Linux 2.6.25-rc4
[linux-2.6/next.git] / arch / sparc / kernel / sun4m_smp.c
blob0b94072671623287c6c819fb4f405b18a0bb7038
1 /* sun4m_smp.c: Sparc SUN4M SMP support.
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 */
6 #include <asm/head.h>
8 #include <linux/kernel.h>
9 #include <linux/sched.h>
10 #include <linux/threads.h>
11 #include <linux/smp.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/init.h>
15 #include <linux/spinlock.h>
16 #include <linux/mm.h>
17 #include <linux/swap.h>
18 #include <linux/profile.h>
19 #include <linux/delay.h>
21 #include <asm/cacheflush.h>
22 #include <asm/tlbflush.h>
23 #include <asm/irq_regs.h>
25 #include <asm/ptrace.h>
26 #include <asm/atomic.h>
28 #include <asm/irq.h>
29 #include <asm/page.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/oplib.h>
33 #include <asm/cpudata.h>
35 #include "irq.h"
37 #define IRQ_RESCHEDULE 13
38 #define IRQ_STOP_CPU 14
39 #define IRQ_CROSS_CALL 15
41 extern ctxd_t *srmmu_ctx_table_phys;
43 extern volatile unsigned long cpu_callin_map[NR_CPUS];
44 extern unsigned char boot_cpu_id;
46 extern cpumask_t smp_commenced_mask;
48 extern int __smp4m_processor_id(void);
50 /*#define SMP_DEBUG*/
52 #ifdef SMP_DEBUG
53 #define SMP_PRINTK(x) printk x
54 #else
55 #define SMP_PRINTK(x)
56 #endif
58 static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val)
60 __asm__ __volatile__("swap [%1], %0\n\t" :
61 "=&r" (val), "=&r" (ptr) :
62 "0" (val), "1" (ptr));
63 return val;
66 static void smp_setup_percpu_timer(void);
67 extern void cpu_probe(void);
69 void __cpuinit smp4m_callin(void)
71 int cpuid = hard_smp_processor_id();
73 local_flush_cache_all();
74 local_flush_tlb_all();
76 /* Get our local ticker going. */
77 smp_setup_percpu_timer();
79 calibrate_delay();
80 smp_store_cpu_info(cpuid);
82 local_flush_cache_all();
83 local_flush_tlb_all();
86 * Unblock the master CPU _only_ when the scheduler state
87 * of all secondary CPUs will be up-to-date, so after
88 * the SMP initialization the master will be just allowed
89 * to call the scheduler code.
91 /* Allow master to continue. */
92 swap(&cpu_callin_map[cpuid], 1);
94 /* XXX: What's up with all the flushes? */
95 local_flush_cache_all();
96 local_flush_tlb_all();
98 cpu_probe();
100 /* Fix idle thread fields. */
101 __asm__ __volatile__("ld [%0], %%g6\n\t"
102 : : "r" (&current_set[cpuid])
103 : "memory" /* paranoid */);
105 /* Attach to the address space of init_task. */
106 atomic_inc(&init_mm.mm_count);
107 current->active_mm = &init_mm;
109 while (!cpu_isset(cpuid, smp_commenced_mask))
110 mb();
112 local_irq_enable();
114 cpu_set(cpuid, cpu_online_map);
118 * Cycle through the processors asking the PROM to start each one.
