer header at the path by path and path position. */
1257 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
1259 /* Get position in the element at the path by path and path position. */
1260 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
1262 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
1263 /* you know, to the person who didn't
1264 write this the macro name does not
1265 at first suggest what it does.
1266 Maybe POSITION_FROM_PATH_END? Or
1267 maybe we should just focus on
1268 dumping paths... -Hans */
1269 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
1271 #define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
1273 /* in do_balance leaf has h == 0 in contrast with path structure,
1274 where root has level == 0. That is why we need these defines */
1275 #define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */
1276 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1277 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1278 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1280 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
1282 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1283 #define get_ih(path) PATH_PITEM_HEAD(path)
1284 #define get_item_pos(path) PATH_LAST_POSITION(path)
1285 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1286 #define item_moved(ih,path) comp_items(ih, path)
1287 #define path_changed(ih,path) comp_items (ih, path)
1289 /***************************************************************************/
1290 /* MISC */
1291 /***************************************************************************/
1293 /* Size of pointer to the unformatted node. */
1294 #define UNFM_P_SIZE (sizeof(unp_t))
1295 #define UNFM_P_SHIFT 2
1297 // in in-core inode key is stored on le form
1298 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1300 #define MAX_UL_INT 0xffffffff
1301 #define MAX_INT 0x7ffffff
1302 #define MAX_US_INT 0xffff
1304 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1305 #define U32_MAX (~(__u32)0)
1307 static inline loff_t max_reiserfs_offset(struct inode *inode)
1309 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1310 return (loff_t) U32_MAX;
1312 return (loff_t) ((~(__u64) 0) >> 4);
1315 /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1316 #define MAX_KEY_OBJECTID MAX_UL_INT
1318 #define MAX_B_NUM MAX_UL_INT
1319 #define MAX_FC_NUM MAX_US_INT
1321 /* the purpose is to detect overflow of an unsigned short */
1322 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1324 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
1325 #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1326 #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1328 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1329 #define get_generation(s) atomic_read (&fs_generation(s))
1330 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1331 #define __fs_changed(gen,s) (gen != get_generation (s))
1332 #define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1334 /***************************************************************************/
1335 /* FIXATE NODES */
1336 /***************************************************************************/
1338 #define VI_TYPE_LEFT_MERGEABLE 1
1339 #define VI_TYPE_RIGHT_MERGEABLE 2
1341 /* To make any changes in the tree we always first find node, that
1342 contains item to be changed/deleted or place to insert a new
1343 item. We call this node S. To do balancing we need to decide what
1344 we will shift to left/right neighbor, or to a new node, where new
1345 item will be etc. To make this analysis simpler we build virtual
1346 node. Virtual node is an array of items, that will replace items of
1347 node S. (For instance if we are going to delete an item, virtual
1348 node does not contain it). Virtual node keeps information about
1349 item sizes and types, mergeability of first and last items, sizes
1350 of all entries in directory item. We use this array of items when
1351 calculating what we can shift to neighbors and how many nodes we
1352 have to have if we do not any shiftings, if we shift to left/right
1353 neighbor or to both. */
1354 struct virtual_item {
1355 int vi_index; // index in the array of item operations
1356 unsigned short vi_type; // left/right mergeability
1357 unsigned short vi_item_len; /* length of item that it will have after balancing */
1358 struct item_head *vi_ih;
1359 const char *vi_item; // body of item (old or new)
1360 const void *vi_new_data; // 0 always but paste mode
1361 void *vi_uarea; // item specific area
1364 struct virtual_node {
1365 char *vn_free_ptr; /* this is a pointer to the free space in the buffer */
1366 unsigned short vn_nr_item; /* number of items in virtual node */
1367 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
1368 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
1369 short vn_affected_item_num;
1370 short vn_pos_in_item;
1371 struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */
1372 const void *vn_data;
1373 struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */
1376 /* used by directory items when creating virtual nodes */
1377 struct direntry_uarea {
1378 int flags;
1379 __u16 entry_count;
1380 __u16 entry_sizes[1];
1381 } __attribute__ ((__packed__));
1383 /***************************************************************************/
1384 /* TREE BALANCE */
1385 /***************************************************************************/
1387 /* This temporary structure is used in tree balance algorithms, and
