2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2004 Anton Altaparmakov
5 * Copyright (c) 2001,2002 Richard Russon
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/string.h>
26 #include <linux/spinlock.h>
27 #include <linux/blkdev.h> /* For bdev_hardsect_size(). */
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/vfs.h>
31 #include <linux/moduleparam.h>
32 #include <linux/smp_lock.h>
44 /* Number of mounted file systems which have compression enabled. */
45 static unsigned long ntfs_nr_compression_users
;
47 /* A global default upcase table and a corresponding reference count. */
48 static ntfschar
*default_upcase
= NULL
;
49 static unsigned long ntfs_nr_upcase_users
= 0;
51 /* Error constants/strings used in inode.c::ntfs_show_options(). */
53 /* One of these must be present, default is ON_ERRORS_CONTINUE. */
54 ON_ERRORS_PANIC
= 0x01,
55 ON_ERRORS_REMOUNT_RO
= 0x02,
56 ON_ERRORS_CONTINUE
= 0x04,
57 /* Optional, can be combined with any of the above. */
58 ON_ERRORS_RECOVER
= 0x10,
61 const option_t on_errors_arr
[] = {
62 { ON_ERRORS_PANIC
, "panic" },
63 { ON_ERRORS_REMOUNT_RO
, "remount-ro", },
64 { ON_ERRORS_CONTINUE
, "continue", },
65 { ON_ERRORS_RECOVER
, "recover" },
72 * Copied from old ntfs driver (which copied from vfat driver).
74 static int simple_getbool(char *s
, BOOL
*setval
)
77 if (!strcmp(s
, "1") || !strcmp(s
, "yes") || !strcmp(s
, "true"))
79 else if (!strcmp(s
, "0") || !strcmp(s
, "no") ||
90 * parse_options - parse the (re)mount options
92 * @opt: string containing the (re)mount options
94 * Parse the recognized options in @opt for the ntfs volume described by @vol.
96 static BOOL
parse_options(ntfs_volume
*vol
, char *opt
)
99 static char *utf8
= "utf8";
100 int errors
= 0, sloppy
= 0;
101 uid_t uid
= (uid_t
)-1;
102 gid_t gid
= (gid_t
)-1;
103 mode_t fmask
= (mode_t
)-1, dmask
= (mode_t
)-1;
104 int mft_zone_multiplier
= -1, on_errors
= -1;
105 int show_sys_files
= -1, case_sensitive
= -1;
106 struct nls_table
*nls_map
= NULL
, *old_nls
;
108 /* I am lazy... (-8 */
109 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
110 if (!strcmp(p, option)) { \
112 variable = default_value; \
114 variable = simple_strtoul(ov = v, &v, 0); \
119 #define NTFS_GETOPT(option, variable) \
120 if (!strcmp(p, option)) { \
123 variable = simple_strtoul(ov = v, &v, 0); \
127 #define NTFS_GETOPT_BOOL(option, variable) \
128 if (!strcmp(p, option)) { \
130 if (!simple_getbool(v, &val)) \
134 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
135 if (!strcmp(p, option)) { \
140 if (variable == -1) \
142 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
143 if (!strcmp(opt_array[_i].str, v)) { \
144 variable |= opt_array[_i].val; \
147 if (!opt_array[_i].str || !*opt_array[_i].str) \
151 goto no_mount_options
;
152 ntfs_debug("Entering with mount options string: %s", opt
);
153 while ((p
= strsep(&opt
, ","))) {
154 if ((v
= strchr(p
, '=')))
156 NTFS_GETOPT("uid", uid
)
157 else NTFS_GETOPT("gid", gid
)
158 else NTFS_GETOPT("umask", fmask
= dmask
)
159 else NTFS_GETOPT("fmask", fmask
)
160 else NTFS_GETOPT("dmask", dmask
)
161 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier
)
162 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy
, TRUE
)
163 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files
)
164 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive
)
165 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors
,
167 else if (!strcmp(p
, "posix") || !strcmp(p
, "show_inodes"))
168 ntfs_warning(vol
->sb
, "Ignoring obsolete option %s.",
170 else if (!strcmp(p
, "nls") || !strcmp(p
, "iocharset")) {
171 if (!strcmp(p
, "iocharset"))
172 ntfs_warning(vol
->sb
, "Option iocharset is "
173 "deprecated. Please use "
174 "option nls=<charsetname> in "
180 nls_map
= load_nls(v
);
183 ntfs_error(vol
->sb
, "NLS character set "
187 ntfs_error(vol
->sb
, "NLS character set %s not "
188 "found. Using previous one %s.",
189 v
, old_nls
->charset
);
191 } else /* nls_map */ {
195 } else if (!strcmp(p
, "utf8")) {
197 ntfs_warning(vol
->sb
, "Option utf8 is no longer "
198 "supported, using option nls=utf8. Please "
199 "use option nls=utf8 in the future and "
200 "make sure utf8 is compiled either as a "
201 "module or into the kernel.");
204 else if (!simple_getbool(v
, &val
))
211 ntfs_error(vol
->sb
, "Unrecognized mount option %s.", p
);
212 if (errors
< INT_MAX
)
215 #undef NTFS_GETOPT_OPTIONS_ARRAY
216 #undef NTFS_GETOPT_BOOL
218 #undef NTFS_GETOPT_WITH_DEFAULT
221 if (errors
&& !sloppy
)
224 ntfs_warning(vol
->sb
, "Sloppy option given. Ignoring "
225 "unrecognized mount option(s) and continuing.");
226 /* Keep this first! */
227 if (on_errors
!= -1) {
229 ntfs_error(vol
->sb
, "Invalid errors option argument "
230 "or bug in options parser.");
235 if (vol
->nls_map
&& vol
->nls_map
!= nls_map
) {
236 ntfs_error(vol
->sb
, "Cannot change NLS character set "
239 } /* else (!vol->nls_map) */
240 ntfs_debug("Using NLS character set %s.", nls_map
->charset
);
241 vol
->nls_map
= nls_map
;
242 } else /* (!nls_map) */ {
244 vol
->nls_map
= load_nls_default();
246 ntfs_error(vol
->sb
, "Failed to load default "
247 "NLS character set.");
250 ntfs_debug("Using default NLS character set (%s).",
251 vol
->nls_map
->charset
);
254 if (mft_zone_multiplier
!= -1) {
255 if (vol
->mft_zone_multiplier
&& vol
->mft_zone_multiplier
!=
256 mft_zone_multiplier
) {
257 ntfs_error(vol
->sb
, "Cannot change mft_zone_multiplier "
261 if (mft_zone_multiplier
< 1 || mft_zone_multiplier
> 4) {
262 ntfs_error(vol
->sb
, "Invalid mft_zone_multiplier. "
263 "Using default value, i.e. 1.");
264 mft_zone_multiplier
= 1;
266 vol
->mft_zone_multiplier
= mft_zone_multiplier
;
268 if (!vol
->mft_zone_multiplier
)
269 vol
->mft_zone_multiplier
= 1;
271 vol
->on_errors
= on_errors
;
272 if (!vol
->on_errors
|| vol
->on_errors
== ON_ERRORS_RECOVER
)
273 vol
->on_errors
|= ON_ERRORS_CONTINUE
;
274 if (uid
!= (uid_t
)-1)
276 if (gid
!= (gid_t
)-1)
278 if (fmask
!= (mode_t
)-1)
280 if (dmask
!= (mode_t
)-1)
282 if (show_sys_files
!= -1) {
284 NVolSetShowSystemFiles(vol
);
286 NVolClearShowSystemFiles(vol
);
288 if (case_sensitive
!= -1) {
290 NVolSetCaseSensitive(vol
);
292 NVolClearCaseSensitive(vol
);
296 ntfs_error(vol
->sb
, "The %s option requires an argument.", p
);
299 ntfs_error(vol
->sb
, "The %s option requires a boolean argument.", p
);
302 ntfs_error(vol
->sb
, "Invalid %s option argument: %s", p
, ov
);
309 * ntfs_write_volume_flags - write new flags to the volume information flags
310 * @vol: ntfs volume on which to modify the flags
311 * @flags: new flags value for the volume information flags
313 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
314 * instead (see below).
316 * Replace the volume information flags on the volume @vol with the value
317 * supplied in @flags. Note, this overwrites the volume information flags, so
318 * make sure to combine the flags you want to modify with the old flags and use
319 * the result when calling ntfs_write_volume_flags().
321 * Return 0 on success and -errno on error.
323 static int ntfs_write_volume_flags(ntfs_volume
*vol
, const VOLUME_FLAGS flags
)
325 ntfs_inode
*ni
= NTFS_I(vol
->vol_ino
);
327 VOLUME_INFORMATION
*vi
;
328 ntfs_attr_search_ctx
*ctx
;
331 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
332 le16_to_cpu(vol
->vol_flags
), le16_to_cpu(flags
));
333 if (vol
->vol_flags
== flags
)
336 m
= map_mft_record(ni
);
341 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
344 goto put_unm_err_out
;
346 err
= ntfs_attr_lookup(AT_VOLUME_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
349 goto put_unm_err_out
;
350 vi
= (VOLUME_INFORMATION
*)((u8
*)ctx
->attr
+
351 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
352 vol
->vol_flags
= vi
->flags
= flags
;
353 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
354 mark_mft_record_dirty(ctx
->ntfs_ino
);
355 ntfs_attr_put_search_ctx(ctx
);
356 unmap_mft_record(ni
);
362 ntfs_attr_put_search_ctx(ctx
);
363 unmap_mft_record(ni
);
365 ntfs_error(vol
->sb
, "Failed with error code %i.", -err
);
370 * ntfs_set_volume_flags - set bits in the volume information flags
371 * @vol: ntfs volume on which to modify the flags
372 * @flags: flags to set on the volume
374 * Set the bits in @flags in the volume information flags on the volume @vol.
376 * Return 0 on success and -errno on error.
378 static inline int ntfs_set_volume_flags(ntfs_volume
*vol
, VOLUME_FLAGS flags
)
380 flags
&= VOLUME_FLAGS_MASK
;
381 return ntfs_write_volume_flags(vol
, vol
->vol_flags
| flags
);
385 * ntfs_clear_volume_flags - clear bits in the volume information flags
386 * @vol: ntfs volume on which to modify the flags
387 * @flags: flags to clear on the volume
389 * Clear the bits in @flags in the volume information flags on the volume @vol.
391 * Return 0 on success and -errno on error.
393 static inline int ntfs_clear_volume_flags(ntfs_volume
*vol
, VOLUME_FLAGS flags
)
395 flags
&= VOLUME_FLAGS_MASK
;
396 flags
= vol
->vol_flags
& cpu_to_le16(~le16_to_cpu(flags
));
397 return ntfs_write_volume_flags(vol
, flags
);
403 * ntfs_remount - change the mount options of a mounted ntfs filesystem
404 * @sb: superblock of mounted ntfs filesystem
405 * @flags: remount flags
406 * @opt: remount options string
408 * Change the mount options of an already mounted ntfs filesystem.
410 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
411 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
412 * @sb->s_flags are not changed.
414 static int ntfs_remount(struct super_block
*sb
, int *flags
, char *opt
)
416 ntfs_volume
*vol
= NTFS_SB(sb
);
418 ntfs_debug("Entering with remount options string: %s", opt
);
420 /* For read-only compiled driver, enforce all read-only flags. */
421 *flags
|= MS_RDONLY
| MS_NOATIME
| MS_NODIRATIME
;
424 * For the read-write compiled driver, if we are remounting read-write,
425 * make sure there are no volume errors and that no unsupported volume
426 * flags are set. Also, empty the logfile journal as it would become
427 * stale as soon as something is written to the volume and mark the
428 * volume dirty so that chkdsk is run if the volume is not umounted
429 * cleanly. Finally, mark the quotas out of date so Windows rescans
430 * the volume on boot and updates them.
432 * When remounting read-only, mark the volume clean if no volume errors
435 if ((sb
->s_flags
& MS_RDONLY
) && !(*flags
& MS_RDONLY
)) {
436 static const char *es
= ". Cannot remount read-write.";
438 /* Remounting read-write. */
439 if (NVolErrors(vol
)) {
440 ntfs_error(sb
, "Volume has errors and is read-only%s",
444 if (vol
->vol_flags
& VOLUME_IS_DIRTY
) {
445 ntfs_error(sb
, "Volume is dirty and read-only%s", es
);
448 if (vol
->vol_flags
& VOLUME_MUST_MOUNT_RO_MASK
) {
449 ntfs_error(sb
, "Volume has unsupported flags set and "
450 "is read-only%s", es
);
453 if (ntfs_set_volume_flags(vol
, VOLUME_IS_DIRTY
)) {
454 ntfs_error(sb
, "Failed to set dirty bit in volume "
455 "information flags%s", es
);
459 // TODO: Enable this code once we start modifying anything that
460 // is different between NTFS 1.2 and 3.x...
