Linux 2.6.25-rc4
[linux-2.6/next.git] / arch / ia64 / kernel / module.c
blobe58f4367cf11db4ad4cca80fed0785f7283d5b15
1 /*
2 * IA-64-specific support for kernel module loader.
4 * Copyright (C) 2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Loosely based on patch by Rusty Russell.
8 */
10 /* relocs tested so far:
12 DIR64LSB
13 FPTR64LSB
14 GPREL22
15 LDXMOV
16 LDXMOV
17 LTOFF22
18 LTOFF22X
19 LTOFF22X
20 LTOFF_FPTR22
21 PCREL21B (for br.call only; br.cond is not supported out of modules!)
22 PCREL60B (for brl.cond only; brl.call is not supported for modules!)
23 PCREL64LSB
24 SECREL32LSB
25 SEGREL64LSB
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/elf.h>
32 #include <linux/moduleloader.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
36 #include <asm/patch.h>
37 #include <asm/unaligned.h>
39 #define ARCH_MODULE_DEBUG 0
41 #if ARCH_MODULE_DEBUG
42 # define DEBUGP printk
43 # define inline
44 #else
45 # define DEBUGP(fmt , a...)
46 #endif
48 #ifdef CONFIG_ITANIUM
49 # define USE_BRL 0
50 #else
51 # define USE_BRL 1
52 #endif
54 #define MAX_LTOFF ((uint64_t) (1 << 22)) /* max. allowable linkage-table offset */
56 /* Define some relocation helper macros/types: */
58 #define FORMAT_SHIFT 0
59 #define FORMAT_BITS 3
60 #define FORMAT_MASK ((1 << FORMAT_BITS) - 1)
61 #define VALUE_SHIFT 3
62 #define VALUE_BITS 5
63 #define VALUE_MASK ((1 << VALUE_BITS) - 1)
65 enum reloc_target_format {
66 /* direct encoded formats: */
67 RF_NONE = 0,
68 RF_INSN14 = 1,
69 RF_INSN22 = 2,
70 RF_INSN64 = 3,
71 RF_32MSB = 4,
72 RF_32LSB = 5,
73 RF_64MSB = 6,
74 RF_64LSB = 7,
76 /* formats that cannot be directly decoded: */
77 RF_INSN60,
78 RF_INSN21B, /* imm21 form 1 */
79 RF_INSN21M, /* imm21 form 2 */
80 RF_INSN21F /* imm21 form 3 */
83 enum reloc_value_formula {
84 RV_DIRECT = 4, /* S + A */
85 RV_GPREL = 5, /* @gprel(S + A) */
86 RV_LTREL = 6, /* @ltoff(S + A) */
87 RV_PLTREL = 7, /* @pltoff(S + A) */
88 RV_FPTR = 8, /* @fptr(S + A) */
89 RV_PCREL = 9, /* S + A - P */
90 RV_LTREL_FPTR = 10, /* @ltoff(@fptr(S + A)) */
91 RV_SEGREL = 11, /* @segrel(S + A) */
92 RV_SECREL = 12, /* @secrel(S + A) */
93 RV_BDREL = 13, /* BD + A */
94 RV_LTV = 14, /* S + A (like RV_DIRECT, except frozen at static link-time) */
95 RV_PCREL2 = 15, /* S + A - P */
96 RV_SPECIAL = 16, /* various (see below) */
97 RV_RSVD17 = 17,
98 RV_TPREL = 18, /* @tprel(S + A) */
99 RV_LTREL_TPREL = 19, /* @ltoff(@tprel(S + A)) */
100 RV_DTPMOD = 20, /* @dtpmod(S + A) */
101 RV_LTREL_DTPMOD = 21, /* @ltoff(@dtpmod(S + A)) */
102 RV_DTPREL = 22, /* @dtprel(S + A) */
103 RV_LTREL_DTPREL = 23, /* @ltoff(@dtprel(S + A)) */
104 RV_RSVD24 = 24,
105 RV_RSVD25 = 25,
106 RV_RSVD26 = 26,
107 RV_RSVD27 = 27
108 /* 28-31 reserved for implementation-specific purposes. */
111 #define N(reloc) [R_IA64_##reloc] = #reloc
113 static const char *reloc_name[256] = {
114 N(NONE), N(IMM14), N(IMM22), N(IMM64),
115 N(DIR32MSB), N(DIR32LSB), N(DIR64MSB), N(DIR64LSB),
116 N(GPREL22), N(GPREL64I), N(GPREL32MSB), N(GPREL32LSB),
117 N(GPREL64MSB), N(GPREL64LSB), N(LTOFF22), N(LTOFF64I),
