2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
44 #include <asm/errno.h>
45 #include <asm/intrinsics.h>
47 #include <asm/perfmon.h>
48 #include <asm/processor.h>
49 #include <asm/signal.h>
50 #include <asm/system.h>
51 #include <asm/uaccess.h>
52 #include <asm/delay.h>
56 * perfmon context state
58 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
59 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
60 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
61 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63 #define PFM_INVALID_ACTIVATION (~0UL)
65 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
66 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
69 * depth of message queue
71 #define PFM_MAX_MSGS 32
72 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75 * type of a PMU register (bitmask).
77 * bit0 : register implemented
80 * bit4 : pmc has pmc.pm
81 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
82 * bit6-7 : register type
85 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
86 #define PFM_REG_IMPL 0x1 /* register implemented */
87 #define PFM_REG_END 0x2 /* end marker */
88 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
89 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
90 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
91 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
92 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
95 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99 /* i assumed unsigned */
100 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
101 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103 /* XXX: these assume that register i is implemented */
104 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
105 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
107 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
110 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
111 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
112 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
115 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
118 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
119 #define PFM_CTX_TASK(h) (h)->ctx_task
121 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
123 /* XXX: does not support more than 64 PMDs */
124 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
125 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
130 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
132 #define PFM_CODE_RR 0 /* requesting code range restriction */
133 #define PFM_DATA_RR 1 /* requestion data range restriction */
135 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
136 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
137 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139 #define RDEP(x) (1UL<<(x))
142 * context protection macros
144 * - we need to protect against CPU concurrency (spin_lock)
145 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 * spin_lock_irqsave()/spin_unlock_irqrestore():
150 * in SMP: local_irq_disable + spin_lock
151 * in UP : local_irq_disable
153 * spin_lock()/spin_lock():
154 * in UP : removed automatically
155 * in SMP: protect against context accesses from other CPU. interrupts
156 * are not masked. This is useful for the PMU interrupt handler
157 * because we know we will not get PMU concurrency in that code.
159 #define PROTECT_CTX(c, f) \
161 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
162 spin_lock_irqsave(&(c)->ctx_lock, f); \
163 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
166 #define UNPROTECT_CTX(c, f) \
168 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
169 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172 #define PROTECT_CTX_NOPRINT(c, f) \
174 spin_lock_irqsave(&(c)->ctx_lock, f); \
178 #define UNPROTECT_CTX_NOPRINT(c, f) \
180 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
184 #define PROTECT_CTX_NOIRQ(c) \
186 spin_lock(&(c)->ctx_lock); \
189 #define UNPROTECT_CTX_NOIRQ(c) \
191 spin_unlock(&(c)->ctx_lock); \
197 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
198 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
199 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201 #else /* !CONFIG_SMP */
202 #define SET_ACTIVATION(t) do {} while(0)
203 #define GET_ACTIVATION(t) do {} while(0)
204 #define INC_ACTIVATION(t) do {} while(0)
205 #endif /* CONFIG_SMP */
207 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
208 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
209 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
212 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
217 * cmp0 must be the value of pmc0
219 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221 #define PFMFS_MAGIC 0xa0b4d889
226 #define PFM_DEBUGGING 1
230 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
233 #define DPRINT_ovfl(a) \
235 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
240 * 64-bit software counter structure
242 * the next_reset_type is applied to the next call to pfm_reset_regs()
245 unsigned long val
; /* virtual 64bit counter value */
246 unsigned long lval
; /* last reset value */
247 unsigned long long_reset
; /* reset value on sampling overflow */
248 unsigned long short_reset
; /* reset value on overflow */
249 unsigned long reset_pmds
[4]; /* which other pmds to reset when this counter overflows */
250 unsigned long smpl_pmds
[4]; /* which pmds are accessed when counter overflow */
251 unsigned long seed
; /* seed for random-number generator */
252 unsigned long mask
; /* mask for random-number generator */
253 unsigned int flags
; /* notify/do not notify */
254 unsigned long eventid
; /* overflow event identifier */
261 unsigned int block
:1; /* when 1, task will blocked on user notifications */
262 unsigned int system
:1; /* do system wide monitoring */
263 unsigned int using_dbreg
:1; /* using range restrictions (debug registers) */
264 unsigned int is_sampling
:1; /* true if using a custom format */
265 unsigned int excl_idle
:1; /* exclude idle task in system wide session */
266 unsigned int going_zombie
:1; /* context is zombie (MASKED+blocking) */
267 unsigned int trap_reason
:2; /* reason for going into pfm_handle_work() */
268 unsigned int no_msg
:1; /* no message sent on overflow */
269 unsigned int can_restart
:1; /* allowed to issue a PFM_RESTART */
270 unsigned int reserved
:22;
271 } pfm_context_flags_t
;
273 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
274 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
275 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
279 * perfmon context: encapsulates all the state of a monitoring session
282 typedef struct pfm_context
{
283 spinlock_t ctx_lock
; /* context protection */
285 pfm_context_flags_t ctx_flags
; /* bitmask of flags (block reason incl.) */
286 unsigned int ctx_state
; /* state: active/inactive (no bitfield) */
288 struct task_struct
*ctx_task
; /* task to which context is attached */
290 unsigned long ctx_ovfl_regs
[4]; /* which registers overflowed (notification) */
292 struct completion ctx_restart_done
; /* use for blocking notification mode */
294 unsigned long ctx_used_pmds
[4]; /* bitmask of PMD used */
295 unsigned long ctx_all_pmds
[4]; /* bitmask of all accessible PMDs */
296 unsigned long ctx_reload_pmds
[4]; /* bitmask of force reload PMD on ctxsw in */
298 unsigned long ctx_all_pmcs
[4]; /* bitmask of all accessible PMCs */
299 unsigned long ctx_reload_pmcs
[4]; /* bitmask of force reload PMC on ctxsw in */
300 unsigned long ctx_used_monitors
[4]; /* bitmask of monitor PMC being used */
302 unsigned long ctx_pmcs
[PFM_NUM_PMC_REGS
]; /* saved copies of PMC values */
304 unsigned int ctx_used_ibrs
[1]; /* bitmask of used IBR (speedup ctxsw in) */
305 unsigned int ctx_used_dbrs
[1]; /* bitmask of used DBR (speedup ctxsw in) */
306 unsigned long ctx_dbrs
[IA64_NUM_DBG_REGS
]; /* DBR values (cache) when not loaded */
307 unsigned long ctx_ibrs
[IA64_NUM_DBG_REGS
]; /* IBR values (cache) when not loaded */
309 pfm_counter_t ctx_pmds
[PFM_NUM_PMD_REGS
]; /* software state for PMDS */
311 unsigned long th_pmcs
[PFM_NUM_PMC_REGS
]; /* PMC thread save state */
312 unsigned long th_pmds
[PFM_NUM_PMD_REGS
]; /* PMD thread save state */
314 u64 ctx_saved_psr_up
; /* only contains psr.up value */
316 unsigned long ctx_last_activation
; /* context last activation number for last_cpu */
317 unsigned int ctx_last_cpu
; /* CPU id of current or last CPU used (SMP only) */
318 unsigned int ctx_cpu
; /* cpu to which perfmon is applied (system wide) */
320 int ctx_fd
; /* file descriptor used my this context */
321 pfm_ovfl_arg_t ctx_ovfl_arg
; /* argument to custom buffer format handler */
323 pfm_buffer_fmt_t
*ctx_buf_fmt
; /* buffer format callbacks */
324 void *ctx_smpl_hdr
; /* points to sampling buffer header kernel vaddr */
325 unsigned long ctx_smpl_size
; /* size of sampling buffer */
326 void *ctx_smpl_vaddr
; /* user level virtual address of smpl buffer */
328 wait_queue_head_t ctx_msgq_wait
;
329 pfm_msg_t ctx_msgq
[PFM_MAX_MSGS
];
332 struct fasync_struct
*ctx_async_queue
;
334 wait_queue_head_t ctx_zombieq
; /* termination cleanup wait queue */
338 * magic number used to verify that structure is really
341 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
346 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
347 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349 #define SET_LAST_CPU(ctx, v) do {} while(0)
350 #define GET_LAST_CPU(ctx) do {} while(0)
354 #define ctx_fl_block ctx_flags.block
355 #define ctx_fl_system ctx_flags.system
356 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
357 #define ctx_fl_is_sampling ctx_flags.is_sampling
358 #define ctx_fl_excl_idle ctx_flags.excl_idle
359 #define ctx_fl_going_zombie ctx_flags.going_zombie
360 #define ctx_fl_trap_reason ctx_flags.trap_reason
361 #define ctx_fl_no_msg ctx_flags.no_msg
362 #define ctx_fl_can_restart ctx_flags.can_restart
364 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
365 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
368 * global information about all sessions
369 * mostly used to synchronize between system wide and per-process
372 spinlock_t pfs_lock
; /* lock the structure */
374 unsigned int pfs_task_sessions
; /* number of per task sessions */
375 unsigned int pfs_sys_sessions
; /* number of per system wide sessions */
376 unsigned int pfs_sys_use_dbregs
; /* incremented when a system wide session uses debug regs */
377 unsigned int pfs_ptrace_use_dbregs
; /* incremented when a process uses debug regs */
378 struct task_struct
*pfs_sys_session
[NR_CPUS
]; /* point to task owning a system-wide session */
382 * information about a PMC or PMD.
383 * dep_pmd[]: a bitmask of dependent PMD registers
384 * dep_pmc[]: a bitmask of dependent PMC registers
386 typedef int (*pfm_reg_check_t
)(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int cnum
, unsigned long *val
, struct pt_regs
*regs
);
390 unsigned long default_value
; /* power-on default value */
391 unsigned long reserved_mask
; /* bitmask of reserved bits */
392 pfm_reg_check_t read_check
;
393 pfm_reg_check_t write_check
;
394 unsigned long dep_pmd
[4];
395 unsigned long dep_pmc
[4];
398 /* assume cnum is a valid monitor */
399 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
402 * This structure is initialized at boot time and contains
403 * a description of the PMU main characteristics.
405 * If the probe function is defined, detection is based
406 * on its return value:
407 * - 0 means recognized PMU
408 * - anything else means not supported
409 * When the probe function is not defined, then the pmu_family field
410 * is used and it must match the host CPU family such that:
411 * - cpu->family & config->pmu_family != 0
414 unsigned long ovfl_val
; /* overflow value for counters */
416 pfm_reg_desc_t
*pmc_desc
; /* detailed PMC register dependencies descriptions */
417 pfm_reg_desc_t
*pmd_desc
; /* detailed PMD register dependencies descriptions */
419 unsigned int num_pmcs
; /* number of PMCS: computed at init time */
420 unsigned int num_pmds
; /* number of PMDS: computed at init time */
421 unsigned long impl_pmcs
[4]; /* bitmask of implemented PMCS */
422 unsigned long impl_pmds
[4]; /* bitmask of implemented PMDS */
424 char *pmu_name
; /* PMU family name */
425 unsigned int pmu_family
; /* cpuid family pattern used to identify pmu */
426 unsigned int flags
; /* pmu specific flags */
427 unsigned int num_ibrs
; /* number of IBRS: computed at init time */
428 unsigned int num_dbrs
; /* number of DBRS: computed at init time */
429 unsigned int num_counters
; /* PMC/PMD counting pairs : computed at init time */
430 int (*probe
)(void); /* customized probe routine */
431 unsigned int use_rr_dbregs
:1; /* set if debug registers used for range restriction */
436 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
439 * debug register related type definitions
442 unsigned long ibr_mask
:56;
443 unsigned long ibr_plm
:4;
444 unsigned long ibr_ig
:3;
445 unsigned long ibr_x
:1;
449 unsigned long dbr_mask
:56;
450 unsigned long dbr_plm
:4;
451 unsigned long dbr_ig
:2;
452 unsigned long dbr_w
:1;
453 unsigned long dbr_r
:1;
464 * perfmon command descriptions
467 int (*cmd_func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
470 unsigned int cmd_narg
;
472 int (*cmd_getsize
)(void *arg
, size_t *sz
);
475 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
476 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
477 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
478 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
481 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
482 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
483 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
484 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
485 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
490 unsigned long pfm_spurious_ovfl_intr_count
; /* keep track of spurious ovfl interrupts */
491 unsigned long pfm_replay_ovfl_intr_count
; /* keep track of replayed ovfl interrupts */
492 unsigned long pfm_ovfl_intr_count
; /* keep track of ovfl interrupts */
493 unsigned long pfm_ovfl_intr_cycles
; /* cycles spent processing ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles_min
; /* min cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_max
; /* max cycles spent processing ovfl interrupts */
496 unsigned long pfm_smpl_handler_calls
;
497 unsigned long pfm_smpl_handler_cycles
;
498 char pad
[SMP_CACHE_BYTES
] ____cacheline_aligned
;
502 * perfmon internal variables
504 static pfm_stats_t pfm_stats
[NR_CPUS
];
505 static pfm_session_t pfm_sessions
; /* global sessions information */
507 static DEFINE_SPINLOCK(pfm_alt_install_check
);
508 static pfm_intr_handler_desc_t
*pfm_alt_intr_handler
;
510 static struct proc_dir_entry
*perfmon_dir
;
511 static pfm_uuid_t pfm_null_uuid
= {0,};
513 static spinlock_t pfm_buffer_fmt_lock
;
514 static LIST_HEAD(pfm_buffer_fmt_list
);
516 static pmu_config_t
*pmu_conf
;
518 /* sysctl() controls */
519 pfm_sysctl_t pfm_sysctl
;
520 EXPORT_SYMBOL(pfm_sysctl
);
522 static ctl_table pfm_ctl_table
[]={
524 .ctl_name
= CTL_UNNUMBERED
,
526 .data
= &pfm_sysctl
.debug
,
527 .maxlen
= sizeof(int),
529 .proc_handler
= &proc_dointvec
,
532 .ctl_name
= CTL_UNNUMBERED
,
533 .procname
= "debug_ovfl",
534 .data
= &pfm_sysctl
.debug_ovfl
,
535 .maxlen
= sizeof(int),
537 .proc_handler
= &proc_dointvec
,
540 .ctl_name
= CTL_UNNUMBERED
,
541 .procname
= "fastctxsw",
542 .data
= &pfm_sysctl
.fastctxsw
,
543 .maxlen
= sizeof(int),
545 .proc_handler
= &proc_dointvec
,
548 .ctl_name
= CTL_UNNUMBERED
,
549 .procname
= "expert_mode",
550 .data
= &pfm_sysctl
.expert_mode
,
551 .maxlen
= sizeof(int),
553 .proc_handler
= &proc_dointvec
,
557 static ctl_table pfm_sysctl_dir
[] = {
559 .ctl_name
= CTL_UNNUMBERED
,
560 .procname
= "perfmon",
562 .child
= pfm_ctl_table
,
566 static ctl_table pfm_sysctl_root
[] = {
568 .ctl_name
= CTL_KERN
,
569 .procname
= "kernel",
571 .child
= pfm_sysctl_dir
,
575 static struct ctl_table_header
*pfm_sysctl_header
;
577 static int pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
579 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
580 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
583 pfm_put_task(struct task_struct
*task
)
585 if (task
!= current
) put_task_struct(task
);
589 pfm_reserve_page(unsigned long a
)
591 SetPageReserved(vmalloc_to_page((void *)a
));
594 pfm_unreserve_page(unsigned long a
)
596 ClearPageReserved(vmalloc_to_page((void*)a
));
599 static inline unsigned long
600 pfm_protect_ctx_ctxsw(pfm_context_t
*x
)
602 spin_lock(&(x
)->ctx_lock
);
607 pfm_unprotect_ctx_ctxsw(pfm_context_t
*x
, unsigned long f
)
609 spin_unlock(&(x
)->ctx_lock
);
612 static inline unsigned int
613 pfm_do_munmap(struct mm_struct
*mm
, unsigned long addr
, size_t len
, int acct
)
615 return do_munmap(mm
, addr
, len
);
618 static inline unsigned long
619 pfm_get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
, unsigned long pgoff
, unsigned long flags
, unsigned long exec
)
621 return get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
626 pfmfs_get_sb(struct file_system_type
*fs_type
, int flags
, const char *dev_name
, void *data
,
627 struct vfsmount
*mnt
)
629 return get_sb_pseudo(fs_type
, "pfm:", NULL
, PFMFS_MAGIC
, mnt
);
632 static struct file_system_type pfm_fs_type
= {
634 .get_sb
= pfmfs_get_sb
,
635 .kill_sb
= kill_anon_super
,
638 DEFINE_PER_CPU(unsigned long, pfm_syst_info
);
639 DEFINE_PER_CPU(struct task_struct
*, pmu_owner
);
640 DEFINE_PER_CPU(pfm_context_t
*, pmu_ctx
);
641 DEFINE_PER_CPU(unsigned long, pmu_activation_number
);
642 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info
);
645 /* forward declaration */
646 static const struct file_operations pfm_file_ops
;
649 * forward declarations
652 static void pfm_lazy_save_regs (struct task_struct
*ta
);
655 void dump_pmu_state(const char *);
656 static int pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
658 #include "perfmon_itanium.h"
659 #include "perfmon_mckinley.h"
660 #include "perfmon_montecito.h"
661 #include "perfmon_generic.h"
663 static pmu_config_t
*pmu_confs
[]={
667 &pmu_conf_gen
, /* must be last */
672 static int pfm_end_notify_user(pfm_context_t
*ctx
);
675 pfm_clear_psr_pp(void)
677 ia64_rsm(IA64_PSR_PP
);
684 ia64_ssm(IA64_PSR_PP
);
689 pfm_clear_psr_up(void)
691 ia64_rsm(IA64_PSR_UP
);
698 ia64_ssm(IA64_PSR_UP
);
702 static inline unsigned long
706 tmp
= ia64_getreg(_IA64_REG_PSR
);
712 pfm_set_psr_l(unsigned long val
)
714 ia64_setreg(_IA64_REG_PSR_L
, val
);
726 pfm_unfreeze_pmu(void)
733 pfm_restore_ibrs(unsigned long *ibrs
, unsigned int nibrs
)
737 for (i
=0; i
< nibrs
; i
++) {
738 ia64_set_ibr(i
, ibrs
[i
]);
739 ia64_dv_serialize_instruction();
745 pfm_restore_dbrs(unsigned long *dbrs
, unsigned int ndbrs
)
749 for (i
=0; i
< ndbrs
; i
++) {
750 ia64_set_dbr(i
, dbrs
[i
]);
751 ia64_dv_serialize_data();
757 * PMD[i] must be a counter. no check is made
759 static inline unsigned long
760 pfm_read_soft_counter(pfm_context_t
*ctx
, int i
)
762 return ctx
->ctx_pmds
[i
].val
+ (ia64_get_pmd(i
) & pmu_conf
->ovfl_val
);
766 * PMD[i] must be a counter. no check is made
769 pfm_write_soft_counter(pfm_context_t
*ctx
, int i
, unsigned long val
)
771 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
773 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
775 * writing to unimplemented part is ignore, so we do not need to
778 ia64_set_pmd(i
, val
& ovfl_val
);
782 pfm_get_new_msg(pfm_context_t
*ctx
)
786 next
= (ctx
->ctx_msgq_tail
+1) % PFM_MAX_MSGS
;
788 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
789 if (next
== ctx
->ctx_msgq_head
) return NULL
;
791 idx
= ctx
->ctx_msgq_tail
;
792 ctx
->ctx_msgq_tail
= next
;
794 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, idx
));
796 return ctx
->ctx_msgq
+idx
;
800 pfm_get_next_msg(pfm_context_t
*ctx
)
804 DPRINT(("ctx=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
806 if (PFM_CTXQ_EMPTY(ctx
)) return NULL
;
811 msg
= ctx
->ctx_msgq
+ctx
->ctx_msgq_head
;
816 ctx
->ctx_msgq_head
= (ctx
->ctx_msgq_head
+1) % PFM_MAX_MSGS
;
818 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, msg
->pfm_gen_msg
.msg_type
));
824 pfm_reset_msgq(pfm_context_t
*ctx
)
826 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
827 DPRINT(("ctx=%p msgq reset\n", ctx
));
831 pfm_rvmalloc(unsigned long size
)
836 size
= PAGE_ALIGN(size
);
839 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
840 memset(mem
, 0, size
);
841 addr
= (unsigned long)mem
;
843 pfm_reserve_page(addr
);
852 pfm_rvfree(void *mem
, unsigned long size
)
857 DPRINT(("freeing physical buffer @%p size=%lu\n", mem
, size
));
858 addr
= (unsigned long) mem
;
859 while ((long) size
> 0) {
860 pfm_unreserve_page(addr
);
869 static pfm_context_t
*
870 pfm_context_alloc(void)
875 * allocate context descriptor
876 * must be able to free with interrupts disabled
878 ctx
= kzalloc(sizeof(pfm_context_t
), GFP_KERNEL
);
880 DPRINT(("alloc ctx @%p\n", ctx
));
886 pfm_context_free(pfm_context_t
*ctx
)
889 DPRINT(("free ctx @%p\n", ctx
));
895 pfm_mask_monitoring(struct task_struct
*task
)
897 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
898 unsigned long mask
, val
, ovfl_mask
;
901 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task
)));
903 ovfl_mask
= pmu_conf
->ovfl_val
;
905 * monitoring can only be masked as a result of a valid
906 * counter overflow. In UP, it means that the PMU still
907 * has an owner. Note that the owner can be different
908 * from the current task. However the PMU state belongs
910 * In SMP, a valid overflow only happens when task is
911 * current. Therefore if we come here, we know that
912 * the PMU state belongs to the current task, therefore
913 * we can access the live registers.