1388 constructed as we go to the extent that its various parts are
1389 needed. It contains arrays of nodes that can potentially be
1390 involved in the balancing of node S, and parameters that define how
1391 each of the nodes must be balanced. Note that in these algorithms
1392 for balancing the worst case is to need to balance the current node
1393 S and the left and right neighbors and all of their parents plus
1394 create a new node. We implement S1 balancing for the leaf nodes
1395 and S0 balancing for the internal nodes (S1 and S0 are defined in
1396 our papers.)*/
1398 #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
1400 /* maximum number of FEB blocknrs on a single level */
1401 #define MAX_AMOUNT_NEEDED 2
1403 /* someday somebody will prefix every field in this struct with tb_ */
1404 struct tree_balance {
1405 int tb_mode;
1406 int need_balance_dirty;
1407 struct super_block *tb_sb;
1408 struct reiserfs_transaction_handle *transaction_handle;
1409 struct treepath *tb_path;
1410 struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
1411 struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */
1412 struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
1413 struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
1414 struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
1415 struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
1417 struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1418 cur_blknum. */
1419 struct buffer_head *used[MAX_FEB_SIZE];
1420 struct buffer_head *thrown[MAX_FEB_SIZE];
1421 int lnum[MAX_HEIGHT]; /* array of number of items which must be
1422 shifted to the left in order to balance the
1423 current node; for leaves includes item that
1424 will be partially shifted; for internal
1425 nodes, it is the number of child pointers
1426 rather than items. It includes the new item
1427 being created. The code sometimes subtracts
1428 one to get the number of wholly shifted
1429 items for other purposes. */
1430 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1431 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
1432 S[h] to its item number within the node CFL[h] */
1433 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
1434 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
1435 S[h]. A negative value means removing. */
1436 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1437 balancing on the level h of the tree. If 0 then S is
1438 being deleted, if 1 then S is remaining and no new nodes
1439 are being created, if 2 or 3 then 1 or 2 new nodes is
1440 being created */
1442 /* fields that are used only for balancing leaves of the tree */
1443 int cur_blknum; /* number of empty blocks having been already allocated */
1444 int s0num; /* number of items that fall into left most node when S[0] splits */
1445 int s1num; /* number of items that fall into first new node when S[0] splits */
1446 int s2num; /* number of items that fall into second new node when S[0] splits */
1447 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
1448 /* most liquid item that cannot be shifted from S[0] entirely */
1449 /* if -1 then nothing will be partially shifted */
1450 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
1451 /* most liquid item that cannot be shifted from S[0] entirely */
1452 /* if -1 then nothing will be partially shifted */
1453 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
1454 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
1455 int s2bytes;
1456 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1457 char *vn_buf; /* kmalloced memory. Used to create
1458 virtual node and keep map of
1459 dirtied bitmap blocks */
1460 int vn_buf_size; /* size of the vn_buf */
1461 struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */
1463 int fs_gen; /* saved value of `reiserfs_generation' counter
1464 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1465 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1466 struct in_core_key key; /* key pointer, to pass to block allocator or
1467 another low-level subsystem */
1468 #endif
1471 /* These are modes of balancing */
1473 /* When inserting an item. */
1474 #define M_INSERT 'i'
1475 /* When inserting into (directories only) or appending onto an already
1476 existant item. */
1477 #define M_PASTE 'p'
1478 /* When deleting an item. */
1479 #define M_DELETE 'd'
1480 /* When truncating an item or removing an entry from a (directory) item. */
1481 #define M_CUT 'c'
1483 /* used when balancing on leaf level skipped (in reiserfsck) */
1484 #define M_INTERNAL 'n'
1486 /* When further balancing is not needed, then do_balance does not need
1487 to be called. */
1488 #define M_SKIP_BALANCING 's'
1489 #define M_CONVERT 'v'
1491 /* modes of leaf_move_items */
1492 #define LEAF_FROM_S_TO_L 0
1493 #define LEAF_FROM_S_TO_R 1
1494 #define LEAF_FROM_R_TO_L 2
1495 #define LEAF_FROM_L_TO_R 3
1496 #define LEAF_FROM_S_TO_SNEW 4
1498 #define FIRST_TO_LAST 0
1499 #define LAST_TO_FIRST 1
1501 /* used in do_balance for passing parent of node information that has
1502 been gotten from tb struct */
1503 struct buffer_info {
1504 struct tree_balance *tb;
1505 struct buffer_head *bi_bh;
1506 struct buffer_head *bi_parent;
1507 int bi_position;
1510 static inline struct super_block *sb_from_tb(struct tree_balance *tb)
1512 return tb ? tb->tb_sb : NULL;
1515 static inline struct super_block *sb_from_bi(struct buffer_info *bi)
1517 return bi ? sb_from_tb(bi->tb) : NULL;
1520 /* there are 4 types of items: stat data, directory item, indirect, direct.