121 extern struct linux_prom_registers smp_penguin_ctable;
122 extern unsigned long trapbase_cpu1[];
123 extern unsigned long trapbase_cpu2[];
124 extern unsigned long trapbase_cpu3[];
126 void __init smp4m_boot_cpus(void)
128 smp_setup_percpu_timer();
129 local_flush_cache_all();
132 int __cpuinit smp4m_boot_one_cpu(int i)
134 extern unsigned long sun4m_cpu_startup;
135 unsigned long *entry = &sun4m_cpu_startup;
136 struct task_struct *p;
137 int timeout;
138 int cpu_node;
140 cpu_find_by_mid(i, &cpu_node);
142 /* Cook up an idler for this guy. */
143 p = fork_idle(i);
144 current_set[i] = task_thread_info(p);
145 /* See trampoline.S for details... */
146 entry += ((i-1) * 3);
149 * Initialize the contexts table
150 * Since the call to prom_startcpu() trashes the structure,
151 * we need to re-initialize it for each cpu
153 smp_penguin_ctable.which_io = 0;
154 smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
155 smp_penguin_ctable.reg_size = 0;
157 /* whirrr, whirrr, whirrrrrrrrr... */
158 printk("Starting CPU %d at %p\n", i, entry);
159 local_flush_cache_all();
160 prom_startcpu(cpu_node,
161 &smp_penguin_ctable, 0, (char *)entry);
163 /* wheee... it's going... */
164 for(timeout = 0; timeout < 10000; timeout++) {
165 if(cpu_callin_map[i])
166 break;
167 udelay(200);
170 if (!(cpu_callin_map[i])) {
171 printk("Processor %d is stuck.\n", i);
172 return -ENODEV;
175 local_flush_cache_all();
176 return 0;
179 void __init smp4m_smp_done(void)
181 int i, first;
182 int *prev;
184 /* setup cpu list for irq rotation */
185 first = 0;
186 prev = &first;
187 for (i = 0; i < NR_CPUS; i++) {
188 if (cpu_online(i)) {
189 *prev = i;
190 prev = &cpu_data(i).next;
193 *prev = first;
194 local_flush_cache_all();
196 /* Free unneeded trap tables */
197 if (!cpu_isset(1, cpu_present_map)) {
198 ClearPageReserved(virt_to_page(trapbase_cpu1));
199 init_page_count(virt_to_page(trapbase_cpu1));
200 free_page((unsigned long)trapbase_cpu1);
201 totalram_pages++;
202 num_physpages++;
204 if (!cpu_isset(2, cpu_present_map)) {
205 ClearPageReserved(virt_to_page(trapbase_cpu2));
206 init_page_count(virt_to_page(trapbase_cpu2));
207 free_page((unsigned long)trapbase_cpu2);
208 totalram_pages++;
209 num_physpages++;
211 if (!cpu_isset(3, cpu_present_map)) {
212 ClearPageReserved(virt_to_page(trapbase_cpu3));
213 init_page_count(virt_to_page(trapbase_cpu3));
214 free_page((unsigned long)trapbase_cpu3);
215 totalram_pages++;
216 num_physpages++;
219 /* Ok, they are spinning and ready to go. */
222 /* At each hardware IRQ, we get this called to forward IRQ reception
223 * to the next processor. The caller must disable the IRQ level being
224 * serviced globally so that there are no double interrupts received.
226 * XXX See sparc64 irq.c.
228 void smp4m_irq_rotate(int cpu)
230 int next = cpu_data(cpu).next;
231 if (next != cpu)
232 set_irq_udt(next);
235 /* Cross calls, in order to work efficiently and atomically do all
236 * the message passing work themselves, only stopcpu and reschedule
237 * messages come through here.