915 * So in both cases, the live register contains the owner's
916 * state. We can ONLY touch the PMU registers and NOT the PSR.
918 * As a consequence to this call, the ctx->th_pmds[] array
919 * contains stale information which must be ignored
920 * when context is reloaded AND monitoring is active (see
923 mask
= ctx
->ctx_used_pmds
[0];
924 for (i
= 0; mask
; i
++, mask
>>=1) {
925 /* skip non used pmds */
926 if ((mask
& 0x1) == 0) continue;
927 val
= ia64_get_pmd(i
);
929 if (PMD_IS_COUNTING(i
)) {
931 * we rebuild the full 64 bit value of the counter
933 ctx
->ctx_pmds
[i
].val
+= (val
& ovfl_mask
);
935 ctx
->ctx_pmds
[i
].val
= val
;
937 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
939 ctx
->ctx_pmds
[i
].val
,
943 * mask monitoring by setting the privilege level to 0
944 * we cannot use psr.pp/psr.up for this, it is controlled by
947 * if task is current, modify actual registers, otherwise modify
948 * thread save state, i.e., what will be restored in pfm_load_regs()
950 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
951 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
952 if ((mask
& 0x1) == 0UL) continue;
953 ia64_set_pmc(i
, ctx
->th_pmcs
[i
] & ~0xfUL
);
954 ctx
->th_pmcs
[i
] &= ~0xfUL
;
955 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
958 * make all of this visible
964 * must always be done with task == current
966 * context must be in MASKED state when calling
969 pfm_restore_monitoring(struct task_struct
*task
)
971 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
972 unsigned long mask
, ovfl_mask
;
973 unsigned long psr
, val
;
976 is_system
= ctx
->ctx_fl_system
;
977 ovfl_mask
= pmu_conf
->ovfl_val
;
979 if (task
!= current
) {
980 printk(KERN_ERR
"perfmon.%d: invalid task[%d] current[%d]\n", __LINE__
, task_pid_nr(task
), task_pid_nr(current
));
983 if (ctx
->ctx_state
!= PFM_CTX_MASKED
) {
984 printk(KERN_ERR
"perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__
,
985 task_pid_nr(task
), task_pid_nr(current
), ctx
->ctx_state
);
990 * monitoring is masked via the PMC.
991 * As we restore their value, we do not want each counter to
992 * restart right away. We stop monitoring using the PSR,
993 * restore the PMC (and PMD) and then re-establish the psr
994 * as it was. Note that there can be no pending overflow at
995 * this point, because monitoring was MASKED.
997 * system-wide session are pinned and self-monitoring
999 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1000 /* disable dcr pp */
1001 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
1007 * first, we restore the PMD
1009 mask
= ctx
->ctx_used_pmds
[0];
1010 for (i
= 0; mask
; i
++, mask
>>=1) {
1011 /* skip non used pmds */
1012 if ((mask
& 0x1) == 0) continue;
1014 if (PMD_IS_COUNTING(i
)) {
1016 * we split the 64bit value according to
1019 val
= ctx
->ctx_pmds
[i
].val
& ovfl_mask
;
1020 ctx
->ctx_pmds
[i
].val
&= ~ovfl_mask
;
1022 val
= ctx
->ctx_pmds
[i
].val
;
1024 ia64_set_pmd(i
, val
);
1026 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1028 ctx
->ctx_pmds
[i
].val
,
1034 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
1035 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
1036 if ((mask
& 0x1) == 0UL) continue;
1037 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1038 ia64_set_pmc(i
, ctx
->th_pmcs
[i
]);
1039 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1040 task_pid_nr(task
), i
, ctx
->th_pmcs
[i
]));
1045 * must restore DBR/IBR because could be modified while masked
1046 * XXX: need to optimize
1048 if (ctx
->ctx_fl_using_dbreg
) {
1049 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
1050 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
1056 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1058 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
1065 pfm_save_pmds(unsigned long *pmds
, unsigned long mask
)
1071 for (i
=0; mask
; i
++, mask
>>=1) {
1072 if (mask
& 0x1) pmds
[i
] = ia64_get_pmd(i
);
1077 * reload from thread state (used for ctxw only)
1080 pfm_restore_pmds(unsigned long *pmds
, unsigned long mask
)
1083 unsigned long val
, ovfl_val
= pmu_conf
->ovfl_val
;
1085 for (i
=0; mask
; i
++, mask
>>=1) {
1086 if ((mask
& 0x1) == 0) continue;
1087 val
= PMD_IS_COUNTING(i
) ? pmds
[i
] & ovfl_val
: pmds
[i
];
1088 ia64_set_pmd(i
, val
);
1094 * propagate PMD from context to thread-state
1097 pfm_copy_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
1099 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
1100 unsigned long mask
= ctx
->ctx_all_pmds
[0];
1104 DPRINT(("mask=0x%lx\n", mask
));
1106 for (i
=0; mask
; i
++, mask
>>=1) {
1108 val
= ctx
->ctx_pmds
[i
].val
;
1111 * We break up the 64 bit value into 2 pieces
1112 * the lower bits go to the machine state in the
1113 * thread (will be reloaded on ctxsw in).
1114 * The upper part stays in the soft-counter.
1116 if (PMD_IS_COUNTING(i
)) {
1117 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
1120 ctx
->th_pmds
[i
] = val
;
1122 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1125 ctx
->ctx_pmds
[i
].val
));
1130 * propagate PMC from context to thread-state
1133 pfm_copy_pmcs(struct task_struct
*task
, pfm_context_t
*ctx
)
1135 unsigned long mask
= ctx
->ctx_all_pmcs
[0];
1138 DPRINT(("mask=0x%lx\n", mask
));
1140 for (i
=0; mask
; i
++, mask
>>=1) {
1141 /* masking 0 with ovfl_val yields 0 */
1142 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1143 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
1150 pfm_restore_pmcs(unsigned long *pmcs
, unsigned long mask
)
1154 for (i
=0; mask
; i
++, mask
>>=1) {
1155 if ((mask
& 0x1) == 0) continue;
1156 ia64_set_pmc(i
, pmcs
[i
]);
1162 pfm_uuid_cmp(pfm_uuid_t a
, pfm_uuid_t b
)
1164 return memcmp(a
, b
, sizeof(pfm_uuid_t
));
1168 pfm_buf_fmt_exit(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, struct pt_regs
*regs
)
1171 if (fmt
->fmt_exit
) ret
= (*fmt
->fmt_exit
)(task
, buf
, regs
);
1176 pfm_buf_fmt_getsize(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
, int cpu
, void *arg
, unsigned long *size
)
1179 if (fmt
->fmt_getsize
) ret
= (*fmt
->fmt_getsize
)(task
, flags
, cpu
, arg
, size
);
1185 pfm_buf_fmt_validate(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
,
1189 if (fmt
->fmt_validate
) ret
= (*fmt
->fmt_validate
)(task
, flags
, cpu
, arg
);
1194 pfm_buf_fmt_init(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, unsigned int flags
,
1198 if (fmt
->fmt_init
) ret
= (*fmt
->fmt_init
)(task
, buf
, flags
, cpu
, arg
);
1203 pfm_buf_fmt_restart(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1206 if (fmt
->fmt_restart
) ret
= (*fmt
->fmt_restart
)(task
, ctrl
, buf
, regs
);
1211 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1214 if (fmt
->fmt_restart_active
) ret
= (*fmt
->fmt_restart_active
)(task
, ctrl
, buf
, regs
);
1218 static pfm_buffer_fmt_t
*
1219 __pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1221 struct list_head
* pos
;
1222 pfm_buffer_fmt_t
* entry
;
1224 list_for_each(pos
, &pfm_buffer_fmt_list
) {
1225 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
1226 if (pfm_uuid_cmp(uuid
, entry
->fmt_uuid
) == 0)
1233 * find a buffer format based on its uuid
1235 static pfm_buffer_fmt_t
*
1236 pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1238 pfm_buffer_fmt_t
* fmt
;
1239 spin_lock(&pfm_buffer_fmt_lock
);
1240 fmt
= __pfm_find_buffer_fmt(uuid
);
1241 spin_unlock(&pfm_buffer_fmt_lock
);
1246 pfm_register_buffer_fmt(pfm_buffer_fmt_t
*fmt
)
1250 /* some sanity checks */
1251 if (fmt
== NULL
|| fmt
->fmt_name
== NULL
) return -EINVAL
;
1253 /* we need at least a handler */
1254 if (fmt
->fmt_handler
== NULL
) return -EINVAL
;
1257 * XXX: need check validity of fmt_arg_size
1260 spin_lock(&pfm_buffer_fmt_lock
);
1262 if (__pfm_find_buffer_fmt(fmt
->fmt_uuid
)) {
1263 printk(KERN_ERR
"perfmon: duplicate sampling format: %s\n", fmt
->fmt_name
);
1267 list_add(&fmt
->fmt_list
, &pfm_buffer_fmt_list
);
1268 printk(KERN_INFO
"perfmon: added sampling format %s\n", fmt
->fmt_name
);
1271 spin_unlock(&pfm_buffer_fmt_lock
);
1274 EXPORT_SYMBOL(pfm_register_buffer_fmt
);
1277 pfm_unregister_buffer_fmt(pfm_uuid_t uuid
)
1279 pfm_buffer_fmt_t
*fmt
;
1282 spin_lock(&pfm_buffer_fmt_lock
);
1284 fmt
= __pfm_find_buffer_fmt(uuid
);
1286 printk(KERN_ERR
"perfmon: cannot unregister format, not found\n");
1290 list_del_init(&fmt
->fmt_list
);
1291 printk(KERN_INFO
"perfmon: removed sampling format: %s\n", fmt
->fmt_name
);
1294 spin_unlock(&pfm_buffer_fmt_lock
);
1298 EXPORT_SYMBOL(pfm_unregister_buffer_fmt
);
1300 extern void update_pal_halt_status(int);
1303 pfm_reserve_session(struct task_struct
*task
, int is_syswide
, unsigned int cpu
)
1305 unsigned long flags
;
1307 * validity checks on cpu_mask have been done upstream
1311 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1312 pfm_sessions
.pfs_sys_sessions
,
1313 pfm_sessions
.pfs_task_sessions
,
1314 pfm_sessions
.pfs_sys_use_dbregs
,
1320 * cannot mix system wide and per-task sessions
1322 if (pfm_sessions
.pfs_task_sessions
> 0UL) {
1323 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1324 pfm_sessions
.pfs_task_sessions
));
1328 if (pfm_sessions
.pfs_sys_session
[cpu
]) goto error_conflict
;
1330 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu
, smp_processor_id()));
1332 pfm_sessions
.pfs_sys_session
[cpu
] = task
;
1334 pfm_sessions
.pfs_sys_sessions
++ ;
1337 if (pfm_sessions
.pfs_sys_sessions
) goto abort
;
1338 pfm_sessions
.pfs_task_sessions
++;
1341 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1342 pfm_sessions
.pfs_sys_sessions
,
1343 pfm_sessions
.pfs_task_sessions
,
1344 pfm_sessions
.pfs_sys_use_dbregs
,
1349 * disable default_idle() to go to PAL_HALT
1351 update_pal_halt_status(0);
1358 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1359 task_pid_nr(pfm_sessions
.pfs_sys_session
[cpu
]),
1369 pfm_unreserve_session(pfm_context_t
*ctx
, int is_syswide
, unsigned int cpu
)
1371 unsigned long flags
;
1373 * validity checks on cpu_mask have been done upstream
1377 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1378 pfm_sessions
.pfs_sys_sessions
,
1379 pfm_sessions
.pfs_task_sessions
,
1380 pfm_sessions
.pfs_sys_use_dbregs
,
1386 pfm_sessions
.pfs_sys_session
[cpu
] = NULL
;
1388 * would not work with perfmon+more than one bit in cpu_mask
1390 if (ctx
&& ctx
->ctx_fl_using_dbreg
) {
1391 if (pfm_sessions
.pfs_sys_use_dbregs
== 0) {
1392 printk(KERN_ERR
"perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx
);
1394 pfm_sessions
.pfs_sys_use_dbregs
--;
1397 pfm_sessions
.pfs_sys_sessions
--;
1399 pfm_sessions
.pfs_task_sessions
--;
1401 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 pfm_sessions
.pfs_sys_sessions
,
1403 pfm_sessions
.pfs_task_sessions
,
1404 pfm_sessions
.pfs_sys_use_dbregs
,
1409 * if possible, enable default_idle() to go into PAL_HALT
1411 if (pfm_sessions
.pfs_task_sessions
== 0 && pfm_sessions
.pfs_sys_sessions
== 0)
1412 update_pal_halt_status(1);
1420 * removes virtual mapping of the sampling buffer.
1421 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1422 * a PROTECT_CTX() section.
1425 pfm_remove_smpl_mapping(struct task_struct
*task
, void *vaddr
, unsigned long size
)
1430 if (task
->mm
== NULL
|| size
== 0UL || vaddr
== NULL
) {
1431 printk(KERN_ERR
"perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task
), task
->mm
);
1435 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1438 * does the actual unmapping
1440 down_write(&task
->mm
->mmap_sem
);
1442 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1444 r
= pfm_do_munmap(task
->mm
, (unsigned long)vaddr
, size
, 0);
1446 up_write(&task
->mm
->mmap_sem
);
1448 printk(KERN_ERR
"perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task
), vaddr
, size
);
1451 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr
, size
, r
));
1457 * free actual physical storage used by sampling buffer
1461 pfm_free_smpl_buffer(pfm_context_t
*ctx
)
1463 pfm_buffer_fmt_t
*fmt
;
1465 if (ctx
->ctx_smpl_hdr
== NULL
) goto invalid_free
;
1468 * we won't use the buffer format anymore
1470 fmt
= ctx
->ctx_buf_fmt
;
1472 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1475 ctx
->ctx_smpl_vaddr
));
1477 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1482 pfm_rvfree(ctx
->ctx_smpl_hdr
, ctx
->ctx_smpl_size
);
1484 ctx
->ctx_smpl_hdr
= NULL
;
1485 ctx
->ctx_smpl_size
= 0UL;
1490 printk(KERN_ERR
"perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current
));
1496 pfm_exit_smpl_buffer(pfm_buffer_fmt_t
*fmt
)
1498 if (fmt
== NULL
) return;
1500 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1505 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1506 * no real gain from having the whole whorehouse mounted. So we don't need
1507 * any operations on the root directory. However, we need a non-trivial
1508 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1510 static struct vfsmount
*pfmfs_mnt
;
1515 int err
= register_filesystem(&pfm_fs_type
);
1517 pfmfs_mnt
= kern_mount(&pfm_fs_type
);
1518 err
= PTR_ERR(pfmfs_mnt
);
1519 if (IS_ERR(pfmfs_mnt
))
1520 unregister_filesystem(&pfm_fs_type
);
1528 pfm_read(struct file
*filp
, char __user
*buf
, size_t size
, loff_t
*ppos
)
1533 unsigned long flags
;
1534 DECLARE_WAITQUEUE(wait
, current
);
1535 if (PFM_IS_FILE(filp
) == 0) {
1536 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1540 ctx
= (pfm_context_t
*)filp
->private_data
;
1542 printk(KERN_ERR
"perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current
));
1547 * check even when there is no message
1549 if (size
< sizeof(pfm_msg_t
)) {
1550 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx
, sizeof(pfm_msg_t
)));
1554 PROTECT_CTX(ctx
, flags
);
1557 * put ourselves on the wait queue
1559 add_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1567 set_current_state(TASK_INTERRUPTIBLE
);
1569 DPRINT(("head=%d tail=%d\n", ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
1572 if(PFM_CTXQ_EMPTY(ctx
) == 0) break;
1574 UNPROTECT_CTX(ctx
, flags
);
1577 * check non-blocking read
1580 if(filp
->f_flags
& O_NONBLOCK
) break;
1583 * check pending signals
1585 if(signal_pending(current
)) {
1590 * no message, so wait
1594 PROTECT_CTX(ctx
, flags
);
1596 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current
), ret
));
1597 set_current_state(TASK_RUNNING
);
1598 remove_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1600 if (ret
< 0) goto abort
;
1603 msg
= pfm_get_next_msg(ctx
);
1605 printk(KERN_ERR
"perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx
, task_pid_nr(current
));
1609 DPRINT(("fd=%d type=%d\n", msg
->pfm_gen_msg
.msg_ctx_fd
, msg
->pfm_gen_msg
.msg_type
));
1612 if(copy_to_user(buf
, msg
, sizeof(pfm_msg_t
)) == 0) ret
= sizeof(pfm_msg_t
);
1615 UNPROTECT_CTX(ctx
, flags
);
1621 pfm_write(struct file
*file
, const char __user
*ubuf
,
1622 size_t size
, loff_t
*ppos
)
1624 DPRINT(("pfm_write called\n"));
1629 pfm_poll(struct file
*filp
, poll_table
* wait
)
1632 unsigned long flags
;
1633 unsigned int mask
= 0;
1635 if (PFM_IS_FILE(filp
) == 0) {
1636 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1640 ctx
= (pfm_context_t
*)filp
->private_data
;
1642 printk(KERN_ERR
"perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current
));
1647 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx
->ctx_fd
));
1649 poll_wait(filp
, &ctx
->ctx_msgq_wait
, wait
);
1651 PROTECT_CTX(ctx
, flags
);
1653 if (PFM_CTXQ_EMPTY(ctx
) == 0)
1654 mask
= POLLIN
| POLLRDNORM
;
1656 UNPROTECT_CTX(ctx
, flags
);
1658 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx
->ctx_fd
, mask
));
1664 pfm_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1666 DPRINT(("pfm_ioctl called\n"));
1671 * interrupt cannot be masked when coming here
1674 pfm_do_fasync(int fd
, struct file
*filp
, pfm_context_t
*ctx
, int on
)
1678 ret
= fasync_helper (fd
, filp
, on
, &ctx
->ctx_async_queue
);
1680 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1681 task_pid_nr(current
),
1684 ctx
->ctx_async_queue
, ret
));
1690 pfm_fasync(int fd
, struct file
*filp
, int on
)
1695 if (PFM_IS_FILE(filp
) == 0) {
1696 printk(KERN_ERR
"perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current
));
1700 ctx
= (pfm_context_t
*)filp
->private_data
;
1702 printk(KERN_ERR
"perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current
));
1706 * we cannot mask interrupts during this call because this may
1707 * may go to sleep if memory is not readily avalaible.
1709 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1710 * done in caller. Serialization of this function is ensured by caller.
1712 ret
= pfm_do_fasync(fd
, filp
, ctx
, on
);
1715 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1718 ctx
->ctx_async_queue
, ret
));
1725 * this function is exclusively called from pfm_close().
1726 * The context is not protected at that time, nor are interrupts
1727 * on the remote CPU. That's necessary to avoid deadlocks.
1730 pfm_syswide_force_stop(void *info
)
1732 pfm_context_t
*ctx
= (pfm_context_t
*)info
;
1733 struct pt_regs
*regs
= task_pt_regs(current
);
1734 struct task_struct
*owner
;
1735 unsigned long flags
;
1738 if (ctx
->ctx_cpu
!= smp_processor_id()) {
1739 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1741 smp_processor_id());
1744 owner
= GET_PMU_OWNER();
1745 if (owner
!= ctx
->ctx_task
) {
1746 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1748 task_pid_nr(owner
), task_pid_nr(ctx
->ctx_task
));
1751 if (GET_PMU_CTX() != ctx
) {
1752 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1754 GET_PMU_CTX(), ctx
);
1758 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx
->ctx_task
)));
1760 * the context is already protected in pfm_close(), we simply
1761 * need to mask interrupts to avoid a PMU interrupt race on
1764 local_irq_save(flags
);
1766 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
1768 DPRINT(("context_unload returned %d\n", ret
));
1772 * unmask interrupts, PMU interrupts are now spurious here
1774 local_irq_restore(flags
);
1778 pfm_syswide_cleanup_other_cpu(pfm_context_t
*ctx
)
1782 DPRINT(("calling CPU%d for cleanup\n", ctx
->ctx_cpu
));
1783 ret
= smp_call_function_single(ctx
->ctx_cpu
, pfm_syswide_force_stop
, ctx
, 0, 1);
1784 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx
->ctx_cpu
, ret
));
1786 #endif /* CONFIG_SMP */
1789 * called for each close(). Partially free resources.