1521 +-------------------+------------+--------------+------------+
1522 | | k_offset | k_uniqueness | mergeable? |
1523 +-------------------+------------+--------------+------------+
1524 | stat data | 0 | 0 | no |
1525 +-------------------+------------+--------------+------------+
1526 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
1527 | non 1st directory | hash value | | yes |
1528 | item | | | |
1529 +-------------------+------------+--------------+------------+
1530 | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
1531 +-------------------+------------+--------------+------------+
1532 | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
1533 +-------------------+------------+--------------+------------+
1536 struct item_operations {
1537 int (*bytes_number) (struct item_head * ih, int block_size);
1538 void (*decrement_key) (struct cpu_key *);
1539 int (*is_left_mergeable) (struct reiserfs_key * ih,
1540 unsigned long bsize);
1541 void (*print_item) (struct item_head *, char *item);
1542 void (*check_item) (struct item_head *, char *item);
1544 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1545 int is_affected, int insert_size);
1546 int (*check_left) (struct virtual_item * vi, int free,
1547 int start_skip, int end_skip);
1548 int (*check_right) (struct virtual_item * vi, int free);
1549 int (*part_size) (struct virtual_item * vi, int from, int to);
1550 int (*unit_num) (struct virtual_item * vi);
1551 void (*print_vi) (struct virtual_item * vi);
1554 extern struct item_operations *item_ops[TYPE_ANY + 1];
1556 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1557 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1558 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1559 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1560 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1561 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1562 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
1563 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
1564 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
1565 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
1567 #define COMP_SHORT_KEYS comp_short_keys
1569 /* number of blocks pointed to by the indirect item */
1570 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
1572 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1573 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1575 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1577 /* get the item header */
1578 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1580 /* get key */
1581 #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1583 /* get the key */
1584 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1586 /* get item body */
1587 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1589 /* get the stat data by the buffer header and the item order */
1590 #define B_N_STAT_DATA(bh,nr) \
1591 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1593 /* following defines use reiserfs buffer header and item header */
1595 /* get stat-data */
1596 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1598 // this is 3976 for size==4096
1599 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1601 /* indirect items consist of entries which contain blocknrs, pos
1602 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1603 blocknr contained by the entry pos points to */
1604 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1605 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1607 struct reiserfs_iget_args {
1608 __u32 objectid;
1609 __u32 dirid;
1612 /***************************************************************************/
1613 /* FUNCTION DECLARATIONS */
1614 /***************************************************************************/
1616 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1618 #define journal_trans_half(blocksize) \
1619 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1621 /* journal.c see journal.c for all the comments here */
1623 /* first block written in a commit. */
1624 struct reiserfs_journal_desc {
1625 __le32 j_trans_id; /* id of commit */
1626 __le32 j_len; /* length of commit. len +1 is the commit block */
1627 __le32 j_mount_id; /* mount id of this trans */
1628 __le32 j_realblock[1]; /* real locations for each block */
1631 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
1632 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
1633 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
1635 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1636 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
1637 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1639 /* last block written in a commit */
1640 struct reiserfs_journal_commit {
1641 __le32 j_trans_id; /* must match j_trans_id from the desc block */
1642 __le32 j_len; /* ditto */
1643 __le32 j_realblock[1]; /* real locations for each block */
1646 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1647 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
1648 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1650 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1651 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
1653 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1654 ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
1655 ** and this transaction does not need to be replayed.