461 /* Set NT4 compatibility flag on newer NTFS version volumes. */
462 if ((vol
->major_ver
> 1)) {
463 if (ntfs_set_volume_flags(vol
, VOLUME_MOUNTED_ON_NT4
)) {
464 ntfs_error(sb
, "Failed to set NT4 "
465 "compatibility flag%s", es
);
471 if (!ntfs_empty_logfile(vol
->logfile_ino
)) {
472 ntfs_error(sb
, "Failed to empty journal $LogFile%s",
477 if (!ntfs_mark_quotas_out_of_date(vol
)) {
478 ntfs_error(sb
, "Failed to mark quotas out of date%s",
483 } else if (!(sb
->s_flags
& MS_RDONLY
) && (*flags
& MS_RDONLY
)) {
484 /* Remounting read-only. */
485 if (!NVolErrors(vol
)) {
486 if (ntfs_clear_volume_flags(vol
, VOLUME_IS_DIRTY
))
487 ntfs_warning(sb
, "Failed to clear dirty bit "
488 "in volume information "
489 "flags. Run chkdsk.");
494 // TODO: Deal with *flags.
496 if (!parse_options(vol
, opt
))
503 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
504 * @sb: Super block of the device to which @b belongs.
505 * @b: Boot sector of device @sb to check.
506 * @silent: If TRUE, all output will be silenced.
508 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
509 * sector. Returns TRUE if it is valid and FALSE if not.
511 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
514 static BOOL
is_boot_sector_ntfs(const struct super_block
*sb
,
515 const NTFS_BOOT_SECTOR
*b
, const BOOL silent
)
518 * Check that checksum == sum of u32 values from b to the checksum
519 * field. If checksum is zero, no checking is done.
521 if ((void*)b
< (void*)&b
->checksum
&& b
->checksum
) {
525 for (i
= 0, u
= (le32
*)b
; u
< (le32
*)(&b
->checksum
); ++u
)
526 i
+= le32_to_cpup(u
);
527 if (le32_to_cpu(b
->checksum
) != i
)
530 /* Check OEMidentifier is "NTFS " */
531 if (b
->oem_id
!= magicNTFS
)
533 /* Check bytes per sector value is between 256 and 4096. */
534 if (le16_to_cpu(b
->bpb
.bytes_per_sector
) < 0x100 ||
535 le16_to_cpu(b
->bpb
.bytes_per_sector
) > 0x1000)
537 /* Check sectors per cluster value is valid. */
538 switch (b
->bpb
.sectors_per_cluster
) {
539 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
544 /* Check the cluster size is not above 65536 bytes. */
545 if ((u32
)le16_to_cpu(b
->bpb
.bytes_per_sector
) *
546 b
->bpb
.sectors_per_cluster
> 0x10000)
548 /* Check reserved/unused fields are really zero. */
549 if (le16_to_cpu(b
->bpb
.reserved_sectors
) ||
550 le16_to_cpu(b
->bpb
.root_entries
) ||
551 le16_to_cpu(b
->bpb
.sectors
) ||
552 le16_to_cpu(b
->bpb
.sectors_per_fat
) ||
553 le32_to_cpu(b
->bpb
.large_sectors
) || b
->bpb
.fats
)
555 /* Check clusters per file mft record value is valid. */
556 if ((u8
)b
->clusters_per_mft_record
< 0xe1 ||
557 (u8
)b
->clusters_per_mft_record
> 0xf7)
558 switch (b
->clusters_per_mft_record
) {
559 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
564 /* Check clusters per index block value is valid. */
565 if ((u8
)b
->clusters_per_index_record
< 0xe1 ||
566 (u8
)b
->clusters_per_index_record
> 0xf7)
567 switch (b
->clusters_per_index_record
) {
568 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
574 * Check for valid end of sector marker. We will work without it, but
575 * many BIOSes will refuse to boot from a bootsector if the magic is
576 * incorrect, so we emit a warning.
578 if (!silent
&& b
->end_of_sector_marker
!= cpu_to_le16(0xaa55))
579 ntfs_warning(sb
, "Invalid end of sector marker.");
586 * read_ntfs_boot_sector - read the NTFS boot sector of a device
587 * @sb: super block of device to read the boot sector from
588 * @silent: if true, suppress all output
590 * Reads the boot sector from the device and validates it. If that fails, tries
591 * to read the backup boot sector, first from the end of the device a-la NT4 and
592 * later and then from the middle of the device a-la NT3.51 and before.
594 * If a valid boot sector is found but it is not the primary boot sector, we
595 * repair the primary boot sector silently (unless the device is read-only or
596 * the primary boot sector is not accessible).
598 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
599 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
600 * to their respective values.
602 * Return the unlocked buffer head containing the boot sector or NULL on error.
604 static struct buffer_head
*read_ntfs_boot_sector(struct super_block
*sb
,
607 const char *read_err_str
= "Unable to read %s boot sector.";
608 struct buffer_head
*bh_primary
, *bh_backup
;
609 long nr_blocks
= NTFS_SB(sb
)->nr_blocks
;
611 /* Try to read primary boot sector. */
612 if ((bh_primary
= sb_bread(sb
, 0))) {
613 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
614 bh_primary
->b_data
, silent
))
617 ntfs_error(sb
, "Primary boot sector is invalid.");
619 ntfs_error(sb
, read_err_str
, "primary");
620 if (!(NTFS_SB(sb
)->on_errors
& ON_ERRORS_RECOVER
)) {
624 ntfs_error(sb
, "Mount option errors=recover not used. "
625 "Aborting without trying to recover.");
628 /* Try to read NT4+ backup boot sector. */
629 if ((bh_backup
= sb_bread(sb
, nr_blocks
- 1))) {
630 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
631 bh_backup
->b_data
, silent
))
632 goto hotfix_primary_boot_sector
;
635 ntfs_error(sb
, read_err_str
, "backup");
636 /* Try to read NT3.51- backup boot sector. */
637 if ((bh_backup
= sb_bread(sb
, nr_blocks
>> 1))) {
638 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
639 bh_backup
->b_data
, silent
))
640 goto hotfix_primary_boot_sector
;
642 ntfs_error(sb
, "Could not find a valid backup boot "
646 ntfs_error(sb
, read_err_str
, "backup");
647 /* We failed. Cleanup and return. */
651 hotfix_primary_boot_sector
:
654 * If we managed to read sector zero and the volume is not
655 * read-only, copy the found, valid backup boot sector to the
656 * primary boot sector.
658 if (!(sb
->s_flags
& MS_RDONLY
)) {
659 ntfs_warning(sb
, "Hot-fix: Recovering invalid primary "
660 "boot sector from backup copy.");
661 memcpy(bh_primary
->b_data
, bh_backup
->b_data
,
663 mark_buffer_dirty(bh_primary
);
664 sync_dirty_buffer(bh_primary
);
665 if (buffer_uptodate(bh_primary
)) {
669 ntfs_error(sb
, "Hot-fix: Device write error while "
670 "recovering primary boot sector.");
672 ntfs_warning(sb
, "Hot-fix: Recovery of primary boot "
673 "sector failed: Read-only mount.");
677 ntfs_warning(sb
, "Using backup boot sector.");
682 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
683 * @vol: volume structure to initialise with data from boot sector
684 * @b: boot sector to parse
686 * Parse the ntfs boot sector @b and store all imporant information therein in
687 * the ntfs super block @vol. Return TRUE on success and FALSE on error.
689 static BOOL
parse_ntfs_boot_sector(ntfs_volume
*vol
, const NTFS_BOOT_SECTOR
*b
)
691 unsigned int sectors_per_cluster_bits
, nr_hidden_sects
;
692 int clusters_per_mft_record
, clusters_per_index_record
;
695 vol
->sector_size
= le16_to_cpu(b
->bpb
.bytes_per_sector
);
696 vol
->sector_size_bits
= ffs(vol
->sector_size
) - 1;
697 ntfs_debug("vol->sector_size = %i (0x%x)", vol
->sector_size
,
699 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol
->sector_size_bits
,
700 vol
->sector_size_bits
);
701 if (vol
->sector_size
!= vol
->sb
->s_blocksize
)
702 ntfs_warning(vol
->sb
, "The boot sector indicates a sector size "
703 "different from the device sector size.");
704 ntfs_debug("sectors_per_cluster = 0x%x", b
->bpb
.sectors_per_cluster
);
705 sectors_per_cluster_bits
= ffs(b
->bpb
.sectors_per_cluster
) - 1;
706 ntfs_debug("sectors_per_cluster_bits = 0x%x",
707 sectors_per_cluster_bits
);
708 nr_hidden_sects
= le32_to_cpu(b
->bpb
.hidden_sectors
);
709 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects
);
710 vol
->cluster_size
= vol
->sector_size
<< sectors_per_cluster_bits
;
711 vol
->cluster_size_mask
= vol
->cluster_size
- 1;
712 vol
->cluster_size_bits
= ffs(vol
->cluster_size
) - 1;
713 ntfs_debug("vol->cluster_size = %i (0x%x)", vol
->cluster_size
,
715 ntfs_debug("vol->cluster_size_mask = 0x%x", vol
->cluster_size_mask
);
716 ntfs_debug("vol->cluster_size_bits = %i (0x%x)",
717 vol
->cluster_size_bits
, vol
->cluster_size_bits
);
718 if (vol
->sector_size
> vol
->cluster_size
) {
719 ntfs_error(vol
->sb
, "Sector sizes above the cluster size are "
720 "not supported. Sorry.");
723 if (vol
->sb
->s_blocksize
> vol
->cluster_size
) {
724 ntfs_error(vol
->sb
, "Cluster sizes smaller than the device "
725 "sector size are not supported. Sorry.");
728 clusters_per_mft_record
= b
->clusters_per_mft_record
;
729 ntfs_debug("clusters_per_mft_record = %i (0x%x)",
730 clusters_per_mft_record
, clusters_per_mft_record
);
731 if (clusters_per_mft_record
> 0)
732 vol
->mft_record_size
= vol
->cluster_size
<<
733 (ffs(clusters_per_mft_record
) - 1);
736 * When mft_record_size < cluster_size, clusters_per_mft_record
737 * = -log2(mft_record_size) bytes. mft_record_size normaly is
738 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
740 vol
->mft_record_size
= 1 << -clusters_per_mft_record
;
741 vol
->mft_record_size_mask
= vol
->mft_record_size
- 1;
742 vol
->mft_record_size_bits
= ffs(vol
->mft_record_size
) - 1;
743 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol
->mft_record_size
,
744 vol
->mft_record_size
);
745 ntfs_debug("vol->mft_record_size_mask = 0x%x",
746 vol
->mft_record_size_mask
);
747 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
748 vol
->mft_record_size_bits
, vol
->mft_record_size_bits
);
750 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
751 * we store $MFT/$DATA, the table of mft records in the page cache.
753 if (vol
->mft_record_size
> PAGE_CACHE_SIZE
) {
754 ntfs_error(vol
->sb
, "Mft record size %i (0x%x) exceeds the "
755 "page cache size on your system %lu (0x%lx). "
756 "This is not supported. Sorry.",
757 vol
->mft_record_size
, vol
->mft_record_size
,
758 PAGE_CACHE_SIZE
, PAGE_CACHE_SIZE
);
761 clusters_per_index_record
= b
->clusters_per_index_record
;
762 ntfs_debug("clusters_per_index_record = %i (0x%x)",
763 clusters_per_index_record
, clusters_per_index_record
);
764 if (clusters_per_index_record
> 0)
765 vol
->index_record_size
= vol
->cluster_size
<<
766 (ffs(clusters_per_index_record
) - 1);
769 * When index_record_size < cluster_size,
770 * clusters_per_index_record = -log2(index_record_size) bytes.
771 * index_record_size normaly equals 4096 bytes, which is
772 * encoded as 0xF4 (-12 in decimal).