1790 * When caller is self-monitoring, the context is unloaded.
1793 pfm_flush(struct file
*filp
, fl_owner_t id
)
1796 struct task_struct
*task
;
1797 struct pt_regs
*regs
;
1798 unsigned long flags
;
1799 unsigned long smpl_buf_size
= 0UL;
1800 void *smpl_buf_vaddr
= NULL
;
1801 int state
, is_system
;
1803 if (PFM_IS_FILE(filp
) == 0) {
1804 DPRINT(("bad magic for\n"));
1808 ctx
= (pfm_context_t
*)filp
->private_data
;
1810 printk(KERN_ERR
"perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current
));
1815 * remove our file from the async queue, if we use this mode.
1816 * This can be done without the context being protected. We come
1817 * here when the context has become unreachable by other tasks.
1819 * We may still have active monitoring at this point and we may
1820 * end up in pfm_overflow_handler(). However, fasync_helper()
1821 * operates with interrupts disabled and it cleans up the
1822 * queue. If the PMU handler is called prior to entering
1823 * fasync_helper() then it will send a signal. If it is
1824 * invoked after, it will find an empty queue and no
1825 * signal will be sent. In both case, we are safe
1827 if (filp
->f_flags
& FASYNC
) {
1828 DPRINT(("cleaning up async_queue=%p\n", ctx
->ctx_async_queue
));
1829 pfm_do_fasync (-1, filp
, ctx
, 0);
1832 PROTECT_CTX(ctx
, flags
);
1834 state
= ctx
->ctx_state
;
1835 is_system
= ctx
->ctx_fl_system
;
1837 task
= PFM_CTX_TASK(ctx
);
1838 regs
= task_pt_regs(task
);
1840 DPRINT(("ctx_state=%d is_current=%d\n",
1842 task
== current
? 1 : 0));
1845 * if state == UNLOADED, then task is NULL
1849 * we must stop and unload because we are losing access to the context.
1851 if (task
== current
) {
1854 * the task IS the owner but it migrated to another CPU: that's bad
1855 * but we must handle this cleanly. Unfortunately, the kernel does
1856 * not provide a mechanism to block migration (while the context is loaded).
1858 * We need to release the resource on the ORIGINAL cpu.
1860 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
1862 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
1864 * keep context protected but unmask interrupt for IPI
1866 local_irq_restore(flags
);
1868 pfm_syswide_cleanup_other_cpu(ctx
);
1871 * restore interrupt masking
1873 local_irq_save(flags
);
1876 * context is unloaded at this point
1879 #endif /* CONFIG_SMP */
1882 DPRINT(("forcing unload\n"));
1884 * stop and unload, returning with state UNLOADED
1885 * and session unreserved.
1887 pfm_context_unload(ctx
, NULL
, 0, regs
);
1889 DPRINT(("ctx_state=%d\n", ctx
->ctx_state
));
1894 * remove virtual mapping, if any, for the calling task.
1895 * cannot reset ctx field until last user is calling close().
1897 * ctx_smpl_vaddr must never be cleared because it is needed
1898 * by every task with access to the context
1900 * When called from do_exit(), the mm context is gone already, therefore
1901 * mm is NULL, i.e., the VMA is already gone and we do not have to
1904 if (ctx
->ctx_smpl_vaddr
&& current
->mm
) {
1905 smpl_buf_vaddr
= ctx
->ctx_smpl_vaddr
;
1906 smpl_buf_size
= ctx
->ctx_smpl_size
;
1909 UNPROTECT_CTX(ctx
, flags
);
1912 * if there was a mapping, then we systematically remove it
1913 * at this point. Cannot be done inside critical section
1914 * because some VM function reenables interrupts.
1917 if (smpl_buf_vaddr
) pfm_remove_smpl_mapping(current
, smpl_buf_vaddr
, smpl_buf_size
);
1922 * called either on explicit close() or from exit_files().
1923 * Only the LAST user of the file gets to this point, i.e., it is
1926 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1927 * (fput()),i.e, last task to access the file. Nobody else can access the
1928 * file at this point.
1930 * When called from exit_files(), the VMA has been freed because exit_mm()
1931 * is executed before exit_files().
1933 * When called from exit_files(), the current task is not yet ZOMBIE but we
1934 * flush the PMU state to the context.
1937 pfm_close(struct inode
*inode
, struct file
*filp
)
1940 struct task_struct
*task
;
1941 struct pt_regs
*regs
;
1942 DECLARE_WAITQUEUE(wait
, current
);
1943 unsigned long flags
;
1944 unsigned long smpl_buf_size
= 0UL;
1945 void *smpl_buf_addr
= NULL
;
1946 int free_possible
= 1;
1947 int state
, is_system
;
1949 DPRINT(("pfm_close called private=%p\n", filp
->private_data
));
1951 if (PFM_IS_FILE(filp
) == 0) {
1952 DPRINT(("bad magic\n"));
1956 ctx
= (pfm_context_t
*)filp
->private_data
;
1958 printk(KERN_ERR
"perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current
));
1962 PROTECT_CTX(ctx
, flags
);
1964 state
= ctx
->ctx_state
;
1965 is_system
= ctx
->ctx_fl_system
;
1967 task
= PFM_CTX_TASK(ctx
);
1968 regs
= task_pt_regs(task
);
1970 DPRINT(("ctx_state=%d is_current=%d\n",
1972 task
== current
? 1 : 0));
1975 * if task == current, then pfm_flush() unloaded the context
1977 if (state
== PFM_CTX_UNLOADED
) goto doit
;
1980 * context is loaded/masked and task != current, we need to
1981 * either force an unload or go zombie
1985 * The task is currently blocked or will block after an overflow.
1986 * we must force it to wakeup to get out of the
1987 * MASKED state and transition to the unloaded state by itself.
1989 * This situation is only possible for per-task mode
1991 if (state
== PFM_CTX_MASKED
&& CTX_OVFL_NOBLOCK(ctx
) == 0) {
1994 * set a "partial" zombie state to be checked
1995 * upon return from down() in pfm_handle_work().
1997 * We cannot use the ZOMBIE state, because it is checked
1998 * by pfm_load_regs() which is called upon wakeup from down().
1999 * In such case, it would free the context and then we would
2000 * return to pfm_handle_work() which would access the
2001 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2002 * but visible to pfm_handle_work().
2004 * For some window of time, we have a zombie context with
2005 * ctx_state = MASKED and not ZOMBIE
2007 ctx
->ctx_fl_going_zombie
= 1;
2010 * force task to wake up from MASKED state
2012 complete(&ctx
->ctx_restart_done
);
2014 DPRINT(("waking up ctx_state=%d\n", state
));
2017 * put ourself to sleep waiting for the other
2018 * task to report completion
2020 * the context is protected by mutex, therefore there
2021 * is no risk of being notified of completion before
2022 * begin actually on the waitq.
2024 set_current_state(TASK_INTERRUPTIBLE
);
2025 add_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2027 UNPROTECT_CTX(ctx
, flags
);
2030 * XXX: check for signals :
2031 * - ok for explicit close
2032 * - not ok when coming from exit_files()
2037 PROTECT_CTX(ctx
, flags
);
2040 remove_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2041 set_current_state(TASK_RUNNING
);
2044 * context is unloaded at this point
2046 DPRINT(("after zombie wakeup ctx_state=%d for\n", state
));
2048 else if (task
!= current
) {
2051 * switch context to zombie state
2053 ctx
->ctx_state
= PFM_CTX_ZOMBIE
;
2055 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task
)));
2057 * cannot free the context on the spot. deferred until
2058 * the task notices the ZOMBIE state
2062 pfm_context_unload(ctx
, NULL
, 0, regs
);
2067 /* reload state, may have changed during opening of critical section */
2068 state
= ctx
->ctx_state
;
2071 * the context is still attached to a task (possibly current)
2072 * we cannot destroy it right now
2076 * we must free the sampling buffer right here because
2077 * we cannot rely on it being cleaned up later by the
2078 * monitored task. It is not possible to free vmalloc'ed
2079 * memory in pfm_load_regs(). Instead, we remove the buffer
2080 * now. should there be subsequent PMU overflow originally
2081 * meant for sampling, the will be converted to spurious
2082 * and that's fine because the monitoring tools is gone anyway.
2084 if (ctx
->ctx_smpl_hdr
) {
2085 smpl_buf_addr
= ctx
->ctx_smpl_hdr
;
2086 smpl_buf_size
= ctx
->ctx_smpl_size
;
2087 /* no more sampling */
2088 ctx
->ctx_smpl_hdr
= NULL
;
2089 ctx
->ctx_fl_is_sampling
= 0;
2092 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2098 if (smpl_buf_addr
) pfm_exit_smpl_buffer(ctx
->ctx_buf_fmt
);
2101 * UNLOADED that the session has already been unreserved.
2103 if (state
== PFM_CTX_ZOMBIE
) {
2104 pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, ctx
->ctx_cpu
);
2108 * disconnect file descriptor from context must be done
2111 filp
->private_data
= NULL
;
2114 * if we free on the spot, the context is now completely unreachable
2115 * from the callers side. The monitored task side is also cut, so we
2118 * If we have a deferred free, only the caller side is disconnected.
2120 UNPROTECT_CTX(ctx
, flags
);
2123 * All memory free operations (especially for vmalloc'ed memory)
2124 * MUST be done with interrupts ENABLED.
2126 if (smpl_buf_addr
) pfm_rvfree(smpl_buf_addr
, smpl_buf_size
);
2129 * return the memory used by the context
2131 if (free_possible
) pfm_context_free(ctx
);
2137 pfm_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
2139 DPRINT(("pfm_no_open called\n"));
2145 static const struct file_operations pfm_file_ops
= {
2146 .llseek
= no_llseek
,
2151 .open
= pfm_no_open
, /* special open code to disallow open via /proc */
2152 .fasync
= pfm_fasync
,
2153 .release
= pfm_close
,
2158 pfmfs_delete_dentry(struct dentry
*dentry
)
2163 static struct dentry_operations pfmfs_dentry_operations
= {
2164 .d_delete
= pfmfs_delete_dentry
,
2169 pfm_alloc_fd(struct file
**cfile
)
2172 struct file
*file
= NULL
;
2173 struct inode
* inode
;
2177 fd
= get_unused_fd();
2178 if (fd
< 0) return -ENFILE
;
2182 file
= get_empty_filp();
2183 if (!file
) goto out
;
2186 * allocate a new inode
2188 inode
= new_inode(pfmfs_mnt
->mnt_sb
);
2189 if (!inode
) goto out
;
2191 DPRINT(("new inode ino=%ld @%p\n", inode
->i_ino
, inode
));
2193 inode
->i_mode
= S_IFCHR
|S_IRUGO
;
2194 inode
->i_uid
= current
->fsuid
;
2195 inode
->i_gid
= current
->fsgid
;
2197 sprintf(name
, "[%lu]", inode
->i_ino
);
2199 this.len
= strlen(name
);
2200 this.hash
= inode
->i_ino
;
2205 * allocate a new dcache entry
2207 file
->f_path
.dentry
= d_alloc(pfmfs_mnt
->mnt_sb
->s_root
, &this);
2208 if (!file
->f_path
.dentry
) goto out
;
2210 file
->f_path
.dentry
->d_op
= &pfmfs_dentry_operations
;
2212 d_add(file
->f_path
.dentry
, inode
);
2213 file
->f_path
.mnt
= mntget(pfmfs_mnt
);
2214 file
->f_mapping
= inode
->i_mapping
;
2216 file
->f_op
= &pfm_file_ops
;
2217 file
->f_mode
= FMODE_READ
;
2218 file
->f_flags
= O_RDONLY
;
2222 * may have to delay until context is attached?
2224 fd_install(fd
, file
);
2227 * the file structure we will use
2233 if (file
) put_filp(file
);
2239 pfm_free_fd(int fd
, struct file
*file
)
2241 struct files_struct
*files
= current
->files
;
2242 struct fdtable
*fdt
;
2245 * there ie no fd_uninstall(), so we do it here
2247 spin_lock(&files
->file_lock
);
2248 fdt
= files_fdtable(files
);
2249 rcu_assign_pointer(fdt
->fd
[fd
], NULL
);
2250 spin_unlock(&files
->file_lock
);
2258 pfm_remap_buffer(struct vm_area_struct
*vma
, unsigned long buf
, unsigned long addr
, unsigned long size
)
2260 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf
, addr
, size
));
2263 unsigned long pfn
= ia64_tpa(buf
) >> PAGE_SHIFT
;
2266 if (remap_pfn_range(vma
, addr
, pfn
, PAGE_SIZE
, PAGE_READONLY
))
2277 * allocate a sampling buffer and remaps it into the user address space of the task
2280 pfm_smpl_buffer_alloc(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned long rsize
, void **user_vaddr
)
2282 struct mm_struct
*mm
= task
->mm
;
2283 struct vm_area_struct
*vma
= NULL
;
2289 * the fixed header + requested size and align to page boundary
2291 size
= PAGE_ALIGN(rsize
);
2293 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize
, size
));
2296 * check requested size to avoid Denial-of-service attacks
2297 * XXX: may have to refine this test
2298 * Check against address space limit.
2300 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2303 if (size
> task
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
)
2307 * We do the easy to undo allocations first.
2309 * pfm_rvmalloc(), clears the buffer, so there is no leak
2311 smpl_buf
= pfm_rvmalloc(size
);
2312 if (smpl_buf
== NULL
) {
2313 DPRINT(("Can't allocate sampling buffer\n"));
2317 DPRINT(("smpl_buf @%p\n", smpl_buf
));
2320 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2322 DPRINT(("Cannot allocate vma\n"));
2327 * partially initialize the vma for the sampling buffer
2330 vma
->vm_file
= filp
;
2331 vma
->vm_flags
= VM_READ
| VM_MAYREAD
|VM_RESERVED
;
2332 vma
->vm_page_prot
= PAGE_READONLY
; /* XXX may need to change */
2335 * Now we have everything we need and we can initialize
2336 * and connect all the data structures
2339 ctx
->ctx_smpl_hdr
= smpl_buf
;
2340 ctx
->ctx_smpl_size
= size
; /* aligned size */
2343 * Let's do the difficult operations next.
2345 * now we atomically find some area in the address space and
2346 * remap the buffer in it.
2348 down_write(&task
->mm
->mmap_sem
);
2350 /* find some free area in address space, must have mmap sem held */
2351 vma
->vm_start
= pfm_get_unmapped_area(NULL
, 0, size
, 0, MAP_PRIVATE
|MAP_ANONYMOUS
, 0);
2352 if (vma
->vm_start
== 0UL) {
2353 DPRINT(("Cannot find unmapped area for size %ld\n", size
));
2354 up_write(&task
->mm
->mmap_sem
);
2357 vma
->vm_end
= vma
->vm_start
+ size
;
2358 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2360 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size
, ctx
->ctx_smpl_hdr
, vma
->vm_start
));
2362 /* can only be applied to current task, need to have the mm semaphore held when called */
2363 if (pfm_remap_buffer(vma
, (unsigned long)smpl_buf
, vma
->vm_start
, size
)) {
2364 DPRINT(("Can't remap buffer\n"));
2365 up_write(&task
->mm
->mmap_sem
);
2372 * now insert the vma in the vm list for the process, must be
2373 * done with mmap lock held
2375 insert_vm_struct(mm
, vma
);
2377 mm
->total_vm
+= size
>> PAGE_SHIFT
;
2378 vm_stat_account(vma
->vm_mm
, vma
->vm_flags
, vma
->vm_file
,
2380 up_write(&task
->mm
->mmap_sem
);
2383 * keep track of user level virtual address
2385 ctx
->ctx_smpl_vaddr
= (void *)vma
->vm_start
;
2386 *(unsigned long *)user_vaddr
= vma
->vm_start
;
2391 kmem_cache_free(vm_area_cachep
, vma
);
2393 pfm_rvfree(smpl_buf
, size
);
2399 * XXX: do something better here
2402 pfm_bad_permissions(struct task_struct
*task
)
2404 /* inspired by ptrace_attach() */
2405 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2414 return ((current
->uid
!= task
->euid
)
2415 || (current
->uid
!= task
->suid
)
2416 || (current
->uid
!= task
->uid
)
2417 || (current
->gid
!= task
->egid
)
2418 || (current
->gid
!= task
->sgid
)
2419 || (current
->gid
!= task
->gid
)) && !capable(CAP_SYS_PTRACE
);
2423 pfarg_is_sane(struct task_struct
*task
, pfarg_context_t
*pfx
)
2429 ctx_flags
= pfx
->ctx_flags
;
2431 if (ctx_flags
& PFM_FL_SYSTEM_WIDE
) {
2434 * cannot block in this mode
2436 if (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) {
2437 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2442 /* probably more to add here */
2448 pfm_setup_buffer_fmt(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned int ctx_flags
,
2449 unsigned int cpu
, pfarg_context_t
*arg
)
2451 pfm_buffer_fmt_t
*fmt
= NULL
;
2452 unsigned long size
= 0UL;
2454 void *fmt_arg
= NULL
;
2456 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2458 /* invoke and lock buffer format, if found */
2459 fmt
= pfm_find_buffer_fmt(arg
->ctx_smpl_buf_id
);
2461 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task
)));
2466 * buffer argument MUST be contiguous to pfarg_context_t
2468 if (fmt
->fmt_arg_size
) fmt_arg
= PFM_CTXARG_BUF_ARG(arg
);
2470 ret
= pfm_buf_fmt_validate(fmt
, task
, ctx_flags
, cpu
, fmt_arg
);
2472 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task
), ctx_flags
, cpu
, fmt_arg
, ret
));
2474 if (ret
) goto error
;
2476 /* link buffer format and context */
2477 ctx
->ctx_buf_fmt
= fmt
;
2480 * check if buffer format wants to use perfmon buffer allocation/mapping service
2482 ret
= pfm_buf_fmt_getsize(fmt
, task
, ctx_flags
, cpu
, fmt_arg
, &size
);
2483 if (ret
) goto error
;
2487 * buffer is always remapped into the caller's address space
2489 ret
= pfm_smpl_buffer_alloc(current
, filp
, ctx
, size
, &uaddr
);
2490 if (ret
) goto error
;
2492 /* keep track of user address of buffer */
2493 arg
->ctx_smpl_vaddr
= uaddr
;
2495 ret
= pfm_buf_fmt_init(fmt
, task
, ctx
->ctx_smpl_hdr
, ctx_flags
, cpu
, fmt_arg
);
2502 pfm_reset_pmu_state(pfm_context_t
*ctx
)
2507 * install reset values for PMC.
2509 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
2510 if (PMC_IS_IMPL(i
) == 0) continue;
2511 ctx
->ctx_pmcs
[i
] = PMC_DFL_VAL(i
);
2512 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->ctx_pmcs
[i
]));
2515 * PMD registers are set to 0UL when the context in memset()
2519 * On context switched restore, we must restore ALL pmc and ALL pmd even
2520 * when they are not actively used by the task. In UP, the incoming process
2521 * may otherwise pick up left over PMC, PMD state from the previous process.
2522 * As opposed to PMD, stale PMC can cause harm to the incoming
2523 * process because they may change what is being measured.
2524 * Therefore, we must systematically reinstall the entire
2525 * PMC state. In SMP, the same thing is possible on the
2526 * same CPU but also on between 2 CPUs.
2528 * The problem with PMD is information leaking especially
2529 * to user level when psr.sp=0
2531 * There is unfortunately no easy way to avoid this problem
2532 * on either UP or SMP. This definitively slows down the
2533 * pfm_load_regs() function.
2537 * bitmask of all PMCs accessible to this context
2539 * PMC0 is treated differently.