118 N(PLTOFF22), N(PLTOFF64I), N(PLTOFF64MSB), N(PLTOFF64LSB),
119 N(FPTR64I), N(FPTR32MSB), N(FPTR32LSB), N(FPTR64MSB),
120 N(FPTR64LSB), N(PCREL60B), N(PCREL21B), N(PCREL21M),
121 N(PCREL21F), N(PCREL32MSB), N(PCREL32LSB), N(PCREL64MSB),
122 N(PCREL64LSB), N(LTOFF_FPTR22), N(LTOFF_FPTR64I), N(LTOFF_FPTR32MSB),
123 N(LTOFF_FPTR32LSB), N(LTOFF_FPTR64MSB), N(LTOFF_FPTR64LSB), N(SEGREL32MSB),
124 N(SEGREL32LSB), N(SEGREL64MSB), N(SEGREL64LSB), N(SECREL32MSB),
125 N(SECREL32LSB), N(SECREL64MSB), N(SECREL64LSB), N(REL32MSB),
126 N(REL32LSB), N(REL64MSB), N(REL64LSB), N(LTV32MSB),
127 N(LTV32LSB), N(LTV64MSB), N(LTV64LSB), N(PCREL21BI),
128 N(PCREL22), N(PCREL64I), N(IPLTMSB), N(IPLTLSB),
129 N(COPY), N(LTOFF22X), N(LDXMOV), N(TPREL14),
130 N(TPREL22), N(TPREL64I), N(TPREL64MSB), N(TPREL64LSB),
131 N(LTOFF_TPREL22), N(DTPMOD64MSB), N(DTPMOD64LSB), N(LTOFF_DTPMOD22),
132 N(DTPREL14), N(DTPREL22), N(DTPREL64I), N(DTPREL32MSB),
133 N(DTPREL32LSB), N(DTPREL64MSB), N(DTPREL64LSB), N(LTOFF_DTPREL22)
136 #undef N
138 struct got_entry {
139 uint64_t val;
142 struct fdesc {
143 uint64_t ip;
144 uint64_t gp;
147 /* Opaque struct for insns, to protect against derefs. */
148 struct insn;
150 static inline uint64_t
151 bundle (const struct insn *insn)
153 return (uint64_t) insn & ~0xfUL;
156 static inline int
157 slot (const struct insn *insn)
159 return (uint64_t) insn & 0x3;
162 static int
163 apply_imm64 (struct module *mod, struct insn *insn, uint64_t val)
165 if (slot(insn) != 2) {
166 printk(KERN_ERR "%s: invalid slot number %d for IMM64\n",
167 mod->name, slot(insn));
168 return 0;
170 ia64_patch_imm64((u64) insn, val);
171 return 1;
174 static int
175 apply_imm60 (struct module *mod, struct insn *insn, uint64_t val)
177 if (slot(insn) != 2) {
178 printk(KERN_ERR "%s: invalid slot number %d for IMM60\n",
179 mod->name, slot(insn));
180 return 0;
182 if (val + ((uint64_t) 1 << 59) >= (1UL << 60)) {
183 printk(KERN_ERR "%s: value %ld out of IMM60 range\n", mod->name, (int64_t) val);
184 return 0;
186 ia64_patch_imm60((u64) insn, val);
187 return 1;
190 static int
191 apply_imm22 (struct module *mod, struct insn *insn, uint64_t val)
193 if (val + (1 << 21) >= (1 << 22)) {
194 printk(KERN_ERR "%s: value %li out of IMM22 range\n", mod->name, (int64_t)val);
195 return 0;
197 ia64_patch((u64) insn, 0x01fffcfe000UL, ( ((val & 0x200000UL) << 15) /* bit 21 -> 36 */
198 | ((val & 0x1f0000UL) << 6) /* bit 16 -> 22 */
199 | ((val & 0x00ff80UL) << 20) /* bit 7 -> 27 */
200 | ((val & 0x00007fUL) << 13) /* bit 0 -> 13 */));
201 return 1;
204 static int
205 apply_imm21b (struct module *mod, struct insn *insn, uint64_t val)
207 if (val + (1 << 20) >= (1 << 21)) {
208 printk(KERN_ERR "%s: value %li out of IMM21b range\n", mod->name, (int64_t)val);
209 return 0;
211 ia64_patch((u64) insn, 0x11ffffe000UL, ( ((val & 0x100000UL) << 16) /* bit 20 -> 36 */
212 | ((val & 0x0fffffUL) << 13) /* bit 0 -> 13 */));
213 return 1;
216 #if USE_BRL
218 struct plt_entry {
219 /* Three instruction bundles in PLT. */