1657 struct reiserfs_journal_header {
1658 __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */
1659 __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */
1660 __le32 j_mount_id;
1661 /* 12 */ struct journal_params jh_journal;
1664 /* biggest tunable defines are right here */
1665 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1666 #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
1667 #define JOURNAL_TRANS_MIN_DEFAULT 256
1668 #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1669 #define JOURNAL_MIN_RATIO 2
1670 #define JOURNAL_MAX_COMMIT_AGE 30
1671 #define JOURNAL_MAX_TRANS_AGE 30
1672 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1673 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \
1674 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
1675 REISERFS_QUOTA_TRANS_BLOCKS(sb)))
1677 #ifdef CONFIG_QUOTA
1678 /* We need to update data and inode (atime) */
1679 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
1680 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1681 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1682 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
1683 /* same as with INIT */
1684 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1685 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
1686 #else
1687 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
1688 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
1689 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
1690 #endif
1692 /* both of these can be as low as 1, or as high as you want. The min is the
1693 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1694 ** as needed, and released when transactions are committed. On release, if
1695 ** the current number of nodes is > max, the node is freed, otherwise,
1696 ** it is put on a free list for faster use later.
1698 #define REISERFS_MIN_BITMAP_NODES 10
1699 #define REISERFS_MAX_BITMAP_NODES 100
1701 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1702 #define JBH_HASH_MASK 8191
1704 #define _jhashfn(sb,block) \
1705 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1706 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1707 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1709 // We need these to make journal.c code more readable
1710 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1711 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1712 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1714 enum reiserfs_bh_state_bits {
1715 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
1716 BH_JDirty_wait,
1717 BH_JNew, /* disk block was taken off free list before
1718 * being in a finished transaction, or
1719 * written to disk. Can be reused immed. */
1720 BH_JPrepared,
1721 BH_JRestore_dirty,
1722 BH_JTest, // debugging only will go away
1725 BUFFER_FNS(JDirty, journaled);
1726 TAS_BUFFER_FNS(JDirty, journaled);
1727 BUFFER_FNS(JDirty_wait, journal_dirty);
1728 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1729 BUFFER_FNS(JNew, journal_new);
1730 TAS_BUFFER_FNS(JNew, journal_new);
1731 BUFFER_FNS(JPrepared, journal_prepared);
1732 TAS_BUFFER_FNS(JPrepared, journal_prepared);
1733 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1734 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1735 BUFFER_FNS(JTest, journal_test);
1736 TAS_BUFFER_FNS(JTest, journal_test);
1739 ** transaction handle which is passed around for all journal calls
1741 struct reiserfs_transaction_handle {
1742 struct super_block *t_super; /* super for this FS when journal_begin was
1743 called. saves calls to reiserfs_get_super
1744 also used by nested transactions to make
1745 sure they are nesting on the right FS
1746 _must_ be first in the handle
1748 int t_refcount;
1749 int t_blocks_logged; /* number of blocks this writer has logged */
1750 int t_blocks_allocated; /* number of blocks this writer allocated */
1751 unsigned int t_trans_id; /* sanity check, equals the current trans id */
1752 void *t_handle_save; /* save existing current->journal_info */
1753 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1754 should be displaced from others */
1755 struct list_head t_list;
1758 /* used to keep track of ordered and tail writes, attached to the buffer
1759 * head through b_journal_head.