774 vol
->index_record_size
= 1 << -clusters_per_index_record
;
775 vol
->index_record_size_mask
= vol
->index_record_size
- 1;
776 vol
->index_record_size_bits
= ffs(vol
->index_record_size
) - 1;
777 ntfs_debug("vol->index_record_size = %i (0x%x)",
778 vol
->index_record_size
, vol
->index_record_size
);
779 ntfs_debug("vol->index_record_size_mask = 0x%x",
780 vol
->index_record_size_mask
);
781 ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
782 vol
->index_record_size_bits
,
783 vol
->index_record_size_bits
);
785 * Get the size of the volume in clusters and check for 64-bit-ness.
786 * Windows currently only uses 32 bits to save the clusters so we do
787 * the same as it is much faster on 32-bit CPUs.
789 ll
= sle64_to_cpu(b
->number_of_sectors
) >> sectors_per_cluster_bits
;
790 if ((u64
)ll
>= 1ULL << 32) {
791 ntfs_error(vol
->sb
, "Cannot handle 64-bit clusters. Sorry.");
794 vol
->nr_clusters
= ll
;
795 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol
->nr_clusters
);
797 * On an architecture where unsigned long is 32-bits, we restrict the
798 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
799 * will hopefully optimize the whole check away.
801 if (sizeof(unsigned long) < 8) {
802 if ((ll
<< vol
->cluster_size_bits
) >= (1ULL << 41)) {
803 ntfs_error(vol
->sb
, "Volume size (%lluTiB) is too "
804 "large for this architecture. "
805 "Maximum supported is 2TiB. Sorry.",
806 (unsigned long long)ll
>> (40 -
807 vol
->cluster_size_bits
));
811 ll
= sle64_to_cpu(b
->mft_lcn
);
812 if (ll
>= vol
->nr_clusters
) {
813 ntfs_error(vol
->sb
, "MFT LCN is beyond end of volume. Weird.");
817 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol
->mft_lcn
);
818 ll
= sle64_to_cpu(b
->mftmirr_lcn
);
819 if (ll
>= vol
->nr_clusters
) {
820 ntfs_error(vol
->sb
, "MFTMirr LCN is beyond end of volume. "
824 vol
->mftmirr_lcn
= ll
;
825 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol
->mftmirr_lcn
);
828 * Work out the size of the mft mirror in number of mft records. If the
829 * cluster size is less than or equal to the size taken by four mft
830 * records, the mft mirror stores the first four mft records. If the
831 * cluster size is bigger than the size taken by four mft records, the
832 * mft mirror contains as many mft records as will fit into one
835 if (vol
->cluster_size
<= (4 << vol
->mft_record_size_bits
))
836 vol
->mftmirr_size
= 4;
838 vol
->mftmirr_size
= vol
->cluster_size
>>
839 vol
->mft_record_size_bits
;
840 ntfs_debug("vol->mftmirr_size = %i", vol
->mftmirr_size
);
842 vol
->serial_no
= le64_to_cpu(b
->volume_serial_number
);
843 ntfs_debug("vol->serial_no = 0x%llx",
844 (unsigned long long)vol
->serial_no
);
849 * ntfs_setup_allocators - initialize the cluster and mft allocators
850 * @vol: volume structure for which to setup the allocators
852 * Setup the cluster (lcn) and mft allocators to the starting values.
854 static void ntfs_setup_allocators(ntfs_volume
*vol
)
857 LCN mft_zone_size
, mft_lcn
;
860 ntfs_debug("vol->mft_zone_multiplier = 0x%x",
861 vol
->mft_zone_multiplier
);
863 /* Determine the size of the MFT zone. */
864 mft_zone_size
= vol
->nr_clusters
;
865 switch (vol
->mft_zone_multiplier
) { /* % of volume size in clusters */
867 mft_zone_size
>>= 1; /* 50% */
870 mft_zone_size
= (mft_zone_size
+
871 (mft_zone_size
>> 1)) >> 2; /* 37.5% */
874 mft_zone_size
>>= 2; /* 25% */
878 mft_zone_size
>>= 3; /* 12.5% */
881 /* Setup the mft zone. */
882 vol
->mft_zone_start
= vol
->mft_zone_pos
= vol
->mft_lcn
;
883 ntfs_debug("vol->mft_zone_pos = 0x%llx",
884 (unsigned long long)vol
->mft_zone_pos
);
886 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
887 * source) and if the actual mft_lcn is in the expected place or even
888 * further to the front of the volume, extend the mft_zone to cover the
889 * beginning of the volume as well. This is in order to protect the
890 * area reserved for the mft bitmap as well within the mft_zone itself.
891 * On non-standard volumes we do not protect it as the overhead would
892 * be higher than the speed increase we would get by doing it.
894 mft_lcn
= (8192 + 2 * vol
->cluster_size
- 1) / vol
->cluster_size
;
895 if (mft_lcn
* vol
->cluster_size
< 16 * 1024)
896 mft_lcn
= (16 * 1024 + vol
->cluster_size
- 1) /
898 if (vol
->mft_zone_start
<= mft_lcn
)
899 vol
->mft_zone_start
= 0;
900 ntfs_debug("vol->mft_zone_start = 0x%llx",
901 (unsigned long long)vol
->mft_zone_start
);
903 * Need to cap the mft zone on non-standard volumes so that it does
904 * not point outside the boundaries of the volume. We do this by
905 * halving the zone size until we are inside the volume.
907 vol
->mft_zone_end
= vol
->mft_lcn
+ mft_zone_size
;
908 while (vol
->mft_zone_end
>= vol
->nr_clusters
) {
910 vol
->mft_zone_end
= vol
->mft_lcn
+ mft_zone_size
;
912 ntfs_debug("vol->mft_zone_end = 0x%llx",
913 (unsigned long long)vol
->mft_zone_end
);
915 * Set the current position within each data zone to the start of the
918 vol
->data1_zone_pos
= vol
->mft_zone_end
;
919 ntfs_debug("vol->data1_zone_pos = 0x%llx",
920 (unsigned long long)vol
->data1_zone_pos
);
921 vol
->data2_zone_pos
= 0;
922 ntfs_debug("vol->data2_zone_pos = 0x%llx",
923 (unsigned long long)vol
->data2_zone_pos
);
925 /* Set the mft data allocation position to mft record 24. */
926 vol
->mft_data_pos
= 24;
927 ntfs_debug("vol->mft_data_pos = 0x%llx",
928 (unsigned long long)vol
->mft_data_pos
);
935 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
936 * @vol: ntfs super block describing device whose mft mirror to load
938 * Return TRUE on success or FALSE on error.
940 static BOOL
load_and_init_mft_mirror(ntfs_volume
*vol
)
942 struct inode
*tmp_ino
;
945 ntfs_debug("Entering.");
946 /* Get mft mirror inode. */
947 tmp_ino
= ntfs_iget(vol
->sb
, FILE_MFTMirr
);
948 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
949 if (!IS_ERR(tmp_ino
))
951 /* Caller will display error message. */
955 * Re-initialize some specifics about $MFTMirr's inode as
956 * ntfs_read_inode() will have set up the default ones.
958 /* Set uid and gid to root. */
959 tmp_ino
->i_uid
= tmp_ino
->i_gid
= 0;
960 /* Regular file. No access for anyone. */
961 tmp_ino
->i_mode
= S_IFREG
;
962 /* No VFS initiated operations allowed for $MFTMirr. */
963 tmp_ino
->i_op
= &ntfs_empty_inode_ops
;
964 tmp_ino
->i_fop
= &ntfs_empty_file_ops
;
965 /* Put in our special address space operations. */
966 tmp_ino
->i_mapping
->a_ops
= &ntfs_mst_aops
;
967 tmp_ni
= NTFS_I(tmp_ino
);
968 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
969 NInoSetMstProtected(tmp_ni
);
971 * Set up our little cheat allowing us to reuse the async read io
972 * completion handler for directories.
974 tmp_ni
->itype
.index
.block_size
= vol
->mft_record_size
;
975 tmp_ni
->itype
.index
.block_size_bits
= vol
->mft_record_size_bits
;
976 vol
->mftmirr_ino
= tmp_ino
;
982 * check_mft_mirror - compare contents of the mft mirror with the mft
983 * @vol: ntfs super block describing device whose mft mirror to check
985 * Return TRUE on success or FALSE on error.
987 * Note, this function also results in the mft mirror runlist being completely
988 * mapped into memory. The mft mirror write code requires this and will BUG()
989 * should it find an unmapped runlist element.
991 static BOOL
check_mft_mirror(ntfs_volume
*vol
)
994 struct super_block
*sb
= vol
->sb
;
996 struct page
*mft_page
, *mirr_page
;
998 runlist_element
*rl
, rl2
[2];
999 int mrecs_per_page
, i
;
1001 ntfs_debug("Entering.");
1002 /* Compare contents of $MFT and $MFTMirr. */
1003 mrecs_per_page
= PAGE_CACHE_SIZE
/ vol
->mft_record_size
;
1004 BUG_ON(!mrecs_per_page
);
1005 BUG_ON(!vol
->mftmirr_size
);
1006 mft_page
= mirr_page
= NULL
;
1007 kmft
= kmirr
= NULL
;
1012 /* Switch pages if necessary. */
1013 if (!(i
% mrecs_per_page
)) {
1015 ntfs_unmap_page(mft_page
);
1016 ntfs_unmap_page(mirr_page
);
1018 /* Get the $MFT page. */
1019 mft_page
= ntfs_map_page(vol
->mft_ino
->i_mapping
,
1021 if (IS_ERR(mft_page
)) {
1022 ntfs_error(sb
, "Failed to read $MFT.");
1025 kmft
= page_address(mft_page
);
1026 /* Get the $MFTMirr page. */
1027 mirr_page
= ntfs_map_page(vol
->mftmirr_ino
->i_mapping
,
1029 if (IS_ERR(mirr_page
)) {
1030 ntfs_error(sb
, "Failed to read $MFTMirr.");
1033 kmirr
= page_address(mirr_page
);
1036 /* Make sure the record is ok. */
1037 if (ntfs_is_baad_recordp((le32
*)kmft
)) {
1038 ntfs_error(sb
, "Incomplete multi sector transfer "
1039 "detected in mft record %i.", i
);
1041 ntfs_unmap_page(mirr_page
);
1043 ntfs_unmap_page(mft_page
);
1046 if (ntfs_is_baad_recordp((le32
*)kmirr
)) {
1047 ntfs_error(sb
, "Incomplete multi sector transfer "
1048 "detected in mft mirror record %i.", i
);
1051 /* Get the amount of data in the current record. */
1052 bytes
= le32_to_cpu(((MFT_RECORD
*)kmft
)->bytes_in_use
);
1053 if (!bytes
|| bytes
> vol
->mft_record_size
) {
1054 bytes
= le32_to_cpu(((MFT_RECORD
*)kmirr
)->bytes_in_use
);
1055 if (!bytes
|| bytes
> vol
->mft_record_size
)
1056 bytes
= vol
->mft_record_size
;
1058 /* Compare the two records. */
1059 if (memcmp(kmft
, kmirr
, bytes
)) {
1060 ntfs_error(sb
, "$MFT and $MFTMirr (record %i) do not "
1061 "match. Run ntfsfix or chkdsk.", i
);
1064 kmft
+= vol
->mft_record_size
;
1065 kmirr
+= vol
->mft_record_size
;
1066 } while (++i
< vol
->mftmirr_size
);
1067 /* Release the last pages. */
1068 ntfs_unmap_page(mft_page
);
1069 ntfs_unmap_page(mirr_page
);
1071 /* Construct the mft mirror runlist by hand. */
1073 rl2
[0].lcn
= vol
->mftmirr_lcn
;
1074 rl2
[0].length
= (vol
->mftmirr_size
* vol
->mft_record_size
+
1075 vol
->cluster_size
- 1) / vol
->cluster_size
;
1076 rl2
[1].vcn
= rl2
[0].length
;
1077 rl2
[1].lcn
= LCN_ENOENT
;
1080 * Because we have just read all of the mft mirror, we know we have
1081 * mapped the full runlist for it.
1083 mirr_ni
= NTFS_I(vol
->mftmirr_ino
);
1084 down_read(&mirr_ni
->runlist
.lock
);
1085 rl
= mirr_ni
->runlist
.rl
;
1086 /* Compare the two runlists. They must be identical. */
1089 if (rl2
[i
].vcn
!= rl
[i
].vcn
|| rl2
[i
].lcn
!= rl
[i
].lcn
||
1090 rl2
[i
].length
!= rl
[i
].length
) {
1091 ntfs_error(sb
, "$MFTMirr location mismatch. "
1093 up_read(&mirr_ni
->runlist
.lock
);
1096 } while (rl2
[i
++].length
);
1097 up_read(&mirr_ni
->runlist
.lock
);
1098 ntfs_debug("Done.");
1103 * load_and_check_logfile - load and check the logfile inode for a volume
1104 * @vol: ntfs super block describing device whose logfile to load
1106 * Return TRUE on success or FALSE on error.
1108 static BOOL
load_and_check_logfile(ntfs_volume
*vol
)
1110 struct inode
*tmp_ino
;
1112 ntfs_debug("Entering.");
1113 tmp_ino
= ntfs_iget(vol
->sb
, FILE_LogFile
);
1114 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1115 if (!IS_ERR(tmp_ino
))
1117 /* Caller will display error message. */
1120 if (!ntfs_check_logfile(tmp_ino
)) {
1122 /* ntfs_check_logfile() will have displayed error output. */
1125 vol
->logfile_ino
= tmp_ino
;
1126 ntfs_debug("Done.");
1131 * load_and_init_quota - load and setup the quota file for a volume if present
1132 * @vol: ntfs super block describing device whose quota file to load
1134 * Return TRUE on success or FALSE on error. If $Quota is not present, we
1135 * leave vol->quota_ino as NULL and return success.
1137 static BOOL
load_and_init_quota(ntfs_volume
*vol
)
1140 struct inode
*tmp_ino
;
1141 ntfs_name
*name
= NULL
;
1142 static const ntfschar Quota
[7] = { const_cpu_to_le16('$'),
1143 const_cpu_to_le16('Q'), const_cpu_to_le16('u'),
1144 const_cpu_to_le16('o'), const_cpu_to_le16('t'),
1145 const_cpu_to_le16('a'), 0 };
1146 static ntfschar Q
[3] = { const_cpu_to_le16('$'),
1147 const_cpu_to_le16('Q'), 0 };
1149 ntfs_debug("Entering.");
1151 * Find the inode number for the quota file by looking up the filename
1152 * $Quota in the extended system files directory $Extend.
1154 down(&vol
->extend_ino
->i_sem
);
1155 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->extend_ino
), Quota
, 6,
1157 up(&vol
->extend_ino
->i_sem
);
1158 if (IS_ERR_MREF(mref
)) {
1160 * If the file does not exist, quotas are disabled and have
1161 * never been enabled on this volume, just return success.
1163 if (MREF_ERR(mref
) == -ENOENT
) {
1164 ntfs_debug("$Quota not present. Volume does not have "
1167 * No need to try to set quotas out of date if they are
1170 NVolSetQuotaOutOfDate(vol
);
1173 /* A real error occured. */
1174 ntfs_error(vol
->sb
, "Failed to find inode number for $Quota.");
1177 /* We do not care for the type of match that was found. */
1180 /* Get the inode. */
1181 tmp_ino
= ntfs_iget(vol
->sb
, MREF(mref
));
1182 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1183 if (!IS_ERR(tmp_ino
))
1185 ntfs_error(vol
->sb
, "Failed to load $Quota.");
1188 vol
->quota_ino
= tmp_ino
;
1189 /* Get the $Q index allocation attribute. */
1190 tmp_ino
= ntfs_index_iget(vol
->quota_ino
, Q
, 2);
1191 if (IS_ERR(tmp_ino
)) {
1192 ntfs_error(vol
->sb
, "Failed to load $Quota/$Q index.");
1195 vol
->quota_q_ino
= tmp_ino
;
1196 ntfs_debug("Done.");
1201 * load_and_init_attrdef - load the attribute definitions table for a volume
1202 * @vol: ntfs super block describing device whose attrdef to load
1204 * Return TRUE on success or FALSE on error.
1206 static BOOL
load_and_init_attrdef(ntfs_volume
*vol
)
1208 struct super_block
*sb
= vol
->sb
;
1211 unsigned long index
, max_index
;
1214 ntfs_debug("Entering.");
1215 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1216 ino
= ntfs_iget(sb
, FILE_AttrDef
);
1217 if (IS_ERR(ino
) || is_bad_inode(ino
)) {
1222 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1223 if (!ino
->i_size
|| ino
->i_size
> 0x7fffffff)
1225 vol
->attrdef
= (ATTR_DEF
*)ntfs_malloc_nofs(ino
->i_size
);
1229 max_index
= ino
->i_size
>> PAGE_CACHE_SHIFT
;
1230 size
= PAGE_CACHE_SIZE
;
1231 while (index
< max_index
) {
1232 /* Read the attrdef table and copy it into the linear buffer. */
1233 read_partial_attrdef_page
:
1234 page
= ntfs_map_page(ino
->i_mapping
, index
);
1236 goto free_iput_failed
;
1237 memcpy((u8
*)vol
->attrdef
+ (index
++ << PAGE_CACHE_SHIFT
),
1238 page_address(page
), size
);
1239 ntfs_unmap_page(page
);
1241 if (size
== PAGE_CACHE_SIZE
) {
1242 size
= ino
->i_size
& ~PAGE_CACHE_MASK
;
1244 goto read_partial_attrdef_page
;
1246 vol
->attrdef_size
= ino
->i_size
;
1247 ntfs_debug("Read %llu bytes from $AttrDef.", ino
->i_size
);
1251 ntfs_free(vol
->attrdef
);
1252 vol
->attrdef
= NULL
;
1256 ntfs_error(sb
, "Failed to initialize attribute definition table.");
1260 #endif /* NTFS_RW */
1263 * load_and_init_upcase - load the upcase table for an ntfs volume
1264 * @vol: ntfs super block describing device whose upcase to load
1266 * Return TRUE on success or FALSE on error.
1268 static BOOL
load_and_init_upcase(ntfs_volume
*vol
)
1270 struct super_block
*sb
= vol
->sb
;
1273 unsigned long index
, max_index
;
1277 ntfs_debug("Entering.");
1278 /* Read upcase table and setup vol->upcase and vol->upcase_len. */
1279 ino
= ntfs_iget(sb
, FILE_UpCase
);
1280 if (IS_ERR(ino
) || is_bad_inode(ino
)) {
1286 * The upcase size must not be above 64k Unicode characters, must not
1287 * be zero and must be a multiple of sizeof(ntfschar).
1289 if (!ino
->i_size
|| ino
->i_size
& (sizeof(ntfschar
) - 1) ||
1290 ino
->i_size
> 64ULL * 1024 * sizeof(ntfschar
))
1291 goto iput_upcase_failed
;
1292 vol
->upcase
= (ntfschar
*)ntfs_malloc_nofs(ino
->i_size
);
1294 goto iput_upcase_failed
;
1296 max_index
= ino
->i_size
>> PAGE_CACHE_SHIFT
;
1297 size
= PAGE_CACHE_SIZE
;
1298 while (index
< max_index
) {
1299 /* Read the upcase table and copy it into the linear buffer. */
1300 read_partial_upcase_page
:
1301 page
= ntfs_map_page(ino
->i_mapping
, index
);
1303 goto iput_upcase_failed
;
1304 memcpy((char*)vol
->upcase
+ (index
++ << PAGE_CACHE_SHIFT
),
1305 page_address(page
), size
);
1306 ntfs_unmap_page(page
);
1308 if (size
== PAGE_CACHE_SIZE
) {
1309 size
= ino
->i_size
& ~PAGE_CACHE_MASK
;
1311 goto read_partial_upcase_page
;
1313 vol
->upcase_len
= ino
->i_size
>> UCHAR_T_SIZE_BITS
;
1314 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1315 ino
->i_size
, 64 * 1024 * sizeof(ntfschar
));
1318 if (!default_upcase
) {
1319 ntfs_debug("Using volume specified $UpCase since default is "
1324 max
= default_upcase_len
;
1325 if (max
> vol
->upcase_len
)
1326 max
= vol
->upcase_len
;
1327 for (i
= 0; i
< max
; i
++)
1328 if (vol
->upcase
[i
] != default_upcase
[i
])
1331 ntfs_free(vol
->upcase
);
1332 vol
->upcase
= default_upcase
;
1333 vol
->upcase_len
= max
;
1334 ntfs_nr_upcase_users
++;
1336 ntfs_debug("Volume specified $UpCase matches default. Using "
1341 ntfs_debug("Using volume specified $UpCase since it does not match "
1346 ntfs_free(vol
->upcase
);
1350 if (default_upcase
) {
1351 vol
->upcase
= default_upcase
;
1352 vol
->upcase_len
= default_upcase_len
;
1353 ntfs_nr_upcase_users
++;
1355 ntfs_error(sb
, "Failed to load $UpCase from the volume. Using "
1360 ntfs_error(sb
, "Failed to initialize upcase table.");
1365 * load_system_files - open the system files using normal functions
1366 * @vol: ntfs super block describing device whose system files to load
1368 * Open the system files with normal access functions and complete setting up
1369 * the ntfs super block @vol.
1371 * Return TRUE on success or FALSE on error.
1373 static BOOL
load_system_files(ntfs_volume
*vol
)
1375 struct super_block
*sb
= vol
->sb
;
1377 VOLUME_INFORMATION
*vi
;
1378 ntfs_attr_search_ctx
*ctx
;
1380 ntfs_debug("Entering.");
1382 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1383 if (!load_and_init_mft_mirror(vol
) || !check_mft_mirror(vol
)) {
1384 static const char *es1
= "Failed to load $MFTMirr";
1385 static const char *es2
= "$MFTMirr does not match $MFT";
1386 static const char *es3
= ". Run ntfsfix and/or chkdsk.";
1388 /* If a read-write mount, convert it to a read-only mount. */
1389 if (!(sb
->s_flags
& MS_RDONLY
)) {
1390 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1391 ON_ERRORS_CONTINUE
))) {
1392 ntfs_error(sb
, "%s and neither on_errors="
1393 "continue nor on_errors="
1394 "remount-ro was specified%s",
1395 !vol
->mftmirr_ino
? es1
: es2
,
1397 goto iput_mirr_err_out
;
1399 sb
->s_flags
|= MS_RDONLY
| MS_NOATIME
| MS_NODIRATIME
;
1400 ntfs_error(sb
, "%s. Mounting read-only%s",
1401 !vol
->mftmirr_ino
? es1
: es2
, es3
);
1403 ntfs_warning(sb
, "%s. Will not be able to remount "
1405 !vol
->mftmirr_ino
? es1
: es2
, es3
);
1406 /* This will prevent a read-write remount. */
1409 #endif /* NTFS_RW */
1410 /* Get mft bitmap attribute inode. */
1411 vol
->mftbmp_ino
= ntfs_attr_iget(vol
->mft_ino
, AT_BITMAP
, NULL
, 0);
1412 if (IS_ERR(vol
->mftbmp_ino
)) {
1413 ntfs_error(sb
, "Failed to load $MFT/$BITMAP attribute.");
1414 goto iput_mirr_err_out
;
1416 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1417 if (!load_and_init_upcase(vol
))
1418 goto iput_mftbmp_err_out
;
1421 * Read attribute definitions table and setup @vol->attrdef and
1422 * @vol->attrdef_size.
1424 if (!load_and_init_attrdef(vol
))
1425 goto iput_upcase_err_out
;
1426 #endif /* NTFS_RW */
1428 * Get the cluster allocation bitmap inode and verify the size, no
1429 * need for any locking at this stage as we are already running
1430 * exclusively as we are mount in progress task.
