2 * linux/arch/cris/arch-v10/mm/init.c
5 #include <linux/config.h>
6 #include <linux/mmzone.h>
7 #include <linux/init.h>
8 #include <linux/bootmem.h>
10 #include <asm/pgtable.h>
12 #include <asm/types.h>
15 #include <asm/mmu_context.h>
16 #include <asm/arch/svinto.h>
18 extern void tlb_init(void);
21 * The kernel is already mapped with a kernel segment at kseg_c so
22 * we don't need to map it with a page table. However head.S also
23 * temporarily mapped it at kseg_4 so we should set up the ksegs again,
24 * clear the TLB and do some other paging setup stuff.
31 unsigned long zones_size
[MAX_NR_ZONES
];
33 printk("Setting up paging and the MMU.\n");
35 /* clear out the init_mm.pgd that will contain the kernel's mappings */
37 for(i
= 0; i
< PTRS_PER_PGD
; i
++)
38 swapper_pg_dir
[i
] = __pgd(0);
40 /* make sure the current pgd table points to something sane
41 * (even if it is most probably not used until the next
45 current_pgd
= init_mm
.pgd
;
47 /* initialise the TLB (tlb.c) */
51 /* see README.mm for details on the KSEG setup */
53 #ifdef CONFIG_CRIS_LOW_MAP
54 /* Etrax-100 LX version 1 has a bug so that we cannot map anything
55 * across the 0x80000000 boundary, so we need to shrink the user-virtual
56 * area to 0x50000000 instead of 0xb0000000 and map things slightly
57 * different. The unused areas are marked as paged so that we can catch
58 * freak kernel accesses there.
60 * The ARTPEC chip is mapped at 0xa so we pass that segment straight
61 * through. We cannot vremap it because the vmalloc area is below 0x8
62 * and Juliette needs an uncached area above 0x8.
64 * Same thing with 0xc and 0x9, which is memory-mapped I/O on some boards.
65 * We map them straight over in LOW_MAP, but use vremap in LX version 2.
68 #define CACHED_BOOTROM (KSEG_F | 0x08000000UL)
70 *R_MMU_KSEG
= ( IO_STATE(R_MMU_KSEG
, seg_f
, seg
) | /* bootrom */
71 IO_STATE(R_MMU_KSEG
, seg_e
, page
) |
72 IO_STATE(R_MMU_KSEG
, seg_d
, page
) |
73 IO_STATE(R_MMU_KSEG
, seg_c
, page
) |
74 IO_STATE(R_MMU_KSEG
, seg_b
, seg
) | /* kernel reg area */
75 #ifdef CONFIG_JULIETTE
76 IO_STATE(R_MMU_KSEG
, seg_a
, seg
) | /* ARTPEC etc. */
78 IO_STATE(R_MMU_KSEG
, seg_a
, page
) |
80 IO_STATE(R_MMU_KSEG
, seg_9
, seg
) | /* LED's on some boards */
81 IO_STATE(R_MMU_KSEG
, seg_8
, seg
) | /* CSE0/1, flash and I/O */
82 IO_STATE(R_MMU_KSEG
, seg_7
, page
) | /* kernel vmalloc area */
83 IO_STATE(R_MMU_KSEG
, seg_6
, seg
) | /* kernel DRAM area */
84 IO_STATE(R_MMU_KSEG
, seg_5
, seg
) | /* cached flash */
85 IO_STATE(R_MMU_KSEG
, seg_4
, page
) | /* user area */
86 IO_STATE(R_MMU_KSEG
, seg_3
, page
) | /* user area */
87 IO_STATE(R_MMU_KSEG
, seg_2
, page
) | /* user area */
88 IO_STATE(R_MMU_KSEG
, seg_1
, page
) | /* user area */
89 IO_STATE(R_MMU_KSEG
, seg_0
, page
) ); /* user area */
91 *R_MMU_KBASE_HI
= ( IO_FIELD(R_MMU_KBASE_HI
, base_f
, 0x3 ) |
92 IO_FIELD(R_MMU_KBASE_HI
, base_e
, 0x0 ) |
93 IO_FIELD(R_MMU_KBASE_HI
, base_d
, 0x0 ) |
94 IO_FIELD(R_MMU_KBASE_HI
, base_c
, 0x0 ) |
95 IO_FIELD(R_MMU_KBASE_HI
, base_b
, 0xb ) |
96 #ifdef CONFIG_JULIETTE
97 IO_FIELD(R_MMU_KBASE_HI
, base_a
, 0xa ) |
99 IO_FIELD(R_MMU_KBASE_HI
, base_a
, 0x0 ) |
101 IO_FIELD(R_MMU_KBASE_HI
, base_9
, 0x9 ) |
102 IO_FIELD(R_MMU_KBASE_HI
, base_8
, 0x8 ) );
104 *R_MMU_KBASE_LO
= ( IO_FIELD(R_MMU_KBASE_LO
, base_7
, 0x0 ) |
105 IO_FIELD(R_MMU_KBASE_LO
, base_6
, 0x4 ) |
106 IO_FIELD(R_MMU_KBASE_LO
, base_5
, 0x0 ) |
107 IO_FIELD(R_MMU_KBASE_LO
, base_4
, 0x0 ) |
108 IO_FIELD(R_MMU_KBASE_LO
, base_3
, 0x0 ) |
109 IO_FIELD(R_MMU_KBASE_LO
, base_2
, 0x0 ) |
110 IO_FIELD(R_MMU_KBASE_LO
, base_1
, 0x0 ) |
111 IO_FIELD(R_MMU_KBASE_LO
, base_0
, 0x0 ) );
113 /* This code is for the corrected Etrax-100 LX version 2... */
115 #define CACHED_BOOTROM (KSEG_A | 0x08000000UL)
117 *R_MMU_KSEG
= ( IO_STATE(R_MMU_KSEG
, seg_f
, seg
) | /* cached flash */
118 IO_STATE(R_MMU_KSEG
, seg_e
, seg
) | /* uncached flash */
119 IO_STATE(R_MMU_KSEG
, seg_d
, page
) | /* vmalloc area */
120 IO_STATE(R_MMU_KSEG
, seg_c
, seg
) | /* kernel area */
121 IO_STATE(R_MMU_KSEG
, seg_b
, seg
) | /* kernel reg area */
122 IO_STATE(R_MMU_KSEG
, seg_a
, seg
) | /* bootrom */
123 IO_STATE(R_MMU_KSEG
, seg_9
, page
) | /* user area */
124 IO_STATE(R_MMU_KSEG
, seg_8
, page
) |
125 IO_STATE(R_MMU_KSEG
, seg_7
, page
) |
126 IO_STATE(R_MMU_KSEG
, seg_6
, page
) |
127 IO_STATE(R_MMU_KSEG
, seg_5
, page
) |
128 IO_STATE(R_MMU_KSEG
, seg_4
, page
) |
129 IO_STATE(R_MMU_KSEG
, seg_3
, page
) |
130 IO_STATE(R_MMU_KSEG
, seg_2
, page
) |
131 IO_STATE(R_MMU_KSEG
, seg_1
, page
) |
132 IO_STATE(R_MMU_KSEG
, seg_0
, page
) );
134 *R_MMU_KBASE_HI
= ( IO_FIELD(R_MMU_KBASE_HI
, base_f
, 0x0 ) |
135 IO_FIELD(R_MMU_KBASE_HI
, base_e
, 0x8 ) |
136 IO_FIELD(R_MMU_KBASE_HI
, base_d
, 0x0 ) |
137 IO_FIELD(R_MMU_KBASE_HI
, base_c
, 0x4 ) |
138 IO_FIELD(R_MMU_KBASE_HI
, base_b
, 0xb ) |
139 IO_FIELD(R_MMU_KBASE_HI
, base_a
, 0x3 ) |
140 IO_FIELD(R_MMU_KBASE_HI
, base_9
, 0x0 ) |
141 IO_FIELD(R_MMU_KBASE_HI
, base_8
, 0x0 ) );
143 *R_MMU_KBASE_LO
= ( IO_FIELD(R_MMU_KBASE_LO
, base_7
, 0x0 ) |
144 IO_FIELD(R_MMU_KBASE_LO
, base_6
, 0x0 ) |
145 IO_FIELD(R_MMU_KBASE_LO
, base_5
, 0x0 ) |
146 IO_FIELD(R_MMU_KBASE_LO
, base_4
, 0x0 ) |
147 IO_FIELD(R_MMU_KBASE_LO
, base_3
, 0x0 ) |
148 IO_FIELD(R_MMU_KBASE_LO
, base_2
, 0x0 ) |
149 IO_FIELD(R_MMU_KBASE_LO
, base_1
, 0x0 ) |
150 IO_FIELD(R_MMU_KBASE_LO
, base_0
, 0x0 ) );
153 *R_MMU_CONTEXT
= ( IO_FIELD(R_MMU_CONTEXT
, page_id
, 0 ) );
155 /* The MMU has been enabled ever since head.S but just to make
156 * it totally obvious we do it here as well.