2541 ctx
->ctx_all_pmcs
[0] = pmu_conf
->impl_pmcs
[0] & ~0x1;
2544 * bitmask of all PMDs that are accessible to this context
2546 ctx
->ctx_all_pmds
[0] = pmu_conf
->impl_pmds
[0];
2548 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx
->ctx_fd
, ctx
->ctx_all_pmcs
[0],ctx
->ctx_all_pmds
[0]));
2551 * useful in case of re-enable after disable
2553 ctx
->ctx_used_ibrs
[0] = 0UL;
2554 ctx
->ctx_used_dbrs
[0] = 0UL;
2558 pfm_ctx_getsize(void *arg
, size_t *sz
)
2560 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2561 pfm_buffer_fmt_t
*fmt
;
2565 if (!pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) return 0;
2567 fmt
= pfm_find_buffer_fmt(req
->ctx_smpl_buf_id
);
2569 DPRINT(("cannot find buffer format\n"));
2572 /* get just enough to copy in user parameters */
2573 *sz
= fmt
->fmt_arg_size
;
2574 DPRINT(("arg_size=%lu\n", *sz
));
2582 * cannot attach if :
2584 * - task not owned by caller
2585 * - task incompatible with context mode
2588 pfm_task_incompatible(pfm_context_t
*ctx
, struct task_struct
*task
)
2591 * no kernel task or task not owner by caller
2593 if (task
->mm
== NULL
) {
2594 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task
)));
2597 if (pfm_bad_permissions(task
)) {
2598 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task
)));
2602 * cannot block in self-monitoring mode
2604 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && task
== current
) {
2605 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task
)));
2609 if (task
->exit_state
== EXIT_ZOMBIE
) {
2610 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task
)));
2615 * always ok for self
2617 if (task
== current
) return 0;
2619 if (!task_is_stopped_or_traced(task
)) {
2620 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task
), task
->state
));
2624 * make sure the task is off any CPU
2626 wait_task_inactive(task
);
2628 /* more to come... */
2634 pfm_get_task(pfm_context_t
*ctx
, pid_t pid
, struct task_struct
**task
)
2636 struct task_struct
*p
= current
;
2639 /* XXX: need to add more checks here */
2640 if (pid
< 2) return -EPERM
;
2642 if (pid
!= task_pid_vnr(current
)) {
2644 read_lock(&tasklist_lock
);
2646 p
= find_task_by_vpid(pid
);
2648 /* make sure task cannot go away while we operate on it */
2649 if (p
) get_task_struct(p
);
2651 read_unlock(&tasklist_lock
);
2653 if (p
== NULL
) return -ESRCH
;
2656 ret
= pfm_task_incompatible(ctx
, p
);
2659 } else if (p
!= current
) {
2668 pfm_context_create(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2670 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2675 /* let's check the arguments first */
2676 ret
= pfarg_is_sane(current
, req
);
2677 if (ret
< 0) return ret
;
2679 ctx_flags
= req
->ctx_flags
;
2683 ctx
= pfm_context_alloc();
2684 if (!ctx
) goto error
;
2686 ret
= pfm_alloc_fd(&filp
);
2687 if (ret
< 0) goto error_file
;
2689 req
->ctx_fd
= ctx
->ctx_fd
= ret
;
2692 * attach context to file
2694 filp
->private_data
= ctx
;
2697 * does the user want to sample?
2699 if (pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) {
2700 ret
= pfm_setup_buffer_fmt(current
, filp
, ctx
, ctx_flags
, 0, req
);
2701 if (ret
) goto buffer_error
;
2705 * init context protection lock
2707 spin_lock_init(&ctx
->ctx_lock
);
2710 * context is unloaded
2712 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
2715 * initialization of context's flags
2717 ctx
->ctx_fl_block
= (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) ? 1 : 0;
2718 ctx
->ctx_fl_system
= (ctx_flags
& PFM_FL_SYSTEM_WIDE
) ? 1: 0;
2719 ctx
->ctx_fl_is_sampling
= ctx
->ctx_buf_fmt
? 1 : 0; /* assume record() is defined */
2720 ctx
->ctx_fl_no_msg
= (ctx_flags
& PFM_FL_OVFL_NO_MSG
) ? 1: 0;
2722 * will move to set properties
2723 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2727 * init restart semaphore to locked
2729 init_completion(&ctx
->ctx_restart_done
);
2732 * activation is used in SMP only
2734 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
2735 SET_LAST_CPU(ctx
, -1);
2738 * initialize notification message queue
2740 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
2741 init_waitqueue_head(&ctx
->ctx_msgq_wait
);
2742 init_waitqueue_head(&ctx
->ctx_zombieq
);
2744 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2749 ctx
->ctx_fl_excl_idle
,
2754 * initialize soft PMU state
2756 pfm_reset_pmu_state(ctx
);
2761 pfm_free_fd(ctx
->ctx_fd
, filp
);
2763 if (ctx
->ctx_buf_fmt
) {
2764 pfm_buf_fmt_exit(ctx
->ctx_buf_fmt
, current
, NULL
, regs
);
2767 pfm_context_free(ctx
);
2773 static inline unsigned long
2774 pfm_new_counter_value (pfm_counter_t
*reg
, int is_long_reset
)
2776 unsigned long val
= is_long_reset
? reg
->long_reset
: reg
->short_reset
;
2777 unsigned long new_seed
, old_seed
= reg
->seed
, mask
= reg
->mask
;
2778 extern unsigned long carta_random32 (unsigned long seed
);
2780 if (reg
->flags
& PFM_REGFL_RANDOM
) {
2781 new_seed
= carta_random32(old_seed
);
2782 val
-= (old_seed
& mask
); /* counter values are negative numbers! */
2783 if ((mask
>> 32) != 0)
2784 /* construct a full 64-bit random value: */
2785 new_seed
|= carta_random32(old_seed
>> 32) << 32;
2786 reg
->seed
= new_seed
;
2793 pfm_reset_regs_masked(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2795 unsigned long mask
= ovfl_regs
[0];
2796 unsigned long reset_others
= 0UL;
2801 * now restore reset value on sampling overflowed counters
2803 mask
>>= PMU_FIRST_COUNTER
;
2804 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2806 if ((mask
& 0x1UL
) == 0UL) continue;
2808 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2809 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2811 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2815 * Now take care of resetting the other registers
2817 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2819 if ((reset_others
& 0x1) == 0) continue;
2821 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2823 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2824 is_long_reset
? "long" : "short", i
, val
));
2829 pfm_reset_regs(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2831 unsigned long mask
= ovfl_regs
[0];
2832 unsigned long reset_others
= 0UL;
2836 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs
[0], is_long_reset
));
2838 if (ctx
->ctx_state
== PFM_CTX_MASKED
) {
2839 pfm_reset_regs_masked(ctx
, ovfl_regs
, is_long_reset
);
2844 * now restore reset value on sampling overflowed counters
2846 mask
>>= PMU_FIRST_COUNTER
;
2847 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2849 if ((mask
& 0x1UL
) == 0UL) continue;
2851 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2852 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2854 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2856 pfm_write_soft_counter(ctx
, i
, val
);
2860 * Now take care of resetting the other registers
2862 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2864 if ((reset_others
& 0x1) == 0) continue;
2866 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2868 if (PMD_IS_COUNTING(i
)) {
2869 pfm_write_soft_counter(ctx
, i
, val
);
2871 ia64_set_pmd(i
, val
);
2873 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2874 is_long_reset
? "long" : "short", i
, val
));
2880 pfm_write_pmcs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2882 struct task_struct
*task
;
2883 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
2884 unsigned long value
, pmc_pm
;
2885 unsigned long smpl_pmds
, reset_pmds
, impl_pmds
;
2886 unsigned int cnum
, reg_flags
, flags
, pmc_type
;
2887 int i
, can_access_pmu
= 0, is_loaded
, is_system
, expert_mode
;
2888 int is_monitor
, is_counting
, state
;
2890 pfm_reg_check_t wr_func
;
2891 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2893 state
= ctx
->ctx_state
;
2894 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
2895 is_system
= ctx
->ctx_fl_system
;
2896 task
= ctx
->ctx_task
;
2897 impl_pmds
= pmu_conf
->impl_pmds
[0];
2899 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
2903 * In system wide and when the context is loaded, access can only happen
2904 * when the caller is running on the CPU being monitored by the session.
2905 * It does not have to be the owner (ctx_task) of the context per se.
2907 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
2908 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
2911 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
2913 expert_mode
= pfm_sysctl
.expert_mode
;
2915 for (i
= 0; i
< count
; i
++, req
++) {
2917 cnum
= req
->reg_num
;
2918 reg_flags
= req
->reg_flags
;
2919 value
= req
->reg_value
;
2920 smpl_pmds
= req
->reg_smpl_pmds
[0];
2921 reset_pmds
= req
->reg_reset_pmds
[0];
2925 if (cnum
>= PMU_MAX_PMCS
) {
2926 DPRINT(("pmc%u is invalid\n", cnum
));
2930 pmc_type
= pmu_conf
->pmc_desc
[cnum
].type
;
2931 pmc_pm
= (value
>> pmu_conf
->pmc_desc
[cnum
].pm_pos
) & 0x1;
2932 is_counting
= (pmc_type
& PFM_REG_COUNTING
) == PFM_REG_COUNTING
? 1 : 0;
2933 is_monitor
= (pmc_type
& PFM_REG_MONITOR
) == PFM_REG_MONITOR
? 1 : 0;
2936 * we reject all non implemented PMC as well
2937 * as attempts to modify PMC[0-3] which are used
2938 * as status registers by the PMU
2940 if ((pmc_type
& PFM_REG_IMPL
) == 0 || (pmc_type
& PFM_REG_CONTROL
) == PFM_REG_CONTROL
) {
2941 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum
, pmc_type
));
2944 wr_func
= pmu_conf
->pmc_desc
[cnum
].write_check
;
2946 * If the PMC is a monitor, then if the value is not the default:
2947 * - system-wide session: PMCx.pm=1 (privileged monitor)
2948 * - per-task : PMCx.pm=0 (user monitor)
2950 if (is_monitor
&& value
!= PMC_DFL_VAL(cnum
) && is_system
^ pmc_pm
) {
2951 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2960 * enforce generation of overflow interrupt. Necessary on all
2963 value
|= 1 << PMU_PMC_OI
;
2965 if (reg_flags
& PFM_REGFL_OVFL_NOTIFY
) {
2966 flags
|= PFM_REGFL_OVFL_NOTIFY
;
2969 if (reg_flags
& PFM_REGFL_RANDOM
) flags
|= PFM_REGFL_RANDOM
;
2971 /* verify validity of smpl_pmds */
2972 if ((smpl_pmds
& impl_pmds
) != smpl_pmds
) {
2973 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds
, cnum
));
2977 /* verify validity of reset_pmds */
2978 if ((reset_pmds
& impl_pmds
) != reset_pmds
) {
2979 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds
, cnum
));
2983 if (reg_flags
& (PFM_REGFL_OVFL_NOTIFY
|PFM_REGFL_RANDOM
)) {
2984 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum
));
2987 /* eventid on non-counting monitors are ignored */
2991 * execute write checker, if any
2993 if (likely(expert_mode
== 0 && wr_func
)) {
2994 ret
= (*wr_func
)(task
, ctx
, cnum
, &value
, regs
);
2995 if (ret
) goto error
;
3000 * no error on this register
3002 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3005 * Now we commit the changes to the software state
3009 * update overflow information
3013 * full flag update each time a register is programmed
3015 ctx
->ctx_pmds
[cnum
].flags
= flags
;
3017 ctx
->ctx_pmds
[cnum
].reset_pmds
[0] = reset_pmds
;
3018 ctx
->ctx_pmds
[cnum
].smpl_pmds
[0] = smpl_pmds
;
3019 ctx
->ctx_pmds
[cnum
].eventid
= req
->reg_smpl_eventid
;
3022 * Mark all PMDS to be accessed as used.
3024 * We do not keep track of PMC because we have to
3025 * systematically restore ALL of them.
3027 * We do not update the used_monitors mask, because
3028 * if we have not programmed them, then will be in
3029 * a quiescent state, therefore we will not need to
3030 * mask/restore then when context is MASKED.
3032 CTX_USED_PMD(ctx
, reset_pmds
);
3033 CTX_USED_PMD(ctx
, smpl_pmds
);
3035 * make sure we do not try to reset on
3036 * restart because we have established new values
3038 if (state
== PFM_CTX_MASKED
) ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3041 * Needed in case the user does not initialize the equivalent
3042 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3043 * possible leak here.
3045 CTX_USED_PMD(ctx
, pmu_conf
->pmc_desc
[cnum
].dep_pmd
[0]);
3048 * keep track of the monitor PMC that we are using.
3049 * we save the value of the pmc in ctx_pmcs[] and if
3050 * the monitoring is not stopped for the context we also
3051 * place it in the saved state area so that it will be
3052 * picked up later by the context switch code.
3054 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3056 * The value in th_pmcs[] may be modified on overflow, i.e., when
3057 * monitoring needs to be stopped.
3059 if (is_monitor
) CTX_USED_MONITOR(ctx
, 1UL << cnum
);
3062 * update context state
3064 ctx
->ctx_pmcs
[cnum
] = value
;
3068 * write thread state
3070 if (is_system
== 0) ctx
->th_pmcs
[cnum
] = value
;
3073 * write hardware register if we can
3075 if (can_access_pmu
) {
3076 ia64_set_pmc(cnum
, value
);
3081 * per-task SMP only here
3083 * we are guaranteed that the task is not running on the other CPU,
3084 * we indicate that this PMD will need to be reloaded if the task
3085 * is rescheduled on the CPU it ran last on.
3087 ctx
->ctx_reload_pmcs
[0] |= 1UL << cnum
;
3092 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3098 ctx
->ctx_all_pmcs
[0],
3099 ctx
->ctx_used_pmds
[0],
3100 ctx
->ctx_pmds
[cnum
].eventid
,
3103 ctx
->ctx_reload_pmcs
[0],
3104 ctx
->ctx_used_monitors
[0],
3105 ctx
->ctx_ovfl_regs
[0]));
3109 * make sure the changes are visible
3111 if (can_access_pmu
) ia64_srlz_d();
3115 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3120 pfm_write_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3122 struct task_struct
*task
;
3123 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3124 unsigned long value
, hw_value
, ovfl_mask
;
3126 int i
, can_access_pmu
= 0, state
;
3127 int is_counting
, is_loaded
, is_system
, expert_mode
;
3129 pfm_reg_check_t wr_func
;
3132 state
= ctx
->ctx_state
;
3133 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3134 is_system
= ctx
->ctx_fl_system
;
3135 ovfl_mask
= pmu_conf
->ovfl_val
;
3136 task
= ctx
->ctx_task
;
3138 if (unlikely(state
== PFM_CTX_ZOMBIE
)) return -EINVAL
;
3141 * on both UP and SMP, we can only write to the PMC when the task is
3142 * the owner of the local PMU.
3144 if (likely(is_loaded
)) {
3146 * In system wide and when the context is loaded, access can only happen
3147 * when the caller is running on the CPU being monitored by the session.
3148 * It does not have to be the owner (ctx_task) of the context per se.
3150 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3151 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3154 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3156 expert_mode
= pfm_sysctl
.expert_mode
;
3158 for (i
= 0; i
< count
; i
++, req
++) {
3160 cnum
= req
->reg_num
;
3161 value
= req
->reg_value
;
3163 if (!PMD_IS_IMPL(cnum
)) {
3164 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum
));
3167 is_counting
= PMD_IS_COUNTING(cnum
);
3168 wr_func
= pmu_conf
->pmd_desc
[cnum
].write_check
;
3171 * execute write checker, if any
3173 if (unlikely(expert_mode
== 0 && wr_func
)) {
3174 unsigned long v
= value
;
3176 ret
= (*wr_func
)(task
, ctx
, cnum
, &v
, regs
);
3177 if (ret
) goto abort_mission
;
3184 * no error on this register
3186 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3189 * now commit changes to software state
3194 * update virtualized (64bits) counter
3198 * write context state
3200 ctx
->ctx_pmds
[cnum
].lval
= value
;
3203 * when context is load we use the split value
3206 hw_value
= value
& ovfl_mask
;
3207 value
= value
& ~ovfl_mask
;
3211 * update reset values (not just for counters)
3213 ctx
->ctx_pmds
[cnum
].long_reset
= req
->reg_long_reset
;
3214 ctx
->ctx_pmds
[cnum
].short_reset
= req
->reg_short_reset
;
3217 * update randomization parameters (not just for counters)
3219 ctx
->ctx_pmds
[cnum
].seed
= req
->reg_random_seed
;
3220 ctx
->ctx_pmds
[cnum
].mask
= req
->reg_random_mask
;
3223 * update context value
3225 ctx
->ctx_pmds
[cnum
].val
= value
;
3228 * Keep track of what we use
3230 * We do not keep track of PMC because we have to
3231 * systematically restore ALL of them.
3233 CTX_USED_PMD(ctx
, PMD_PMD_DEP(cnum
));
3236 * mark this PMD register used as well
3238 CTX_USED_PMD(ctx
, RDEP(cnum
));
3241 * make sure we do not try to reset on
3242 * restart because we have established new values
3244 if (is_counting
&& state
== PFM_CTX_MASKED
) {
3245 ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3250 * write thread state
3252 if (is_system
== 0) ctx
->th_pmds
[cnum
] = hw_value
;
3255 * write hardware register if we can
3257 if (can_access_pmu
) {
3258 ia64_set_pmd(cnum
, hw_value
);
3262 * we are guaranteed that the task is not running on the other CPU,
3263 * we indicate that this PMD will need to be reloaded if the task
3264 * is rescheduled on the CPU it ran last on.
3266 ctx
->ctx_reload_pmds
[0] |= 1UL << cnum
;
3271 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3272 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3278 ctx
->ctx_pmds
[cnum
].val
,
3279 ctx
->ctx_pmds
[cnum
].short_reset
,
3280 ctx
->ctx_pmds
[cnum
].long_reset
,
3281 PMC_OVFL_NOTIFY(ctx
, cnum
) ? 'Y':'N',
3282 ctx
->ctx_pmds
[cnum
].seed
,
3283 ctx
->ctx_pmds
[cnum
].mask
,
3284 ctx
->ctx_used_pmds
[0],
3285 ctx
->ctx_pmds
[cnum
].reset_pmds
[0],
3286 ctx
->ctx_reload_pmds
[0],
3287 ctx
->ctx_all_pmds
[0],
3288 ctx
->ctx_ovfl_regs
[0]));
3292 * make changes visible
3294 if (can_access_pmu
) ia64_srlz_d();
3300 * for now, we have only one possibility for error
3302 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3307 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3308 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3309 * interrupt is delivered during the call, it will be kept pending until we leave, making
3310 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3311 * guaranteed to return consistent data to the user, it may simply be old. It is not
3312 * trivial to treat the overflow while inside the call because you may end up in
3313 * some module sampling buffer code causing deadlocks.
3316 pfm_read_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3318 struct task_struct
*task
;
3319 unsigned long val
= 0UL, lval
, ovfl_mask
, sval
;
3320 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3321 unsigned int cnum
, reg_flags
= 0;
3322 int i
, can_access_pmu
= 0, state
;
3323 int is_loaded
, is_system
, is_counting
, expert_mode
;
3325 pfm_reg_check_t rd_func
;
3328 * access is possible when loaded only for
3329 * self-monitoring tasks or in UP mode
3332 state
= ctx
->ctx_state
;
3333 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3334 is_system
= ctx
->ctx_fl_system
;
3335 ovfl_mask
= pmu_conf
->ovfl_val
;
3336 task
= ctx
->ctx_task
;
3338 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3340 if (likely(is_loaded
)) {
3342 * In system wide and when the context is loaded, access can only happen
3343 * when the caller is running on the CPU being monitored by the session.
3344 * It does not have to be the owner (ctx_task) of the context per se.
3346 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3347 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3351 * this can be true when not self-monitoring only in UP
3353 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3355 if (can_access_pmu
) ia64_srlz_d();
3357 expert_mode
= pfm_sysctl
.expert_mode
;
3359 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3365 * on both UP and SMP, we can only read the PMD from the hardware register when
3366 * the task is the owner of the local PMU.
3369 for (i
= 0; i
< count
; i
++, req
++) {
3371 cnum
= req
->reg_num
;
3372 reg_flags
= req
->reg_flags
;
3374 if (unlikely(!PMD_IS_IMPL(cnum
))) goto error
;
3376 * we can only read the register that we use. That includes
3377 * the one we explicitly initialize AND the one we want included
3378 * in the sampling buffer (smpl_regs).
3380 * Having this restriction allows optimization in the ctxsw routine
3381 * without compromising security (leaks)
3383 if (unlikely(!CTX_IS_USED_PMD(ctx
, cnum
))) goto error
;
3385 sval
= ctx
->ctx_pmds
[cnum
].val
;
3386 lval
= ctx
->ctx_pmds
[cnum
].lval
;
3387 is_counting
= PMD_IS_COUNTING(cnum
);
3390 * If the task is not the current one, then we check if the
3391 * PMU state is still in the local live register due to lazy ctxsw.
3392 * If true, then we read directly from the registers.
3394 if (can_access_pmu
){
3395 val
= ia64_get_pmd(cnum
);
3398 * context has been saved
3399 * if context is zombie, then task does not exist anymore.
3400 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3402 val
= is_loaded
? ctx
->th_pmds
[cnum
] : 0UL;
3404 rd_func
= pmu_conf
->pmd_desc
[cnum
].read_check
;
3408 * XXX: need to check for overflow when loaded
3415 * execute read checker, if any
3417 if (unlikely(expert_mode
== 0 && rd_func
)) {
3418 unsigned long v
= val
;
3419 ret
= (*rd_func
)(ctx
->ctx_task
, ctx
, cnum
, &v
, regs
);
3420 if (ret
) goto error
;
3425 PFM_REG_RETFLAG_SET(reg_flags
, 0);
3427 DPRINT(("pmd[%u]=0x%lx\n", cnum
, val
));
3430 * update register return value, abort all if problem during copy.
3431 * we only modify the reg_flags field. no check mode is fine because
3432 * access has been verified upfront in sys_perfmonctl().