239 void smp4m_message_pass(int target, int msg, unsigned long data, int wait)
241 static unsigned long smp_cpu_in_msg[NR_CPUS];
242 cpumask_t mask;
243 int me = smp_processor_id();
244 int irq, i;
246 if(msg == MSG_RESCHEDULE) {
247 irq = IRQ_RESCHEDULE;
249 if(smp_cpu_in_msg[me])
250 return;
251 } else if(msg == MSG_STOP_CPU) {
252 irq = IRQ_STOP_CPU;
253 } else {
254 goto barf;
257 smp_cpu_in_msg[me]++;
258 if(target == MSG_ALL_BUT_SELF || target == MSG_ALL) {
259 mask = cpu_online_map;
260 if(target == MSG_ALL_BUT_SELF)
261 cpu_clear(me, mask);
262 for(i = 0; i < 4; i++) {
263 if (cpu_isset(i, mask))
264 set_cpu_int(i, irq);
266 } else {
267 set_cpu_int(target, irq);
269 smp_cpu_in_msg[me]--;
271 return;
272 barf:
273 printk("Yeeee, trying to send SMP msg(%d) on cpu %d\n", msg, me);
274 panic("Bogon SMP message pass.");
277 static struct smp_funcall {
278 smpfunc_t func;
279 unsigned long arg1;
280 unsigned long arg2;
281 unsigned long arg3;
282 unsigned long arg4;
283 unsigned long arg5;
284 unsigned long processors_in[SUN4M_NCPUS]; /* Set when ipi entered. */
285 unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
286 } ccall_info;
288 static DEFINE_SPINLOCK(cross_call_lock);
290 /* Cross calls must be serialized, at least currently. */
291 void smp4m_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2,
292 unsigned long arg3, unsigned long arg4, unsigned long arg5)
294 register int ncpus = SUN4M_NCPUS;
295 unsigned long flags;
297 spin_lock_irqsave(&cross_call_lock, flags);
299 /* Init function glue. */
300 ccall_info.func = func;
301 ccall_info.arg1 = arg1;
302 ccall_info.arg2 = arg2;
303 ccall_info.arg3 = arg3;
304 ccall_info.arg4 = arg4;
305 ccall_info.arg5 = arg5;
307 /* Init receive/complete mapping, plus fire the IPI's off. */
309 cpumask_t mask = cpu_online_map;
310 register int i;
312 cpu_clear(smp_processor_id(), mask);
313 for(i = 0; i < ncpus; i++) {
314 if (cpu_isset(i, mask)) {
315 ccall_info.processors_in[i] = 0;
316 ccall_info.processors_out[i] = 0;
317 set_cpu_int(i, IRQ_CROSS_CALL);
318 } else {
319 ccall_info.processors_in[i] = 1;
320 ccall_info.processors_out[i] = 1;
326 register int i;
328 i = 0;
329 do {
330 while(!ccall_info.processors_in[i])
331 barrier();
332 } while(++i < ncpus);
334 i = 0;
335 do {
336 while(!ccall_info.processors_out[i])
337 barrier();
338 } while(++i < ncpus);
341 spin_unlock_irqrestore(&cross_call_lock, flags);
344 /* Running cross calls. */
345 void smp4m_cross_call_irq(void)
347 int i = smp_processor_id();
349 ccall_info.processors_in[i] = 1;
350 ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
351 ccall_info.arg4, ccall_info.arg5);
352 ccall_info.processors_out[i] = 1;
355 void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
357 struct pt_regs *old_regs;
358 int cpu = smp_processor_id();
360 old_regs = set_irq_regs(regs);
362 clear_profile_irq(cpu);
364 profile_tick(CPU_PROFILING);
366 if(!--prof_counter(cpu)) {
367 int user = user_mode(regs);
369 irq_enter();
370 update_process_times(user);
371 irq_exit();
373 prof_counter(cpu) = prof_multiplier(cpu);
375 set_irq_regs(old_regs);
378 extern unsigned int lvl14_resolution;
380 static void __init smp_setup_percpu_timer(void)
382 int cpu = smp_processor_id();
384 prof_counter(cpu) = prof_multiplier(cpu) = 1;
385 load_profile_irq(cpu, lvl14_resolution);
387 if(cpu == boot_cpu_id)
388 enable_pil_irq(14);
391 void __init smp4m_blackbox_id(unsigned *addr)
393 int rd = *addr & 0x3e000000;
394 int rs1 = rd >> 11;
396 addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
397 addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */
398 addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */
401 void __init smp4m_blackbox_current(unsigned *addr)
403 int rd = *addr & 0x3e000000;
404 int rs1 = rd >> 11;
406 addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
407 addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */
408 addr[4] = 0x8008200c | rd | rs1; /* and reg, 0xc, reg */
411 void __init sun4m_init_smp(void)
413 BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4m_blackbox_id);
414 BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current);
415 BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM);
416 BTFIXUPSET_CALL(smp_message_pass, smp4m_message_pass, BTFIXUPCALL_NORM);
417 BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM);