lib/sha1: use the git implementation of SHA-1
[linux-2.6/next.git] / kernel / rcutree.c
blobba06207b1dd3bf9f9d42bc8800998b80b909c02d
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
54 #include "rcutree.h"
56 /* Data structures. */
58 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
60 #define RCU_STATE_INITIALIZER(structname) { \
61 .level = { &structname.node[0] }, \
62 .levelcnt = { \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_1, \
65 NUM_RCU_LVL_2, \
66 NUM_RCU_LVL_3, \
67 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_GP_IDLE, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
79 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
80 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
83 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85 static struct rcu_state *rcu_state;
88 * The rcu_scheduler_active variable transitions from zero to one just
89 * before the first task is spawned. So when this variable is zero, RCU
90 * can assume that there is but one task, allowing RCU to (for example)
91 * optimized synchronize_sched() to a simple barrier(). When this variable
92 * is one, RCU must actually do all the hard work required to detect real
93 * grace periods. This variable is also used to suppress boot-time false
94 * positives from lockdep-RCU error checking.
96 int rcu_scheduler_active __read_mostly;
97 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
100 * The rcu_scheduler_fully_active variable transitions from zero to one
101 * during the early_initcall() processing, which is after the scheduler
102 * is capable of creating new tasks. So RCU processing (for example,
103 * creating tasks for RCU priority boosting) must be delayed until after
104 * rcu_scheduler_fully_active transitions from zero to one. We also
105 * currently delay invocation of any RCU callbacks until after this point.
107 * It might later prove better for people registering RCU callbacks during
108 * early boot to take responsibility for these callbacks, but one step at
109 * a time.
111 static int rcu_scheduler_fully_active __read_mostly;
113 #ifdef CONFIG_RCU_BOOST
116 * Control variables for per-CPU and per-rcu_node kthreads. These
117 * handle all flavors of RCU.
119 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
120 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
121 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
122 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
123 DEFINE_PER_CPU(char, rcu_cpu_has_work);
125 #endif /* #ifdef CONFIG_RCU_BOOST */
127 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
128 static void invoke_rcu_core(void);
129 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
131 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
134 * Track the rcutorture test sequence number and the update version
135 * number within a given test. The rcutorture_testseq is incremented
136 * on every rcutorture module load and unload, so has an odd value
137 * when a test is running. The rcutorture_vernum is set to zero
138 * when rcutorture starts and is incremented on each rcutorture update.
139 * These variables enable correlating rcutorture output with the
140 * RCU tracing information.
142 unsigned long rcutorture_testseq;
143 unsigned long rcutorture_vernum;
146 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
147 * permit this function to be invoked without holding the root rcu_node
148 * structure's ->lock, but of course results can be subject to change.
150 static int rcu_gp_in_progress(struct rcu_state *rsp)
152 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
156 * Note a quiescent state. Because we do not need to know
157 * how many quiescent states passed, just if there was at least
158 * one since the start of the grace period, this just sets a flag.
160 void rcu_sched_qs(int cpu)
162 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
164 rdp->passed_quiesc_completed = rdp->gpnum - 1;
165 barrier();
166 rdp->passed_quiesc = 1;
169 void rcu_bh_qs(int cpu)
171 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
173 rdp->passed_quiesc_completed = rdp->gpnum - 1;
174 barrier();
175 rdp->passed_quiesc = 1;
179 * Note a context switch. This is a quiescent state for RCU-sched,
180 * and requires special handling for preemptible RCU.
182 void rcu_note_context_switch(int cpu)
184 rcu_sched_qs(cpu);
185 rcu_preempt_note_context_switch(cpu);
187 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
189 #ifdef CONFIG_NO_HZ
190 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
191 .dynticks_nesting = 1,
192 .dynticks = ATOMIC_INIT(1),
194 #endif /* #ifdef CONFIG_NO_HZ */
196 static int blimit = 10; /* Maximum callbacks per softirq. */
197 static int qhimark = 10000; /* If this many pending, ignore blimit. */
198 static int qlowmark = 100; /* Once only this many pending, use blimit. */
200 module_param(blimit, int, 0);
201 module_param(qhimark, int, 0);
202 module_param(qlowmark, int, 0);
204 int rcu_cpu_stall_suppress __read_mostly;
205 module_param(rcu_cpu_stall_suppress, int, 0644);
207 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
208 static int rcu_pending(int cpu);
211 * Return the number of RCU-sched batches processed thus far for debug & stats.
213 long rcu_batches_completed_sched(void)
215 return rcu_sched_state.completed;
217 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
220 * Return the number of RCU BH batches processed thus far for debug & stats.
222 long rcu_batches_completed_bh(void)
224 return rcu_bh_state.completed;
226 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
229 * Force a quiescent state for RCU BH.
231 void rcu_bh_force_quiescent_state(void)
233 force_quiescent_state(&rcu_bh_state, 0);
235 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
238 * Record the number of times rcutorture tests have been initiated and
239 * terminated. This information allows the debugfs tracing stats to be
240 * correlated to the rcutorture messages, even when the rcutorture module
241 * is being repeatedly loaded and unloaded. In other words, we cannot
242 * store this state in rcutorture itself.
244 void rcutorture_record_test_transition(void)
246 rcutorture_testseq++;
247 rcutorture_vernum = 0;
249 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
252 * Record the number of writer passes through the current rcutorture test.
253 * This is also used to correlate debugfs tracing stats with the rcutorture
254 * messages.
256 void rcutorture_record_progress(unsigned long vernum)
258 rcutorture_vernum++;
260 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
263 * Force a quiescent state for RCU-sched.
265 void rcu_sched_force_quiescent_state(void)
267 force_quiescent_state(&rcu_sched_state, 0);
269 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
272 * Does the CPU have callbacks ready to be invoked?
274 static int
275 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
277 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
281 * Does the current CPU require a yet-as-unscheduled grace period?
283 static int
284 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
286 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
290 * Return the root node of the specified rcu_state structure.
292 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
294 return &rsp->node[0];
297 #ifdef CONFIG_SMP
300 * If the specified CPU is offline, tell the caller that it is in
301 * a quiescent state. Otherwise, whack it with a reschedule IPI.
302 * Grace periods can end up waiting on an offline CPU when that
303 * CPU is in the process of coming online -- it will be added to the
304 * rcu_node bitmasks before it actually makes it online. The same thing
305 * can happen while a CPU is in the process of coming online. Because this
306 * race is quite rare, we check for it after detecting that the grace
307 * period has been delayed rather than checking each and every CPU
308 * each and every time we start a new grace period.
310 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
313 * If the CPU is offline, it is in a quiescent state. We can
314 * trust its state not to change because interrupts are disabled.
316 if (cpu_is_offline(rdp->cpu)) {
317 rdp->offline_fqs++;
318 return 1;
321 /* If preemptible RCU, no point in sending reschedule IPI. */
322 if (rdp->preemptible)
323 return 0;
325 /* The CPU is online, so send it a reschedule IPI. */
326 if (rdp->cpu != smp_processor_id())
327 smp_send_reschedule(rdp->cpu);
328 else
329 set_need_resched();
330 rdp->resched_ipi++;
331 return 0;
334 #endif /* #ifdef CONFIG_SMP */
336 #ifdef CONFIG_NO_HZ
339 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
341 * Enter nohz mode, in other words, -leave- the mode in which RCU
342 * read-side critical sections can occur. (Though RCU read-side
343 * critical sections can occur in irq handlers in nohz mode, a possibility
344 * handled by rcu_irq_enter() and rcu_irq_exit()).
346 void rcu_enter_nohz(void)
348 unsigned long flags;
349 struct rcu_dynticks *rdtp;
351 local_irq_save(flags);
352 rdtp = &__get_cpu_var(rcu_dynticks);
353 if (--rdtp->dynticks_nesting) {
354 local_irq_restore(flags);
355 return;
357 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
358 smp_mb__before_atomic_inc(); /* See above. */
359 atomic_inc(&rdtp->dynticks);
360 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
361 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
362 local_irq_restore(flags);
364 /* If the interrupt queued a callback, get out of dyntick mode. */
365 if (in_irq() &&
366 (__get_cpu_var(rcu_sched_data).nxtlist ||
367 __get_cpu_var(rcu_bh_data).nxtlist ||
368 rcu_preempt_needs_cpu(smp_processor_id())))
369 set_need_resched();
373 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
375 * Exit nohz mode, in other words, -enter- the mode in which RCU
376 * read-side critical sections normally occur.
378 void rcu_exit_nohz(void)
380 unsigned long flags;
381 struct rcu_dynticks *rdtp;
383 local_irq_save(flags);
384 rdtp = &__get_cpu_var(rcu_dynticks);
385 if (rdtp->dynticks_nesting++) {
386 local_irq_restore(flags);
387 return;
389 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
390 atomic_inc(&rdtp->dynticks);
391 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
392 smp_mb__after_atomic_inc(); /* See above. */
393 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
394 local_irq_restore(flags);
398 * rcu_nmi_enter - inform RCU of entry to NMI context
400 * If the CPU was idle with dynamic ticks active, and there is no
401 * irq handler running, this updates rdtp->dynticks_nmi to let the
402 * RCU grace-period handling know that the CPU is active.
404 void rcu_nmi_enter(void)
406 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
408 if (rdtp->dynticks_nmi_nesting == 0 &&
409 (atomic_read(&rdtp->dynticks) & 0x1))
410 return;
411 rdtp->dynticks_nmi_nesting++;
412 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
413 atomic_inc(&rdtp->dynticks);
414 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
415 smp_mb__after_atomic_inc(); /* See above. */
416 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
420 * rcu_nmi_exit - inform RCU of exit from NMI context
422 * If the CPU was idle with dynamic ticks active, and there is no
423 * irq handler running, this updates rdtp->dynticks_nmi to let the
424 * RCU grace-period handling know that the CPU is no longer active.
426 void rcu_nmi_exit(void)
428 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
430 if (rdtp->dynticks_nmi_nesting == 0 ||
431 --rdtp->dynticks_nmi_nesting != 0)
432 return;
433 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
434 smp_mb__before_atomic_inc(); /* See above. */
435 atomic_inc(&rdtp->dynticks);
436 smp_mb__after_atomic_inc(); /* Force delay to next write. */
437 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
441 * rcu_irq_enter - inform RCU of entry to hard irq context
443 * If the CPU was idle with dynamic ticks active, this updates the
444 * rdtp->dynticks to let the RCU handling know that the CPU is active.
446 void rcu_irq_enter(void)
448 rcu_exit_nohz();
452 * rcu_irq_exit - inform RCU of exit from hard irq context
454 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
455 * to put let the RCU handling be aware that the CPU is going back to idle
456 * with no ticks.
458 void rcu_irq_exit(void)
460 rcu_enter_nohz();
463 #ifdef CONFIG_SMP
466 * Snapshot the specified CPU's dynticks counter so that we can later
467 * credit them with an implicit quiescent state. Return 1 if this CPU
468 * is in dynticks idle mode, which is an extended quiescent state.
470 static int dyntick_save_progress_counter(struct rcu_data *rdp)
472 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
473 return 0;
477 * Return true if the specified CPU has passed through a quiescent
478 * state by virtue of being in or having passed through an dynticks
479 * idle state since the last call to dyntick_save_progress_counter()
480 * for this same CPU.
482 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
484 unsigned long curr;
485 unsigned long snap;
487 curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
488 snap = (unsigned long)rdp->dynticks_snap;
491 * If the CPU passed through or entered a dynticks idle phase with
492 * no active irq/NMI handlers, then we can safely pretend that the CPU
493 * already acknowledged the request to pass through a quiescent
494 * state. Either way, that CPU cannot possibly be in an RCU
495 * read-side critical section that started before the beginning
496 * of the current RCU grace period.
498 if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
499 rdp->dynticks_fqs++;
500 return 1;
503 /* Go check for the CPU being offline. */
504 return rcu_implicit_offline_qs(rdp);
507 #endif /* #ifdef CONFIG_SMP */
509 #else /* #ifdef CONFIG_NO_HZ */
511 #ifdef CONFIG_SMP
513 static int dyntick_save_progress_counter(struct rcu_data *rdp)
515 return 0;
518 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
520 return rcu_implicit_offline_qs(rdp);
523 #endif /* #ifdef CONFIG_SMP */
525 #endif /* #else #ifdef CONFIG_NO_HZ */
527 int rcu_cpu_stall_suppress __read_mostly;
529 static void record_gp_stall_check_time(struct rcu_state *rsp)
531 rsp->gp_start = jiffies;
532 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
535 static void print_other_cpu_stall(struct rcu_state *rsp)
537 int cpu;
538 long delta;
539 unsigned long flags;
540 struct rcu_node *rnp = rcu_get_root(rsp);
542 /* Only let one CPU complain about others per time interval. */
544 raw_spin_lock_irqsave(&rnp->lock, flags);
545 delta = jiffies - rsp->jiffies_stall;
546 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
547 raw_spin_unlock_irqrestore(&rnp->lock, flags);
548 return;
550 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
553 * Now rat on any tasks that got kicked up to the root rcu_node
554 * due to CPU offlining.
556 rcu_print_task_stall(rnp);
557 raw_spin_unlock_irqrestore(&rnp->lock, flags);
560 * OK, time to rat on our buddy...
561 * See Documentation/RCU/stallwarn.txt for info on how to debug
562 * RCU CPU stall warnings.
564 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
565 rsp->name);
566 rcu_for_each_leaf_node(rsp, rnp) {
567 raw_spin_lock_irqsave(&rnp->lock, flags);
568 rcu_print_task_stall(rnp);
569 raw_spin_unlock_irqrestore(&rnp->lock, flags);
570 if (rnp->qsmask == 0)
571 continue;
572 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
573 if (rnp->qsmask & (1UL << cpu))
574 printk(" %d", rnp->grplo + cpu);
576 printk("} (detected by %d, t=%ld jiffies)\n",
577 smp_processor_id(), (long)(jiffies - rsp->gp_start));
578 trigger_all_cpu_backtrace();
580 /* If so configured, complain about tasks blocking the grace period. */
582 rcu_print_detail_task_stall(rsp);
584 force_quiescent_state(rsp, 0); /* Kick them all. */
587 static void print_cpu_stall(struct rcu_state *rsp)
589 unsigned long flags;
590 struct rcu_node *rnp = rcu_get_root(rsp);
593 * OK, time to rat on ourselves...