3434 req
->reg_value
= val
;
3435 req
->reg_flags
= reg_flags
;
3436 req
->reg_last_reset_val
= lval
;
3442 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3447 pfm_mod_write_pmcs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3451 if (req
== NULL
) return -EINVAL
;
3453 ctx
= GET_PMU_CTX();
3455 if (ctx
== NULL
) return -EINVAL
;
3458 * for now limit to current task, which is enough when calling
3459 * from overflow handler
3461 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3463 return pfm_write_pmcs(ctx
, req
, nreq
, regs
);
3465 EXPORT_SYMBOL(pfm_mod_write_pmcs
);
3468 pfm_mod_read_pmds(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3472 if (req
== NULL
) return -EINVAL
;
3474 ctx
= GET_PMU_CTX();
3476 if (ctx
== NULL
) return -EINVAL
;
3479 * for now limit to current task, which is enough when calling
3480 * from overflow handler
3482 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3484 return pfm_read_pmds(ctx
, req
, nreq
, regs
);
3486 EXPORT_SYMBOL(pfm_mod_read_pmds
);
3489 * Only call this function when a process it trying to
3490 * write the debug registers (reading is always allowed)
3493 pfm_use_debug_registers(struct task_struct
*task
)
3495 pfm_context_t
*ctx
= task
->thread
.pfm_context
;
3496 unsigned long flags
;
3499 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3501 DPRINT(("called for [%d]\n", task_pid_nr(task
)));
3506 if (task
->thread
.flags
& IA64_THREAD_DBG_VALID
) return 0;
3509 * Even on SMP, we do not need to use an atomic here because
3510 * the only way in is via ptrace() and this is possible only when the
3511 * process is stopped. Even in the case where the ctxsw out is not totally
3512 * completed by the time we come here, there is no way the 'stopped' process
3513 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3514 * So this is always safe.
3516 if (ctx
&& ctx
->ctx_fl_using_dbreg
== 1) return -1;
3521 * We cannot allow setting breakpoints when system wide monitoring
3522 * sessions are using the debug registers.
3524 if (pfm_sessions
.pfs_sys_use_dbregs
> 0)
3527 pfm_sessions
.pfs_ptrace_use_dbregs
++;
3529 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3530 pfm_sessions
.pfs_ptrace_use_dbregs
,
3531 pfm_sessions
.pfs_sys_use_dbregs
,
3532 task_pid_nr(task
), ret
));
3540 * This function is called for every task that exits with the
3541 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3542 * able to use the debug registers for debugging purposes via
3543 * ptrace(). Therefore we know it was not using them for
3544 * perfmormance monitoring, so we only decrement the number
3545 * of "ptraced" debug register users to keep the count up to date
3548 pfm_release_debug_registers(struct task_struct
*task
)
3550 unsigned long flags
;
3553 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3556 if (pfm_sessions
.pfs_ptrace_use_dbregs
== 0) {
3557 printk(KERN_ERR
"perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task
));
3560 pfm_sessions
.pfs_ptrace_use_dbregs
--;
3569 pfm_restart(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3571 struct task_struct
*task
;
3572 pfm_buffer_fmt_t
*fmt
;
3573 pfm_ovfl_ctrl_t rst_ctrl
;
3574 int state
, is_system
;
3577 state
= ctx
->ctx_state
;
3578 fmt
= ctx
->ctx_buf_fmt
;
3579 is_system
= ctx
->ctx_fl_system
;
3580 task
= PFM_CTX_TASK(ctx
);
3583 case PFM_CTX_MASKED
:
3585 case PFM_CTX_LOADED
:
3586 if (CTX_HAS_SMPL(ctx
) && fmt
->fmt_restart_active
) break;
3588 case PFM_CTX_UNLOADED
:
3589 case PFM_CTX_ZOMBIE
:
3590 DPRINT(("invalid state=%d\n", state
));
3593 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state
));
3598 * In system wide and when the context is loaded, access can only happen
3599 * when the caller is running on the CPU being monitored by the session.
3600 * It does not have to be the owner (ctx_task) of the context per se.
3602 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3603 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3608 if (unlikely(task
== NULL
)) {
3609 printk(KERN_ERR
"perfmon: [%d] pfm_restart no task\n", task_pid_nr(current
));
3613 if (task
== current
|| is_system
) {
3615 fmt
= ctx
->ctx_buf_fmt
;
3617 DPRINT(("restarting self %d ovfl=0x%lx\n",
3619 ctx
->ctx_ovfl_regs
[0]));
3621 if (CTX_HAS_SMPL(ctx
)) {
3623 prefetch(ctx
->ctx_smpl_hdr
);
3625 rst_ctrl
.bits
.mask_monitoring
= 0;
3626 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
3628 if (state
== PFM_CTX_LOADED
)
3629 ret
= pfm_buf_fmt_restart_active(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3631 ret
= pfm_buf_fmt_restart(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3633 rst_ctrl
.bits
.mask_monitoring
= 0;
3634 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
3638 if (rst_ctrl
.bits
.reset_ovfl_pmds
)
3639 pfm_reset_regs(ctx
, ctx
->ctx_ovfl_regs
, PFM_PMD_LONG_RESET
);
3641 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
3642 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task
)));
3644 if (state
== PFM_CTX_MASKED
) pfm_restore_monitoring(task
);
3646 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task
)));
3648 // cannot use pfm_stop_monitoring(task, regs);
3652 * clear overflowed PMD mask to remove any stale information
3654 ctx
->ctx_ovfl_regs
[0] = 0UL;
3657 * back to LOADED state
3659 ctx
->ctx_state
= PFM_CTX_LOADED
;
3662 * XXX: not really useful for self monitoring
3664 ctx
->ctx_fl_can_restart
= 0;
3670 * restart another task
3674 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3675 * one is seen by the task.
3677 if (state
== PFM_CTX_MASKED
) {
3678 if (ctx
->ctx_fl_can_restart
== 0) return -EINVAL
;
3680 * will prevent subsequent restart before this one is
3681 * seen by other task
3683 ctx
->ctx_fl_can_restart
= 0;
3687 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3688 * the task is blocked or on its way to block. That's the normal
3689 * restart path. If the monitoring is not masked, then the task
3690 * can be actively monitoring and we cannot directly intervene.
3691 * Therefore we use the trap mechanism to catch the task and
3692 * force it to reset the buffer/reset PMDs.
3694 * if non-blocking, then we ensure that the task will go into
3695 * pfm_handle_work() before returning to user mode.
3697 * We cannot explicitly reset another task, it MUST always
3698 * be done by the task itself. This works for system wide because
3699 * the tool that is controlling the session is logically doing
3700 * "self-monitoring".
3702 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && state
== PFM_CTX_MASKED
) {
3703 DPRINT(("unblocking [%d] \n", task_pid_nr(task
)));
3704 complete(&ctx
->ctx_restart_done
);
3706 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task
)));
3708 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_RESET
;
3710 PFM_SET_WORK_PENDING(task
, 1);
3712 tsk_set_notify_resume(task
);
3715 * XXX: send reschedule if task runs on another CPU
3722 pfm_debug(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3724 unsigned int m
= *(unsigned int *)arg
;
3726 pfm_sysctl
.debug
= m
== 0 ? 0 : 1;
3728 printk(KERN_INFO
"perfmon debugging %s (timing reset)\n", pfm_sysctl
.debug
? "on" : "off");
3731 memset(pfm_stats
, 0, sizeof(pfm_stats
));
3732 for(m
=0; m
< NR_CPUS
; m
++) pfm_stats
[m
].pfm_ovfl_intr_cycles_min
= ~0UL;
3738 * arg can be NULL and count can be zero for this function
3741 pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3743 struct thread_struct
*thread
= NULL
;
3744 struct task_struct
*task
;
3745 pfarg_dbreg_t
*req
= (pfarg_dbreg_t
*)arg
;
3746 unsigned long flags
;
3751 int i
, can_access_pmu
= 0;
3752 int is_system
, is_loaded
;
3754 if (pmu_conf
->use_rr_dbregs
== 0) return -EINVAL
;
3756 state
= ctx
->ctx_state
;
3757 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3758 is_system
= ctx
->ctx_fl_system
;
3759 task
= ctx
->ctx_task
;
3761 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3764 * on both UP and SMP, we can only write to the PMC when the task is
3765 * the owner of the local PMU.
3768 thread
= &task
->thread
;
3770 * In system wide and when the context is loaded, access can only happen
3771 * when the caller is running on the CPU being monitored by the session.
3772 * It does not have to be the owner (ctx_task) of the context per se.
3774 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3775 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3778 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3782 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3783 * ensuring that no real breakpoint can be installed via this call.
3785 * IMPORTANT: regs can be NULL in this function
3788 first_time
= ctx
->ctx_fl_using_dbreg
== 0;
3791 * don't bother if we are loaded and task is being debugged
3793 if (is_loaded
&& (thread
->flags
& IA64_THREAD_DBG_VALID
) != 0) {
3794 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task
)));
3799 * check for debug registers in system wide mode
3801 * If though a check is done in pfm_context_load(),
3802 * we must repeat it here, in case the registers are
3803 * written after the context is loaded
3808 if (first_time
&& is_system
) {
3809 if (pfm_sessions
.pfs_ptrace_use_dbregs
)
3812 pfm_sessions
.pfs_sys_use_dbregs
++;
3817 if (ret
!= 0) return ret
;
3820 * mark ourself as user of the debug registers for
3823 ctx
->ctx_fl_using_dbreg
= 1;
3826 * clear hardware registers to make sure we don't
3827 * pick up stale state.
3829 * for a system wide session, we do not use
3830 * thread.dbr, thread.ibr because this process
3831 * never leaves the current CPU and the state
3832 * is shared by all processes running on it
3834 if (first_time
&& can_access_pmu
) {
3835 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task
)));
3836 for (i
=0; i
< pmu_conf
->num_ibrs
; i
++) {
3837 ia64_set_ibr(i
, 0UL);
3838 ia64_dv_serialize_instruction();
3841 for (i
=0; i
< pmu_conf
->num_dbrs
; i
++) {
3842 ia64_set_dbr(i
, 0UL);
3843 ia64_dv_serialize_data();
3849 * Now install the values into the registers
3851 for (i
= 0; i
< count
; i
++, req
++) {
3853 rnum
= req
->dbreg_num
;
3854 dbreg
.val
= req
->dbreg_value
;
3858 if ((mode
== PFM_CODE_RR
&& rnum
>= PFM_NUM_IBRS
) || ((mode
== PFM_DATA_RR
) && rnum
>= PFM_NUM_DBRS
)) {
3859 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3860 rnum
, dbreg
.val
, mode
, i
, count
));
3866 * make sure we do not install enabled breakpoint
3869 if (mode
== PFM_CODE_RR
)
3870 dbreg
.ibr
.ibr_x
= 0;
3872 dbreg
.dbr
.dbr_r
= dbreg
.dbr
.dbr_w
= 0;
3875 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, 0);
3878 * Debug registers, just like PMC, can only be modified
3879 * by a kernel call. Moreover, perfmon() access to those
3880 * registers are centralized in this routine. The hardware
3881 * does not modify the value of these registers, therefore,
3882 * if we save them as they are written, we can avoid having
3883 * to save them on context switch out. This is made possible
3884 * by the fact that when perfmon uses debug registers, ptrace()
3885 * won't be able to modify them concurrently.
3887 if (mode
== PFM_CODE_RR
) {
3888 CTX_USED_IBR(ctx
, rnum
);
3890 if (can_access_pmu
) {
3891 ia64_set_ibr(rnum
, dbreg
.val
);
3892 ia64_dv_serialize_instruction();
3895 ctx
->ctx_ibrs
[rnum
] = dbreg
.val
;
3897 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3898 rnum
, dbreg
.val
, ctx
->ctx_used_ibrs
[0], is_loaded
, can_access_pmu
));
3900 CTX_USED_DBR(ctx
, rnum
);
3902 if (can_access_pmu
) {
3903 ia64_set_dbr(rnum
, dbreg
.val
);
3904 ia64_dv_serialize_data();
3906 ctx
->ctx_dbrs
[rnum
] = dbreg
.val
;
3908 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3909 rnum
, dbreg
.val
, ctx
->ctx_used_dbrs
[0], is_loaded
, can_access_pmu
));
3917 * in case it was our first attempt, we undo the global modifications
3921 if (ctx
->ctx_fl_system
) {
3922 pfm_sessions
.pfs_sys_use_dbregs
--;
3925 ctx
->ctx_fl_using_dbreg
= 0;
3928 * install error return flag
3930 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, PFM_REG_RETFL_EINVAL
);
3936 pfm_write_ibrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3938 return pfm_write_ibr_dbr(PFM_CODE_RR
, ctx
, arg
, count
, regs
);
3942 pfm_write_dbrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3944 return pfm_write_ibr_dbr(PFM_DATA_RR
, ctx
, arg
, count
, regs
);
3948 pfm_mod_write_ibrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3952 if (req
== NULL
) return -EINVAL
;
3954 ctx
= GET_PMU_CTX();
3956 if (ctx
== NULL
) return -EINVAL
;
3959 * for now limit to current task, which is enough when calling
3960 * from overflow handler
3962 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3964 return pfm_write_ibrs(ctx
, req
, nreq
, regs
);
3966 EXPORT_SYMBOL(pfm_mod_write_ibrs
);
3969 pfm_mod_write_dbrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3973 if (req
== NULL
) return -EINVAL
;
3975 ctx
= GET_PMU_CTX();
3977 if (ctx
== NULL
) return -EINVAL
;
3980 * for now limit to current task, which is enough when calling
3981 * from overflow handler
3983 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3985 return pfm_write_dbrs(ctx
, req
, nreq
, regs
);
3987 EXPORT_SYMBOL(pfm_mod_write_dbrs
);
3991 pfm_get_features(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3993 pfarg_features_t
*req
= (pfarg_features_t
*)arg
;
3995 req
->ft_version
= PFM_VERSION
;
4000 pfm_stop(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4002 struct pt_regs
*tregs
;
4003 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4004 int state
, is_system
;
4006 state
= ctx
->ctx_state
;
4007 is_system
= ctx
->ctx_fl_system
;
4010 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
4012 if (state
== PFM_CTX_UNLOADED
) return -EINVAL
;
4015 * In system wide and when the context is loaded, access can only happen
4016 * when the caller is running on the CPU being monitored by the session.
4017 * It does not have to be the owner (ctx_task) of the context per se.
4019 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4020 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4023 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4024 task_pid_nr(PFM_CTX_TASK(ctx
)),
4028 * in system mode, we need to update the PMU directly
4029 * and the user level state of the caller, which may not
4030 * necessarily be the creator of the context.
4034 * Update local PMU first
4038 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
4042 * update local cpuinfo
4044 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4047 * stop monitoring, does srlz.i
4052 * stop monitoring in the caller
4054 ia64_psr(regs
)->pp
= 0;
4062 if (task
== current
) {
4063 /* stop monitoring at kernel level */
4067 * stop monitoring at the user level
4069 ia64_psr(regs
)->up
= 0;
4071 tregs
= task_pt_regs(task
);
4074 * stop monitoring at the user level
4076 ia64_psr(tregs
)->up
= 0;
4079 * monitoring disabled in kernel at next reschedule
4081 ctx
->ctx_saved_psr_up
= 0;
4082 DPRINT(("task=[%d]\n", task_pid_nr(task
)));
4089 pfm_start(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4091 struct pt_regs
*tregs
;
4092 int state
, is_system
;
4094 state
= ctx
->ctx_state
;
4095 is_system
= ctx
->ctx_fl_system
;
4097 if (state
!= PFM_CTX_LOADED
) return -EINVAL
;
4100 * In system wide and when the context is loaded, access can only happen
4101 * when the caller is running on the CPU being monitored by the session.
4102 * It does not have to be the owner (ctx_task) of the context per se.
4104 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4105 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4110 * in system mode, we need to update the PMU directly
4111 * and the user level state of the caller, which may not
4112 * necessarily be the creator of the context.
4117 * set user level psr.pp for the caller
4119 ia64_psr(regs
)->pp
= 1;
4122 * now update the local PMU and cpuinfo
4124 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP
);
4127 * start monitoring at kernel level
4132 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
4142 if (ctx
->ctx_task
== current
) {
4144 /* start monitoring at kernel level */
4148 * activate monitoring at user level
4150 ia64_psr(regs
)->up
= 1;
4153 tregs
= task_pt_regs(ctx
->ctx_task
);
4156 * start monitoring at the kernel level the next
4157 * time the task is scheduled
4159 ctx
->ctx_saved_psr_up
= IA64_PSR_UP
;
4162 * activate monitoring at user level
4164 ia64_psr(tregs
)->up
= 1;
4170 pfm_get_pmc_reset(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4172 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
4177 for (i
= 0; i
< count
; i
++, req
++) {
4179 cnum
= req
->reg_num
;
4181 if (!PMC_IS_IMPL(cnum
)) goto abort_mission
;
4183 req
->reg_value
= PMC_DFL_VAL(cnum
);
4185 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
4187 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum
, req
->reg_value
));
4192 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
4197 pfm_check_task_exist(pfm_context_t
*ctx
)
4199 struct task_struct
*g
, *t
;
4202 read_lock(&tasklist_lock
);
4204 do_each_thread (g
, t
) {
4205 if (t
->thread
.pfm_context
== ctx
) {
4209 } while_each_thread (g
, t
);
4211 read_unlock(&tasklist_lock
);
4213 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret
, ctx
));
4219 pfm_context_load(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4221 struct task_struct
*task
;
4222 struct thread_struct
*thread
;
4223 struct pfm_context_t
*old
;
4224 unsigned long flags
;
4226 struct task_struct
*owner_task
= NULL
;
4228 pfarg_load_t
*req
= (pfarg_load_t
*)arg
;
4229 unsigned long *pmcs_source
, *pmds_source
;
4232 int state
, is_system
, set_dbregs
= 0;
4234 state
= ctx
->ctx_state
;
4235 is_system
= ctx
->ctx_fl_system
;
4237 * can only load from unloaded or terminated state
4239 if (state
!= PFM_CTX_UNLOADED
) {
4240 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4246 DPRINT(("load_pid [%d] using_dbreg=%d\n", req
->load_pid
, ctx
->ctx_fl_using_dbreg
));
4248 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && req
->load_pid
== current
->pid
) {
4249 DPRINT(("cannot use blocking mode on self\n"));
4253 ret
= pfm_get_task(ctx
, req
->load_pid
, &task
);
4255 DPRINT(("load_pid [%d] get_task=%d\n", req
->load_pid
, ret
));
4262 * system wide is self monitoring only
4264 if (is_system
&& task
!= current
) {
4265 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4270 thread
= &task
->thread
;
4274 * cannot load a context which is using range restrictions,
4275 * into a task that is being debugged.
4277 if (ctx
->ctx_fl_using_dbreg
) {
4278 if (thread
->flags
& IA64_THREAD_DBG_VALID
) {
4280 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req
->load_pid
));
4286 if (pfm_sessions
.pfs_ptrace_use_dbregs
) {
4287 DPRINT(("cannot load [%d] dbregs in use\n",
4288 task_pid_nr(task
)));
4291 pfm_sessions
.pfs_sys_use_dbregs
++;
4292 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task
), pfm_sessions
.pfs_sys_use_dbregs
));
4299 if (ret
) goto error
;
4303 * SMP system-wide monitoring implies self-monitoring.
4305 * The programming model expects the task to
4306 * be pinned on a CPU throughout the session.
4307 * Here we take note of the current CPU at the
4308 * time the context is loaded. No call from
4309 * another CPU will be allowed.
4311 * The pinning via shed_setaffinity()
4312 * must be done by the calling task prior
4315 * systemwide: keep track of CPU this session is supposed to run on
4317 the_cpu
= ctx
->ctx_cpu
= smp_processor_id();
4321 * now reserve the session
4323 ret
= pfm_reserve_session(current
, is_system
, the_cpu
);
4324 if (ret
) goto error
;
4327 * task is necessarily stopped at this point.
4329 * If the previous context was zombie, then it got removed in
4330 * pfm_save_regs(). Therefore we should not see it here.