1432 vol
->lcnbmp_ino
= ntfs_iget(sb
, FILE_Bitmap
);
1433 if (IS_ERR(vol
->lcnbmp_ino
) || is_bad_inode(vol
->lcnbmp_ino
)) {
1434 if (!IS_ERR(vol
->lcnbmp_ino
))
1435 iput(vol
->lcnbmp_ino
);
1438 if ((vol
->nr_clusters
+ 7) >> 3 > vol
->lcnbmp_ino
->i_size
) {
1439 iput(vol
->lcnbmp_ino
);
1441 ntfs_error(sb
, "Failed to load $Bitmap.");
1442 goto iput_attrdef_err_out
;
1445 * Get the volume inode and setup our cache of the volume flags and
1448 vol
->vol_ino
= ntfs_iget(sb
, FILE_Volume
);
1449 if (IS_ERR(vol
->vol_ino
) || is_bad_inode(vol
->vol_ino
)) {
1450 if (!IS_ERR(vol
->vol_ino
))
1453 ntfs_error(sb
, "Failed to load $Volume.");
1454 goto iput_lcnbmp_err_out
;
1456 m
= map_mft_record(NTFS_I(vol
->vol_ino
));
1462 if (!(ctx
= ntfs_attr_get_search_ctx(NTFS_I(vol
->vol_ino
), m
))) {
1463 ntfs_error(sb
, "Failed to get attribute search context.");
1464 goto get_ctx_vol_failed
;
1466 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
1467 ctx
) || ctx
->attr
->non_resident
|| ctx
->attr
->flags
) {
1469 ntfs_attr_put_search_ctx(ctx
);
1471 unmap_mft_record(NTFS_I(vol
->vol_ino
));
1472 goto iput_volume_failed
;
1474 vi
= (VOLUME_INFORMATION
*)((char*)ctx
->attr
+
1475 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
1476 /* Some bounds checks. */
1477 if ((u8
*)vi
< (u8
*)ctx
->attr
|| (u8
*)vi
+
1478 le32_to_cpu(ctx
->attr
->data
.resident
.value_length
) >
1479 (u8
*)ctx
->attr
+ le32_to_cpu(ctx
->attr
->length
))
1481 /* Copy the volume flags and version to the ntfs_volume structure. */
1482 vol
->vol_flags
= vi
->flags
;
1483 vol
->major_ver
= vi
->major_ver
;
1484 vol
->minor_ver
= vi
->minor_ver
;
1485 ntfs_attr_put_search_ctx(ctx
);
1486 unmap_mft_record(NTFS_I(vol
->vol_ino
));
1487 printk(KERN_INFO
"NTFS volume version %i.%i.\n", vol
->major_ver
,
1490 /* Make sure that no unsupported volume flags are set. */
1491 if (vol
->vol_flags
& VOLUME_MUST_MOUNT_RO_MASK
) {
1492 static const char *es1a
= "Volume is dirty";
1493 static const char *es1b
= "Volume has unsupported flags set";
1494 static const char *es2
= ". Run chkdsk and mount in Windows.";
1497 es1
= vol
->vol_flags
& VOLUME_IS_DIRTY
? es1a
: es1b
;
1498 /* If a read-write mount, convert it to a read-only mount. */
1499 if (!(sb
->s_flags
& MS_RDONLY
)) {
1500 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1501 ON_ERRORS_CONTINUE
))) {
1502 ntfs_error(sb
, "%s and neither on_errors="
1503 "continue nor on_errors="
1504 "remount-ro was specified%s",
1506 goto iput_vol_err_out
;
1508 sb
->s_flags
|= MS_RDONLY
| MS_NOATIME
| MS_NODIRATIME
;
1509 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1511 ntfs_warning(sb
, "%s. Will not be able to remount "
1512 "read-write%s", es1
, es2
);
1514 * Do not set NVolErrors() because ntfs_remount() re-checks the
1515 * flags which we need to do in case any flags have changed.
1519 * Get the inode for the logfile, check it and determine if the volume
1520 * was shutdown cleanly.
1522 if (!load_and_check_logfile(vol
) ||
1523 !ntfs_is_logfile_clean(vol
->logfile_ino
)) {
1524 static const char *es1a
= "Failed to load $LogFile";
1525 static const char *es1b
= "$LogFile is not clean";
1526 static const char *es2
= ". Mount in Windows.";
1529 es1
= !vol
->logfile_ino
? es1a
: es1b
;
1530 /* If a read-write mount, convert it to a read-only mount. */
1531 if (!(sb
->s_flags
& MS_RDONLY
)) {
1532 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1533 ON_ERRORS_CONTINUE
))) {
1534 ntfs_error(sb
, "%s and neither on_errors="
1535 "continue nor on_errors="
1536 "remount-ro was specified%s",
1538 goto iput_logfile_err_out
;
1540 sb
->s_flags
|= MS_RDONLY
| MS_NOATIME
| MS_NODIRATIME
;
1541 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1543 ntfs_warning(sb
, "%s. Will not be able to remount "
1544 "read-write%s", es1
, es2
);
1545 /* This will prevent a read-write remount. */
1548 /* If (still) a read-write mount, mark the volume dirty. */
1549 if (!(sb
->s_flags
& MS_RDONLY
) &&
1550 ntfs_set_volume_flags(vol
, VOLUME_IS_DIRTY
)) {
1551 static const char *es1
= "Failed to set dirty bit in volume "
1552 "information flags";
1553 static const char *es2
= ". Run chkdsk.";
1555 /* Convert to a read-only mount. */
1556 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1557 ON_ERRORS_CONTINUE
))) {
1558 ntfs_error(sb
, "%s and neither on_errors=continue nor "
1559 "on_errors=remount-ro was specified%s",
1561 goto iput_logfile_err_out
;
1563 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1564 sb
->s_flags
|= MS_RDONLY
| MS_NOATIME
| MS_NODIRATIME
;
1566 * Do not set NVolErrors() because ntfs_remount() might manage
1567 * to set the dirty flag in which case all would be well.
1571 // TODO: Enable this code once we start modifying anything that is
1572 // different between NTFS 1.2 and 3.x...
1574 * If (still) a read-write mount, set the NT4 compatibility flag on
1575 * newer NTFS version volumes.
1577 if (!(sb
->s_flags
& MS_RDONLY
) && (vol
->major_ver
> 1) &&
1578 ntfs_set_volume_flags(vol
, VOLUME_MOUNTED_ON_NT4
)) {
1579 static const char *es1
= "Failed to set NT4 compatibility flag";
1580 static const char *es2
= ". Run chkdsk.";
1582 /* Convert to a read-only mount. */
1583 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1584 ON_ERRORS_CONTINUE
))) {
1585 ntfs_error(sb
, "%s and neither on_errors=continue nor "
1586 "on_errors=remount-ro was specified%s",
1588 goto iput_logfile_err_out
;
1590 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1591 sb
->s_flags
|= MS_RDONLY
| MS_NOATIME
| MS_NODIRATIME
;
1595 /* If (still) a read-write mount, empty the logfile. */
1596 if (!(sb
->s_flags
& MS_RDONLY
) &&
1597 !ntfs_empty_logfile(vol
->logfile_ino
)) {
1598 static const char *es1
= "Failed to empty $LogFile";
1599 static const char *es2
= ". Mount in Windows.";
1601 /* Convert to a read-only mount. */
1602 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1603 ON_ERRORS_CONTINUE
))) {
1604 ntfs_error(sb
, "%s and neither on_errors=continue nor "
1605 "on_errors=remount-ro was specified%s",
1607 goto iput_logfile_err_out
;
1609 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1610 sb
->s_flags
|= MS_RDONLY
| MS_NOATIME
| MS_NODIRATIME
;
1613 #endif /* NTFS_RW */
1614 /* Get the root directory inode. */
1615 vol
->root_ino
= ntfs_iget(sb
, FILE_root
);
1616 if (IS_ERR(vol
->root_ino
) || is_bad_inode(vol
->root_ino
)) {
1617 if (!IS_ERR(vol
->root_ino
))
1618 iput(vol
->root_ino
);
1619 ntfs_error(sb
, "Failed to load root directory.");
1620 goto iput_logfile_err_out
;
1622 /* If on NTFS versions before 3.0, we are done. */
1623 if (vol
->major_ver
< 3)
1625 /* NTFS 3.0+ specific initialization. */
1626 /* Get the security descriptors inode. */
1627 vol
->secure_ino
= ntfs_iget(sb
, FILE_Secure
);
1628 if (IS_ERR(vol
->secure_ino
) || is_bad_inode(vol
->secure_ino
)) {
1629 if (!IS_ERR(vol
->secure_ino
))
1630 iput(vol
->secure_ino
);
1631 ntfs_error(sb
, "Failed to load $Secure.");
1632 goto iput_root_err_out
;
1634 // FIXME: Initialize security.
1635 /* Get the extended system files' directory inode. */
1636 vol
->extend_ino
= ntfs_iget(sb
, FILE_Extend
);
1637 if (IS_ERR(vol
->extend_ino
) || is_bad_inode(vol
->extend_ino
)) {
1638 if (!IS_ERR(vol
->extend_ino
))
1639 iput(vol
->extend_ino
);
1640 ntfs_error(sb
, "Failed to load $Extend.");
1641 goto iput_sec_err_out
;
1644 /* Find the quota file, load it if present, and set it up. */
1645 if (!load_and_init_quota(vol
)) {
1646 static const char *es1
= "Failed to load $Quota";
1647 static const char *es2
= ". Run chkdsk.";
1649 /* If a read-write mount, convert it to a read-only mount. */
1650 if (!(sb
->s_flags
& MS_RDONLY
)) {
1651 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1652 ON_ERRORS_CONTINUE
))) {
1653 ntfs_error(sb
, "%s and neither on_errors="
1654 "continue nor on_errors="
1655 "remount-ro was specified%s",
1657 goto iput_quota_err_out
;
1659 sb
->s_flags
|= MS_RDONLY
| MS_NOATIME
| MS_NODIRATIME
;
1660 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1662 ntfs_warning(sb
, "%s. Will not be able to remount "
1663 "read-write%s", es1
, es2
);
1664 /* This will prevent a read-write remount. */
1667 /* If (still) a read-write mount, mark the quotas out of date. */
1668 if (!(sb
->s_flags
& MS_RDONLY
) &&
1669 !ntfs_mark_quotas_out_of_date(vol
)) {
1670 static const char *es1
= "Failed to mark quotas out of date";
1671 static const char *es2
= ". Run chkdsk.";
1673 /* Convert to a read-only mount. */
1674 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1675 ON_ERRORS_CONTINUE
))) {
1676 ntfs_error(sb
, "%s and neither on_errors=continue nor "
1677 "on_errors=remount-ro was specified%s",
1679 goto iput_quota_err_out
;
1681 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1682 sb
->s_flags
|= MS_RDONLY
| MS_NOATIME
| MS_NODIRATIME
;
1685 // TODO: Delete or checkpoint the $UsnJrnl if it exists.
1686 #endif /* NTFS_RW */
1690 if (vol
->quota_q_ino
)
1691 iput(vol
->quota_q_ino
);
1693 iput(vol
->quota_ino
);
1694 iput(vol
->extend_ino
);
1695 #endif /* NTFS_RW */
1697 iput(vol
->secure_ino
);
1699 iput(vol
->root_ino
);
1700 iput_logfile_err_out
:
1702 if (vol
->logfile_ino
)
1703 iput(vol
->logfile_ino
);
1705 #endif /* NTFS_RW */
1707 iput_lcnbmp_err_out
:
1708 iput(vol
->lcnbmp_ino
);
1709 iput_attrdef_err_out
:
1710 vol
->attrdef_size
= 0;
1712 ntfs_free(vol
->attrdef
);
1713 vol
->attrdef
= NULL
;
1716 iput_upcase_err_out
:
1717 #endif /* NTFS_RW */
1718 vol
->upcase_len
= 0;
1720 if (vol
->upcase
== default_upcase
) {
1721 ntfs_nr_upcase_users
--;
1726 ntfs_free(vol
->upcase
);
1729 iput_mftbmp_err_out
:
1730 iput(vol
->mftbmp_ino
);
1733 if (vol
->mftmirr_ino
)
1734 iput(vol
->mftmirr_ino
);
1735 #endif /* NTFS_RW */
1740 * ntfs_put_super - called by the vfs to unmount a volume
1741 * @sb: vfs superblock of volume to unmount
1743 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
1744 * the volume is being unmounted (umount system call has been invoked) and it
1745 * releases all inodes and memory belonging to the NTFS specific part of the
1748 static void ntfs_put_super(struct super_block
*sb
)
1750 ntfs_volume
*vol
= NTFS_SB(sb
);
1752 ntfs_debug("Entering.");
1755 * Commit all inodes while they are still open in case some of them
1756 * cause others to be dirtied.
