Linux 2.6.25-rc4
[linux-2.6/next.git] / arch / sparc / kernel / smp.c
blob6724ab90f82bc6868f2c47eb81540d7909a2ade9
1 /* smp.c: Sparc SMP support.
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6 */
8 #include <asm/head.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
36 #include "irq.h"
38 int smp_num_cpus = 1;
39 volatile unsigned long cpu_callin_map[NR_CPUS] __initdata = {0,};
40 unsigned char boot_cpu_id = 0;
41 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
42 int smp_activated = 0;
43 volatile int __cpu_number_map[NR_CPUS];
44 volatile int __cpu_logical_map[NR_CPUS];
46 cpumask_t cpu_online_map = CPU_MASK_NONE;
47 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
48 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
50 /* The only guaranteed locking primitive available on all Sparc
51 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
52 * places the current byte at the effective address into dest_reg and
53 * places 0xff there afterwards. Pretty lame locking primitive
54 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
55 * instruction which is much better...
58 /* Used to make bitops atomic */
59 unsigned char bitops_spinlock = 0;
61 void __cpuinit smp_store_cpu_info(int id)
63 int cpu_node;
65 cpu_data(id).udelay_val = loops_per_jiffy;
67 cpu_find_by_mid(id, &cpu_node);
68 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
69 "clock-frequency", 0);
70 cpu_data(id).prom_node = cpu_node;
71 cpu_data(id).mid = cpu_get_hwmid(cpu_node);
73 if (cpu_data(id).mid < 0)
74 panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
77 void __init smp_cpus_done(unsigned int max_cpus)
79 extern void smp4m_smp_done(void);
80 extern void smp4d_smp_done(void);
81 unsigned long bogosum = 0;
82 int cpu, num;
84 for (cpu = 0, num = 0; cpu < NR_CPUS; cpu++)
85 if (cpu_online(cpu)) {
86 num++;
87 bogosum += cpu_data(cpu).udelay_val;
90 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
91 num, bogosum/(500000/HZ),
92 (bogosum/(5000/HZ))%100);
94 switch(sparc_cpu_model) {
95 case sun4:
96 printk("SUN4\n");
97 BUG();
98 break;
99 case sun4c:
100 printk("SUN4C\n");
101 BUG();
102 break;
103 case sun4m:
104 smp4m_smp_done();
105 break;
106 case sun4d:
107 smp4d_smp_done();
108 break;
109 case sun4e:
110 printk("SUN4E\n");
111 BUG();
112 break;
113 case sun4u:
114 printk("SUN4U\n");
115 BUG();
116 break;
117 default:
118 printk("UNKNOWN!\n");
119 BUG();
120 break;
124 void cpu_panic(void)
126 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
127 panic("SMP bolixed\n");
130 struct linux_prom_registers smp_penguin_ctable __initdata = { 0 };
132 void smp_send_reschedule(int cpu)
134 /* See sparc64 */
137 void smp_send_stop(void)
141 void smp_flush_cache_all(void)
143 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
144 local_flush_cache_all();
147 void smp_flush_tlb_all(void)
149 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
150 local_flush_tlb_all();
153 void smp_flush_cache_mm(struct mm_struct *mm)
155 if(mm->context != NO_CONTEXT) {
156 cpumask_t cpu_mask = mm->cpu_vm_mask;
157 cpu_clear(smp_processor_id(), cpu_mask);
158 if (!cpus_empty(cpu_mask))
159 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
160 local_flush_cache_mm(mm);
164 void smp_flush_tlb_mm(struct mm_struct *mm)
166 if(mm->context != NO_CONTEXT) {
167 cpumask_t cpu_mask = mm->cpu_vm_mask;
168 cpu_clear(smp_processor_id(), cpu_mask);
169 if (!cpus_empty(cpu_mask)) {
170 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
171 if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
172 mm->cpu_vm_mask = cpumask_of_cpu(smp_processor_id());
174 local_flush_tlb_mm(mm);
178 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
179 unsigned long end)
181 struct mm_struct *mm = vma->vm_mm;
183 if (mm->context != NO_CONTEXT) {
184 cpumask_t cpu_mask = mm->cpu_vm_mask;
185 cpu_clear(smp_processor_id(), cpu_mask);
186 if (!cpus_empty(cpu_mask))
187 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
188 local_flush_cache_range(vma, start, end);
192 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
193 unsigned long end)
195 struct mm_struct *mm = vma->vm_mm;
197 if (mm->context != NO_CONTEXT) {
198 cpumask_t cpu_mask = mm->cpu_vm_mask;
199 cpu_clear(smp_processor_id(), cpu_mask);
200 if (!cpus_empty(cpu_mask))
201 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
202 local_flush_tlb_range(vma, start, end);
206 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
208 struct mm_struct *mm = vma->vm_mm;
210 if(mm->context != NO_CONTEXT) {
211 cpumask_t cpu_mask = mm->cpu_vm_mask;
212 cpu_clear(smp_processor_id(), cpu_mask);
213 if (!cpus_empty(cpu_mask))
214 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
215 local_flush_cache_page(vma, page);
219 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
221 struct mm_struct *mm = vma->vm_mm;
223 if(mm->context != NO_CONTEXT) {
224 cpumask_t cpu_mask = mm->cpu_vm_mask;
225 cpu_clear(smp_processor_id(), cpu_mask);
226 if (!cpus_empty(cpu_mask))
227 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
228 local_flush_tlb_page(vma, page);
232 void smp_reschedule_irq(void)
234 set_need_resched();
237 void smp_flush_page_to_ram(unsigned long page)
239 /* Current theory is that those who call this are the one's
240 * who have just dirtied their cache with the pages contents
241 * in kernel space, therefore we only run this on local cpu.
