1 /* linux/drivers/usb/gadget/s3c-hsotg.c
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
11 * S3C USB2.0 High-speed / OtG driver
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/spinlock.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/debugfs.h>
25 #include <linux/seq_file.h>
26 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/clk.h>
31 #include <linux/usb/ch9.h>
32 #include <linux/usb/gadget.h>
36 #include <plat/regs-usb-hsotg-phy.h>
37 #include <plat/regs-usb-hsotg.h>
38 #include <mach/regs-sys.h>
39 #include <plat/udc-hs.h>
42 #define DMA_ADDR_INVALID (~((dma_addr_t)0))
46 * Unfortunately there seems to be a limit of the amount of data that can
47 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
48 * packets (which practically means 1 packet and 63 bytes of data) when the
51 * This means if we are wanting to move >127 bytes of data, we need to
52 * split the transactions up, but just doing one packet at a time does
53 * not work (this may be an implicit DATA0 PID on first packet of the
54 * transaction) and doing 2 packets is outside the controller's limits.
56 * If we try to lower the MPS size for EP0, then no transfers work properly
57 * for EP0, and the system will fail basic enumeration. As no cause for this
58 * has currently been found, we cannot support any large IN transfers for
61 #define EP0_MPS_LIMIT 64
67 * struct s3c_hsotg_ep - driver endpoint definition.
68 * @ep: The gadget layer representation of the endpoint.
69 * @name: The driver generated name for the endpoint.
70 * @queue: Queue of requests for this endpoint.
71 * @parent: Reference back to the parent device structure.
72 * @req: The current request that the endpoint is processing. This is
73 * used to indicate an request has been loaded onto the endpoint
74 * and has yet to be completed (maybe due to data move, or simply
75 * awaiting an ack from the core all the data has been completed).
76 * @debugfs: File entry for debugfs file for this endpoint.
77 * @lock: State lock to protect contents of endpoint.
78 * @dir_in: Set to true if this endpoint is of the IN direction, which
79 * means that it is sending data to the Host.
80 * @index: The index for the endpoint registers.
81 * @name: The name array passed to the USB core.
82 * @halted: Set if the endpoint has been halted.
83 * @periodic: Set if this is a periodic ep, such as Interrupt
84 * @sent_zlp: Set if we've sent a zero-length packet.
85 * @total_data: The total number of data bytes done.
86 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
87 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
88 * @last_load: The offset of data for the last start of request.
89 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
91 * This is the driver's state for each registered enpoint, allowing it
92 * to keep track of transactions that need doing. Each endpoint has a
93 * lock to protect the state, to try and avoid using an overall lock
94 * for the host controller as much as possible.
96 * For periodic IN endpoints, we have fifo_size and fifo_load to try
97 * and keep track of the amount of data in the periodic FIFO for each
98 * of these as we don't have a status register that tells us how much
99 * is in each of them. (note, this may actually be useless information
100 * as in shared-fifo mode periodic in acts like a single-frame packet
101 * buffer than a fifo)
103 struct s3c_hsotg_ep
{
105 struct list_head queue
;
106 struct s3c_hsotg
*parent
;
107 struct s3c_hsotg_req
*req
;
108 struct dentry
*debugfs
;
112 unsigned long total_data
;
113 unsigned int size_loaded
;
114 unsigned int last_load
;
115 unsigned int fifo_load
;
116 unsigned short fifo_size
;
118 unsigned char dir_in
;
121 unsigned int halted
:1;
122 unsigned int periodic
:1;
123 unsigned int sent_zlp
:1;
128 #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
131 * struct s3c_hsotg - driver state.
132 * @dev: The parent device supplied to the probe function
133 * @driver: USB gadget driver
134 * @plat: The platform specific configuration data.
135 * @regs: The memory area mapped for accessing registers.
136 * @regs_res: The resource that was allocated when claiming register space.
137 * @irq: The IRQ number we are using
138 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
139 * @debug_root: root directrory for debugfs.
140 * @debug_file: main status file for debugfs.