4331 * If we see a context, then this is an active context
4333 * XXX: needs to be atomic
4335 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4336 thread
->pfm_context
, ctx
));
4339 old
= ia64_cmpxchg(acq
, &thread
->pfm_context
, NULL
, ctx
, sizeof(pfm_context_t
*));
4341 DPRINT(("load_pid [%d] already has a context\n", req
->load_pid
));
4345 pfm_reset_msgq(ctx
);
4347 ctx
->ctx_state
= PFM_CTX_LOADED
;
4350 * link context to task
4352 ctx
->ctx_task
= task
;
4356 * we load as stopped
4358 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE
);
4359 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4361 if (ctx
->ctx_fl_excl_idle
) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE
);
4363 thread
->flags
|= IA64_THREAD_PM_VALID
;
4367 * propagate into thread-state
4369 pfm_copy_pmds(task
, ctx
);
4370 pfm_copy_pmcs(task
, ctx
);
4372 pmcs_source
= ctx
->th_pmcs
;
4373 pmds_source
= ctx
->th_pmds
;
4376 * always the case for system-wide
4378 if (task
== current
) {
4380 if (is_system
== 0) {
4382 /* allow user level control */
4383 ia64_psr(regs
)->sp
= 0;
4384 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task
)));
4386 SET_LAST_CPU(ctx
, smp_processor_id());
4388 SET_ACTIVATION(ctx
);
4391 * push the other task out, if any
4393 owner_task
= GET_PMU_OWNER();
4394 if (owner_task
) pfm_lazy_save_regs(owner_task
);
4398 * load all PMD from ctx to PMU (as opposed to thread state)
4399 * restore all PMC from ctx to PMU
4401 pfm_restore_pmds(pmds_source
, ctx
->ctx_all_pmds
[0]);
4402 pfm_restore_pmcs(pmcs_source
, ctx
->ctx_all_pmcs
[0]);
4404 ctx
->ctx_reload_pmcs
[0] = 0UL;
4405 ctx
->ctx_reload_pmds
[0] = 0UL;
4408 * guaranteed safe by earlier check against DBG_VALID
4410 if (ctx
->ctx_fl_using_dbreg
) {
4411 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
4412 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
4417 SET_PMU_OWNER(task
, ctx
);
4419 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task
)));
4422 * when not current, task MUST be stopped, so this is safe
4424 regs
= task_pt_regs(task
);
4426 /* force a full reload */
4427 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4428 SET_LAST_CPU(ctx
, -1);
4430 /* initial saved psr (stopped) */
4431 ctx
->ctx_saved_psr_up
= 0UL;
4432 ia64_psr(regs
)->up
= ia64_psr(regs
)->pp
= 0;
4438 if (ret
) pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, the_cpu
);
4441 * we must undo the dbregs setting (for system-wide)
4443 if (ret
&& set_dbregs
) {
4445 pfm_sessions
.pfs_sys_use_dbregs
--;
4449 * release task, there is now a link with the context
4451 if (is_system
== 0 && task
!= current
) {
4455 ret
= pfm_check_task_exist(ctx
);
4457 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4458 ctx
->ctx_task
= NULL
;
4466 * in this function, we do not need to increase the use count
4467 * for the task via get_task_struct(), because we hold the
4468 * context lock. If the task were to disappear while having
4469 * a context attached, it would go through pfm_exit_thread()
4470 * which also grabs the context lock and would therefore be blocked
4471 * until we are here.
4473 static void pfm_flush_pmds(struct task_struct
*, pfm_context_t
*ctx
);
4476 pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4478 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4479 struct pt_regs
*tregs
;
4480 int prev_state
, is_system
;
4483 DPRINT(("ctx_state=%d task [%d]\n", ctx
->ctx_state
, task
? task_pid_nr(task
) : -1));
4485 prev_state
= ctx
->ctx_state
;
4486 is_system
= ctx
->ctx_fl_system
;
4489 * unload only when necessary
4491 if (prev_state
== PFM_CTX_UNLOADED
) {
4492 DPRINT(("ctx_state=%d, nothing to do\n", prev_state
));
4497 * clear psr and dcr bits
4499 ret
= pfm_stop(ctx
, NULL
, 0, regs
);
4500 if (ret
) return ret
;
4502 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4505 * in system mode, we need to update the PMU directly
4506 * and the user level state of the caller, which may not
4507 * necessarily be the creator of the context.
4514 * local PMU is taken care of in pfm_stop()
4516 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE
);
4517 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE
);
4520 * save PMDs in context
4523 pfm_flush_pmds(current
, ctx
);
4526 * at this point we are done with the PMU
4527 * so we can unreserve the resource.
4529 if (prev_state
!= PFM_CTX_ZOMBIE
)
4530 pfm_unreserve_session(ctx
, 1 , ctx
->ctx_cpu
);
4533 * disconnect context from task
4535 task
->thread
.pfm_context
= NULL
;
4537 * disconnect task from context
4539 ctx
->ctx_task
= NULL
;
4542 * There is nothing more to cleanup here.
4550 tregs
= task
== current
? regs
: task_pt_regs(task
);
4552 if (task
== current
) {
4554 * cancel user level control
4556 ia64_psr(regs
)->sp
= 1;
4558 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task
)));
4561 * save PMDs to context
4564 pfm_flush_pmds(task
, ctx
);
4567 * at this point we are done with the PMU
4568 * so we can unreserve the resource.
4570 * when state was ZOMBIE, we have already unreserved.
4572 if (prev_state
!= PFM_CTX_ZOMBIE
)
4573 pfm_unreserve_session(ctx
, 0 , ctx
->ctx_cpu
);
4576 * reset activation counter and psr
4578 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4579 SET_LAST_CPU(ctx
, -1);
4582 * PMU state will not be restored
4584 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
4587 * break links between context and task
4589 task
->thread
.pfm_context
= NULL
;
4590 ctx
->ctx_task
= NULL
;
4592 PFM_SET_WORK_PENDING(task
, 0);
4594 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4595 ctx
->ctx_fl_can_restart
= 0;
4596 ctx
->ctx_fl_going_zombie
= 0;
4598 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task
)));
4605 * called only from exit_thread(): task == current
4606 * we come here only if current has a context attached (loaded or masked)
4609 pfm_exit_thread(struct task_struct
*task
)
4612 unsigned long flags
;
4613 struct pt_regs
*regs
= task_pt_regs(task
);
4617 ctx
= PFM_GET_CTX(task
);
4619 PROTECT_CTX(ctx
, flags
);
4621 DPRINT(("state=%d task [%d]\n", ctx
->ctx_state
, task_pid_nr(task
)));
4623 state
= ctx
->ctx_state
;
4625 case PFM_CTX_UNLOADED
:
4627 * only comes to this function if pfm_context is not NULL, i.e., cannot
4628 * be in unloaded state
4630 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task
));
4632 case PFM_CTX_LOADED
:
4633 case PFM_CTX_MASKED
:
4634 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4636 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4638 DPRINT(("ctx unloaded for current state was %d\n", state
));
4640 pfm_end_notify_user(ctx
);
4642 case PFM_CTX_ZOMBIE
:
4643 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4645 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4650 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task
), state
);
4653 UNPROTECT_CTX(ctx
, flags
);
4655 { u64 psr
= pfm_get_psr();
4656 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
4657 BUG_ON(GET_PMU_OWNER());
4658 BUG_ON(ia64_psr(regs
)->up
);
4659 BUG_ON(ia64_psr(regs
)->pp
);
4663 * All memory free operations (especially for vmalloc'ed memory)
4664 * MUST be done with interrupts ENABLED.
4666 if (free_ok
) pfm_context_free(ctx
);
4670 * functions MUST be listed in the increasing order of their index (see permfon.h)
4672 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4673 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4674 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4675 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4676 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4678 static pfm_cmd_desc_t pfm_cmd_tab
[]={
4679 /* 0 */PFM_CMD_NONE
,
4680 /* 1 */PFM_CMD(pfm_write_pmcs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4681 /* 2 */PFM_CMD(pfm_write_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4682 /* 3 */PFM_CMD(pfm_read_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4683 /* 4 */PFM_CMD_S(pfm_stop
, PFM_CMD_PCLRWS
),
4684 /* 5 */PFM_CMD_S(pfm_start
, PFM_CMD_PCLRWS
),
4685 /* 6 */PFM_CMD_NONE
,
4686 /* 7 */PFM_CMD_NONE
,
4687 /* 8 */PFM_CMD(pfm_context_create
, PFM_CMD_ARG_RW
, 1, pfarg_context_t
, pfm_ctx_getsize
),
4688 /* 9 */PFM_CMD_NONE
,
4689 /* 10 */PFM_CMD_S(pfm_restart
, PFM_CMD_PCLRW
),
4690 /* 11 */PFM_CMD_NONE
,
4691 /* 12 */PFM_CMD(pfm_get_features
, PFM_CMD_ARG_RW
, 1, pfarg_features_t
, NULL
),
4692 /* 13 */PFM_CMD(pfm_debug
, 0, 1, unsigned int, NULL
),
4693 /* 14 */PFM_CMD_NONE
,
4694 /* 15 */PFM_CMD(pfm_get_pmc_reset
, PFM_CMD_ARG_RW
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4695 /* 16 */PFM_CMD(pfm_context_load
, PFM_CMD_PCLRWS
, 1, pfarg_load_t
, NULL
),
4696 /* 17 */PFM_CMD_S(pfm_context_unload
, PFM_CMD_PCLRWS
),
4697 /* 18 */PFM_CMD_NONE
,
4698 /* 19 */PFM_CMD_NONE
,
4699 /* 20 */PFM_CMD_NONE
,
4700 /* 21 */PFM_CMD_NONE
,
4701 /* 22 */PFM_CMD_NONE
,
4702 /* 23 */PFM_CMD_NONE
,
4703 /* 24 */PFM_CMD_NONE
,
4704 /* 25 */PFM_CMD_NONE
,
4705 /* 26 */PFM_CMD_NONE
,
4706 /* 27 */PFM_CMD_NONE
,
4707 /* 28 */PFM_CMD_NONE
,
4708 /* 29 */PFM_CMD_NONE
,
4709 /* 30 */PFM_CMD_NONE
,
4710 /* 31 */PFM_CMD_NONE
,
4711 /* 32 */PFM_CMD(pfm_write_ibrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
),
4712 /* 33 */PFM_CMD(pfm_write_dbrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
)
4714 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4717 pfm_check_task_state(pfm_context_t
*ctx
, int cmd
, unsigned long flags
)
4719 struct task_struct
*task
;
4720 int state
, old_state
;
4723 state
= ctx
->ctx_state
;
4724 task
= ctx
->ctx_task
;
4727 DPRINT(("context %d no task, state=%d\n", ctx
->ctx_fd
, state
));
4731 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4735 task
->state
, PFM_CMD_STOPPED(cmd
)));
4738 * self-monitoring always ok.
4740 * for system-wide the caller can either be the creator of the
4741 * context (to one to which the context is attached to) OR
4742 * a task running on the same CPU as the session.
4744 if (task
== current
|| ctx
->ctx_fl_system
) return 0;
4747 * we are monitoring another thread
4750 case PFM_CTX_UNLOADED
:
4752 * if context is UNLOADED we are safe to go
4755 case PFM_CTX_ZOMBIE
:
4757 * no command can operate on a zombie context
4759 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd
));
4761 case PFM_CTX_MASKED
:
4763 * PMU state has been saved to software even though
4764 * the thread may still be running.
4766 if (cmd
!= PFM_UNLOAD_CONTEXT
) return 0;
4770 * context is LOADED or MASKED. Some commands may need to have
4773 * We could lift this restriction for UP but it would mean that
4774 * the user has no guarantee the task would not run between
4775 * two successive calls to perfmonctl(). That's probably OK.
4776 * If this user wants to ensure the task does not run, then
4777 * the task must be stopped.
4779 if (PFM_CMD_STOPPED(cmd
)) {
4780 if (!task_is_stopped_or_traced(task
)) {
4781 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task
)));
4785 * task is now stopped, wait for ctxsw out
4787 * This is an interesting point in the code.
4788 * We need to unprotect the context because
4789 * the pfm_save_regs() routines needs to grab
4790 * the same lock. There are danger in doing
4791 * this because it leaves a window open for
4792 * another task to get access to the context
4793 * and possibly change its state. The one thing
4794 * that is not possible is for the context to disappear
4795 * because we are protected by the VFS layer, i.e.,
4796 * get_fd()/put_fd().
4800 UNPROTECT_CTX(ctx
, flags
);
4802 wait_task_inactive(task
);
4804 PROTECT_CTX(ctx
, flags
);
4807 * we must recheck to verify if state has changed
4809 if (ctx
->ctx_state
!= old_state
) {
4810 DPRINT(("old_state=%d new_state=%d\n", old_state
, ctx
->ctx_state
));
4818 * system-call entry point (must return long)
4821 sys_perfmonctl (int fd
, int cmd
, void __user
*arg
, int count
)
4823 struct file
*file
= NULL
;
4824 pfm_context_t
*ctx
= NULL
;
4825 unsigned long flags
= 0UL;
4826 void *args_k
= NULL
;
4827 long ret
; /* will expand int return types */
4828 size_t base_sz
, sz
, xtra_sz
= 0;
4829 int narg
, completed_args
= 0, call_made
= 0, cmd_flags
;
4830 int (*func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
4831 int (*getsize
)(void *arg
, size_t *sz
);
4832 #define PFM_MAX_ARGSIZE 4096
4835 * reject any call if perfmon was disabled at initialization
4837 if (unlikely(pmu_conf
== NULL
)) return -ENOSYS
;
4839 if (unlikely(cmd
< 0 || cmd
>= PFM_CMD_COUNT
)) {
4840 DPRINT(("invalid cmd=%d\n", cmd
));
4844 func
= pfm_cmd_tab
[cmd
].cmd_func
;
4845 narg
= pfm_cmd_tab
[cmd
].cmd_narg
;
4846 base_sz
= pfm_cmd_tab
[cmd
].cmd_argsize
;
4847 getsize
= pfm_cmd_tab
[cmd
].cmd_getsize
;
4848 cmd_flags
= pfm_cmd_tab
[cmd
].cmd_flags
;
4850 if (unlikely(func
== NULL
)) {
4851 DPRINT(("invalid cmd=%d\n", cmd
));
4855 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4863 * check if number of arguments matches what the command expects
4865 if (unlikely((narg
== PFM_CMD_ARG_MANY
&& count
<= 0) || (narg
> 0 && narg
!= count
)))
4869 sz
= xtra_sz
+ base_sz
*count
;
4871 * limit abuse to min page size
4873 if (unlikely(sz
> PFM_MAX_ARGSIZE
)) {
4874 printk(KERN_ERR
"perfmon: [%d] argument too big %lu\n", task_pid_nr(current
), sz
);
4879 * allocate default-sized argument buffer
4881 if (likely(count
&& args_k
== NULL
)) {
4882 args_k
= kmalloc(PFM_MAX_ARGSIZE
, GFP_KERNEL
);
4883 if (args_k
== NULL
) return -ENOMEM
;
4891 * assume sz = 0 for command without parameters
4893 if (sz
&& copy_from_user(args_k
, arg
, sz
)) {
4894 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz
, arg
));
4899 * check if command supports extra parameters
4901 if (completed_args
== 0 && getsize
) {
4903 * get extra parameters size (based on main argument)
4905 ret
= (*getsize
)(args_k
, &xtra_sz
);
4906 if (ret
) goto error_args
;
4910 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz
, xtra_sz
));
4912 /* retry if necessary */
4913 if (likely(xtra_sz
)) goto restart_args
;
4916 if (unlikely((cmd_flags
& PFM_CMD_FD
) == 0)) goto skip_fd
;
4921 if (unlikely(file
== NULL
)) {
4922 DPRINT(("invalid fd %d\n", fd
));
4925 if (unlikely(PFM_IS_FILE(file
) == 0)) {
4926 DPRINT(("fd %d not related to perfmon\n", fd
));
4930 ctx
= (pfm_context_t
*)file
->private_data
;
4931 if (unlikely(ctx
== NULL
)) {
4932 DPRINT(("no context for fd %d\n", fd
));
4935 prefetch(&ctx
->ctx_state
);
4937 PROTECT_CTX(ctx
, flags
);
4940 * check task is stopped
4942 ret
= pfm_check_task_state(ctx
, cmd
, flags
);
4943 if (unlikely(ret
)) goto abort_locked
;
4946 ret
= (*func
)(ctx
, args_k
, count
, task_pt_regs(current
));
4952 DPRINT(("context unlocked\n"));
4953 UNPROTECT_CTX(ctx
, flags
);
4956 /* copy argument back to user, if needed */
4957 if (call_made
&& PFM_CMD_RW_ARG(cmd
) && copy_to_user(arg
, args_k
, base_sz
*count
)) ret
= -EFAULT
;
4965 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd
), ret
));
4971 pfm_resume_after_ovfl(pfm_context_t
*ctx
, unsigned long ovfl_regs
, struct pt_regs
*regs
)
4973 pfm_buffer_fmt_t
*fmt
= ctx
->ctx_buf_fmt
;
4974 pfm_ovfl_ctrl_t rst_ctrl
;
4978 state
= ctx
->ctx_state
;
4980 * Unlock sampling buffer and reset index atomically
4981 * XXX: not really needed when blocking
4983 if (CTX_HAS_SMPL(ctx
)) {
4985 rst_ctrl
.bits
.mask_monitoring
= 0;
4986 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
4988 if (state
== PFM_CTX_LOADED
)
4989 ret
= pfm_buf_fmt_restart_active(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4991 ret
= pfm_buf_fmt_restart(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4993 rst_ctrl
.bits
.mask_monitoring
= 0;
4994 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
4998 if (rst_ctrl
.bits
.reset_ovfl_pmds
) {
4999 pfm_reset_regs(ctx
, &ovfl_regs
, PFM_PMD_LONG_RESET
);
5001 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
5002 DPRINT(("resuming monitoring\n"));
5003 if (ctx
->ctx_state
== PFM_CTX_MASKED
) pfm_restore_monitoring(current
);
5005 DPRINT(("stopping monitoring\n"));
5006 //pfm_stop_monitoring(current, regs);
5008 ctx
->ctx_state
= PFM_CTX_LOADED
;
5013 * context MUST BE LOCKED when calling
5014 * can only be called for current
5017 pfm_context_force_terminate(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5021 DPRINT(("entering for [%d]\n", task_pid_nr(current
)));
5023 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
5025 printk(KERN_ERR
"pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current
), ret
);
5029 * and wakeup controlling task, indicating we are now disconnected
5031 wake_up_interruptible(&ctx
->ctx_zombieq
);
5034 * given that context is still locked, the controlling
5035 * task will only get access when we return from
5036 * pfm_handle_work().
5040 static int pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
);
5042 * pfm_handle_work() can be called with interrupts enabled
5043 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5044 * call may sleep, therefore we must re-enable interrupts
5045 * to avoid deadlocks. It is safe to do so because this function
5046 * is called ONLY when returning to user level (PUStk=1), in which case
5047 * there is no risk of kernel stack overflow due to deep
5048 * interrupt nesting.
5051 pfm_handle_work(void)
5054 struct pt_regs
*regs
;
5055 unsigned long flags
, dummy_flags
;
5056 unsigned long ovfl_regs
;
5057 unsigned int reason
;
5060 ctx
= PFM_GET_CTX(current
);
5062 printk(KERN_ERR
"perfmon: [%d] has no PFM context\n", task_pid_nr(current
));
5066 PROTECT_CTX(ctx
, flags
);
5068 PFM_SET_WORK_PENDING(current
, 0);
5070 tsk_clear_notify_resume(current
);
5072 regs
= task_pt_regs(current
);
5075 * extract reason for being here and clear
5077 reason
= ctx
->ctx_fl_trap_reason
;
5078 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
5079 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5081 DPRINT(("reason=%d state=%d\n", reason
, ctx
->ctx_state
));
5084 * must be done before we check for simple-reset mode
5086 if (ctx
->ctx_fl_going_zombie
|| ctx
->ctx_state
== PFM_CTX_ZOMBIE
) goto do_zombie
;
5089 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5090 if (reason
== PFM_TRAP_REASON_RESET
) goto skip_blocking
;
5093 * restore interrupt mask to what it was on entry.
5094 * Could be enabled/diasbled.
5096 UNPROTECT_CTX(ctx
, flags
);
5099 * force interrupt enable because of down_interruptible()
5103 DPRINT(("before block sleeping\n"));
5106 * may go through without blocking on SMP systems
5107 * if restart has been received already by the time we call down()
5109 ret
= wait_for_completion_interruptible(&ctx
->ctx_restart_done
);
5111 DPRINT(("after block sleeping ret=%d\n", ret
));
5114 * lock context and mask interrupts again
5115 * We save flags into a dummy because we may have
5116 * altered interrupts mask compared to entry in this
5119 PROTECT_CTX(ctx
, dummy_flags
);
5122 * we need to read the ovfl_regs only after wake-up
5123 * because we may have had pfm_write_pmds() in between
5124 * and that can changed PMD values and therefore
5125 * ovfl_regs is reset for these new PMD values.