594 * See Documentation/RCU/stallwarn.txt for info on how to debug
595 * RCU CPU stall warnings.
597 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
598 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
599 trigger_all_cpu_backtrace();
601 raw_spin_lock_irqsave(&rnp->lock, flags);
602 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
603 rsp->jiffies_stall =
604 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
605 raw_spin_unlock_irqrestore(&rnp->lock, flags);
607 set_need_resched(); /* kick ourselves to get things going. */
610 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
612 unsigned long j;
613 unsigned long js;
614 struct rcu_node *rnp;
616 if (rcu_cpu_stall_suppress)
617 return;
618 j = ACCESS_ONCE(jiffies);
619 js = ACCESS_ONCE(rsp->jiffies_stall);
620 rnp = rdp->mynode;
621 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
623 /* We haven't checked in, so go dump stack. */
624 print_cpu_stall(rsp);
626 } else if (rcu_gp_in_progress(rsp) &&
627 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
629 /* They had a few time units to dump stack, so complain. */
630 print_other_cpu_stall(rsp);
634 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
636 rcu_cpu_stall_suppress = 1;
637 return NOTIFY_DONE;
641 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
643 * Set the stall-warning timeout way off into the future, thus preventing
644 * any RCU CPU stall-warning messages from appearing in the current set of
645 * RCU grace periods.
647 * The caller must disable hard irqs.
649 void rcu_cpu_stall_reset(void)
651 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
652 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
653 rcu_preempt_stall_reset();
656 static struct notifier_block rcu_panic_block = {
657 .notifier_call = rcu_panic,
660 static void __init check_cpu_stall_init(void)
662 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
666 * Update CPU-local rcu_data state to record the newly noticed grace period.
667 * This is used both when we started the grace period and when we notice
668 * that someone else started the grace period. The caller must hold the
669 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
670 * and must have irqs disabled.
672 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
674 if (rdp->gpnum != rnp->gpnum) {
676 * If the current grace period is waiting for this CPU,
677 * set up to detect a quiescent state, otherwise don't
678 * go looking for one.
680 rdp->gpnum = rnp->gpnum;
681 if (rnp->qsmask & rdp->grpmask) {
682 rdp->qs_pending = 1;
683 rdp->passed_quiesc = 0;
684 } else
685 rdp->qs_pending = 0;
689 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
691 unsigned long flags;
692 struct rcu_node *rnp;
694 local_irq_save(flags);
695 rnp = rdp->mynode;
696 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
697 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
698 local_irq_restore(flags);
699 return;
701 __note_new_gpnum(rsp, rnp, rdp);
702 raw_spin_unlock_irqrestore(&rnp->lock, flags);
706 * Did someone else start a new RCU grace period start since we last
707 * checked? Update local state appropriately if so. Must be called
708 * on the CPU corresponding to rdp.
710 static int
711 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
713 unsigned long flags;
714 int ret = 0;
716 local_irq_save(flags);
717 if (rdp->gpnum != rsp->gpnum) {
718 note_new_gpnum(rsp, rdp);
719 ret = 1;
721 local_irq_restore(flags);
722 return ret;
726 * Advance this CPU's callbacks, but only if the current grace period
727 * has ended. This may be called only from the CPU to whom the rdp
728 * belongs. In addition, the corresponding leaf rcu_node structure's
729 * ->lock must be held by the caller, with irqs disabled.
731 static void
732 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
734 /* Did another grace period end? */
735 if (rdp->completed != rnp->completed) {
737 /* Advance callbacks. No harm if list empty. */
738 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
739 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
740 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
742 /* Remember that we saw this grace-period completion. */
743 rdp->completed = rnp->completed;
746 * If we were in an extended quiescent state, we may have
747 * missed some grace periods that others CPUs handled on
748 * our behalf. Catch up with this state to avoid noting
749 * spurious new grace periods. If another grace period
750 * has started, then rnp->gpnum will have advanced, so
751 * we will detect this later on.
753 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
754 rdp->gpnum = rdp->completed;
757 * If RCU does not need a quiescent state from this CPU,
758 * then make sure that this CPU doesn't go looking for one.
760 if ((rnp->qsmask & rdp->grpmask) == 0)
761 rdp->qs_pending = 0;
766 * Advance this CPU's callbacks, but only if the current grace period
767 * has ended. This may be called only from the CPU to whom the rdp
768 * belongs.
770 static void
771 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
773 unsigned long flags;
774 struct rcu_node *rnp;
776 local_irq_save(flags);
777 rnp = rdp->mynode;
778 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
779 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
780 local_irq_restore(flags);
781 return;
783 __rcu_process_gp_end(rsp, rnp, rdp);
784 raw_spin_unlock_irqrestore(&rnp->lock, flags);
788 * Do per-CPU grace-period initialization for running CPU. The caller
789 * must hold the lock of the leaf rcu_node structure corresponding to
790 * this CPU.
792 static void
793 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
795 /* Prior grace period ended, so advance callbacks for current CPU. */
796 __rcu_process_gp_end(rsp, rnp, rdp);
799 * Because this CPU just now started the new grace period, we know
800 * that all of its callbacks will be covered by this upcoming grace
801 * period, even the ones that were registered arbitrarily recently.
802 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
804 * Other CPUs cannot be sure exactly when the grace period started.
805 * Therefore, their recently registered callbacks must pass through
806 * an additional RCU_NEXT_READY stage, so that they will be handled
807 * by the next RCU grace period.
809 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
810 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
812 /* Set state so that this CPU will detect the next quiescent state. */
813 __note_new_gpnum(rsp, rnp, rdp);
817 * Start a new RCU grace period if warranted, re-initializing the hierarchy
818 * in preparation for detecting the next grace period. The caller must hold
819 * the root node's ->lock, which is released before return. Hard irqs must
820 * be disabled.
822 static void
823 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
824 __releases(rcu_get_root(rsp)->lock)
826 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
827 struct rcu_node *rnp = rcu_get_root(rsp);
829 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
830 if (cpu_needs_another_gp(rsp, rdp))
831 rsp->fqs_need_gp = 1;
832 if (rnp->completed == rsp->completed) {
833 raw_spin_unlock_irqrestore(&rnp->lock, flags);
834 return;
836 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
839 * Propagate new ->completed value to rcu_node structures
840 * so that other CPUs don't have to wait until the start
841 * of the next grace period to process their callbacks.
843 rcu_for_each_node_breadth_first(rsp, rnp) {
844 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
845 rnp->completed = rsp->completed;
846 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
848 local_irq_restore(flags);
849 return;
852 /* Advance to a new grace period and initialize state. */
853 rsp->gpnum++;
854 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
855 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
856 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
857 record_gp_stall_check_time(rsp);
859 /* Special-case the common single-level case. */
860 if (NUM_RCU_NODES == 1) {
861 rcu_preempt_check_blocked_tasks(rnp);
862 rnp->qsmask = rnp->qsmaskinit;
863 rnp->gpnum = rsp->gpnum;
864 rnp->completed = rsp->completed;
865 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
866 rcu_start_gp_per_cpu(rsp, rnp, rdp);
867 rcu_preempt_boost_start_gp(rnp);
868 raw_spin_unlock_irqrestore(&rnp->lock, flags);
869 return;
872 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
875 /* Exclude any concurrent CPU-hotplug operations. */
876 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
879 * Set the quiescent-state-needed bits in all the rcu_node
880 * structures for all currently online CPUs in breadth-first
881 * order, starting from the root rcu_node structure. This
882 * operation relies on the layout of the hierarchy within the
883 * rsp->node[] array. Note that other CPUs will access only
884 * the leaves of the hierarchy, which still indicate that no
885 * grace period is in progress, at least until the corresponding
886 * leaf node has been initialized. In addition, we have excluded
887 * CPU-hotplug operations.
889 * Note that the grace period cannot complete until we finish
890 * the initialization process, as there will be at least one
891 * qsmask bit set in the root node until that time, namely the
892 * one corresponding to this CPU, due to the fact that we have
893 * irqs disabled.
895 rcu_for_each_node_breadth_first(rsp, rnp) {
896 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
897 rcu_preempt_check_blocked_tasks(rnp);
898 rnp->qsmask = rnp->qsmaskinit;
899 rnp->gpnum = rsp->gpnum;
900 rnp->completed = rsp->completed;
901 if (rnp == rdp->mynode)
902 rcu_start_gp_per_cpu(rsp, rnp, rdp);
903 rcu_preempt_boost_start_gp(rnp);
904 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
907 rnp = rcu_get_root(rsp);
908 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
909 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
910 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
911 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
915 * Report a full set of quiescent states to the specified rcu_state
916 * data structure. This involves cleaning up after the prior grace
917 * period and letting rcu_start_gp() start up the next grace period
918 * if one is needed. Note that the caller must hold rnp->lock, as
919 * required by rcu_start_gp(), which will release it.
921 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
922 __releases(rcu_get_root(rsp)->lock)
924 unsigned long gp_duration;
926 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
929 * Ensure that all grace-period and pre-grace-period activity
930 * is seen before the assignment to rsp->completed.
932 smp_mb(); /* See above block comment. */
933 gp_duration = jiffies - rsp->gp_start;
934 if (gp_duration > rsp->gp_max)
935 rsp->gp_max = gp_duration;
936 rsp->completed = rsp->gpnum;
937 rsp->signaled = RCU_GP_IDLE;
938 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
942 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
943 * Allows quiescent states for a group of CPUs to be reported at one go
944 * to the specified rcu_node structure, though all the CPUs in the group
945 * must be represented by the same rcu_node structure (which need not be
946 * a leaf rcu_node structure, though it often will be). That structure's
947 * lock must be held upon entry, and it is released before return.
949 static void
950 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
951 struct rcu_node *rnp, unsigned long flags)
952 __releases(rnp->lock)
954 struct rcu_node *rnp_c;
956 /* Walk up the rcu_node hierarchy. */
957 for (;;) {
958 if (!(rnp->qsmask & mask)) {
960 /* Our bit has already been cleared, so done. */
961 raw_spin_unlock_irqrestore(&rnp->lock, flags);
962 return;
964 rnp->qsmask &= ~mask;
965 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
967 /* Other bits still set at this level, so done. */
968 raw_spin_unlock_irqrestore(&rnp->lock, flags);
969 return;
971 mask = rnp->grpmask;
972 if (rnp->parent == NULL) {
974 /* No more levels. Exit loop holding root lock. */
976 break;
978 raw_spin_unlock_irqrestore(&rnp->lock, flags);
979 rnp_c = rnp;
980 rnp = rnp->parent;
981 raw_spin_lock_irqsave(&rnp->lock, flags);
982 WARN_ON_ONCE(rnp_c->qsmask);
986 * Get here if we are the last CPU to pass through a quiescent
987 * state for this grace period. Invoke rcu_report_qs_rsp()
988 * to clean up and start the next grace period if one is needed.
990 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
994 * Record a quiescent state for the specified CPU to that CPU's rcu_data
995 * structure. This must be either called from the specified CPU, or
996 * called when the specified CPU is known to be offline (and when it is
997 * also known that no other CPU is concurrently trying to help the offline
998 * CPU). The lastcomp argument is used to make sure we are still in the
999 * grace period of interest. We don't want to end the current grace period
1000 * based on quiescent states detected in an earlier grace period!
1002 static void
1003 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
1005 unsigned long flags;
1006 unsigned long mask;
1007 struct rcu_node *rnp;
1009 rnp = rdp->mynode;
1010 raw_spin_lock_irqsave(&rnp->lock, flags);
1011 if (lastcomp != rnp->completed) {
1014 * Someone beat us to it for this grace period, so leave.
1015 * The race with GP start is resolved by the fact that we
1016 * hold the leaf rcu_node lock, so that the per-CPU bits
1017 * cannot yet be initialized -- so we would simply find our
1018 * CPU's bit already cleared in rcu_report_qs_rnp() if this
1019 * race occurred.
1021 rdp->passed_quiesc = 0; /* try again later! */
1022 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1023 return;
1025 mask = rdp->grpmask;
1026 if ((rnp->qsmask & mask) == 0) {
1027 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1028 } else {
1029 rdp->qs_pending = 0;
1032 * This GP can't end until cpu checks in, so all of our
1033 * callbacks can be processed during the next GP.
1035 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1037 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1042 * Check to see if there is a new grace period of which this CPU
1043 * is not yet aware, and if so, set up local rcu_data state for it.
1044 * Otherwise, see if this CPU has just passed through its first
1045 * quiescent state for this grace period, and record that fact if so.
1047 static void
1048 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1050 /* If there is now a new grace period, record and return. */
1051 if (check_for_new_grace_period(rsp, rdp))
1052 return;
1055 * Does this CPU still need to do its part for current grace period?
1056 * If no, return and let the other CPUs do their part as well.
1058 if (!rdp->qs_pending)
1059 return;
1062 * Was there a quiescent state since the beginning of the grace
1063 * period? If no, then exit and wait for the next call.
1065 if (!rdp->passed_quiesc)
1066 return;
1069 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1070 * judge of that).
1072 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1075 #ifdef CONFIG_HOTPLUG_CPU
1078 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1079 * Synchronization is not required because this function executes
1080 * in stop_machine() context.
1082 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1084 int i;
1085 /* current DYING CPU is cleared in the cpu_online_mask */
1086 int receive_cpu = cpumask_any(cpu_online_mask);
1087 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1088 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1090 if (rdp->nxtlist == NULL)
1091 return; /* irqs disabled, so comparison is stable. */
1093 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1094 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1095 receive_rdp->qlen += rdp->qlen;
1096 receive_rdp->n_cbs_adopted += rdp->qlen;
1097 rdp->n_cbs_orphaned += rdp->qlen;
1099 rdp->nxtlist = NULL;
1100 for (i = 0; i < RCU_NEXT_SIZE; i++)
1101 rdp->nxttail[i] = &rdp->nxtlist;
1102 rdp->qlen = 0;
1106 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1107 * and move all callbacks from the outgoing CPU to the current one.
1108 * There can only be one CPU hotplug operation at a time, so no other
1109 * CPU can be attempting to update rcu_cpu_kthread_task.
1111 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1113 unsigned long flags;
1114 unsigned long mask;
1115 int need_report = 0;
1116 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1117 struct rcu_node *rnp;
1119 rcu_stop_cpu_kthread(cpu);
1121 /* Exclude any attempts to start a new grace period. */
1122 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1124 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1125 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1126 mask = rdp->grpmask; /* rnp->grplo is constant. */
1127 do {
1128 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1129 rnp->qsmaskinit &= ~mask;
1130 if (rnp->qsmaskinit != 0) {
1131 if (rnp != rdp->mynode)
1132 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1133 break;
1135 if (rnp == rdp->mynode)
1136 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1137 else
1138 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1139 mask = rnp->grpmask;
1140 rnp = rnp->parent;
1141 } while (rnp != NULL);
1144 * We still hold the leaf rcu_node structure lock here, and
1145 * irqs are still disabled. The reason for this subterfuge is
1146 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1147 * held leads to deadlock.
1149 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1150 rnp = rdp->mynode;
1151 if (need_report & RCU_OFL_TASKS_NORM_GP)
1152 rcu_report_unblock_qs_rnp(rnp, flags);
1153 else
1154 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1155 if (need_report & RCU_OFL_TASKS_EXP_GP)
1156 rcu_report_exp_rnp(rsp, rnp);
1157 rcu_node_kthread_setaffinity(rnp, -1);
1161 * Remove the specified CPU from the RCU hierarchy and move any pending
1162 * callbacks that it might have to the current CPU. This code assumes
1163 * that at least one CPU in the system will remain running at all times.
1164 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1166 static void rcu_offline_cpu(int cpu)
1168 __rcu_offline_cpu(cpu, &rcu_sched_state);
1169 __rcu_offline_cpu(cpu, &rcu_bh_state);
1170 rcu_preempt_offline_cpu(cpu);
1173 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1175 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1179 static void rcu_offline_cpu(int cpu)
1183 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1186 * Invoke any RCU callbacks that have made it to the end of their grace
1187 * period. Thottle as specified by rdp->blimit.
1189 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1191 unsigned long flags;
1192 struct rcu_head *next, *list, **tail;
1193 int count;
1195 /* If no callbacks are ready, just return.*/
1196 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1197 return;
1200 * Extract the list of ready callbacks, disabling to prevent
1201 * races with call_rcu() from interrupt handlers.
1203 local_irq_save(flags);
1204 list = rdp->nxtlist;
1205 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1206 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1207 tail = rdp->nxttail[RCU_DONE_TAIL];
1208 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1209 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1210 rdp->nxttail[count] = &rdp->nxtlist;
1211 local_irq_restore(flags);
1213 /* Invoke callbacks. */
1214 count = 0;
1215 while (list) {
1216 next = list->next;
1217 prefetch(next);
1218 debug_rcu_head_unqueue(list);
1219 __rcu_reclaim(list);
1220 list = next;
1221 if (++count >= rdp->blimit)
1222 break;
1225 local_irq_save(flags);
1227 /* Update count, and requeue any remaining callbacks. */
1228 rdp->qlen -= count;
1229 rdp->n_cbs_invoked += count;
1230 if (list != NULL) {
1231 *tail = rdp->nxtlist;
1232 rdp->nxtlist = list;
1233 for (count = 0; count < RCU_NEXT_SIZE; count++)
1234 if (&rdp->nxtlist == rdp->nxttail[count])
1235 rdp->nxttail[count] = tail;
1236 else
1237 break;
1240 /* Reinstate batch limit if we have worked down the excess. */
1241 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1242 rdp->blimit = blimit;
1244 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1245 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1246 rdp->qlen_last_fqs_check = 0;
1247 rdp->n_force_qs_snap = rsp->n_force_qs;
1248 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1249 rdp->qlen_last_fqs_check = rdp->qlen;
1251 local_irq_restore(flags);
1253 /* Re-raise the RCU softirq if there are callbacks remaining. */
1254 if (cpu_has_callbacks_ready_to_invoke(rdp))
1255 invoke_rcu_core();
1259 * Check to see if this CPU is in a non-context-switch quiescent state
1260 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1261 * Also schedule the RCU softirq handler.
1263 * This function must be called with hardirqs disabled. It is normally
1264 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1265 * false, there is no point in invoking rcu_check_callbacks().
1267 void rcu_check_callbacks(int cpu, int user)
1269 if (user ||
1270 (idle_cpu(cpu) && rcu_scheduler_active &&
1271 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1274 * Get here if this CPU took its interrupt from user
1275 * mode or from the idle loop, and if this is not a
1276 * nested interrupt. In this case, the CPU is in
1277 * a quiescent state, so note it.
1279 * No memory barrier is required here because both
1280 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1281 * variables that other CPUs neither access nor modify,
1282 * at least not while the corresponding CPU is online.
1285 rcu_sched_qs(cpu);
1286 rcu_bh_qs(cpu);
1288 } else if (!in_softirq()) {
1291 * Get here if this CPU did not take its interrupt from
1292 * softirq, in other words, if it is not interrupting
1293 * a rcu_bh read-side critical section. This is an _bh
1294 * critical section, so note it.
1297 rcu_bh_qs(cpu);
1299 rcu_preempt_check_callbacks(cpu);
1300 if (rcu_pending(cpu))
1301 invoke_rcu_core();
1304 #ifdef CONFIG_SMP
1307 * Scan the leaf rcu_node structures, processing dyntick state for any that
1308 * have not yet encountered a quiescent state, using the function specified.
1309 * Also initiate boosting for any threads blocked on the root rcu_node.
1311 * The caller must have suppressed start of new grace periods.
1313 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1315 unsigned long bit;
1316 int cpu;
1317 unsigned long flags;
1318 unsigned long mask;
1319 struct rcu_node *rnp;
1321 rcu_for_each_leaf_node(rsp, rnp) {
1322 mask = 0;
1323 raw_spin_lock_irqsave(&rnp->lock, flags);
1324 if (!rcu_gp_in_progress(rsp)) {
1325 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1326 return;
1328 if (rnp->qsmask == 0) {
1329 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1330 continue;
1332 cpu = rnp->grplo;
1333 bit = 1;
1334 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1335 if ((rnp->qsmask & bit) != 0 &&
1336 f(per_cpu_ptr(rsp->rda, cpu)))
1337 mask |= bit;
1339 if (mask != 0) {
1341 /* rcu_report_qs_rnp() releases rnp->lock. */
1342 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1343 continue;
1345 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1347 rnp = rcu_get_root(rsp);
1348 if (rnp->qsmask == 0) {
1349 raw_spin_lock_irqsave(&rnp->lock, flags);
1350 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1355 * Force quiescent states on reluctant CPUs, and also detect which
1356 * CPUs are in dyntick-idle mode.
1358 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1360 unsigned long flags;
1361 struct rcu_node *rnp = rcu_get_root(rsp);
1363 if (!rcu_gp_in_progress(rsp))
1364 return; /* No grace period in progress, nothing to force. */
1365 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1366 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1367 return; /* Someone else is already on the job. */
1369 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1370 goto unlock_fqs_ret; /* no emergency and done recently. */
1371 rsp->n_force_qs++;
1372 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1373 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1374 if(!rcu_gp_in_progress(rsp)) {
1375 rsp->n_force_qs_ngp++;
1376 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1377 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1379 rsp->fqs_active = 1;
1380 switch (rsp->signaled) {
1381 case RCU_GP_IDLE:
1382 case RCU_GP_INIT:
1384 break; /* grace period idle or initializing, ignore. */
1386 case RCU_SAVE_DYNTICK:
1387 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1388 break; /* So gcc recognizes the dead code. */
1390 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1392 /* Record dyntick-idle state. */
1393 force_qs_rnp(rsp, dyntick_save_progress_counter);
1394 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1395 if (rcu_gp_in_progress(rsp))
1396 rsp->signaled = RCU_FORCE_QS;
1397 break;
1399 case RCU_FORCE_QS:
1401 /* Check dyntick-idle state, send IPI to laggarts. */
1402 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1403 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1405 /* Leave state in case more forcing is required. */
1407 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1408 break;
1410 rsp->fqs_active = 0;
1411 if (rsp->fqs_need_gp) {
1412 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1413 rsp->fqs_need_gp = 0;
1414 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1415 return;
1417 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1418 unlock_fqs_ret:
1419 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1422 #else /* #ifdef CONFIG_SMP */
1424 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1426 set_need_resched();
1429 #endif /* #else #ifdef CONFIG_SMP */
1432 * This does the RCU processing work from softirq context for the
1433 * specified rcu_state and rcu_data structures. This may be called
1434 * only from the CPU to whom the rdp belongs.
1436 static void
1437 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1439 unsigned long flags;
1441 WARN_ON_ONCE(rdp->beenonline == 0);
1444 * If an RCU GP has gone long enough, go check for dyntick
1445 * idle CPUs and, if needed, send resched IPIs.
1447 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1448 force_quiescent_state(rsp, 1);
1451 * Advance callbacks in response to end of earlier grace
1452 * period that some other CPU ended.
1454 rcu_process_gp_end(rsp, rdp);
1456 /* Update RCU state based on any recent quiescent states. */
1457 rcu_check_quiescent_state(rsp, rdp);
1459 /* Does this CPU require a not-yet-started grace period? */
1460 if (cpu_needs_another_gp(rsp, rdp)) {
1461 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1462 rcu_start_gp(rsp, flags); /* releases above lock */
1465 /* If there are callbacks ready, invoke them. */
1466 if (cpu_has_callbacks_ready_to_invoke(rdp))
1467 invoke_rcu_callbacks(rsp, rdp);
1471 * Do softirq processing for the current CPU.
1473 static void rcu_process_callbacks(struct softirq_action *unused)
1475 __rcu_process_callbacks(&rcu_sched_state,
1476 &__get_cpu_var(rcu_sched_data));
1477 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1478 rcu_preempt_process_callbacks();
1480 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1481 rcu_needs_cpu_flush();
1485 * Wake up the current CPU's kthread. This replaces raise_softirq()
1486 * in earlier versions of RCU. Note that because we are running on
1487 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1488 * cannot disappear out from under us.
1490 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1492 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1493 return;
1494 if (likely(!rsp->boost)) {
1495 rcu_do_batch(rsp, rdp);
1496 return;
1498 invoke_rcu_callbacks_kthread();
1501 static void invoke_rcu_core(void)
1503 raise_softirq(RCU_SOFTIRQ);
1506 static void
1507 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1508 struct rcu_state *rsp)
1510 unsigned long flags;
1511 struct rcu_data *rdp;
1513 debug_rcu_head_queue(head);
1514 head->func = func;
1515 head->next = NULL;
1517 smp_mb(); /* Ensure RCU update seen before callback registry. */
1520 * Opportunistically note grace-period endings and beginnings.
1521 * Note that we might see a beginning right after we see an
1522 * end, but never vice versa, since this CPU has to pass through
1523 * a quiescent state betweentimes.
1525 local_irq_save(flags);
1526 rdp = this_cpu_ptr(rsp->rda);
1528 /* Add the callback to our list. */
1529 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1530 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1531 rdp->qlen++;
1533 /* If interrupts were disabled, don't dive into RCU core. */
1534 if (irqs_disabled_flags(flags)) {
1535 local_irq_restore(flags);
1536 return;
1540 * Force the grace period if too many callbacks or too long waiting.
1541 * Enforce hysteresis, and don't invoke force_quiescent_state()
1542 * if some other CPU has recently done so. Also, don't bother
1543 * invoking force_quiescent_state() if the newly enqueued callback
1544 * is the only one waiting for a grace period to complete.
1546 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1548 /* Are we ignoring a completed grace period? */
1549 rcu_process_gp_end(rsp, rdp);
1550 check_for_new_grace_period(rsp, rdp);
1552 /* Start a new grace period if one not already started. */
1553 if (!rcu_gp_in_progress(rsp)) {
1554 unsigned long nestflag;
1555 struct rcu_node *rnp_root = rcu_get_root(rsp);
1557 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1558 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1559 } else {
1560 /* Give the grace period a kick. */
1561 rdp->blimit = LONG_MAX;
1562 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1563 *rdp->nxttail[RCU_DONE_TAIL] != head)
1564 force_quiescent_state(rsp, 0);
1565 rdp->n_force_qs_snap = rsp->n_force_qs;
1566 rdp->qlen_last_fqs_check = rdp->qlen;
1568 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1569 force_quiescent_state(rsp, 1);
1570 local_irq_restore(flags);
1574 * Queue an RCU-sched callback for invocation after a grace period.
1576 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1578 __call_rcu(head, func, &rcu_sched_state);
1580 EXPORT_SYMBOL_GPL(call_rcu_sched);
1583 * Queue an RCU for invocation after a quicker grace period.
1585 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1587 __call_rcu(head, func, &rcu_bh_state);
1589 EXPORT_SYMBOL_GPL(call_rcu_bh);
1592 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1594 * Control will return to the caller some time after a full rcu-sched
1595 * grace period has elapsed, in other words after all currently executing
1596 * rcu-sched read-side critical sections have completed. These read-side
1597 * critical sections are delimited by rcu_read_lock_sched() and
1598 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1599 * local_irq_disable(), and so on may be used in place of
1600 * rcu_read_lock_sched().
1602 * This means that all preempt_disable code sequences, including NMI and
1603 * hardware-interrupt handlers, in progress on entry will have completed
1604 * before this primitive returns. However, this does not guarantee that
1605 * softirq handlers will have completed, since in some kernels, these
1606 * handlers can run in process context, and can block.