220 unsigned char bundle[2][16];
223 static const struct plt_entry ia64_plt_template = {
226 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
227 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, /* movl gp=TARGET_GP */
228 0x00, 0x00, 0x00, 0x60
231 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
232 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.many gp=TARGET_GP */
233 0x08, 0x00, 0x00, 0xc0
238 static int
239 patch_plt (struct module *mod, struct plt_entry *plt, long target_ip, unsigned long target_gp)
241 if (apply_imm64(mod, (struct insn *) (plt->bundle[0] + 2), target_gp)
242 && apply_imm60(mod, (struct insn *) (plt->bundle[1] + 2),
243 (target_ip - (int64_t) plt->bundle[1]) / 16))
244 return 1;
245 return 0;
248 unsigned long
249 plt_target (struct plt_entry *plt)
251 uint64_t b0, b1, *b = (uint64_t *) plt->bundle[1];
252 long off;
254 b0 = b[0]; b1 = b[1];
255 off = ( ((b1 & 0x00fffff000000000UL) >> 36) /* imm20b -> bit 0 */
256 | ((b0 >> 48) << 20) | ((b1 & 0x7fffffUL) << 36) /* imm39 -> bit 20 */
257 | ((b1 & 0x0800000000000000UL) << 0)); /* i -> bit 59 */
258 return (long) plt->bundle[1] + 16*off;
261 #else /* !USE_BRL */
263 struct plt_entry {
264 /* Three instruction bundles in PLT. */
265 unsigned char bundle[3][16];
268 static const struct plt_entry ia64_plt_template = {
271 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
272 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* movl r16=TARGET_IP */
273 0x02, 0x00, 0x00, 0x60
276 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
277 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, /* movl gp=TARGET_GP */
278 0x00, 0x00, 0x00, 0x60
281 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
282 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
283 0x60, 0x00, 0x80, 0x00 /* br.few b6 */
288 static int
289 patch_plt (struct module *mod, struct plt_entry *plt, long target_ip, unsigned long target_gp)
291 if (apply_imm64(mod, (struct insn *) (plt->bundle[0] + 2), target_ip)
292 && apply_imm64(mod, (struct insn *) (plt->bundle[1] + 2), target_gp))
293 return 1;
294 return 0;
297 unsigned long
298 plt_target (struct plt_entry *plt)
300 uint64_t b0, b1, *b = (uint64_t *) plt->bundle[0];
302 b0 = b[0]; b1 = b[1];
303 return ( ((b1 & 0x000007f000000000) >> 36) /* imm7b -> bit 0 */
304 | ((b1 & 0x07fc000000000000) >> 43) /* imm9d -> bit 7 */
305 | ((b1 & 0x0003e00000000000) >> 29) /* imm5c -> bit 16 */
306 | ((b1 & 0x0000100000000000) >> 23) /* ic -> bit 21 */
307 | ((b0 >> 46) << 22) | ((b1 & 0x7fffff) << 40) /* imm41 -> bit 22 */
308 | ((b1 & 0x0800000000000000) << 4)); /* i -> bit 63 */
311 #endif /* !USE_BRL */
313 void *
314 module_alloc (unsigned long size)
316 if (!size)
317 return NULL;
318 return vmalloc(size);
321 void
322 module_free (struct module *mod, void *module_region)
324 if (mod->arch.init_unw_table && module_region == mod->module_init) {
325 unw_remove_unwind_table(mod->arch.init_unw_table);
326 mod->arch.init_unw_table = NULL;
328 vfree(module_region);
331 /* Have we already seen one of these relocations? */