1758 ntfs_commit_inode(vol
->vol_ino
);
1760 /* NTFS 3.0+ specific. */
1761 if (vol
->major_ver
>= 3) {
1762 if (vol
->quota_q_ino
)
1763 ntfs_commit_inode(vol
->quota_q_ino
);
1765 ntfs_commit_inode(vol
->quota_ino
);
1766 if (vol
->extend_ino
)
1767 ntfs_commit_inode(vol
->extend_ino
);
1768 if (vol
->secure_ino
)
1769 ntfs_commit_inode(vol
->secure_ino
);
1772 ntfs_commit_inode(vol
->root_ino
);
1774 down_write(&vol
->lcnbmp_lock
);
1775 ntfs_commit_inode(vol
->lcnbmp_ino
);
1776 up_write(&vol
->lcnbmp_lock
);
1778 down_write(&vol
->mftbmp_lock
);
1779 ntfs_commit_inode(vol
->mftbmp_ino
);
1780 up_write(&vol
->mftbmp_lock
);
1782 if (vol
->logfile_ino
)
1783 ntfs_commit_inode(vol
->logfile_ino
);
1785 if (vol
->mftmirr_ino
)
1786 ntfs_commit_inode(vol
->mftmirr_ino
);
1787 ntfs_commit_inode(vol
->mft_ino
);
1790 * If a read-write mount and no volume errors have occured, mark the
1791 * volume clean. Also, re-commit all affected inodes.
1793 if (!(sb
->s_flags
& MS_RDONLY
)) {
1794 if (!NVolErrors(vol
)) {
1795 if (ntfs_clear_volume_flags(vol
, VOLUME_IS_DIRTY
))
1796 ntfs_warning(sb
, "Failed to clear dirty bit "
1797 "in volume information "
1798 "flags. Run chkdsk.");
1799 ntfs_commit_inode(vol
->vol_ino
);
1800 ntfs_commit_inode(vol
->root_ino
);
1801 if (vol
->mftmirr_ino
)
1802 ntfs_commit_inode(vol
->mftmirr_ino
);
1803 ntfs_commit_inode(vol
->mft_ino
);
1805 ntfs_warning(sb
, "Volume has errors. Leaving volume "
1806 "marked dirty. Run chkdsk.");
1809 #endif /* NTFS_RW */
1812 vol
->vol_ino
= NULL
;
1814 /* NTFS 3.0+ specific clean up. */
1815 if (vol
->major_ver
>= 3) {
1817 if (vol
->quota_q_ino
) {
1818 iput(vol
->quota_q_ino
);
1819 vol
->quota_q_ino
= NULL
;
1821 if (vol
->quota_ino
) {
1822 iput(vol
->quota_ino
);
1823 vol
->quota_ino
= NULL
;
1825 #endif /* NTFS_RW */
1826 if (vol
->extend_ino
) {
1827 iput(vol
->extend_ino
);
1828 vol
->extend_ino
= NULL
;
1830 if (vol
->secure_ino
) {
1831 iput(vol
->secure_ino
);
1832 vol
->secure_ino
= NULL
;
1836 iput(vol
->root_ino
);
1837 vol
->root_ino
= NULL
;
1839 down_write(&vol
->lcnbmp_lock
);
1840 iput(vol
->lcnbmp_ino
);
1841 vol
->lcnbmp_ino
= NULL
;
1842 up_write(&vol
->lcnbmp_lock
);
1844 down_write(&vol
->mftbmp_lock
);
1845 iput(vol
->mftbmp_ino
);
1846 vol
->mftbmp_ino
= NULL
;
1847 up_write(&vol
->mftbmp_lock
);
1850 if (vol
->logfile_ino
) {
1851 iput(vol
->logfile_ino
);
1852 vol
->logfile_ino
= NULL
;
1854 if (vol
->mftmirr_ino
) {
1855 /* Re-commit the mft mirror and mft just in case. */
1856 ntfs_commit_inode(vol
->mftmirr_ino
);
1857 ntfs_commit_inode(vol
->mft_ino
);
1858 iput(vol
->mftmirr_ino
);
1859 vol
->mftmirr_ino
= NULL
;
1862 * If any dirty inodes are left, throw away all mft data page cache
1863 * pages to allow a clean umount. This should never happen any more
1864 * due to mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
1865 * the underlying mft records are written out and cleaned. If it does,
1866 * happen anyway, we want to know...
1868 ntfs_commit_inode(vol
->mft_ino
);
1869 write_inode_now(vol
->mft_ino
, 1);
1870 if (!list_empty(&sb
->s_dirty
)) {
1871 const char *s1
, *s2
;
1873 down(&vol
->mft_ino
->i_sem
);
1874 truncate_inode_pages(vol
->mft_ino
->i_mapping
, 0);
1875 up(&vol
->mft_ino
->i_sem
);
1876 write_inode_now(vol
->mft_ino
, 1);
1877 if (!list_empty(&sb
->s_dirty
)) {
1878 static const char *_s1
= "inodes";
1879 static const char *_s2
= "";
1883 static const char *_s1
= "mft pages";
1884 static const char *_s2
= "They have been thrown "
1889 ntfs_error(sb
, "Dirty %s found at umount time. %sYou should "
1890 "run chkdsk. Please email "
1891 "linux-ntfs-dev@lists.sourceforge.net and say "
1892 "that you saw this message. Thank you.", s1
,
1895 #endif /* NTFS_RW */
1898 vol
->mft_ino
= NULL
;
1900 /* Throw away the table of attribute definitions. */
1901 vol
->attrdef_size
= 0;
1903 ntfs_free(vol
->attrdef
);
1904 vol
->attrdef
= NULL
;
1906 vol
->upcase_len
= 0;
1908 * Destroy the global default upcase table if necessary. Also decrease
1909 * the number of upcase users if we are a user.
1912 if (vol
->upcase
== default_upcase
) {
1913 ntfs_nr_upcase_users
--;
1916 if (!ntfs_nr_upcase_users
&& default_upcase
) {
1917 ntfs_free(default_upcase
);
1918 default_upcase
= NULL
;
1920 if (vol
->cluster_size
<= 4096 && !--ntfs_nr_compression_users
)
1921 free_compression_buffers();
1924 ntfs_free(vol
->upcase
);
1928 unload_nls(vol
->nls_map
);
1929 vol
->nls_map
= NULL
;
1931 sb
->s_fs_info
= NULL
;
1937 * get_nr_free_clusters - return the number of free clusters on a volume
1938 * @vol: ntfs volume for which to obtain free cluster count
1940 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
1941 * actually calculate the number of clusters in use instead because this
1942 * allows us to not care about partial pages as these will be just zero filled
1943 * and hence not be counted as allocated clusters.
1945 * The only particularity is that clusters beyond the end of the logical ntfs
1946 * volume will be marked as allocated to prevent errors which means we have to
1947 * discount those at the end. This is important as the cluster bitmap always
1948 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
1949 * the logical volume and marked in use when they are not as they do not exist.
1951 * If any pages cannot be read we assume all clusters in the erroring pages are
1952 * in use. This means we return an underestimate on errors which is better than
1955 static s64
get_nr_free_clusters(ntfs_volume
*vol
)
1957 s64 nr_free
= vol
->nr_clusters
;
1959 struct address_space
*mapping
= vol
->lcnbmp_ino
->i_mapping
;
1960 filler_t
*readpage
= (filler_t
*)mapping
->a_ops
->readpage
;
1962 unsigned long index
, max_index
;
1963 unsigned int max_size
;
1965 ntfs_debug("Entering.");
1966 /* Serialize accesses to the cluster bitmap. */
1967 down_read(&vol
->lcnbmp_lock
);
1969 * Convert the number of bits into bytes rounded up, then convert into
1970 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
1971 * full and one partial page max_index = 2.
1973 max_index
= (((vol
->nr_clusters
+ 7) >> 3) + PAGE_CACHE_SIZE
- 1) >>
1975 /* Use multiples of 4 bytes. */
1976 max_size
= PAGE_CACHE_SIZE
>> 2;
1977 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%x.",
1978 max_index
, max_size
);
1979 for (index
= 0UL; index
< max_index
; index
++) {
1982 * Read the page from page cache, getting it from backing store
1983 * if necessary, and increment the use count.
1985 page
= read_cache_page(mapping
, index
, (filler_t
*)readpage
,
1987 /* Ignore pages which errored synchronously. */
1989 ntfs_debug("Sync read_cache_page() error. Skipping "
1990 "page (index 0x%lx).", index
);
1991 nr_free
-= PAGE_CACHE_SIZE
* 8;
1994 wait_on_page_locked(page
);
1995 /* Ignore pages which errored asynchronously. */
1996 if (!PageUptodate(page
)) {
1997 ntfs_debug("Async read_cache_page() error. Skipping "
1998 "page (index 0x%lx).", index
);
1999 page_cache_release(page
);
2000 nr_free
-= PAGE_CACHE_SIZE
* 8;
2003 kaddr
= (u32
*)kmap_atomic(page
, KM_USER0
);
2005 * For each 4 bytes, subtract the number of set bits. If this
2006 * is the last page and it is partial we don't really care as
2007 * it just means we do a little extra work but it won't affect
2008 * the result as all out of range bytes are set to zero by
2011 for (i
= 0; i
< max_size
; i
++)
2012 nr_free
-= (s64
)hweight32(kaddr
[i
]);
2013 kunmap_atomic(kaddr
, KM_USER0
);
2014 page_cache_release(page
);
2016 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index
- 1);
2018 * Fixup for eventual bits outside logical ntfs volume (see function
2019 * description above).
2021 if (vol
->nr_clusters
& 63)
2022 nr_free
+= 64 - (vol
->nr_clusters
& 63);
2023 up_read(&vol
->lcnbmp_lock
);
2024 /* If errors occured we may well have gone below zero, fix this. */
2027 ntfs_debug("Exiting.");
2032 * __get_nr_free_mft_records - return the number of free inodes on a volume
2033 * @vol: ntfs volume for which to obtain free inode count
2035 * Calculate the number of free mft records (inodes) on the mounted NTFS
2036 * volume @vol. We actually calculate the number of mft records in use instead
2037 * because this allows us to not care about partial pages as these will be just
2038 * zero filled and hence not be counted as allocated mft record.
2040 * If any pages cannot be read we assume all mft records in the erroring pages
2041 * are in use. This means we return an underestimate on errors which is better
2042 * than an overestimate.
2044 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2046 static unsigned long __get_nr_free_mft_records(ntfs_volume
*vol
)
2050 struct address_space
*mapping
= vol
->mftbmp_ino
->i_mapping
;
2051 filler_t
*readpage
= (filler_t
*)mapping
->a_ops
->readpage
;
2053 unsigned long index
, max_index
;
2054 unsigned int max_size
;
2056 ntfs_debug("Entering.");
2057 /* Number of mft records in file system (at this point in time). */
2058 nr_free
= vol
->mft_ino
->i_size
>> vol
->mft_record_size_bits
;
2060 * Convert the maximum number of set bits into bytes rounded up, then
2061 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2062 * have one full and one partial page max_index = 2.
2064 max_index
= ((((NTFS_I(vol
->mft_ino
)->initialized_size
>>
2065 vol
->mft_record_size_bits
) + 7) >> 3) +
2066 PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
2067 /* Use multiples of 4 bytes. */
2068 max_size
= PAGE_CACHE_SIZE
>> 2;
2069 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2070 "0x%x.", max_index
, max_size
);
2071 for (index
= 0UL; index
< max_index
; index
++) {
2074 * Read the page from page cache, getting it from backing store
2075 * if necessary, and increment the use count.
2077 page
= read_cache_page(mapping
, index
, (filler_t
*)readpage
,
2079 /* Ignore pages which errored synchronously. */
2081 ntfs_debug("Sync read_cache_page() error. Skipping "
2082 "page (index 0x%lx).", index
);
2083 nr_free
-= PAGE_CACHE_SIZE
* 8;
2086 wait_on_page_locked(page
);
2087 /* Ignore pages which errored asynchronously. */
2088 if (!PageUptodate(page
)) {
2089 ntfs_debug("Async read_cache_page() error. Skipping "
2090 "page (index 0x%lx).", index
);
2091 page_cache_release(page
);
2092 nr_free
-= PAGE_CACHE_SIZE
* 8;
2095 kaddr
= (u32
*)kmap_atomic(page
, KM_USER0
);
2097 * For each 4 bytes, subtract the number of set bits. If this
2098 * is the last page and it is partial we don't really care as
2099 * it just means we do a little extra work but it won't affect
2100 * the result as all out of range bytes are set to zero by
2103 for (i
= 0; i
< max_size
; i
++)
2104 nr_free
-= (s64
)hweight32(kaddr
[i
]);
2105 kunmap_atomic(kaddr
, KM_USER0
);
2106 page_cache_release(page
);
2108 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2110 /* If errors occured we may well have gone below zero, fix this. */
2113 ntfs_debug("Exiting.");
2118 * ntfs_statfs - return information about mounted NTFS volume
2119 * @sb: super block of mounted volume
2120 * @sfs: statfs structure in which to return the information
2122 * Return information about the mounted NTFS volume @sb in the statfs structure
2123 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2124 * called). We interpret the values to be correct of the moment in time at
2125 * which we are called. Most values are variable otherwise and this isn't just
2126 * the free values but the totals as well. For example we can increase the
2127 * total number of file nodes if we run out and we can keep doing this until
2128 * there is no more space on the volume left at all.