1608 * This primitive provides the guarantees made by the (now removed)
1609 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1610 * guarantees that rcu_read_lock() sections will have completed.
1611 * In "classic RCU", these two guarantees happen to be one and
1612 * the same, but can differ in realtime RCU implementations.
1614 void synchronize_sched(void)
1616 struct rcu_synchronize rcu;
1618 if (rcu_blocking_is_gp())
1619 return;
1621 init_rcu_head_on_stack(&rcu.head);
1622 init_completion(&rcu.completion);
1623 /* Will wake me after RCU finished. */
1624 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1625 /* Wait for it. */
1626 wait_for_completion(&rcu.completion);
1627 destroy_rcu_head_on_stack(&rcu.head);
1629 EXPORT_SYMBOL_GPL(synchronize_sched);
1632 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1634 * Control will return to the caller some time after a full rcu_bh grace
1635 * period has elapsed, in other words after all currently executing rcu_bh
1636 * read-side critical sections have completed. RCU read-side critical
1637 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1638 * and may be nested.
1640 void synchronize_rcu_bh(void)
1642 struct rcu_synchronize rcu;
1644 if (rcu_blocking_is_gp())
1645 return;
1647 init_rcu_head_on_stack(&rcu.head);
1648 init_completion(&rcu.completion);
1649 /* Will wake me after RCU finished. */
1650 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1651 /* Wait for it. */
1652 wait_for_completion(&rcu.completion);
1653 destroy_rcu_head_on_stack(&rcu.head);
1655 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1658 * Check to see if there is any immediate RCU-related work to be done
1659 * by the current CPU, for the specified type of RCU, returning 1 if so.
1660 * The checks are in order of increasing expense: checks that can be
1661 * carried out against CPU-local state are performed first. However,
1662 * we must check for CPU stalls first, else we might not get a chance.
1664 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1666 struct rcu_node *rnp = rdp->mynode;
1668 rdp->n_rcu_pending++;
1670 /* Check for CPU stalls, if enabled. */
1671 check_cpu_stall(rsp, rdp);
1673 /* Is the RCU core waiting for a quiescent state from this CPU? */
1674 if (rdp->qs_pending && !rdp->passed_quiesc) {
1677 * If force_quiescent_state() coming soon and this CPU
1678 * needs a quiescent state, and this is either RCU-sched
1679 * or RCU-bh, force a local reschedule.
1681 rdp->n_rp_qs_pending++;
1682 if (!rdp->preemptible &&
1683 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1684 jiffies))
1685 set_need_resched();
1686 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1687 rdp->n_rp_report_qs++;
1688 return 1;
1691 /* Does this CPU have callbacks ready to invoke? */
1692 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1693 rdp->n_rp_cb_ready++;
1694 return 1;
1697 /* Has RCU gone idle with this CPU needing another grace period? */
1698 if (cpu_needs_another_gp(rsp, rdp)) {
1699 rdp->n_rp_cpu_needs_gp++;
1700 return 1;
1703 /* Has another RCU grace period completed? */
1704 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1705 rdp->n_rp_gp_completed++;
1706 return 1;
1709 /* Has a new RCU grace period started? */
1710 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1711 rdp->n_rp_gp_started++;
1712 return 1;
1715 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1716 if (rcu_gp_in_progress(rsp) &&
1717 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1718 rdp->n_rp_need_fqs++;
1719 return 1;
1722 /* nothing to do */
1723 rdp->n_rp_need_nothing++;
1724 return 0;
1728 * Check to see if there is any immediate RCU-related work to be done
1729 * by the current CPU, returning 1 if so. This function is part of the
1730 * RCU implementation; it is -not- an exported member of the RCU API.
1732 static int rcu_pending(int cpu)
1734 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1735 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1736 rcu_preempt_pending(cpu);
1740 * Check to see if any future RCU-related work will need to be done
1741 * by the current CPU, even if none need be done immediately, returning
1742 * 1 if so.
1744 static int rcu_needs_cpu_quick_check(int cpu)
1746 /* RCU callbacks either ready or pending? */
1747 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1748 per_cpu(rcu_bh_data, cpu).nxtlist ||
1749 rcu_preempt_needs_cpu(cpu);
1752 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1753 static atomic_t rcu_barrier_cpu_count;
1754 static DEFINE_MUTEX(rcu_barrier_mutex);
1755 static struct completion rcu_barrier_completion;
1757 static void rcu_barrier_callback(struct rcu_head *notused)
1759 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1760 complete(&rcu_barrier_completion);
1764 * Called with preemption disabled, and from cross-cpu IRQ context.
1766 static void rcu_barrier_func(void *type)
1768 int cpu = smp_processor_id();
1769 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1770 void (*call_rcu_func)(struct rcu_head *head,
1771 void (*func)(struct rcu_head *head));
1773 atomic_inc(&rcu_barrier_cpu_count);
1774 call_rcu_func = type;
1775 call_rcu_func(head, rcu_barrier_callback);
1779 * Orchestrate the specified type of RCU barrier, waiting for all
1780 * RCU callbacks of the specified type to complete.
1782 static void _rcu_barrier(struct rcu_state *rsp,
1783 void (*call_rcu_func)(struct rcu_head *head,
1784 void (*func)(struct rcu_head *head)))
1786 BUG_ON(in_interrupt());
1787 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1788 mutex_lock(&rcu_barrier_mutex);
1789 init_completion(&rcu_barrier_completion);
1791 * Initialize rcu_barrier_cpu_count to 1, then invoke
1792 * rcu_barrier_func() on each CPU, so that each CPU also has
1793 * incremented rcu_barrier_cpu_count. Only then is it safe to
1794 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1795 * might complete its grace period before all of the other CPUs
1796 * did their increment, causing this function to return too
1797 * early. Note that on_each_cpu() disables irqs, which prevents
1798 * any CPUs from coming online or going offline until each online
1799 * CPU has queued its RCU-barrier callback.
1801 atomic_set(&rcu_barrier_cpu_count, 1);
1802 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1803 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1804 complete(&rcu_barrier_completion);
1805 wait_for_completion(&rcu_barrier_completion);
1806 mutex_unlock(&rcu_barrier_mutex);
1810 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1812 void rcu_barrier_bh(void)
1814 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1816 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1819 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1821 void rcu_barrier_sched(void)
1823 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1825 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1828 * Do boot-time initialization of a CPU's per-CPU RCU data.