332 /* FIXME: we could look in other sections, too --RR */
333 static int
334 duplicate_reloc (const Elf64_Rela *rela, unsigned int num)
336 unsigned int i;
338 for (i = 0; i < num; i++) {
339 if (rela[i].r_info == rela[num].r_info && rela[i].r_addend == rela[num].r_addend)
340 return 1;
342 return 0;
345 /* Count how many GOT entries we may need */
346 static unsigned int
347 count_gots (const Elf64_Rela *rela, unsigned int num)
349 unsigned int i, ret = 0;
351 /* Sure, this is order(n^2), but it's usually short, and not
352 time critical */
353 for (i = 0; i < num; i++) {
354 switch (ELF64_R_TYPE(rela[i].r_info)) {
355 case R_IA64_LTOFF22:
356 case R_IA64_LTOFF22X:
357 case R_IA64_LTOFF64I:
358 case R_IA64_LTOFF_FPTR22:
359 case R_IA64_LTOFF_FPTR64I:
360 case R_IA64_LTOFF_FPTR32MSB:
361 case R_IA64_LTOFF_FPTR32LSB:
362 case R_IA64_LTOFF_FPTR64MSB:
363 case R_IA64_LTOFF_FPTR64LSB:
364 if (!duplicate_reloc(rela, i))
365 ret++;
366 break;
369 return ret;
372 /* Count how many PLT entries we may need */
373 static unsigned int
374 count_plts (const Elf64_Rela *rela, unsigned int num)
376 unsigned int i, ret = 0;
378 /* Sure, this is order(n^2), but it's usually short, and not
379 time critical */
380 for (i = 0; i < num; i++) {
381 switch (ELF64_R_TYPE(rela[i].r_info)) {
382 case R_IA64_PCREL21B:
383 case R_IA64_PLTOFF22:
384 case R_IA64_PLTOFF64I:
385 case R_IA64_PLTOFF64MSB:
386 case R_IA64_PLTOFF64LSB:
387 case R_IA64_IPLTMSB:
388 case R_IA64_IPLTLSB:
389 if (!duplicate_reloc(rela, i))
390 ret++;
391 break;
394 return ret;
397 /* We need to create an function-descriptors for any internal function
398 which is referenced. */
399 static unsigned int
400 count_fdescs (const Elf64_Rela *rela, unsigned int num)
402 unsigned int i, ret = 0;
404 /* Sure, this is order(n^2), but it's usually short, and not time critical. */
405 for (i = 0; i < num; i++) {
406 switch (ELF64_R_TYPE(rela[i].r_info)) {
407 case R_IA64_FPTR64I:
408 case R_IA64_FPTR32LSB:
409 case R_IA64_FPTR32MSB:
410 case R_IA64_FPTR64LSB:
411 case R_IA64_FPTR64MSB:
412 case R_IA64_LTOFF_FPTR22:
413 case R_IA64_LTOFF_FPTR32LSB:
414 case R_IA64_LTOFF_FPTR32MSB:
415 case R_IA64_LTOFF_FPTR64I:
416 case R_IA64_LTOFF_FPTR64LSB:
417 case R_IA64_LTOFF_FPTR64MSB:
418 case R_IA64_IPLTMSB:
419 case R_IA64_IPLTLSB:
421 * Jumps to static functions sometimes go straight to their
422 * offset. Of course, that may not be possible if the jump is
423 * from init -> core or vice. versa, so we need to generate an
424 * FDESC (and PLT etc) for that.
426 case R_IA64_PCREL21B:
427 if (!duplicate_reloc(rela, i))
428 ret++;
429 break;
432 return ret;
436 module_frob_arch_sections (Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, char *secstrings,
437 struct module *mod)
439 unsigned long core_plts = 0, init_plts = 0, gots = 0, fdescs = 0;
440 Elf64_Shdr *s, *sechdrs_end = sechdrs + ehdr->e_shnum;
443 * To store the PLTs and function-descriptors, we expand the .text section for
444 * core module-code and the .init.text section for initialization code.