2130 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2131 * ustat system calls.
2133 * Return 0 on success or -errno on error.
2135 static int ntfs_statfs(struct super_block
*sb
, struct kstatfs
*sfs
)
2137 ntfs_volume
*vol
= NTFS_SB(sb
);
2140 ntfs_debug("Entering.");
2141 /* Type of filesystem. */
2142 sfs
->f_type
= NTFS_SB_MAGIC
;
2143 /* Optimal transfer block size. */
2144 sfs
->f_bsize
= PAGE_CACHE_SIZE
;
2146 * Total data blocks in file system in units of f_bsize and since
2147 * inodes are also stored in data blocs ($MFT is a file) this is just
2148 * the total clusters.
2150 sfs
->f_blocks
= vol
->nr_clusters
<< vol
->cluster_size_bits
>>
2152 /* Free data blocks in file system in units of f_bsize. */
2153 size
= get_nr_free_clusters(vol
) << vol
->cluster_size_bits
>>
2157 /* Free blocks avail to non-superuser, same as above on NTFS. */
2158 sfs
->f_bavail
= sfs
->f_bfree
= size
;
2159 /* Serialize accesses to the inode bitmap. */
2160 down_read(&vol
->mftbmp_lock
);
2161 /* Number of inodes in file system (at this point in time). */
2162 sfs
->f_files
= vol
->mft_ino
->i_size
>> vol
->mft_record_size_bits
;
2163 /* Free inodes in fs (based on current total count). */
2164 sfs
->f_ffree
= __get_nr_free_mft_records(vol
);
2165 up_read(&vol
->mftbmp_lock
);
2167 * File system id. This is extremely *nix flavour dependent and even
2168 * within Linux itself all fs do their own thing. I interpret this to
2169 * mean a unique id associated with the mounted fs and not the id
2170 * associated with the file system driver, the latter is already given
2171 * by the file system type in sfs->f_type. Thus we use the 64-bit
2172 * volume serial number splitting it into two 32-bit parts. We enter
2173 * the least significant 32-bits in f_fsid[0] and the most significant
2174 * 32-bits in f_fsid[1].
2176 sfs
->f_fsid
.val
[0] = vol
->serial_no
& 0xffffffff;
2177 sfs
->f_fsid
.val
[1] = (vol
->serial_no
>> 32) & 0xffffffff;
2178 /* Maximum length of filenames. */
2179 sfs
->f_namelen
= NTFS_MAX_NAME_LEN
;
2184 * The complete super operations.
2186 static struct super_operations ntfs_sops
= {
2187 .alloc_inode
= ntfs_alloc_big_inode
, /* VFS: Allocate new inode. */
2188 .destroy_inode
= ntfs_destroy_big_inode
, /* VFS: Deallocate inode. */
2189 .put_inode
= ntfs_put_inode
, /* VFS: Called just before
2190 the inode reference count
2193 //.dirty_inode = NULL, /* VFS: Called from
2194 // __mark_inode_dirty(). */
2195 .write_inode
= ntfs_write_inode
, /* VFS: Write dirty inode to
2197 //.drop_inode = NULL, /* VFS: Called just after the
2198 // inode reference count has
2199 // been decreased to zero.
2200 // NOTE: The inode lock is
2201 // held. See fs/inode.c::
2202 // generic_drop_inode(). */
2203 //.delete_inode = NULL, /* VFS: Delete inode from disk.
2204 // Called when i_count becomes
2205 // 0 and i_nlink is also 0. */
2206 //.write_super = NULL, /* Flush dirty super block to
2208 //.sync_fs = NULL, /* ? */
2209 //.write_super_lockfs = NULL, /* ? */
2210 //.unlockfs = NULL, /* ? */
2211 #endif /* NTFS_RW */
2212 .put_super
= ntfs_put_super
, /* Syscall: umount. */
2213 .statfs
= ntfs_statfs
, /* Syscall: statfs */
2214 .remount_fs
= ntfs_remount
, /* Syscall: mount -o remount. */
2215 .clear_inode
= ntfs_clear_big_inode
, /* VFS: Called when an inode is
2216 removed from memory. */
2217 //.umount_begin = NULL, /* Forced umount. */
2218 .show_options
= ntfs_show_options
, /* Show mount options in
2224 * Declarations for NTFS specific export operations (fs/ntfs/namei.c).
2226 extern struct dentry
*ntfs_get_parent(struct dentry
*child_dent
);
2227 extern struct dentry
*ntfs_get_dentry(struct super_block
*sb
, void *fh
);
2230 * Export operations allowing NFS exporting of mounted NTFS partitions.
2232 * We use the default ->decode_fh() and ->encode_fh() for now. Note that they
2233 * use 32 bits to store the inode number which is an unsigned long so on 64-bit
2234 * architectures is usually 64 bits so it would all fail horribly on huge
2235 * volumes. I guess we need to define our own encode and decode fh functions
2236 * that store 64-bit inode numbers at some point but for now we will ignore the
2239 * We also use the default ->get_name() helper (used by ->decode_fh() via
2240 * fs/exportfs/expfs.c::find_exported_dentry()) as that is completely fs
2243 * The default ->get_parent() just returns -EACCES so we have to provide our
2244 * own and the default ->get_dentry() is incompatible with NTFS due to not
2245 * allowing the inode number 0 which is used in NTFS for the system file $MFT
2246 * and due to using iget() whereas NTFS needs ntfs_iget().
2248 static struct export_operations ntfs_export_ops
= {
2249 .get_parent
= ntfs_get_parent
, /* Find the parent of a given
2251 .get_dentry
= ntfs_get_dentry
, /* Find a dentry for the inode
2257 * ntfs_fill_super - mount an ntfs files system
2258 * @sb: super block of ntfs file system to mount
2259 * @opt: string containing the mount options
2260 * @silent: silence error output
2262 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2263 * with the mount otions in @data with the NTFS file system.
2265 * If @silent is true, remain silent even if errors are detected. This is used
2266 * during bootup, when the kernel tries to mount the root file system with all
2267 * registered file systems one after the other until one succeeds. This implies
2268 * that all file systems except the correct one will quite correctly and
2269 * expectedly return an error, but nobody wants to see error messages when in
2270 * fact this is what is supposed to happen.
2272 * NOTE: @sb->s_flags contains the mount options flags.
2274 static int ntfs_fill_super(struct super_block
*sb
, void *opt
, const int silent
)
2277 struct buffer_head
*bh
;
2278 struct inode
*tmp_ino
;
2281 ntfs_debug("Entering.");
2283 sb
->s_flags
|= MS_RDONLY
| MS_NOATIME
| MS_NODIRATIME
;
2284 #endif /* ! NTFS_RW */
2285 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2286 sb
->s_fs_info
= kmalloc(sizeof(ntfs_volume
), GFP_NOFS
);
2290 ntfs_error(sb
, "Allocation of NTFS volume structure "
2291 "failed. Aborting mount...");
2294 /* Initialize ntfs_volume structure. */
2295 memset(vol
, 0, sizeof(ntfs_volume
));
2298 vol
->attrdef
= NULL
;
2299 vol
->mft_ino
= NULL
;
2300 vol
->mftbmp_ino
= NULL
;
2301 init_rwsem(&vol
->mftbmp_lock
);
2303 vol
->mftmirr_ino
= NULL
;
2304 vol
->logfile_ino
= NULL
;
2305 #endif /* NTFS_RW */
2306 vol
->lcnbmp_ino
= NULL
;
2307 init_rwsem(&vol
->lcnbmp_lock
);
2308 vol
->vol_ino
= NULL
;
2309 vol
->root_ino
= NULL
;
2310 vol
->secure_ino
= NULL
;
2311 vol
->extend_ino
= NULL
;
2313 vol
->quota_ino
= NULL
;
2314 vol
->quota_q_ino
= NULL
;
2315 #endif /* NTFS_RW */
2316 vol
->nls_map
= NULL
;
2319 * Default is group and other don't have any access to files or
2320 * directories while owner has full access. Further, files by default
2321 * are not executable but directories are of course browseable.
2328 /* Important to get the mount options dealt with now. */
2329 if (!parse_options(vol
, (char*)opt
))
2333 * TODO: Fail safety check. In the future we should really be able to
2334 * cope with this being the case, but for now just bail out.
2336 if (bdev_hardsect_size(sb
->s_bdev
) > NTFS_BLOCK_SIZE
) {
2338 ntfs_error(sb
, "Device has unsupported hardsect_size.");
2342 /* Setup the device access block size to NTFS_BLOCK_SIZE. */
2343 if (sb_set_blocksize(sb
, NTFS_BLOCK_SIZE
) != NTFS_BLOCK_SIZE
) {
2345 ntfs_error(sb
, "Unable to set block size.");
2349 /* Get the size of the device in units of NTFS_BLOCK_SIZE bytes. */
2350 vol
->nr_blocks
= sb
->s_bdev
->bd_inode
->i_size
>> NTFS_BLOCK_SIZE_BITS
;
2352 /* Read the boot sector and return unlocked buffer head to it. */
2353 if (!(bh
= read_ntfs_boot_sector(sb
, silent
))) {
2355 ntfs_error(sb
, "Not an NTFS volume.");
2360 * Extract the data from the boot sector and setup the ntfs super block
2363 result
= parse_ntfs_boot_sector(vol
, (NTFS_BOOT_SECTOR
*)bh
->b_data
);
2365 /* Initialize the cluster and mft allocators. */
2366 ntfs_setup_allocators(vol
);
2372 ntfs_error(sb
, "Unsupported NTFS filesystem.");
2377 * TODO: When we start coping with sector sizes different from
2378 * NTFS_BLOCK_SIZE, we now probably need to set the blocksize of the
2379 * device (probably to NTFS_BLOCK_SIZE).
2382 /* Setup remaining fields in the super block. */
2383 sb
->s_magic
= NTFS_SB_MAGIC
;
2386 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2387 * sb->s_maxbytes = ~0ULL >> 1;
2388 * But the kernel uses a long as the page cache page index which on
2389 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2390 * defined to the maximum the page cache page index can cope with
2391 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2393 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2395 sb
->s_time_gran
= 100;
2398 * Now load the metadata required for the page cache and our address
2399 * space operations to function. We do this by setting up a specialised
2400 * read_inode method and then just calling the normal iget() to obtain
2401 * the inode for $MFT which is sufficient to allow our normal inode
2402 * operations and associated address space operations to function.
2404 sb
->s_op
= &ntfs_sops
;
2405 tmp_ino
= new_inode(sb
);
2408 ntfs_error(sb
, "Failed to load essential metadata.");
2411 tmp_ino
->i_ino
= FILE_MFT
;
2412 insert_inode_hash(tmp_ino
);
2413 if (ntfs_read_inode_mount(tmp_ino
) < 0) {
2415 ntfs_error(sb
, "Failed to load essential metadata.");
2416 goto iput_tmp_ino_err_out_now
;
2420 * The current mount is a compression user if the cluster size is
2421 * less than or equal 4kiB.
2423 if (vol
->cluster_size
<= 4096 && !ntfs_nr_compression_users
++) {
2424 result
= allocate_compression_buffers();
2426 ntfs_error(NULL
, "Failed to allocate buffers "
2427 "for compression engine.");
2428 ntfs_nr_compression_users
--;
2430 goto iput_tmp_ino_err_out_now
;
2434 * Generate the global default upcase table if necessary. Also
2435 * temporarily increment the number of upcase users to avoid race
2436 * conditions with concurrent (u)mounts.
2438 if (!default_upcase
)
2439 default_upcase
= generate_default_upcase();
2440 ntfs_nr_upcase_users
++;
2443 * From now on, ignore @silent parameter. If we fail below this line,
2444 * it will be due to a corrupt fs or a system error, so we report it.