1830 static void __init
1831 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1833 unsigned long flags;
1834 int i;
1835 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1836 struct rcu_node *rnp = rcu_get_root(rsp);
1838 /* Set up local state, ensuring consistent view of global state. */
1839 raw_spin_lock_irqsave(&rnp->lock, flags);
1840 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1841 rdp->nxtlist = NULL;
1842 for (i = 0; i < RCU_NEXT_SIZE; i++)
1843 rdp->nxttail[i] = &rdp->nxtlist;
1844 rdp->qlen = 0;
1845 #ifdef CONFIG_NO_HZ
1846 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1847 #endif /* #ifdef CONFIG_NO_HZ */
1848 rdp->cpu = cpu;
1849 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1853 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1854 * offline event can be happening at a given time. Note also that we
1855 * can accept some slop in the rsp->completed access due to the fact
1856 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1858 static void __cpuinit
1859 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
1861 unsigned long flags;
1862 unsigned long mask;
1863 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1864 struct rcu_node *rnp = rcu_get_root(rsp);
1866 /* Set up local state, ensuring consistent view of global state. */
1867 raw_spin_lock_irqsave(&rnp->lock, flags);
1868 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1869 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1870 rdp->beenonline = 1; /* We have now been online. */
1871 rdp->preemptible = preemptible;
1872 rdp->qlen_last_fqs_check = 0;
1873 rdp->n_force_qs_snap = rsp->n_force_qs;
1874 rdp->blimit = blimit;
1875 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1878 * A new grace period might start here. If so, we won't be part
1879 * of it, but that is OK, as we are currently in a quiescent state.
1882 /* Exclude any attempts to start a new GP on large systems. */
1883 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1885 /* Add CPU to rcu_node bitmasks. */
1886 rnp = rdp->mynode;
1887 mask = rdp->grpmask;
1888 do {
1889 /* Exclude any attempts to start a new GP on small systems. */
1890 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1891 rnp->qsmaskinit |= mask;
1892 mask = rnp->grpmask;
1893 if (rnp == rdp->mynode) {
1894 rdp->gpnum = rnp->completed; /* if GP in progress... */
1895 rdp->completed = rnp->completed;
1896 rdp->passed_quiesc_completed = rnp->completed - 1;
1898 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1899 rnp = rnp->parent;
1900 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1902 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1905 static void __cpuinit rcu_prepare_cpu(int cpu)
1907 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1908 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1909 rcu_preempt_init_percpu_data(cpu);
1913 * Handle CPU online/offline notification events.
1915 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1916 unsigned long action, void *hcpu)
1918 long cpu = (long)hcpu;
1919 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1920 struct rcu_node *rnp = rdp->mynode;
1922 switch (action) {
1923 case CPU_UP_PREPARE:
1924 case CPU_UP_PREPARE_FROZEN:
1925 rcu_prepare_cpu(cpu);
1926 rcu_prepare_kthreads(cpu);
1927 break;
1928 case CPU_ONLINE:
1929 case CPU_DOWN_FAILED:
1930 rcu_node_kthread_setaffinity(rnp, -1);
1931 rcu_cpu_kthread_setrt(cpu, 1);
1932 break;
1933 case CPU_DOWN_PREPARE:
1934 rcu_node_kthread_setaffinity(rnp, cpu);
1935 rcu_cpu_kthread_setrt(cpu, 0);
1936 break;
1937 case CPU_DYING:
1938 case CPU_DYING_FROZEN:
1940 * The whole machine is "stopped" except this CPU, so we can
1941 * touch any data without introducing corruption. We send the
1942 * dying CPU's callbacks to an arbitrarily chosen online CPU.
1944 rcu_send_cbs_to_online(&rcu_bh_state);
1945 rcu_send_cbs_to_online(&rcu_sched_state);
1946 rcu_preempt_send_cbs_to_online();
1947 break;
1948 case CPU_DEAD:
1949 case CPU_DEAD_FROZEN:
1950 case CPU_UP_CANCELED:
1951 case CPU_UP_CANCELED_FROZEN:
1952 rcu_offline_cpu(cpu);
1953 break;
1954 default:
1955 break;
1957 return NOTIFY_OK;
1961 * This function is invoked towards the end of the scheduler's initialization
1962 * process. Before this is called, the idle task might contain
1963 * RCU read-side critical sections (during which time, this idle
1964 * task is booting the system). After this function is called, the
1965 * idle tasks are prohibited from containing RCU read-side critical
1966 * sections. This function also enables RCU lockdep checking.
1968 void rcu_scheduler_starting(void)
1970 WARN_ON(num_online_cpus() != 1);
1971 WARN_ON(nr_context_switches() > 0);
1972 rcu_scheduler_active = 1;
1976 * Compute the per-level fanout, either using the exact fanout specified
1977 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1979 #ifdef CONFIG_RCU_FANOUT_EXACT
1980 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1982 int i;
1984 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
1985 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1986 rsp->levelspread[0] = RCU_FANOUT_LEAF;
1988 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1989 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1991 int ccur;
1992 int cprv;
1993 int i;
1995 cprv = NR_CPUS;
1996 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1997 ccur = rsp->levelcnt[i];
1998 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1999 cprv = ccur;
2002 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2005 * Helper function for rcu_init() that initializes one rcu_state structure.
2007 static void __init rcu_init_one(struct rcu_state *rsp,
2008 struct rcu_data __percpu *rda)
2010 static char *buf[] = { "rcu_node_level_0",
2011 "rcu_node_level_1",
2012 "rcu_node_level_2",
2013 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2014 int cpustride = 1;
2015 int i;
2016 int j;
2017 struct rcu_node *rnp;
2019 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2021 /* Initialize the level-tracking arrays. */
2023 for (i = 1; i < NUM_RCU_LVLS; i++)
2024 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2025 rcu_init_levelspread(rsp);
2027 /* Initialize the elements themselves, starting from the leaves. */
2029 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2030 cpustride *= rsp->levelspread[i];
2031 rnp = rsp->level[i];
2032 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2033 raw_spin_lock_init(&rnp->lock);
2034 lockdep_set_class_and_name(&rnp->lock,
2035 &rcu_node_class[i], buf[i]);
2036 rnp->gpnum = 0;
2037 rnp->qsmask = 0;
2038 rnp->qsmaskinit = 0;
2039 rnp->grplo = j * cpustride;
2040 rnp->grphi = (j + 1) * cpustride - 1;
2041 if (rnp->grphi >= NR_CPUS)
2042 rnp->grphi = NR_CPUS - 1;
2043 if (i == 0) {
2044 rnp->grpnum = 0;
2045 rnp->grpmask = 0;
2046 rnp->parent = NULL;
2047 } else {
2048 rnp->grpnum = j % rsp->levelspread[i - 1];
2049 rnp->grpmask = 1UL << rnp->grpnum;
2050 rnp->parent = rsp->level[i - 1] +
2051 j / rsp->levelspread[i - 1];
2053 rnp->level = i;
2054 INIT_LIST_HEAD(&rnp->blkd_tasks);
2058 rsp->rda = rda;
2059 rnp = rsp->level[NUM_RCU_LVLS - 1];
2060 for_each_possible_cpu(i) {
2061 while (i > rnp->grphi)
2062 rnp++;
2063 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2064 rcu_boot_init_percpu_data(i, rsp);
2068 void __init rcu_init(void)
2070 int cpu;
2072 rcu_bootup_announce();
2073 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2074 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2075 __rcu_init_preempt();
2076 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2079 * We don't need protection against CPU-hotplug here because
2080 * this is called early in boot, before either interrupts
2081 * or the scheduler are operational.
2083 cpu_notifier(rcu_cpu_notify, 0);
2084 for_each_online_cpu(cpu)
2085 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2086 check_cpu_stall_init();
2089 #include "rcutree_plugin.h"