1761 struct reiserfs_jh {
1762 struct reiserfs_journal_list *jl;
1763 struct buffer_head *bh;
1764 struct list_head list;
1767 void reiserfs_free_jh(struct buffer_head *bh);
1768 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1769 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1770 int journal_mark_dirty(struct reiserfs_transaction_handle *,
1771 struct super_block *, struct buffer_head *bh);
1773 static inline int reiserfs_file_data_log(struct inode *inode)
1775 if (reiserfs_data_log(inode->i_sb) ||
1776 (REISERFS_I(inode)->i_flags & i_data_log))
1777 return 1;
1778 return 0;
1781 static inline int reiserfs_transaction_running(struct super_block *s)
1783 struct reiserfs_transaction_handle *th = current->journal_info;
1784 if (th && th->t_super == s)
1785 return 1;
1786 if (th && th->t_super == NULL)
1787 BUG();
1788 return 0;
1791 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
1793 return th->t_blocks_allocated - th->t_blocks_logged;
1796 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
1797 super_block
1799 int count);
1800 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1801 int reiserfs_commit_page(struct inode *inode, struct page *page,
1802 unsigned from, unsigned to);
1803 int reiserfs_flush_old_commits(struct super_block *);
1804 int reiserfs_commit_for_inode(struct inode *);
1805 int reiserfs_inode_needs_commit(struct inode *);
1806 void reiserfs_update_inode_transaction(struct inode *);
1807 void reiserfs_wait_on_write_block(struct super_block *s);
1808 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
1809 void reiserfs_allow_writes(struct super_block *s);
1810 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
1811 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
1812 int wait);
1813 void reiserfs_restore_prepared_buffer(struct super_block *,
1814 struct buffer_head *bh);
1815 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
1816 unsigned int);
1817 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
1818 int journal_release_error(struct reiserfs_transaction_handle *,
1819 struct super_block *);
1820 int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
1821 unsigned long);
1822 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
1823 unsigned long);
1824 int journal_mark_freed(struct reiserfs_transaction_handle *,
1825 struct super_block *, b_blocknr_t blocknr);
1826 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
1827 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
1828 int bit_nr, int searchall, b_blocknr_t *next);
1829 int journal_begin(struct reiserfs_transaction_handle *,
1830 struct super_block *sb, unsigned long);
1831 int journal_join_abort(struct reiserfs_transaction_handle *,
1832 struct super_block *sb, unsigned long);
1833 void reiserfs_abort_journal(struct super_block *sb, int errno);
1834 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
1835 int reiserfs_allocate_list_bitmaps(struct super_block *s,
1836 struct reiserfs_list_bitmap *, unsigned int);
1838 void add_save_link(struct reiserfs_transaction_handle *th,
1839 struct inode *inode, int truncate);
1840 int remove_save_link(struct inode *inode, int truncate);
1842 /* objectid.c */
1843 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
1844 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
1845 __u32 objectid_to_release);
1846 int reiserfs_convert_objectid_map_v1(struct super_block *);
1848 /* stree.c */
1849 int B_IS_IN_TREE(const struct buffer_head *);
1850 extern void copy_item_head(struct item_head *to,
1851 const struct item_head *from);
1853 // first key is in cpu form, second - le
1854 extern int comp_short_keys(const struct reiserfs_key *le_key,
1855 const struct cpu_key *cpu_key);
1856 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
1858 // both are in le form
1859 extern int comp_le_keys(const struct reiserfs_key *,
1860 const struct reiserfs_key *);
1861 extern int comp_short_le_keys(const struct reiserfs_key *,
1862 const struct reiserfs_key *);
1865 // get key version from on disk key - kludge
1867 static inline int le_key_version(const struct reiserfs_key *key)
1869 int type;
1871 type = offset_v2_k_type(&(key->u.k_offset_v2));
1872 if (type != TYPE_DIRECT && type != TYPE_INDIRECT
1873 && type != TYPE_DIRENTRY)
1874 return KEY_FORMAT_3_5;
1876 return KEY_FORMAT_3_6;
1880 static inline void copy_key(struct reiserfs_key *to,
1881 const struct reiserfs_key *from)
1883 memcpy(to, from, KEY_SIZE);
1886 int comp_items(const struct item_head *stored_ih, const struct treepath *path);
1887 const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
1888 const struct super_block *sb);
1889 int search_by_key(struct super_block *, const struct cpu_key *,
1890 struct treepath *, int);
1891 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1892 int search_for_position_by_key(struct super_block *sb,
1893 const struct cpu_key *cpu_key,
1894 struct treepath *search_path);
1895 extern void decrement_bcount(struct buffer_head *bh);
1896 void decrement_counters_in_path(struct treepath *search_path);
1897 void pathrelse(struct treepath *search_path);
1898 int reiserfs_check_path(struct treepath *p);
1899 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
1901 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
1902 struct treepath *path,
1903 const struct cpu_key *key,
1904 struct item_head *ih,
1905 struct inode *inode, const char *body);
1907 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
1908 struct treepath *path,
1909 const struct cpu_key *key,
1910 struct inode *inode,
1911 const char *body, int paste_size);
1913 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1914 struct treepath *path,
1915 struct cpu_key *key,
1916 struct inode *inode,
1917 struct page *page, loff_t new_file_size);
1919 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1920 struct treepath *path,
1921 const struct cpu_key *key,
1922 struct inode *inode, struct buffer_head *un_bh);