5127 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5129 if (ctx
->ctx_fl_going_zombie
) {
5131 DPRINT(("context is zombie, bailing out\n"));
5132 pfm_context_force_terminate(ctx
, regs
);
5136 * in case of interruption of down() we don't restart anything
5138 if (ret
< 0) goto nothing_to_do
;
5141 pfm_resume_after_ovfl(ctx
, ovfl_regs
, regs
);
5142 ctx
->ctx_ovfl_regs
[0] = 0UL;
5146 * restore flags as they were upon entry
5148 UNPROTECT_CTX(ctx
, flags
);
5152 pfm_notify_user(pfm_context_t
*ctx
, pfm_msg_t
*msg
)
5154 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5155 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5159 DPRINT(("waking up somebody\n"));
5161 if (msg
) wake_up_interruptible(&ctx
->ctx_msgq_wait
);
5164 * safe, we are not in intr handler, nor in ctxsw when
5167 kill_fasync (&ctx
->ctx_async_queue
, SIGIO
, POLL_IN
);
5173 pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
)
5175 pfm_msg_t
*msg
= NULL
;
5177 if (ctx
->ctx_fl_no_msg
== 0) {
5178 msg
= pfm_get_new_msg(ctx
);
5180 printk(KERN_ERR
"perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5184 msg
->pfm_ovfl_msg
.msg_type
= PFM_MSG_OVFL
;
5185 msg
->pfm_ovfl_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5186 msg
->pfm_ovfl_msg
.msg_active_set
= 0;
5187 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[0] = ovfl_pmds
;
5188 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[1] = 0UL;
5189 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[2] = 0UL;
5190 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[3] = 0UL;
5191 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5194 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5200 return pfm_notify_user(ctx
, msg
);
5204 pfm_end_notify_user(pfm_context_t
*ctx
)
5208 msg
= pfm_get_new_msg(ctx
);
5210 printk(KERN_ERR
"perfmon: pfm_end_notify_user no more notification msgs\n");
5214 memset(msg
, 0, sizeof(*msg
));
5216 msg
->pfm_end_msg
.msg_type
= PFM_MSG_END
;
5217 msg
->pfm_end_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5218 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5220 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5225 return pfm_notify_user(ctx
, msg
);
5229 * main overflow processing routine.
5230 * it can be called from the interrupt path or explicitly during the context switch code
5233 pfm_overflow_handler(struct task_struct
*task
, pfm_context_t
*ctx
, u64 pmc0
, struct pt_regs
*regs
)
5235 pfm_ovfl_arg_t
*ovfl_arg
;
5237 unsigned long old_val
, ovfl_val
, new_val
;
5238 unsigned long ovfl_notify
= 0UL, ovfl_pmds
= 0UL, smpl_pmds
= 0UL, reset_pmds
;
5239 unsigned long tstamp
;
5240 pfm_ovfl_ctrl_t ovfl_ctrl
;
5241 unsigned int i
, has_smpl
;
5242 int must_notify
= 0;
5244 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) goto stop_monitoring
;
5247 * sanity test. Should never happen
5249 if (unlikely((pmc0
& 0x1) == 0)) goto sanity_check
;
5251 tstamp
= ia64_get_itc();
5252 mask
= pmc0
>> PMU_FIRST_COUNTER
;
5253 ovfl_val
= pmu_conf
->ovfl_val
;
5254 has_smpl
= CTX_HAS_SMPL(ctx
);
5256 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5257 "used_pmds=0x%lx\n",
5259 task
? task_pid_nr(task
): -1,
5260 (regs
? regs
->cr_iip
: 0),
5261 CTX_OVFL_NOBLOCK(ctx
) ? "nonblocking" : "blocking",
5262 ctx
->ctx_used_pmds
[0]));
5266 * first we update the virtual counters
5267 * assume there was a prior ia64_srlz_d() issued
5269 for (i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
5271 /* skip pmd which did not overflow */
5272 if ((mask
& 0x1) == 0) continue;
5275 * Note that the pmd is not necessarily 0 at this point as qualified events
5276 * may have happened before the PMU was frozen. The residual count is not
5277 * taken into consideration here but will be with any read of the pmd via
5280 old_val
= new_val
= ctx
->ctx_pmds
[i
].val
;
5281 new_val
+= 1 + ovfl_val
;
5282 ctx
->ctx_pmds
[i
].val
= new_val
;
5285 * check for overflow condition
5287 if (likely(old_val
> new_val
)) {
5288 ovfl_pmds
|= 1UL << i
;
5289 if (PMC_OVFL_NOTIFY(ctx
, i
)) ovfl_notify
|= 1UL << i
;
5292 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5296 ia64_get_pmd(i
) & ovfl_val
,
5302 * there was no 64-bit overflow, nothing else to do
5304 if (ovfl_pmds
== 0UL) return;
5307 * reset all control bits
5313 * if a sampling format module exists, then we "cache" the overflow by
5314 * calling the module's handler() routine.
5317 unsigned long start_cycles
, end_cycles
;
5318 unsigned long pmd_mask
;
5320 int this_cpu
= smp_processor_id();
5322 pmd_mask
= ovfl_pmds
>> PMU_FIRST_COUNTER
;
5323 ovfl_arg
= &ctx
->ctx_ovfl_arg
;
5325 prefetch(ctx
->ctx_smpl_hdr
);
5327 for(i
=PMU_FIRST_COUNTER
; pmd_mask
&& ret
== 0; i
++, pmd_mask
>>=1) {
5331 if ((pmd_mask
& 0x1) == 0) continue;
5333 ovfl_arg
->ovfl_pmd
= (unsigned char )i
;
5334 ovfl_arg
->ovfl_notify
= ovfl_notify
& mask
? 1 : 0;
5335 ovfl_arg
->active_set
= 0;
5336 ovfl_arg
->ovfl_ctrl
.val
= 0; /* module must fill in all fields */
5337 ovfl_arg
->smpl_pmds
[0] = smpl_pmds
= ctx
->ctx_pmds
[i
].smpl_pmds
[0];
5339 ovfl_arg
->pmd_value
= ctx
->ctx_pmds
[i
].val
;
5340 ovfl_arg
->pmd_last_reset
= ctx
->ctx_pmds
[i
].lval
;
5341 ovfl_arg
->pmd_eventid
= ctx
->ctx_pmds
[i
].eventid
;
5344 * copy values of pmds of interest. Sampling format may copy them
5345 * into sampling buffer.
5348 for(j
=0, k
=0; smpl_pmds
; j
++, smpl_pmds
>>=1) {
5349 if ((smpl_pmds
& 0x1) == 0) continue;
5350 ovfl_arg
->smpl_pmds_values
[k
++] = PMD_IS_COUNTING(j
) ? pfm_read_soft_counter(ctx
, j
) : ia64_get_pmd(j
);
5351 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k
-1, j
, ovfl_arg
->smpl_pmds_values
[k
-1]));
5355 pfm_stats
[this_cpu
].pfm_smpl_handler_calls
++;
5357 start_cycles
= ia64_get_itc();
5360 * call custom buffer format record (handler) routine
5362 ret
= (*ctx
->ctx_buf_fmt
->fmt_handler
)(task
, ctx
->ctx_smpl_hdr
, ovfl_arg
, regs
, tstamp
);
5364 end_cycles
= ia64_get_itc();
5367 * For those controls, we take the union because they have
5368 * an all or nothing behavior.
5370 ovfl_ctrl
.bits
.notify_user
|= ovfl_arg
->ovfl_ctrl
.bits
.notify_user
;
5371 ovfl_ctrl
.bits
.block_task
|= ovfl_arg
->ovfl_ctrl
.bits
.block_task
;
5372 ovfl_ctrl
.bits
.mask_monitoring
|= ovfl_arg
->ovfl_ctrl
.bits
.mask_monitoring
;
5374 * build the bitmask of pmds to reset now
5376 if (ovfl_arg
->ovfl_ctrl
.bits
.reset_ovfl_pmds
) reset_pmds
|= mask
;
5378 pfm_stats
[this_cpu
].pfm_smpl_handler_cycles
+= end_cycles
- start_cycles
;
5381 * when the module cannot handle the rest of the overflows, we abort right here
5383 if (ret
&& pmd_mask
) {
5384 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5385 pmd_mask
<<PMU_FIRST_COUNTER
));
5388 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5390 ovfl_pmds
&= ~reset_pmds
;
5393 * when no sampling module is used, then the default
5394 * is to notify on overflow if requested by user
5396 ovfl_ctrl
.bits
.notify_user
= ovfl_notify
? 1 : 0;
5397 ovfl_ctrl
.bits
.block_task
= ovfl_notify
? 1 : 0;
5398 ovfl_ctrl
.bits
.mask_monitoring
= ovfl_notify
? 1 : 0; /* XXX: change for saturation */
5399 ovfl_ctrl
.bits
.reset_ovfl_pmds
= ovfl_notify
? 0 : 1;
5401 * if needed, we reset all overflowed pmds
5403 if (ovfl_notify
== 0) reset_pmds
= ovfl_pmds
;
5406 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds
, reset_pmds
));
5409 * reset the requested PMD registers using the short reset values
5412 unsigned long bm
= reset_pmds
;
5413 pfm_reset_regs(ctx
, &bm
, PFM_PMD_SHORT_RESET
);
5416 if (ovfl_notify
&& ovfl_ctrl
.bits
.notify_user
) {
5418 * keep track of what to reset when unblocking
5420 ctx
->ctx_ovfl_regs
[0] = ovfl_pmds
;
5423 * check for blocking context
5425 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && ovfl_ctrl
.bits
.block_task
) {
5427 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_BLOCK
;
5430 * set the perfmon specific checking pending work for the task
5432 PFM_SET_WORK_PENDING(task
, 1);
5435 * when coming from ctxsw, current still points to the
5436 * previous task, therefore we must work with task and not current.
5438 tsk_set_notify_resume(task
);
5441 * defer until state is changed (shorten spin window). the context is locked
5442 * anyway, so the signal receiver would come spin for nothing.
5447 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5448 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5449 PFM_GET_WORK_PENDING(task
),
5450 ctx
->ctx_fl_trap_reason
,
5453 ovfl_ctrl
.bits
.mask_monitoring
? 1 : 0));
5455 * in case monitoring must be stopped, we toggle the psr bits
5457 if (ovfl_ctrl
.bits
.mask_monitoring
) {
5458 pfm_mask_monitoring(task
);
5459 ctx
->ctx_state
= PFM_CTX_MASKED
;
5460 ctx
->ctx_fl_can_restart
= 1;
5464 * send notification now
5466 if (must_notify
) pfm_ovfl_notify_user(ctx
, ovfl_notify
);
5471 printk(KERN_ERR
"perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5473 task
? task_pid_nr(task
) : -1,
5479 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5480 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5481 * come here as zombie only if the task is the current task. In which case, we
5482 * can access the PMU hardware directly.
5484 * Note that zombies do have PM_VALID set. So here we do the minimal.
5486 * In case the context was zombified it could not be reclaimed at the time
5487 * the monitoring program exited. At this point, the PMU reservation has been
5488 * returned, the sampiing buffer has been freed. We must convert this call
5489 * into a spurious interrupt. However, we must also avoid infinite overflows
5490 * by stopping monitoring for this task. We can only come here for a per-task
5491 * context. All we need to do is to stop monitoring using the psr bits which
5492 * are always task private. By re-enabling secure montioring, we ensure that
5493 * the monitored task will not be able to re-activate monitoring.
5494 * The task will eventually be context switched out, at which point the context
5495 * will be reclaimed (that includes releasing ownership of the PMU).
5497 * So there might be a window of time where the number of per-task session is zero
5498 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5499 * context. This is safe because if a per-task session comes in, it will push this one
5500 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5501 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5502 * also push our zombie context out.
5504 * Overall pretty hairy stuff....
5506 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task
? task_pid_nr(task
): -1));
5508 ia64_psr(regs
)->up
= 0;
5509 ia64_psr(regs
)->sp
= 1;
5514 pfm_do_interrupt_handler(int irq
, void *arg
, struct pt_regs
*regs
)
5516 struct task_struct
*task
;
5518 unsigned long flags
;
5520 int this_cpu
= smp_processor_id();
5523 pfm_stats
[this_cpu
].pfm_ovfl_intr_count
++;
5526 * srlz.d done before arriving here
5528 pmc0
= ia64_get_pmc(0);
5530 task
= GET_PMU_OWNER();
5531 ctx
= GET_PMU_CTX();
5534 * if we have some pending bits set
5535 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5537 if (PMC0_HAS_OVFL(pmc0
) && task
) {
5539 * we assume that pmc0.fr is always set here
5543 if (!ctx
) goto report_spurious1
;
5545 if (ctx
->ctx_fl_system
== 0 && (task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)
5546 goto report_spurious2
;
5548 PROTECT_CTX_NOPRINT(ctx
, flags
);
5550 pfm_overflow_handler(task
, ctx
, pmc0
, regs
);
5552 UNPROTECT_CTX_NOPRINT(ctx
, flags
);
5555 pfm_stats
[this_cpu
].pfm_spurious_ovfl_intr_count
++;
5559 * keep it unfrozen at all times
5566 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5567 this_cpu
, task_pid_nr(task
));
5571 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5579 pfm_interrupt_handler(int irq
, void *arg
)
5581 unsigned long start_cycles
, total_cycles
;
5582 unsigned long min
, max
;
5585 struct pt_regs
*regs
= get_irq_regs();
5587 this_cpu
= get_cpu();
5588 if (likely(!pfm_alt_intr_handler
)) {
5589 min
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
;
5590 max
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
;
5592 start_cycles
= ia64_get_itc();
5594 ret
= pfm_do_interrupt_handler(irq
, arg
, regs
);
5596 total_cycles
= ia64_get_itc();
5599 * don't measure spurious interrupts
5601 if (likely(ret
== 0)) {
5602 total_cycles
-= start_cycles
;
5604 if (total_cycles
< min
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
= total_cycles
;
5605 if (total_cycles
> max
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
= total_cycles
;
5607 pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles
+= total_cycles
;
5611 (*pfm_alt_intr_handler
->handler
)(irq
, arg
, regs
);
5614 put_cpu_no_resched();
5619 * /proc/perfmon interface, for debug only
5622 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5625 pfm_proc_start(struct seq_file
*m
, loff_t
*pos
)
5628 return PFM_PROC_SHOW_HEADER
;
5631 while (*pos
<= NR_CPUS
) {
5632 if (cpu_online(*pos
- 1)) {
5633 return (void *)*pos
;
5641 pfm_proc_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5644 return pfm_proc_start(m
, pos
);
5648 pfm_proc_stop(struct seq_file
*m
, void *v
)
5653 pfm_proc_show_header(struct seq_file
*m
)
5655 struct list_head
* pos
;
5656 pfm_buffer_fmt_t
* entry
;
5657 unsigned long flags
;
5660 "perfmon version : %u.%u\n"
5663 "expert mode : %s\n"
5664 "ovfl_mask : 0x%lx\n"
5665 "PMU flags : 0x%x\n",
5666 PFM_VERSION_MAJ
, PFM_VERSION_MIN
,
5668 pfm_sysctl
.fastctxsw
> 0 ? "Yes": "No",
5669 pfm_sysctl
.expert_mode
> 0 ? "Yes": "No",
5676 "proc_sessions : %u\n"
5677 "sys_sessions : %u\n"
5678 "sys_use_dbregs : %u\n"
5679 "ptrace_use_dbregs : %u\n",
5680 pfm_sessions
.pfs_task_sessions
,
5681 pfm_sessions
.pfs_sys_sessions
,
5682 pfm_sessions
.pfs_sys_use_dbregs
,
5683 pfm_sessions
.pfs_ptrace_use_dbregs
);
5687 spin_lock(&pfm_buffer_fmt_lock
);
5689 list_for_each(pos
, &pfm_buffer_fmt_list
) {
5690 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
5691 seq_printf(m
, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5702 entry
->fmt_uuid
[10],
5703 entry
->fmt_uuid
[11],
5704 entry
->fmt_uuid
[12],
5705 entry
->fmt_uuid
[13],
5706 entry
->fmt_uuid
[14],
5707 entry
->fmt_uuid
[15],
5710 spin_unlock(&pfm_buffer_fmt_lock
);
5715 pfm_proc_show(struct seq_file
*m
, void *v
)
5721 if (v
== PFM_PROC_SHOW_HEADER
) {
5722 pfm_proc_show_header(m
);
5726 /* show info for CPU (v - 1) */
5730 "CPU%-2d overflow intrs : %lu\n"
5731 "CPU%-2d overflow cycles : %lu\n"
5732 "CPU%-2d overflow min : %lu\n"
5733 "CPU%-2d overflow max : %lu\n"
5734 "CPU%-2d smpl handler calls : %lu\n"
5735 "CPU%-2d smpl handler cycles : %lu\n"
5736 "CPU%-2d spurious intrs : %lu\n"
5737 "CPU%-2d replay intrs : %lu\n"
5738 "CPU%-2d syst_wide : %d\n"
5739 "CPU%-2d dcr_pp : %d\n"
5740 "CPU%-2d exclude idle : %d\n"
5741 "CPU%-2d owner : %d\n"
5742 "CPU%-2d context : %p\n"
5743 "CPU%-2d activations : %lu\n",
5744 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_count
,
5745 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles
,
5746 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_min
,
5747 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_max
,
5748 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_calls
,
5749 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_cycles
,
5750 cpu
, pfm_stats
[cpu
].pfm_spurious_ovfl_intr_count
,
5751 cpu
, pfm_stats
[cpu
].pfm_replay_ovfl_intr_count
,
5752 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_SYST_WIDE
? 1 : 0,
5753 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_DCR_PP
? 1 : 0,
5754 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_EXCL_IDLE
? 1 : 0,
5755 cpu
, pfm_get_cpu_data(pmu_owner
, cpu
) ? pfm_get_cpu_data(pmu_owner
, cpu
)->pid
: -1,
5756 cpu
, pfm_get_cpu_data(pmu_ctx
, cpu
),
5757 cpu
, pfm_get_cpu_data(pmu_activation_number
, cpu
));
5759 if (num_online_cpus() == 1 && pfm_sysctl
.debug
> 0) {
5761 psr
= pfm_get_psr();
5766 "CPU%-2d psr : 0x%lx\n"
5767 "CPU%-2d pmc0 : 0x%lx\n",
5769 cpu
, ia64_get_pmc(0));
5771 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
5772 if (PMC_IS_COUNTING(i
) == 0) continue;
5774 "CPU%-2d pmc%u : 0x%lx\n"
5775 "CPU%-2d pmd%u : 0x%lx\n",
5776 cpu
, i
, ia64_get_pmc(i
),
5777 cpu
, i
, ia64_get_pmd(i
));
5783 const struct seq_operations pfm_seq_ops
= {
5784 .start
= pfm_proc_start
,
5785 .next
= pfm_proc_next
,
5786 .stop
= pfm_proc_stop
,
5787 .show
= pfm_proc_show
5791 pfm_proc_open(struct inode
*inode
, struct file
*file
)
5793 return seq_open(file
, &pfm_seq_ops
);
5798 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5799 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5800 * is active or inactive based on mode. We must rely on the value in
5801 * local_cpu_data->pfm_syst_info
5804 pfm_syst_wide_update_task(struct task_struct
*task
, unsigned long info
, int is_ctxswin
)
5806 struct pt_regs
*regs
;
5808 unsigned long dcr_pp
;
5810 dcr_pp
= info
& PFM_CPUINFO_DCR_PP
? 1 : 0;
5813 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5814 * on every CPU, so we can rely on the pid to identify the idle task.
5816 if ((info
& PFM_CPUINFO_EXCL_IDLE
) == 0 || task
->pid
) {
5817 regs
= task_pt_regs(task
);
5818 ia64_psr(regs
)->pp
= is_ctxswin
? dcr_pp
: 0;
5822 * if monitoring has started
5825 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
5827 * context switching in?
5830 /* mask monitoring for the idle task */
5831 ia64_setreg(_IA64_REG_CR_DCR
, dcr
& ~IA64_DCR_PP
);
5837 * context switching out
5838 * restore monitoring for next task
5840 * Due to inlining this odd if-then-else construction generates
5843 ia64_setreg(_IA64_REG_CR_DCR
, dcr
|IA64_DCR_PP
);
5852 pfm_force_cleanup(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5854 struct task_struct
*task
= ctx
->ctx_task
;
5856 ia64_psr(regs
)->up
= 0;
5857 ia64_psr(regs
)->sp
= 1;
5859 if (GET_PMU_OWNER() == task
) {
5860 DPRINT(("cleared ownership for [%d]\n",
5861 task_pid_nr(ctx
->ctx_task
)));
5862 SET_PMU_OWNER(NULL
, NULL
);
5866 * disconnect the task from the context and vice-versa
5868 PFM_SET_WORK_PENDING(task
, 0);
5870 task
->thread
.pfm_context
= NULL
;
5871 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
5873 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task
)));
5878 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5881 pfm_save_regs(struct task_struct
*task
)
5884 unsigned long flags
;
5888 ctx
= PFM_GET_CTX(task
);
5889 if (ctx
== NULL
) return;
5892 * we always come here with interrupts ALREADY disabled by
5893 * the scheduler. So we simply need to protect against concurrent
5894 * access, not CPU concurrency.
5896 flags
= pfm_protect_ctx_ctxsw(ctx
);
5898 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5899 struct pt_regs
*regs
= task_pt_regs(task
);
5903 pfm_force_cleanup(ctx
, regs
);
5905 BUG_ON(ctx
->ctx_smpl_hdr
);
5907 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5909 pfm_context_free(ctx
);
5914 * save current PSR: needed because we modify it
5917 psr
= pfm_get_psr();
5919 BUG_ON(psr
& (IA64_PSR_I
));
5923 * This is the last instruction which may generate an overflow
5925 * We do not need to set psr.sp because, it is irrelevant in kernel.