2447 * Open the system files with normal access functions and complete
2448 * setting up the ntfs super block.
2450 if (!load_system_files(vol
)) {
2451 ntfs_error(sb
, "Failed to load system files.");
2452 goto unl_upcase_iput_tmp_ino_err_out_now
;
2454 if ((sb
->s_root
= d_alloc_root(vol
->root_ino
))) {
2455 /* We increment i_count simulating an ntfs_iget(). */
2456 atomic_inc(&vol
->root_ino
->i_count
);
2457 ntfs_debug("Exiting, status successful.");
2458 /* Release the default upcase if it has no users. */
2460 if (!--ntfs_nr_upcase_users
&& default_upcase
) {
2461 ntfs_free(default_upcase
);
2462 default_upcase
= NULL
;
2465 sb
->s_export_op
= &ntfs_export_ops
;
2469 ntfs_error(sb
, "Failed to allocate root directory.");
2470 /* Clean up after the successful load_system_files() call from above. */
2471 // TODO: Use ntfs_put_super() instead of repeating all this code...
2472 // FIXME: Should mark the volume clean as the error is most likely
2475 vol
->vol_ino
= NULL
;
2476 /* NTFS 3.0+ specific clean up. */
2477 if (vol
->major_ver
>= 3) {
2479 if (vol
->quota_q_ino
) {
2480 iput(vol
->quota_q_ino
);
2481 vol
->quota_q_ino
= NULL
;
2483 if (vol
->quota_ino
) {
2484 iput(vol
->quota_ino
);
2485 vol
->quota_ino
= NULL
;
2487 #endif /* NTFS_RW */
2488 if (vol
->extend_ino
) {
2489 iput(vol
->extend_ino
);
2490 vol
->extend_ino
= NULL
;
2492 if (vol
->secure_ino
) {
2493 iput(vol
->secure_ino
);
2494 vol
->secure_ino
= NULL
;
2497 iput(vol
->root_ino
);
2498 vol
->root_ino
= NULL
;
2499 iput(vol
->lcnbmp_ino
);
2500 vol
->lcnbmp_ino
= NULL
;
2501 iput(vol
->mftbmp_ino
);
2502 vol
->mftbmp_ino
= NULL
;
2504 if (vol
->logfile_ino
) {
2505 iput(vol
->logfile_ino
);
2506 vol
->logfile_ino
= NULL
;
2508 if (vol
->mftmirr_ino
) {
2509 iput(vol
->mftmirr_ino
);
2510 vol
->mftmirr_ino
= NULL
;
2512 #endif /* NTFS_RW */
2513 /* Throw away the table of attribute definitions. */
2514 vol
->attrdef_size
= 0;
2516 ntfs_free(vol
->attrdef
);
2517 vol
->attrdef
= NULL
;
2519 vol
->upcase_len
= 0;
2521 if (vol
->upcase
== default_upcase
) {
2522 ntfs_nr_upcase_users
--;
2527 ntfs_free(vol
->upcase
);
2531 unload_nls(vol
->nls_map
);
2532 vol
->nls_map
= NULL
;
2534 /* Error exit code path. */
2535 unl_upcase_iput_tmp_ino_err_out_now
:
2537 * Decrease the number of upcase users and destroy the global default
2538 * upcase table if necessary.
2541 if (!--ntfs_nr_upcase_users
&& default_upcase
) {
2542 ntfs_free(default_upcase
);
2543 default_upcase
= NULL
;
2545 if (vol
->cluster_size
<= 4096 && !--ntfs_nr_compression_users
)
2546 free_compression_buffers();
2548 iput_tmp_ino_err_out_now
:
2550 if (vol
->mft_ino
&& vol
->mft_ino
!= tmp_ino
)
2552 vol
->mft_ino
= NULL
;
2554 * This is needed to get ntfs_clear_extent_inode() called for each
2555 * inode we have ever called ntfs_iget()/iput() on, otherwise we A)
2556 * leak resources and B) a subsequent mount fails automatically due to
2557 * ntfs_iget() never calling down into our ntfs_read_locked_inode()
2558 * method again... FIXME: Do we need to do this twice now because of
2559 * attribute inodes? I think not, so leave as is for now... (AIA)
2561 if (invalidate_inodes(sb
)) {
2562 ntfs_error(sb
, "Busy inodes left. This is most likely a NTFS "
2564 /* Copied from fs/super.c. I just love this message. (-; */
2565 printk("NTFS: Busy inodes after umount. Self-destruct in 5 "
2566 "seconds. Have a nice day...\n");
2568 /* Errors at this stage are irrelevant. */
2571 sb
->s_fs_info
= NULL
;
2573 ntfs_debug("Failed, returning -EINVAL.");
2578 * This is a slab cache to optimize allocations and deallocations of Unicode
2579 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
2580 * (255) Unicode characters + a terminating NULL Unicode character.
2582 kmem_cache_t
*ntfs_name_cache
;
2584 /* Slab caches for efficient allocation/deallocation of of inodes. */
2585 kmem_cache_t
*ntfs_inode_cache
;
2586 kmem_cache_t
*ntfs_big_inode_cache
;
2588 /* Init once constructor for the inode slab cache. */
2589 static void ntfs_big_inode_init_once(void *foo
, kmem_cache_t
*cachep
,
2590 unsigned long flags
)
2592 ntfs_inode
*ni
= (ntfs_inode
*)foo
;
2594 if ((flags
& (SLAB_CTOR_VERIFY
|SLAB_CTOR_CONSTRUCTOR
)) ==
2595 SLAB_CTOR_CONSTRUCTOR
)
2596 inode_init_once(VFS_I(ni
));
2600 * Slab caches to optimize allocations and deallocations of attribute search
2601 * contexts and index contexts, respectively.
2603 kmem_cache_t
*ntfs_attr_ctx_cache
;
2604 kmem_cache_t
*ntfs_index_ctx_cache
;
2606 /* Driver wide semaphore. */
2607 DECLARE_MUTEX(ntfs_lock
);
2609 static struct super_block
*ntfs_get_sb(struct file_system_type
*fs_type
,
2610 int flags
, const char *dev_name
, void *data
)
2612 return get_sb_bdev(fs_type
, flags
, dev_name
, data
, ntfs_fill_super
);
2615 static struct file_system_type ntfs_fs_type
= {
2616 .owner
= THIS_MODULE
,
2618 .get_sb
= ntfs_get_sb
,
2619 .kill_sb
= kill_block_super
,
2620 .fs_flags
= FS_REQUIRES_DEV
,
2623 /* Stable names for the slab caches. */
2624 static const char ntfs_index_ctx_cache_name
[] = "ntfs_index_ctx_cache";
2625 static const char ntfs_attr_ctx_cache_name
[] = "ntfs_attr_ctx_cache";
2626 static const char ntfs_name_cache_name
[] = "ntfs_name_cache";
2627 static const char ntfs_inode_cache_name
[] = "ntfs_inode_cache";
2628 static const char ntfs_big_inode_cache_name
[] = "ntfs_big_inode_cache";
2630 static int __init
init_ntfs_fs(void)
2634 /* This may be ugly but it results in pretty output so who cares. (-8 */
2635 printk(KERN_INFO
"NTFS driver " NTFS_VERSION
" [Flags: R/"
2649 ntfs_debug("Debug messages are enabled.");
2651 ntfs_index_ctx_cache
= kmem_cache_create(ntfs_index_ctx_cache_name
,
2652 sizeof(ntfs_index_context
), 0 /* offset */,
2653 SLAB_HWCACHE_ALIGN
, NULL
/* ctor */, NULL
/* dtor */);
2654 if (!ntfs_index_ctx_cache
) {
2655 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
2656 ntfs_index_ctx_cache_name
);
2659 ntfs_attr_ctx_cache
= kmem_cache_create(ntfs_attr_ctx_cache_name
,
2660 sizeof(ntfs_attr_search_ctx
), 0 /* offset */,
2661 SLAB_HWCACHE_ALIGN
, NULL
/* ctor */, NULL
/* dtor */);
2662 if (!ntfs_attr_ctx_cache
) {
2663 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
2664 ntfs_attr_ctx_cache_name
);
2668 ntfs_name_cache
= kmem_cache_create(ntfs_name_cache_name
,
2669 (NTFS_MAX_NAME_LEN
+1) * sizeof(ntfschar
), 0,
2670 SLAB_HWCACHE_ALIGN
, NULL
, NULL
);
2671 if (!ntfs_name_cache
) {
2672 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
2673 ntfs_name_cache_name
);
2677 ntfs_inode_cache
= kmem_cache_create(ntfs_inode_cache_name
,
2678 sizeof(ntfs_inode
), 0,
2679 SLAB_RECLAIM_ACCOUNT
, NULL
, NULL
);
2680 if (!ntfs_inode_cache
) {
2681 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
2682 ntfs_inode_cache_name
);
2686 ntfs_big_inode_cache
= kmem_cache_create(ntfs_big_inode_cache_name
,
2687 sizeof(big_ntfs_inode
), 0,
2688 SLAB_HWCACHE_ALIGN
|SLAB_RECLAIM_ACCOUNT
,
2689 ntfs_big_inode_init_once
, NULL
);
2690 if (!ntfs_big_inode_cache
) {
2691 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
2692 ntfs_big_inode_cache_name
);
2693 goto big_inode_err_out
;
2696 /* Register the ntfs sysctls. */
2697 err
= ntfs_sysctl(1);
2699 printk(KERN_CRIT
"NTFS: Failed to register NTFS sysctls!\n");
2700 goto sysctl_err_out
;
2703 err
= register_filesystem(&ntfs_fs_type
);
2705 ntfs_debug("NTFS driver registered successfully.");
2706 return 0; /* Success! */
2708 printk(KERN_CRIT
"NTFS: Failed to register NTFS file system driver!\n");
2711 kmem_cache_destroy(ntfs_big_inode_cache
);
2713 kmem_cache_destroy(ntfs_inode_cache
);
2715 kmem_cache_destroy(ntfs_name_cache
);
2717 kmem_cache_destroy(ntfs_attr_ctx_cache
);
2719 kmem_cache_destroy(ntfs_index_ctx_cache
);
2722 printk(KERN_CRIT
"NTFS: Aborting NTFS file system driver "
2723 "registration...\n");
2729 static void __exit
exit_ntfs_fs(void)
2733 ntfs_debug("Unregistering NTFS driver.");
2735 unregister_filesystem(&ntfs_fs_type
);
2737 if (kmem_cache_destroy(ntfs_big_inode_cache
) && (err
= 1))
2738 printk(KERN_CRIT
"NTFS: Failed to destory %s.\n",
2739 ntfs_big_inode_cache_name
);
2740 if (kmem_cache_destroy(ntfs_inode_cache
) && (err
= 1))
2741 printk(KERN_CRIT
"NTFS: Failed to destory %s.\n",
2742 ntfs_inode_cache_name
);
2743 if (kmem_cache_destroy(ntfs_name_cache
) && (err
= 1))
2744 printk(KERN_CRIT
"NTFS: Failed to destory %s.\n",
2745 ntfs_name_cache_name
);
2746 if (kmem_cache_destroy(ntfs_attr_ctx_cache
) && (err
= 1))
2747 printk(KERN_CRIT
"NTFS: Failed to destory %s.\n",
2748 ntfs_attr_ctx_cache_name
);
2749 if (kmem_cache_destroy(ntfs_index_ctx_cache
) && (err
= 1))
2750 printk(KERN_CRIT
"NTFS: Failed to destory %s.\n",
2751 ntfs_index_ctx_cache_name
);
2753 printk(KERN_CRIT
"NTFS: This causes memory to leak! There is "
2754 "probably a BUG in the driver! Please report "
2755 "you saw this message to "
2756 "linux-ntfs-dev@lists.sourceforge.net\n");
2757 /* Unregister the ntfs sysctls. */
2761 MODULE_AUTHOR("Anton Altaparmakov <aia21@cantab.net>");
2762 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2004 Anton Altaparmakov");
2763 MODULE_VERSION(NTFS_VERSION
);
2764 MODULE_LICENSE("GPL");
2766 module_param(debug_msgs
, bool, 0);
2767 MODULE_PARM_DESC(debug_msgs
, "Enable debug messages.");
2770 module_init(init_ntfs_fs
)
2771 module_exit(exit_ntfs_fs
)