1924 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1925 struct inode *inode, struct reiserfs_key *key);
1926 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1927 struct inode *inode);
1928 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1929 struct inode *inode, struct page *,
1930 int update_timestamps);
1932 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1933 #define file_size(inode) ((inode)->i_size)
1934 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1936 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1937 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1939 void padd_item(char *item, int total_length, int length);
1941 /* inode.c */
1942 /* args for the create parameter of reiserfs_get_block */
1943 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
1944 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */
1945 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
1946 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
1947 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
1948 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
1950 void reiserfs_read_locked_inode(struct inode *inode,
1951 struct reiserfs_iget_args *args);
1952 int reiserfs_find_actor(struct inode *inode, void *p);
1953 int reiserfs_init_locked_inode(struct inode *inode, void *p);
1954 void reiserfs_delete_inode(struct inode *inode);
1955 int reiserfs_write_inode(struct inode *inode, int);
1956 int reiserfs_get_block(struct inode *inode, sector_t block,
1957 struct buffer_head *bh_result, int create);
1958 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1959 int fh_len, int fh_type);
1960 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1961 int fh_len, int fh_type);
1962 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1963 int connectable);
1965 int reiserfs_truncate_file(struct inode *, int update_timestamps);
1966 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
1967 int type, int key_length);
1968 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
1969 int version,
1970 loff_t offset, int type, int length, int entry_count);
1971 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
1973 struct reiserfs_security_handle;
1974 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1975 struct inode *dir, int mode,
1976 const char *symname, loff_t i_size,
1977 struct dentry *dentry, struct inode *inode,
1978 struct reiserfs_security_handle *security);
1980 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1981 struct inode *inode, loff_t size);
1983 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
1984 struct inode *inode)
1986 reiserfs_update_sd_size(th, inode, inode->i_size);
1989 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
1990 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
1991 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
1993 /* namei.c */
1994 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
1995 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
1996 struct treepath *path, struct reiserfs_dir_entry *de);
1997 struct dentry *reiserfs_get_parent(struct dentry *);
1998 /* procfs.c */
2000 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
2001 #define REISERFS_PROC_INFO
2002 #else
2003 #undef REISERFS_PROC_INFO
2004 #endif
2006 int reiserfs_proc_info_init(struct super_block *sb);
2007 int reiserfs_proc_info_done(struct super_block *sb);
2008 struct proc_dir_entry *reiserfs_proc_register_global(char *name,
2009 read_proc_t * func);
2010 void reiserfs_proc_unregister_global(const char *name);
2011 int reiserfs_proc_info_global_init(void);
2012 int reiserfs_proc_info_global_done(void);
2013 int reiserfs_global_version_in_proc(char *buffer, char **start, off_t offset,
2014 int count, int *eof, void *data);
2016 #if defined( REISERFS_PROC_INFO )
2018 #define PROC_EXP( e ) e
2020 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2021 #define PROC_INFO_MAX( sb, field, value ) \
2022 __PINFO( sb ).field = \
2023 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2024 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2025 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2026 #define PROC_INFO_BH_STAT( sb, bh, level ) \
2027 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
2028 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
2029 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2030 #else
2031 #define PROC_EXP( e )
2032 #define VOID_V ( ( void ) 0 )
2033 #define PROC_INFO_MAX( sb, field, value ) VOID_V
2034 #define PROC_INFO_INC( sb, field ) VOID_V
2035 #define PROC_INFO_ADD( sb, field, val ) VOID_V
2036 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
2037 #endif
2039 /* dir.c */
2040 extern const struct inode_operations reiserfs_dir_inode_operations;
2041 extern const struct inode_operations reiserfs_symlink_inode_operations;
2042 extern const struct inode_operations reiserfs_special_inode_operations;
2043 extern const struct file_operations reiserfs_dir_operations;
2044 int reiserfs_readdir_dentry(struct dentry *, void *, filldir_t, loff_t *);
2046 /* tail_conversion.c */
2047 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
2048 struct treepath *, struct buffer_head *, loff_t);
2049 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
2050 struct page *, struct treepath *, const struct cpu_key *,
2051 loff_t, char *);
2052 void reiserfs_unmap_buffer(struct buffer_head *);
2054 /* file.c */
2055 extern const struct inode_operations reiserfs_file_inode_operations;
2056 extern const struct file_operations reiserfs_file_operations;
2057 extern const struct address_space_operations reiserfs_address_space_operations;
2059 /* fix_nodes.c */
2061 int fix_nodes(int n_op_mode, struct tree_balance *tb,
2062 struct item_head *ins_ih, const void *);
2063 void unfix_nodes(struct tree_balance *);
2065 /* prints.c */
2066 void __reiserfs_panic(struct super_block *s, const char *id,
2067 const char *function, const char *fmt, ...)