5926 * It will be restored from ipsr when going back to user level
5931 * keep a copy of psr.up (for reload)
5933 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5936 * release ownership of this PMU.
5937 * PM interrupts are masked, so nothing
5940 SET_PMU_OWNER(NULL
, NULL
);
5943 * we systematically save the PMD as we have no
5944 * guarantee we will be schedule at that same
5947 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5950 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5951 * we will need it on the restore path to check
5952 * for pending overflow.
5954 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5957 * unfreeze PMU if had pending overflows
5959 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5962 * finally, allow context access.
5963 * interrupts will still be masked after this call.
5965 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5968 #else /* !CONFIG_SMP */
5970 pfm_save_regs(struct task_struct
*task
)
5975 ctx
= PFM_GET_CTX(task
);
5976 if (ctx
== NULL
) return;
5979 * save current PSR: needed because we modify it
5981 psr
= pfm_get_psr();
5983 BUG_ON(psr
& (IA64_PSR_I
));
5987 * This is the last instruction which may generate an overflow
5989 * We do not need to set psr.sp because, it is irrelevant in kernel.
5990 * It will be restored from ipsr when going back to user level
5995 * keep a copy of psr.up (for reload)
5997 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
6001 pfm_lazy_save_regs (struct task_struct
*task
)
6004 unsigned long flags
;
6006 { u64 psr
= pfm_get_psr();
6007 BUG_ON(psr
& IA64_PSR_UP
);
6010 ctx
= PFM_GET_CTX(task
);
6013 * we need to mask PMU overflow here to
6014 * make sure that we maintain pmc0 until
6015 * we save it. overflow interrupts are
6016 * treated as spurious if there is no
6019 * XXX: I don't think this is necessary
6021 PROTECT_CTX(ctx
,flags
);
6024 * release ownership of this PMU.
6025 * must be done before we save the registers.
6027 * after this call any PMU interrupt is treated
6030 SET_PMU_OWNER(NULL
, NULL
);
6033 * save all the pmds we use
6035 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
6038 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6039 * it is needed to check for pended overflow
6040 * on the restore path
6042 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
6045 * unfreeze PMU if had pending overflows
6047 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
6050 * now get can unmask PMU interrupts, they will
6051 * be treated as purely spurious and we will not
6052 * lose any information
6054 UNPROTECT_CTX(ctx
,flags
);
6056 #endif /* CONFIG_SMP */
6060 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6063 pfm_load_regs (struct task_struct
*task
)
6066 unsigned long pmc_mask
= 0UL, pmd_mask
= 0UL;
6067 unsigned long flags
;
6069 int need_irq_resend
;
6071 ctx
= PFM_GET_CTX(task
);
6072 if (unlikely(ctx
== NULL
)) return;
6074 BUG_ON(GET_PMU_OWNER());
6077 * possible on unload
6079 if (unlikely((task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)) return;
6082 * we always come here with interrupts ALREADY disabled by
6083 * the scheduler. So we simply need to protect against concurrent
6084 * access, not CPU concurrency.
6086 flags
= pfm_protect_ctx_ctxsw(ctx
);
6087 psr
= pfm_get_psr();
6089 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6091 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6092 BUG_ON(psr
& IA64_PSR_I
);
6094 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) {
6095 struct pt_regs
*regs
= task_pt_regs(task
);
6097 BUG_ON(ctx
->ctx_smpl_hdr
);
6099 pfm_force_cleanup(ctx
, regs
);
6101 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6104 * this one (kmalloc'ed) is fine with interrupts disabled
6106 pfm_context_free(ctx
);
6112 * we restore ALL the debug registers to avoid picking up
6115 if (ctx
->ctx_fl_using_dbreg
) {
6116 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6117 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6120 * retrieve saved psr.up
6122 psr_up
= ctx
->ctx_saved_psr_up
;
6125 * if we were the last user of the PMU on that CPU,
6126 * then nothing to do except restore psr
6128 if (GET_LAST_CPU(ctx
) == smp_processor_id() && ctx
->ctx_last_activation
== GET_ACTIVATION()) {
6131 * retrieve partial reload masks (due to user modifications)
6133 pmc_mask
= ctx
->ctx_reload_pmcs
[0];
6134 pmd_mask
= ctx
->ctx_reload_pmds
[0];
6138 * To avoid leaking information to the user level when psr.sp=0,
6139 * we must reload ALL implemented pmds (even the ones we don't use).
6140 * In the kernel we only allow PFM_READ_PMDS on registers which
6141 * we initialized or requested (sampling) so there is no risk there.
6143 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6146 * ALL accessible PMCs are systematically reloaded, unused registers
6147 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6148 * up stale configuration.
6150 * PMC0 is never in the mask. It is always restored separately.
6152 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6155 * when context is MASKED, we will restore PMC with plm=0
6156 * and PMD with stale information, but that's ok, nothing
6159 * XXX: optimize here
6161 if (pmd_mask
) pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6162 if (pmc_mask
) pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6165 * check for pending overflow at the time the state
6168 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6170 * reload pmc0 with the overflow information
6171 * On McKinley PMU, this will trigger a PMU interrupt
6173 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6175 ctx
->th_pmcs
[0] = 0UL;
6178 * will replay the PMU interrupt
6180 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6182 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6186 * we just did a reload, so we reset the partial reload fields
6188 ctx
->ctx_reload_pmcs
[0] = 0UL;
6189 ctx
->ctx_reload_pmds
[0] = 0UL;
6191 SET_LAST_CPU(ctx
, smp_processor_id());
6194 * dump activation value for this PMU
6198 * record current activation for this context
6200 SET_ACTIVATION(ctx
);
6203 * establish new ownership.
6205 SET_PMU_OWNER(task
, ctx
);
6208 * restore the psr.up bit. measurement
6210 * no PMU interrupt can happen at this point
6211 * because we still have interrupts disabled.
6213 if (likely(psr_up
)) pfm_set_psr_up();
6216 * allow concurrent access to context
6218 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6220 #else /* !CONFIG_SMP */
6222 * reload PMU state for UP kernels
6223 * in 2.5 we come here with interrupts disabled
6226 pfm_load_regs (struct task_struct
*task
)
6229 struct task_struct
*owner
;
6230 unsigned long pmd_mask
, pmc_mask
;
6232 int need_irq_resend
;
6234 owner
= GET_PMU_OWNER();
6235 ctx
= PFM_GET_CTX(task
);
6236 psr
= pfm_get_psr();
6238 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6239 BUG_ON(psr
& IA64_PSR_I
);
6242 * we restore ALL the debug registers to avoid picking up
6245 * This must be done even when the task is still the owner
6246 * as the registers may have been modified via ptrace()
6247 * (not perfmon) by the previous task.
6249 if (ctx
->ctx_fl_using_dbreg
) {
6250 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6251 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6255 * retrieved saved psr.up
6257 psr_up
= ctx
->ctx_saved_psr_up
;
6258 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6261 * short path, our state is still there, just
6262 * need to restore psr and we go
6264 * we do not touch either PMC nor PMD. the psr is not touched
6265 * by the overflow_handler. So we are safe w.r.t. to interrupt
6266 * concurrency even without interrupt masking.
6268 if (likely(owner
== task
)) {
6269 if (likely(psr_up
)) pfm_set_psr_up();
6274 * someone else is still using the PMU, first push it out and
6275 * then we'll be able to install our stuff !
6277 * Upon return, there will be no owner for the current PMU
6279 if (owner
) pfm_lazy_save_regs(owner
);
6282 * To avoid leaking information to the user level when psr.sp=0,
6283 * we must reload ALL implemented pmds (even the ones we don't use).
6284 * In the kernel we only allow PFM_READ_PMDS on registers which
6285 * we initialized or requested (sampling) so there is no risk there.
6287 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6290 * ALL accessible PMCs are systematically reloaded, unused registers
6291 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6292 * up stale configuration.
6294 * PMC0 is never in the mask. It is always restored separately
6296 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6298 pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6299 pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6302 * check for pending overflow at the time the state
6305 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6307 * reload pmc0 with the overflow information
6308 * On McKinley PMU, this will trigger a PMU interrupt
6310 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6313 ctx
->th_pmcs
[0] = 0UL;
6316 * will replay the PMU interrupt
6318 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6320 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6324 * establish new ownership.
6326 SET_PMU_OWNER(task
, ctx
);
6329 * restore the psr.up bit. measurement
6331 * no PMU interrupt can happen at this point
6332 * because we still have interrupts disabled.
6334 if (likely(psr_up
)) pfm_set_psr_up();
6336 #endif /* CONFIG_SMP */
6339 * this function assumes monitoring is stopped
6342 pfm_flush_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
6345 unsigned long mask2
, val
, pmd_val
, ovfl_val
;
6346 int i
, can_access_pmu
= 0;
6350 * is the caller the task being monitored (or which initiated the
6351 * session for system wide measurements)
6353 is_self
= ctx
->ctx_task
== task
? 1 : 0;
6356 * can access PMU is task is the owner of the PMU state on the current CPU
6357 * or if we are running on the CPU bound to the context in system-wide mode
6358 * (that is not necessarily the task the context is attached to in this mode).
6359 * In system-wide we always have can_access_pmu true because a task running on an
6360 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6362 can_access_pmu
= (GET_PMU_OWNER() == task
) || (ctx
->ctx_fl_system
&& ctx
->ctx_cpu
== smp_processor_id());
6363 if (can_access_pmu
) {
6365 * Mark the PMU as not owned
6366 * This will cause the interrupt handler to do nothing in case an overflow
6367 * interrupt was in-flight
6368 * This also guarantees that pmc0 will contain the final state
6369 * It virtually gives us full control on overflow processing from that point
6372 SET_PMU_OWNER(NULL
, NULL
);
6373 DPRINT(("releasing ownership\n"));
6376 * read current overflow status:
6378 * we are guaranteed to read the final stable state
6381 pmc0
= ia64_get_pmc(0); /* slow */
6384 * reset freeze bit, overflow status information destroyed
6388 pmc0
= ctx
->th_pmcs
[0];
6390 * clear whatever overflow status bits there were
6392 ctx
->th_pmcs
[0] = 0;
6394 ovfl_val
= pmu_conf
->ovfl_val
;
6396 * we save all the used pmds
6397 * we take care of overflows for counting PMDs
6399 * XXX: sampling situation is not taken into account here
6401 mask2
= ctx
->ctx_used_pmds
[0];
6403 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self
, ovfl_val
, mask2
));
6405 for (i
= 0; mask2
; i
++, mask2
>>=1) {
6407 /* skip non used pmds */
6408 if ((mask2
& 0x1) == 0) continue;
6411 * can access PMU always true in system wide mode
6413 val
= pmd_val
= can_access_pmu
? ia64_get_pmd(i
) : ctx
->th_pmds
[i
];
6415 if (PMD_IS_COUNTING(i
)) {
6416 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6419 ctx
->ctx_pmds
[i
].val
,
6423 * we rebuild the full 64 bit value of the counter
6425 val
= ctx
->ctx_pmds
[i
].val
+ (val
& ovfl_val
);
6428 * now everything is in ctx_pmds[] and we need
6429 * to clear the saved context from save_regs() such that
6430 * pfm_read_pmds() gets the correct value
6435 * take care of overflow inline
6437 if (pmc0
& (1UL << i
)) {
6438 val
+= 1 + ovfl_val
;
6439 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task
), i
));
6443 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task
), i
, val
, pmd_val
));
6445 if (is_self
) ctx
->th_pmds
[i
] = pmd_val
;
6447 ctx
->ctx_pmds
[i
].val
= val
;
6451 static struct irqaction perfmon_irqaction
= {
6452 .handler
= pfm_interrupt_handler
,
6453 .flags
= IRQF_DISABLED
,
6458 pfm_alt_save_pmu_state(void *data
)
6460 struct pt_regs
*regs
;
6462 regs
= task_pt_regs(current
);
6464 DPRINT(("called\n"));
6467 * should not be necessary but
6468 * let's take not risk
6472 ia64_psr(regs
)->pp
= 0;
6475 * This call is required
6476 * May cause a spurious interrupt on some processors
6484 pfm_alt_restore_pmu_state(void *data
)
6486 struct pt_regs
*regs
;
6488 regs
= task_pt_regs(current
);
6490 DPRINT(("called\n"));
6493 * put PMU back in state expected
6498 ia64_psr(regs
)->pp
= 0;
6501 * perfmon runs with PMU unfrozen at all times
6509 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6514 /* some sanity checks */
6515 if (hdl
== NULL
|| hdl
->handler
== NULL
) return -EINVAL
;
6517 /* do the easy test first */
6518 if (pfm_alt_intr_handler
) return -EBUSY
;
6520 /* one at a time in the install or remove, just fail the others */
6521 if (!spin_trylock(&pfm_alt_install_check
)) {
6525 /* reserve our session */
6526 for_each_online_cpu(reserve_cpu
) {
6527 ret
= pfm_reserve_session(NULL
, 1, reserve_cpu
);
6528 if (ret
) goto cleanup_reserve
;
6531 /* save the current system wide pmu states */
6532 ret
= on_each_cpu(pfm_alt_save_pmu_state
, NULL
, 0, 1);
6534 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6535 goto cleanup_reserve
;
6538 /* officially change to the alternate interrupt handler */
6539 pfm_alt_intr_handler
= hdl
;
6541 spin_unlock(&pfm_alt_install_check
);
6546 for_each_online_cpu(i
) {
6547 /* don't unreserve more than we reserved */
6548 if (i
>= reserve_cpu
) break;
6550 pfm_unreserve_session(NULL
, 1, i
);
6553 spin_unlock(&pfm_alt_install_check
);
6557 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt
);
6560 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6565 if (hdl
== NULL
) return -EINVAL
;
6567 /* cannot remove someone else's handler! */
6568 if (pfm_alt_intr_handler
!= hdl
) return -EINVAL
;
6570 /* one at a time in the install or remove, just fail the others */
6571 if (!spin_trylock(&pfm_alt_install_check
)) {
6575 pfm_alt_intr_handler
= NULL
;
6577 ret
= on_each_cpu(pfm_alt_restore_pmu_state
, NULL
, 0, 1);
6579 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6582 for_each_online_cpu(i
) {
6583 pfm_unreserve_session(NULL
, 1, i
);
6586 spin_unlock(&pfm_alt_install_check
);
6590 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt
);
6593 * perfmon initialization routine, called from the initcall() table
6595 static int init_pfm_fs(void);
6603 family
= local_cpu_data
->family
;
6608 if ((*p
)->probe() == 0) goto found
;
6609 } else if ((*p
)->pmu_family
== family
|| (*p
)->pmu_family
== 0xff) {
6620 static const struct file_operations pfm_proc_fops
= {
6621 .open
= pfm_proc_open
,
6623 .llseek
= seq_lseek
,
6624 .release
= seq_release
,
6630 unsigned int n
, n_counters
, i
;
6632 printk("perfmon: version %u.%u IRQ %u\n",
6635 IA64_PERFMON_VECTOR
);
6637 if (pfm_probe_pmu()) {
6638 printk(KERN_INFO
"perfmon: disabled, there is no support for processor family %d\n",
6639 local_cpu_data
->family
);
6644 * compute the number of implemented PMD/PMC from the
6645 * description tables
6648 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
6649 if (PMC_IS_IMPL(i
) == 0) continue;
6650 pmu_conf
->impl_pmcs
[i
>>6] |= 1UL << (i
&63);
6653 pmu_conf
->num_pmcs
= n
;
6655 n
= 0; n_counters
= 0;
6656 for (i
=0; PMD_IS_LAST(i
) == 0; i
++) {
6657 if (PMD_IS_IMPL(i
) == 0) continue;
6658 pmu_conf
->impl_pmds
[i
>>6] |= 1UL << (i
&63);
6660 if (PMD_IS_COUNTING(i
)) n_counters
++;
6662 pmu_conf
->num_pmds
= n
;
6663 pmu_conf
->num_counters
= n_counters
;
6666 * sanity checks on the number of debug registers
6668 if (pmu_conf
->use_rr_dbregs
) {
6669 if (pmu_conf
->num_ibrs
> IA64_NUM_DBG_REGS
) {
6670 printk(KERN_INFO
"perfmon: unsupported number of code debug registers (%u)\n", pmu_conf
->num_ibrs
);
6674 if (pmu_conf
->num_dbrs
> IA64_NUM_DBG_REGS
) {
6675 printk(KERN_INFO
"perfmon: unsupported number of data debug registers (%u)\n", pmu_conf
->num_ibrs
);
6681 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6685 pmu_conf
->num_counters
,
6686 ffz(pmu_conf
->ovfl_val
));
6689 if (pmu_conf
->num_pmds
>= PFM_NUM_PMD_REGS
|| pmu_conf
->num_pmcs
>= PFM_NUM_PMC_REGS
) {
6690 printk(KERN_ERR
"perfmon: not enough pmc/pmd, perfmon disabled\n");
6696 * create /proc/perfmon (mostly for debugging purposes)
6698 perfmon_dir
= create_proc_entry("perfmon", S_IRUGO
, NULL
);
6699 if (perfmon_dir
== NULL
) {
6700 printk(KERN_ERR
"perfmon: cannot create /proc entry, perfmon disabled\n");
6705 * install customized file operations for /proc/perfmon entry
6707 perfmon_dir
->proc_fops
= &pfm_proc_fops
;
6710 * create /proc/sys/kernel/perfmon (for debugging purposes)
6712 pfm_sysctl_header
= register_sysctl_table(pfm_sysctl_root
);
6715 * initialize all our spinlocks
6717 spin_lock_init(&pfm_sessions
.pfs_lock
);
6718 spin_lock_init(&pfm_buffer_fmt_lock
);
6722 for(i
=0; i
< NR_CPUS
; i
++) pfm_stats
[i
].pfm_ovfl_intr_cycles_min
= ~0UL;
6727 __initcall(pfm_init
);
6730 * this function is called before pfm_init()
6733 pfm_init_percpu (void)
6735 static int first_time
=1;
6737 * make sure no measurement is active
6738 * (may inherit programmed PMCs from EFI).
6744 * we run with the PMU not frozen at all times
6749 register_percpu_irq(IA64_PERFMON_VECTOR
, &perfmon_irqaction
);
6753 ia64_setreg(_IA64_REG_CR_PMV
, IA64_PERFMON_VECTOR
);
6758 * used for debug purposes only
6761 dump_pmu_state(const char *from
)
6763 struct task_struct
*task
;
6764 struct pt_regs
*regs
;
6766 unsigned long psr
, dcr
, info
, flags
;
6769 local_irq_save(flags
);
6771 this_cpu
= smp_processor_id();
6772 regs
= task_pt_regs(current
);
6773 info
= PFM_CPUINFO_GET();
6774 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
6776 if (info
== 0 && ia64_psr(regs
)->pp
== 0 && (dcr
& IA64_DCR_PP
) == 0) {
6777 local_irq_restore(flags
);
6781 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6784 task_pid_nr(current
),
6788 task
= GET_PMU_OWNER();
6789 ctx
= GET_PMU_CTX();
6791 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu
, task
? task_pid_nr(task
) : -1, ctx
);
6793 psr
= pfm_get_psr();
6795 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6798 psr
& IA64_PSR_PP
? 1 : 0,
6799 psr
& IA64_PSR_UP
? 1 : 0,
6800 dcr
& IA64_DCR_PP
? 1 : 0,
6803 ia64_psr(regs
)->pp
);
6805 ia64_psr(regs
)->up
= 0;
6806 ia64_psr(regs
)->pp
= 0;
6808 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
6809 if (PMC_IS_IMPL(i
) == 0) continue;
6810 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmc(i
), i
, ctx
->th_pmcs
[i
]);
6813 for (i
=1; PMD_IS_LAST(i
) == 0; i
++) {
6814 if (PMD_IS_IMPL(i
) == 0) continue;
6815 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmd(i
), i
, ctx
->th_pmds
[i
]);
6819 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6822 ctx
->ctx_smpl_vaddr
,
6826 ctx
->ctx_saved_psr_up
);
6828 local_irq_restore(flags
);
6832 * called from process.c:copy_thread(). task is new child.
6835 pfm_inherit(struct task_struct
*task
, struct pt_regs
*regs
)
6837 struct thread_struct
*thread
;
6839 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task
)));
6841 thread
= &task
->thread
;
6844 * cut links inherited from parent (current)
6846 thread
->pfm_context
= NULL
;
6848 PFM_SET_WORK_PENDING(task
, 0);
6851 * the psr bits are already set properly in copy_threads()
6854 #else /* !CONFIG_PERFMON */
6856 sys_perfmonctl (int fd
, int cmd
, void *arg
, int count
)
6860 #endif /* CONFIG_PERFMON */