243 * XXX This experiment failed, research further... -DaveM
245 #if 1
246 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
247 #endif
248 local_flush_page_to_ram(page);
251 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
253 cpumask_t cpu_mask = mm->cpu_vm_mask;
254 cpu_clear(smp_processor_id(), cpu_mask);
255 if (!cpus_empty(cpu_mask))
256 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
257 local_flush_sig_insns(mm, insn_addr);
260 extern unsigned int lvl14_resolution;
262 /* /proc/profile writes can call this, don't __init it please. */
263 static DEFINE_SPINLOCK(prof_setup_lock);
265 int setup_profiling_timer(unsigned int multiplier)
267 int i;
268 unsigned long flags;
270 /* Prevent level14 ticker IRQ flooding. */
271 if((!multiplier) || (lvl14_resolution / multiplier) < 500)
272 return -EINVAL;
274 spin_lock_irqsave(&prof_setup_lock, flags);
275 for_each_possible_cpu(i) {
276 load_profile_irq(i, lvl14_resolution / multiplier);
277 prof_multiplier(i) = multiplier;
279 spin_unlock_irqrestore(&prof_setup_lock, flags);
281 return 0;
284 void __init smp_prepare_cpus(unsigned int max_cpus)
286 extern void __init smp4m_boot_cpus(void);
287 extern void __init smp4d_boot_cpus(void);
288 int i, cpuid, extra;
290 printk("Entering SMP Mode...\n");
292 extra = 0;
293 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
294 if (cpuid >= NR_CPUS)
295 extra++;
297 /* i = number of cpus */
298 if (extra && max_cpus > i - extra)
299 printk("Warning: NR_CPUS is too low to start all cpus\n");
301 smp_store_cpu_info(boot_cpu_id);
303 switch(sparc_cpu_model) {
304 case sun4:
305 printk("SUN4\n");
306 BUG();
307 break;
308 case sun4c:
309 printk("SUN4C\n");
310 BUG();
311 break;
312 case sun4m:
313 smp4m_boot_cpus();
314 break;
315 case sun4d:
316 smp4d_boot_cpus();
317 break;
318 case sun4e:
319 printk("SUN4E\n");
320 BUG();
321 break;
322 case sun4u:
323 printk("SUN4U\n");
324 BUG();
325 break;
326 default:
327 printk("UNKNOWN!\n");
328 BUG();
329 break;
333 /* Set this up early so that things like the scheduler can init
334 * properly. We use the same cpu mask for both the present and
335 * possible cpu map.
337 void __init smp_setup_cpu_possible_map(void)
339 int instance, mid;
341 instance = 0;
342 while (!cpu_find_by_instance(instance, NULL, &mid)) {
343 if (mid < NR_CPUS) {
344 cpu_set(mid, phys_cpu_present_map);
345 cpu_set(mid, cpu_present_map);
347 instance++;
351 void __init smp_prepare_boot_cpu(void)
353 int cpuid = hard_smp_processor_id();
355 if (cpuid >= NR_CPUS) {
356 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
357 prom_halt();
359 if (cpuid != 0)
360 printk("boot cpu id != 0, this could work but is untested\n");
362 current_thread_info()->cpu = cpuid;
363 cpu_set(cpuid, cpu_online_map);
364 cpu_set(cpuid, phys_cpu_present_map);
367 int __cpuinit __cpu_up(unsigned int cpu)
369 extern int __cpuinit smp4m_boot_one_cpu(int);
370 extern int __cpuinit smp4d_boot_one_cpu(int);
371 int ret=0;
373 switch(sparc_cpu_model) {
374 case sun4:
375 printk("SUN4\n");
376 BUG();
377 break;
378 case sun4c:
379 printk("SUN4C\n");
380 BUG();
381 break;
382 case sun4m:
383 ret = smp4m_boot_one_cpu(cpu);
384 break;
385 case sun4d:
386 ret = smp4d_boot_one_cpu(cpu);
387 break;
388 case sun4e:
389 printk("SUN4E\n");
390 BUG();
391 break;
392 case sun4u:
393 printk("SUN4U\n");
394 BUG();
395 break;
396 default:
397 printk("UNKNOWN!\n");
398 BUG();
399 break;
402 if (!ret) {
403 cpu_set(cpu, smp_commenced_mask);
404 while (!cpu_online(cpu))
405 mb();
407 return ret;
410 void smp_bogo(struct seq_file *m)
412 int i;
414 for_each_online_cpu(i) {
415 seq_printf(m,
416 "Cpu%dBogo\t: %lu.%02lu\n",
418 cpu_data(i).udelay_val/(500000/HZ),
419 (cpu_data(i).udelay_val/(5000/HZ))%100);
423 void smp_info(struct seq_file *m)
425 int i;
427 seq_printf(m, "State:\n");
428 for_each_online_cpu(i)
429 seq_printf(m, "CPU%d\t\t: online\n", i);