446 for (s = sechdrs; s < sechdrs_end; ++s)
447 if (strcmp(".core.plt", secstrings + s->sh_name) == 0)
448 mod->arch.core_plt = s;
449 else if (strcmp(".init.plt", secstrings + s->sh_name) == 0)
450 mod->arch.init_plt = s;
451 else if (strcmp(".got", secstrings + s->sh_name) == 0)
452 mod->arch.got = s;
453 else if (strcmp(".opd", secstrings + s->sh_name) == 0)
454 mod->arch.opd = s;
455 else if (strcmp(".IA_64.unwind", secstrings + s->sh_name) == 0)
456 mod->arch.unwind = s;
458 if (!mod->arch.core_plt || !mod->arch.init_plt || !mod->arch.got || !mod->arch.opd) {
459 printk(KERN_ERR "%s: sections missing\n", mod->name);
460 return -ENOEXEC;
463 /* GOT and PLTs can occur in any relocated section... */
464 for (s = sechdrs + 1; s < sechdrs_end; ++s) {
465 const Elf64_Rela *rels = (void *)ehdr + s->sh_offset;
466 unsigned long numrels = s->sh_size/sizeof(Elf64_Rela);
468 if (s->sh_type != SHT_RELA)
469 continue;
471 gots += count_gots(rels, numrels);
472 fdescs += count_fdescs(rels, numrels);
473 if (strstr(secstrings + s->sh_name, ".init"))
474 init_plts += count_plts(rels, numrels);
475 else
476 core_plts += count_plts(rels, numrels);
479 mod->arch.core_plt->sh_type = SHT_NOBITS;
480 mod->arch.core_plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
481 mod->arch.core_plt->sh_addralign = 16;
482 mod->arch.core_plt->sh_size = core_plts * sizeof(struct plt_entry);
483 mod->arch.init_plt->sh_type = SHT_NOBITS;
484 mod->arch.init_plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
485 mod->arch.init_plt->sh_addralign = 16;
486 mod->arch.init_plt->sh_size = init_plts * sizeof(struct plt_entry);
487 mod->arch.got->sh_type = SHT_NOBITS;
488 mod->arch.got->sh_flags = ARCH_SHF_SMALL | SHF_ALLOC;
489 mod->arch.got->sh_addralign = 8;
490 mod->arch.got->sh_size = gots * sizeof(struct got_entry);
491 mod->arch.opd->sh_type = SHT_NOBITS;
492 mod->arch.opd->sh_flags = SHF_ALLOC;
493 mod->arch.opd->sh_addralign = 8;
494 mod->arch.opd->sh_size = fdescs * sizeof(struct fdesc);
495 DEBUGP("%s: core.plt=%lx, init.plt=%lx, got=%lx, fdesc=%lx\n",
496 __FUNCTION__, mod->arch.core_plt->sh_size, mod->arch.init_plt->sh_size,
497 mod->arch.got->sh_size, mod->arch.opd->sh_size);
498 return 0;
501 static inline int
502 in_init (const struct module *mod, uint64_t addr)
504 return addr - (uint64_t) mod->module_init < mod->init_size;
507 static inline int
508 in_core (const struct module *mod, uint64_t addr)
510 return addr - (uint64_t) mod->module_core < mod->core_size;
513 static inline int
514 is_internal (const struct module *mod, uint64_t value)
516 return in_init(mod, value) || in_core(mod, value);
520 * Get gp-relative offset for the linkage-table entry of VALUE.
522 static uint64_t
523 get_ltoff (struct module *mod, uint64_t value, int *okp)
525 struct got_entry *got, *e;
527 if (!*okp)
528 return 0;
530 got = (void *) mod->arch.got->sh_addr;
531 for (e = got; e < got + mod->arch.next_got_entry; ++e)
532 if (e->val == value)
533 goto found;
535 /* Not enough GOT entries? */
536 if (e >= (struct got_entry *) (mod->arch.got->sh_addr + mod->arch.got->sh_size))
537 BUG();
539 e->val = value;
540 ++mod->arch.next_got_entry;
541 found:
542 return (uint64_t) e - mod->arch.gp;
545 static inline int
546 gp_addressable (struct module *mod, uint64_t value)
548 return value - mod->arch.gp + MAX_LTOFF/2 < MAX_LTOFF;
551 /* Get PC-relative PLT entry for this value. Returns 0 on failure. */
552 static uint64_t
553 get_plt (struct module *mod, const struct insn *insn, uint64_t value, int *okp)
555 struct plt_entry *plt, *plt_end;
556 uint64_t target_ip, target_gp;
558 if (!*okp)
559 return 0;
561 if (in_init(mod, (uint64_t) insn)) {
562 plt = (void *) mod->arch.init_plt->sh_addr;
563 plt_end = (void *) plt + mod->arch.init_plt->sh_size;
564 } else {
565 plt = (void *) mod->arch.core_plt->sh_addr;
566 plt_end = (void *) plt + mod->arch.core_plt->sh_size;
569 /* "value" is a pointer to a function-descriptor; fetch the target ip/gp from it: */
570 target_ip = ((uint64_t *) value)[0];
571 target_gp = ((uint64_t *) value)[1];
573 /* Look for existing PLT entry. */
574 while (plt->bundle[0][0]) {
575 if (plt_target(plt) == target_ip)
576 goto found;
577 if (++plt >= plt_end)
578 BUG();
580 *plt = ia64_plt_template;
581 if (!patch_plt(mod, plt, target_ip, target_gp)) {
582 *okp = 0;
583 return 0;
585 #if ARCH_MODULE_DEBUG
586 if (plt_target(plt) != target_ip) {
587 printk("%s: mistargeted PLT: wanted %lx, got %lx\n",
588 __FUNCTION__, target_ip, plt_target(plt));
589 *okp = 0;
590 return 0;
592 #endif
593 found:
594 return (uint64_t) plt;
597 /* Get function descriptor for VALUE. */
598 static uint64_t
599 get_fdesc (struct module *mod, uint64_t value, int *okp)
601 struct fdesc *fdesc = (void *) mod->arch.opd->sh_addr;
603 if (!*okp)
604 return 0;
606 if (!value) {
607 printk(KERN_ERR "%s: fdesc for zero requested!\n", mod->name);
608 return 0;
611 if (!is_internal(mod, value))
613 * If it's not a module-local entry-point, "value" already points to a
614 * function-descriptor.