2068 __attribute__ ((noreturn));
2069 #define reiserfs_panic(s, id, fmt, args...) \
2070 __reiserfs_panic(s, id, __func__, fmt, ##args)
2071 void __reiserfs_error(struct super_block *s, const char *id,
2072 const char *function, const char *fmt, ...);
2073 #define reiserfs_error(s, id, fmt, args...) \
2074 __reiserfs_error(s, id, __func__, fmt, ##args)
2075 void reiserfs_info(struct super_block *s, const char *fmt, ...);
2076 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
2077 void print_indirect_item(struct buffer_head *bh, int item_num);
2078 void store_print_tb(struct tree_balance *tb);
2079 void print_cur_tb(char *mes);
2080 void print_de(struct reiserfs_dir_entry *de);
2081 void print_bi(struct buffer_info *bi, char *mes);
2082 #define PRINT_LEAF_ITEMS 1 /* print all items */
2083 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2084 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2085 void print_block(struct buffer_head *bh, ...);
2086 void print_bmap(struct super_block *s, int silent);
2087 void print_bmap_block(int i, char *data, int size, int silent);
2088 /*void print_super_block (struct super_block * s, char * mes);*/
2089 void print_objectid_map(struct super_block *s);
2090 void print_block_head(struct buffer_head *bh, char *mes);
2091 void check_leaf(struct buffer_head *bh);
2092 void check_internal(struct buffer_head *bh);
2093 void print_statistics(struct super_block *s);
2094 char *reiserfs_hashname(int code);
2096 /* lbalance.c */
2097 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2098 int mov_bytes, struct buffer_head *Snew);
2099 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2100 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2101 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2102 int del_num, int del_bytes);
2103 void leaf_insert_into_buf(struct buffer_info *bi, int before,
2104 struct item_head *inserted_item_ih,
2105 const char *inserted_item_body, int zeros_number);
2106 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2107 int pos_in_item, int paste_size, const char *body,
2108 int zeros_number);
2109 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2110 int pos_in_item, int cut_size);
2111 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
2112 int new_entry_count, struct reiserfs_de_head *new_dehs,
2113 const char *records, int paste_size);
2114 /* ibalance.c */
2115 int balance_internal(struct tree_balance *, int, int, struct item_head *,
2116 struct buffer_head **);
2118 /* do_balance.c */
2119 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2120 struct buffer_head *bh, int flag);
2121 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2122 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2124 void do_balance(struct tree_balance *tb, struct item_head *ih,
2125 const char *body, int flag);
2126 void reiserfs_invalidate_buffer(struct tree_balance *tb,
2127 struct buffer_head *bh);
2129 int get_left_neighbor_position(struct tree_balance *tb, int h);
2130 int get_right_neighbor_position(struct tree_balance *tb, int h);
2131 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2132 struct buffer_head *, int);
2133 void make_empty_node(struct buffer_info *);
2134 struct buffer_head *get_FEB(struct tree_balance *);
2136 /* bitmap.c */
2138 /* structure contains hints for block allocator, and it is a container for
2139 * arguments, such as node, search path, transaction_handle, etc. */
2140 struct __reiserfs_blocknr_hint {
2141 struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */
2142 sector_t block; /* file offset, in blocks */
2143 struct in_core_key key;
2144 struct treepath *path; /* search path, used by allocator to deternine search_start by
2145 * various ways */
2146 struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and
2147 * bitmap blocks changes */
2148 b_blocknr_t beg, end;
2149 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
2150 * between different block allocator procedures
2151 * (determine_search_start() and others) */
2152 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2153 * function that do actual allocation */
2155 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
2156 * formatted/unformatted blocks with/without preallocation */
2157 unsigned preallocate:1;
2160 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2162 int reiserfs_parse_alloc_options(struct super_block *, char *);
2163 void reiserfs_init_alloc_options(struct super_block *s);
2166 * given a directory, this will tell you what packing locality
2167 * to use for a new object underneat it. The locality is returned
2168 * in disk byte order (le).