159 *R_MMU_CTRL
= ( IO_STATE(R_MMU_CTRL
, inv_excp
, enable
) |
160 IO_STATE(R_MMU_CTRL
, acc_excp
, enable
) |
161 IO_STATE(R_MMU_CTRL
, we_excp
, enable
) );
163 *R_MMU_ENABLE
= IO_STATE(R_MMU_ENABLE
, mmu_enable
, enable
);
166 * initialize the bad page table and bad page to point
167 * to a couple of allocated pages
170 empty_zero_page
= (unsigned long)alloc_bootmem_pages(PAGE_SIZE
);
171 memset((void *)empty_zero_page
, 0, PAGE_SIZE
);
173 /* All pages are DMA'able in Etrax, so put all in the DMA'able zone */
175 zones_size
[0] = ((unsigned long)high_memory
- PAGE_OFFSET
) >> PAGE_SHIFT
;
177 for (i
= 1; i
< MAX_NR_ZONES
; i
++)
180 /* Use free_area_init_node instead of free_area_init, because the former
181 * is designed for systems where the DRAM starts at an address substantially
182 * higher than 0, like us (we start at PAGE_OFFSET). This saves space in the
183 * mem_map page array.
186 free_area_init_node(0, &contig_page_data
, zones_size
, PAGE_OFFSET
>> PAGE_SHIFT
, 0);
189 /* Initialize remaps of some I/O-ports. It is important that this
190 * is called before any driver is initialized.
194 __init
init_ioremap(void)
197 /* Give the external I/O-port addresses their values */
199 #ifdef CONFIG_CRIS_LOW_MAP
200 /* Simply a linear map (see the KSEG map above in paging_init) */
201 port_cse1_addr
= (volatile unsigned long *)(MEM_CSE1_START
|
203 port_csp0_addr
= (volatile unsigned long *)(MEM_CSP0_START
|
205 port_csp4_addr
= (volatile unsigned long *)(MEM_CSP4_START
|
208 /* Note that nothing blows up just because we do this remapping
209 * it's ok even if the ports are not used or connected
210 * to anything (or connected to a non-I/O thing) */
211 port_cse1_addr
= (volatile unsigned long *)
212 ioremap((unsigned long)(MEM_CSE1_START
| MEM_NON_CACHEABLE
), 16);
213 port_csp0_addr
= (volatile unsigned long *)
214 ioremap((unsigned long)(MEM_CSP0_START
| MEM_NON_CACHEABLE
), 16);
215 port_csp4_addr
= (volatile unsigned long *)
216 ioremap((unsigned long)(MEM_CSP4_START
| MEM_NON_CACHEABLE
), 16);
221 __initcall(init_ioremap
);
223 /* Helper function for the two below */
226 flush_etrax_cacherange(void *startadr
, int length
)
228 /* CACHED_BOOTROM is mapped to the boot-rom area (cached) which
229 * we can use to get fast dummy-reads of cachelines
232 volatile short *flushadr
= (volatile short *)(((unsigned long)startadr
& ~PAGE_MASK
) |
235 length
= length
> 8192 ? 8192 : length
; /* No need to flush more than cache size */
238 *flushadr
; /* dummy read to flush */
239 flushadr
+= (32/sizeof(short)); /* a cacheline is 32 bytes */
244 /* Due to a bug in Etrax100(LX) all versions, receiving DMA buffers
245 * will occationally corrupt certain CPU writes if the DMA buffers
246 * happen to be hot in the cache.
248 * As a workaround, we have to flush the relevant parts of the cache
249 * before (re) inserting any receiving descriptor into the DMA HW.
253 prepare_rx_descriptor(struct etrax_dma_descr
*desc
)
255 flush_etrax_cacherange((void *)desc
->buf
, desc
->sw_len
? desc
->sw_len
: 65536);
258 /* Do the same thing but flush the entire cache */
261 flush_etrax_cache(void)
263 flush_etrax_cacherange(0, 8192);