616 return value;
618 /* Look for existing function descriptor. */
619 while (fdesc->ip) {
620 if (fdesc->ip == value)
621 return (uint64_t)fdesc;
622 if ((uint64_t) ++fdesc >= mod->arch.opd->sh_addr + mod->arch.opd->sh_size)
623 BUG();
626 /* Create new one */
627 fdesc->ip = value;
628 fdesc->gp = mod->arch.gp;
629 return (uint64_t) fdesc;
632 static inline int
633 do_reloc (struct module *mod, uint8_t r_type, Elf64_Sym *sym, uint64_t addend,
634 Elf64_Shdr *sec, void *location)
636 enum reloc_target_format format = (r_type >> FORMAT_SHIFT) & FORMAT_MASK;
637 enum reloc_value_formula formula = (r_type >> VALUE_SHIFT) & VALUE_MASK;
638 uint64_t val;
639 int ok = 1;
641 val = sym->st_value + addend;
643 switch (formula) {
644 case RV_SEGREL: /* segment base is arbitrarily chosen to be 0 for kernel modules */
645 case RV_DIRECT:
646 break;
648 case RV_GPREL: val -= mod->arch.gp; break;
649 case RV_LTREL: val = get_ltoff(mod, val, &ok); break;
650 case RV_PLTREL: val = get_plt(mod, location, val, &ok); break;
651 case RV_FPTR: val = get_fdesc(mod, val, &ok); break;
652 case RV_SECREL: val -= sec->sh_addr; break;
653 case RV_LTREL_FPTR: val = get_ltoff(mod, get_fdesc(mod, val, &ok), &ok); break;
655 case RV_PCREL:
656 switch (r_type) {
657 case R_IA64_PCREL21B:
658 if ((in_init(mod, val) && in_core(mod, (uint64_t)location)) ||
659 (in_core(mod, val) && in_init(mod, (uint64_t)location))) {
661 * Init section may have been allocated far away from core,
662 * if the branch won't reach, then allocate a plt for it.
664 uint64_t delta = ((int64_t)val - (int64_t)location) / 16;
665 if (delta + (1 << 20) >= (1 << 21)) {
666 val = get_fdesc(mod, val, &ok);
667 val = get_plt(mod, location, val, &ok);
669 } else if (!is_internal(mod, val))
670 val = get_plt(mod, location, val, &ok);
671 /* FALL THROUGH */
672 default:
673 val -= bundle(location);
674 break;
676 case R_IA64_PCREL32MSB:
677 case R_IA64_PCREL32LSB:
678 case R_IA64_PCREL64MSB:
679 case R_IA64_PCREL64LSB:
680 val -= (uint64_t) location;
681 break;
684 switch (r_type) {
685 case R_IA64_PCREL60B: format = RF_INSN60; break;
686 case R_IA64_PCREL21B: format = RF_INSN21B; break;
687 case R_IA64_PCREL21M: format = RF_INSN21M; break;
688 case R_IA64_PCREL21F: format = RF_INSN21F; break;
689 default: break;
691 break;
693 case RV_BDREL:
694 val -= (uint64_t) (in_init(mod, val) ? mod->module_init : mod->module_core);
695 break;
697 case RV_LTV:
698 /* can link-time value relocs happen here? */
699 BUG();
700 break;
702 case RV_PCREL2:
703 if (r_type == R_IA64_PCREL21BI) {
704 if (!is_internal(mod, val)) {
705 printk(KERN_ERR "%s: %s reloc against non-local symbol (%lx)\n",
706 __FUNCTION__, reloc_name[r_type], val);
707 return -ENOEXEC;
709 format = RF_INSN21B;
711 val -= bundle(location);
712 break;
714 case RV_SPECIAL:
715 switch (r_type) {
716 case R_IA64_IPLTMSB:
717 case R_IA64_IPLTLSB:
718 val = get_fdesc(mod, get_plt(mod, location, val, &ok), &ok);
719 format = RF_64LSB;
720 if (r_type == R_IA64_IPLTMSB)
721 format = RF_64MSB;
722 break;