2170 __le32 reiserfs_choose_packing(struct inode *dir);
2172 int reiserfs_init_bitmap_cache(struct super_block *sb);
2173 void reiserfs_free_bitmap_cache(struct super_block *sb);
2174 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2175 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2176 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2177 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2178 b_blocknr_t, int for_unformatted);
2179 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2180 int);
2181 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2182 b_blocknr_t * new_blocknrs,
2183 int amount_needed)
2185 reiserfs_blocknr_hint_t hint = {
2186 .th = tb->transaction_handle,
2187 .path = tb->tb_path,
2188 .inode = NULL,
2189 .key = tb->key,
2190 .block = 0,
2191 .formatted_node = 1
2193 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2197 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2198 *th, struct inode *inode,
2199 b_blocknr_t * new_blocknrs,
2200 struct treepath *path,
2201 sector_t block)
2203 reiserfs_blocknr_hint_t hint = {
2204 .th = th,
2205 .path = path,
2206 .inode = inode,
2207 .block = block,
2208 .formatted_node = 0,
2209 .preallocate = 0
2211 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2214 #ifdef REISERFS_PREALLOCATE
2215 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2216 *th, struct inode *inode,
2217 b_blocknr_t * new_blocknrs,
2218 struct treepath *path,
2219 sector_t block)
2221 reiserfs_blocknr_hint_t hint = {
2222 .th = th,
2223 .path = path,
2224 .inode = inode,
2225 .block = block,
2226 .formatted_node = 0,
2227 .preallocate = 1
2229 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2232 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2233 struct inode *inode);
2234 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
2235 #endif
2237 /* hashes.c */
2238 __u32 keyed_hash(const signed char *msg, int len);
2239 __u32 yura_hash(const signed char *msg, int len);
2240 __u32 r5_hash(const signed char *msg, int len);
2242 /* the ext2 bit routines adjust for big or little endian as
2243 ** appropriate for the arch, so in our laziness we use them rather
2244 ** than using the bit routines they call more directly. These
2245 ** routines must be used when changing on disk bitmaps. */
2246 #define reiserfs_test_and_set_le_bit ext2_set_bit
2247 #define reiserfs_test_and_clear_le_bit ext2_clear_bit
2248 #define reiserfs_test_le_bit ext2_test_bit
2249 #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2251 /* sometimes reiserfs_truncate may require to allocate few new blocks
2252 to perform indirect2direct conversion. People probably used to
2253 think, that truncate should work without problems on a filesystem
2254 without free disk space. They may complain that they can not
2255 truncate due to lack of free disk space. This spare space allows us
2256 to not worry about it. 500 is probably too much, but it should be
2257 absolutely safe */
2258 #define SPARE_SPACE 500
2260 /* prototypes from ioctl.c */
2261 int reiserfs_ioctl(struct inode *inode, struct file *filp,
2262 unsigned int cmd, unsigned long arg);
2263 long reiserfs_compat_ioctl(struct file *filp,
2264 unsigned int cmd, unsigned long arg);
2265 int reiserfs_unpack(struct inode *inode, struct file *filp);
2267 #endif /* __KERNEL__ */
2269 #endif /* _LINUX_REISER_FS_H */