724 case R_IA64_SUB:
725 val = addend - sym->st_value;
726 format = RF_INSN64;
727 break;
729 case R_IA64_LTOFF22X:
730 if (gp_addressable(mod, val))
731 val -= mod->arch.gp;
732 else
733 val = get_ltoff(mod, val, &ok);
734 format = RF_INSN22;
735 break;
737 case R_IA64_LDXMOV:
738 if (gp_addressable(mod, val)) {
739 /* turn "ld8" into "mov": */
740 DEBUGP("%s: patching ld8 at %p to mov\n", __FUNCTION__, location);
741 ia64_patch((u64) location, 0x1fff80fe000UL, 0x10000000000UL);
743 return 0;
745 default:
746 if (reloc_name[r_type])
747 printk(KERN_ERR "%s: special reloc %s not supported",
748 mod->name, reloc_name[r_type]);
749 else
750 printk(KERN_ERR "%s: unknown special reloc %x\n",
751 mod->name, r_type);
752 return -ENOEXEC;
754 break;
756 case RV_TPREL:
757 case RV_LTREL_TPREL:
758 case RV_DTPMOD:
759 case RV_LTREL_DTPMOD:
760 case RV_DTPREL:
761 case RV_LTREL_DTPREL:
762 printk(KERN_ERR "%s: %s reloc not supported\n",
763 mod->name, reloc_name[r_type] ? reloc_name[r_type] : "?");
764 return -ENOEXEC;
766 default:
767 printk(KERN_ERR "%s: unknown reloc %x\n", mod->name, r_type);
768 return -ENOEXEC;
771 if (!ok)
772 return -ENOEXEC;
774 DEBUGP("%s: [%p]<-%016lx = %s(%lx)\n", __FUNCTION__, location, val,
775 reloc_name[r_type] ? reloc_name[r_type] : "?", sym->st_value + addend);
777 switch (format) {
778 case RF_INSN21B: ok = apply_imm21b(mod, location, (int64_t) val / 16); break;
779 case RF_INSN22: ok = apply_imm22(mod, location, val); break;
780 case RF_INSN64: ok = apply_imm64(mod, location, val); break;
781 case RF_INSN60: ok = apply_imm60(mod, location, (int64_t) val / 16); break;
782 case RF_32LSB: put_unaligned(val, (uint32_t *) location); break;
783 case RF_64LSB: put_unaligned(val, (uint64_t *) location); break;
784 case RF_32MSB: /* ia64 Linux is little-endian... */
785 case RF_64MSB: /* ia64 Linux is little-endian... */
786 case RF_INSN14: /* must be within-module, i.e., resolved by "ld -r" */
787 case RF_INSN21M: /* must be within-module, i.e., resolved by "ld -r" */
788 case RF_INSN21F: /* must be within-module, i.e., resolved by "ld -r" */
789 printk(KERN_ERR "%s: format %u needed by %s reloc is not supported\n",
790 mod->name, format, reloc_name[r_type] ? reloc_name[r_type] : "?");
791 return -ENOEXEC;
793 default:
794 printk(KERN_ERR "%s: relocation %s resulted in unknown format %u\n",
795 mod->name, reloc_name[r_type] ? reloc_name[r_type] : "?", format);
796 return -ENOEXEC;
798 return ok ? 0 : -ENOEXEC;
802 apply_relocate_add (Elf64_Shdr *sechdrs, const char *strtab, unsigned int symindex,
803 unsigned int relsec, struct module *mod)
805 unsigned int i, n = sechdrs[relsec].sh_size / sizeof(Elf64_Rela);
806 Elf64_Rela *rela = (void *) sechdrs[relsec].sh_addr;
807 Elf64_Shdr *target_sec;
808 int ret;
810 DEBUGP("%s: applying section %u (%u relocs) to %u\n", __FUNCTION__,
811 relsec, n, sechdrs[relsec].sh_info);
813 target_sec = sechdrs + sechdrs[relsec].sh_info;
815 if (target_sec->sh_entsize == ~0UL)
817 * If target section wasn't allocated, we don't need to relocate it.
818 * Happens, e.g., for debug sections.
820 return 0;
822 if (!mod->arch.gp) {
824 * XXX Should have an arch-hook for running this after final section
825 * addresses have been selected...
827 uint64_t gp;
828 if (mod->core_size > MAX_LTOFF)
830 * This takes advantage of fact that SHF_ARCH_SMALL gets allocated
831 * at the end of the module.
833 gp = mod->core_size - MAX_LTOFF / 2;
834 else
835 gp = mod->core_size / 2;
836 gp = (uint64_t) mod->module_core + ((gp + 7) & -8);
837 mod->arch.gp = gp;
838 DEBUGP("%s: placing gp at 0x%lx\n", __FUNCTION__, gp);
841 for (i = 0; i < n; i++) {
842 ret = do_reloc(mod, ELF64_R_TYPE(rela[i].r_info),
843 ((Elf64_Sym *) sechdrs[symindex].sh_addr
844 + ELF64_R_SYM(rela[i].r_info)),
845 rela[i].r_addend, target_sec,
846 (void *) target_sec->sh_addr + rela[i].r_offset);
847 if (ret < 0)
848 return ret;
850 return 0;
854 apply_relocate (Elf64_Shdr *sechdrs, const char *strtab, unsigned int symindex,
855 unsigned int relsec, struct module *mod)
857 printk(KERN_ERR "module %s: REL relocs in section %u unsupported\n", mod->name, relsec);
858 return -ENOEXEC;
862 * Modules contain a single unwind table which covers both the core and the init text
863 * sections but since the two are not contiguous, we need to split this table up such that
864 * we can register (and unregister) each "segment" separately. Fortunately, this sounds
865 * more complicated than it really is.
867 static void
868 register_unwind_table (struct module *mod)
870 struct unw_table_entry *start = (void *) mod->arch.unwind->sh_addr;
871 struct unw_table_entry *end = start + mod->arch.unwind->sh_size / sizeof (*start);
872 struct unw_table_entry tmp, *e1, *e2, *core, *init;
873 unsigned long num_init = 0, num_core = 0;
875 /* First, count how many init and core unwind-table entries there are. */
876 for (e1 = start; e1 < end; ++e1)
877 if (in_init(mod, e1->start_offset))
878 ++num_init;
879 else
880 ++num_core;
882 * Second, sort the table such that all unwind-table entries for the init and core
883 * text sections are nicely separated. We do this with a stupid bubble sort
884 * (unwind tables don't get ridiculously huge).
886 for (e1 = start; e1 < end; ++e1) {
887 for (e2 = e1 + 1; e2 < end; ++e2) {
888 if (e2->start_offset < e1->start_offset) {
889 tmp = *e1;
890 *e1 = *e2;
891 *e2 = tmp;
896 * Third, locate the init and core segments in the unwind table:
898 if (in_init(mod, start->start_offset)) {
899 init = start;
900 core = start + num_init;
901 } else {
902 core = start;
903 init = start + num_core;
906 DEBUGP("%s: name=%s, gp=%lx, num_init=%lu, num_core=%lu\n", __FUNCTION__,
907 mod->name, mod->arch.gp, num_init, num_core);
910 * Fourth, register both tables (if not empty).
912 if (num_core > 0) {
913 mod->arch.core_unw_table = unw_add_unwind_table(mod->name, 0, mod->arch.gp,
914 core, core + num_core);
915 DEBUGP("%s: core: handle=%p [%p-%p)\n", __FUNCTION__,
916 mod->arch.core_unw_table, core, core + num_core);
918 if (num_init > 0) {
919 mod->arch.init_unw_table = unw_add_unwind_table(mod->name, 0, mod->arch.gp,
920 init, init + num_init);
921 DEBUGP("%s: init: handle=%p [%p-%p)\n", __FUNCTION__,
922 mod->arch.init_unw_table, init, init + num_init);
927 module_finalize (const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, struct module *mod)
929 DEBUGP("%s: init: entry=%p\n", __FUNCTION__, mod->init);
930 if (mod->arch.unwind)
931 register_unwind_table(mod);
932 return 0;
935 void
936 module_arch_cleanup (struct module *mod)
938 if (mod->arch.init_unw_table)
939 unw_remove_unwind_table(mod->arch.init_unw_table);
940 if (mod->arch.core_unw_table)
941 unw_remove_unwind_table(mod->arch.core_unw_table);