141 * @debug_fifo: FIFO status file for debugfs.
142 * @ep0_reply: Request used for ep0 reply.
143 * @ep0_buff: Buffer for EP0 reply data, if needed.
144 * @ctrl_buff: Buffer for EP0 control requests.
145 * @ctrl_req: Request for EP0 control packets.
146 * @eps: The endpoints being supplied to the gadget framework
150 struct usb_gadget_driver
*driver
;
151 struct s3c_hsotg_plat
*plat
;
154 struct resource
*regs_res
;
158 unsigned int dedicated_fifos
:1;
160 struct dentry
*debug_root
;
161 struct dentry
*debug_file
;
162 struct dentry
*debug_fifo
;
164 struct usb_request
*ep0_reply
;
165 struct usb_request
*ctrl_req
;
169 struct usb_gadget gadget
;
170 struct s3c_hsotg_ep eps
[];
174 * struct s3c_hsotg_req - data transfer request
175 * @req: The USB gadget request
176 * @queue: The list of requests for the endpoint this is queued for.
177 * @in_progress: Has already had size/packets written to core
178 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
180 struct s3c_hsotg_req
{
181 struct usb_request req
;
182 struct list_head queue
;
183 unsigned char in_progress
;
184 unsigned char mapped
;
187 /* conversion functions */
188 static inline struct s3c_hsotg_req
*our_req(struct usb_request
*req
)
190 return container_of(req
, struct s3c_hsotg_req
, req
);
193 static inline struct s3c_hsotg_ep
*our_ep(struct usb_ep
*ep
)
195 return container_of(ep
, struct s3c_hsotg_ep
, ep
);
198 static inline struct s3c_hsotg
*to_hsotg(struct usb_gadget
*gadget
)
200 return container_of(gadget
, struct s3c_hsotg
, gadget
);
203 static inline void __orr32(void __iomem
*ptr
, u32 val
)
205 writel(readl(ptr
) | val
, ptr
);
208 static inline void __bic32(void __iomem
*ptr
, u32 val
)
210 writel(readl(ptr
) & ~val
, ptr
);
213 /* forward decleration of functions */
214 static void s3c_hsotg_dump(struct s3c_hsotg
*hsotg
);
217 * using_dma - return the DMA status of the driver.
218 * @hsotg: The driver state.
220 * Return true if we're using DMA.
222 * Currently, we have the DMA support code worked into everywhere
223 * that needs it, but the AMBA DMA implementation in the hardware can
224 * only DMA from 32bit aligned addresses. This means that gadgets such
225 * as the CDC Ethernet cannot work as they often pass packets which are
228 * Unfortunately the choice to use DMA or not is global to the controller
229 * and seems to be only settable when the controller is being put through
230 * a core reset. This means we either need to fix the gadgets to take
231 * account of DMA alignment, or add bounce buffers (yuerk).
233 * Until this issue is sorted out, we always return 'false'.
235 static inline bool using_dma(struct s3c_hsotg
*hsotg
)
237 return false; /* support is not complete */
241 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
242 * @hsotg: The device state
243 * @ints: A bitmask of the interrupts to enable
245 static void s3c_hsotg_en_gsint(struct s3c_hsotg
*hsotg
, u32 ints
)
247 u32 gsintmsk
= readl(hsotg
->regs
+ S3C_GINTMSK
);
250 new_gsintmsk
= gsintmsk
| ints
;
252 if (new_gsintmsk
!= gsintmsk
) {
253 dev_dbg(hsotg
->dev
, "gsintmsk now 0x%08x\n", new_gsintmsk
);
254 writel(new_gsintmsk
, hsotg
->regs
+ S3C_GINTMSK
);
259 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
260 * @hsotg: The device state
261 * @ints: A bitmask of the interrupts to enable
263 static void s3c_hsotg_disable_gsint(struct s3c_hsotg
*hsotg
, u32 ints
)
265 u32 gsintmsk
= readl(hsotg
->regs
+ S3C_GINTMSK
);
268 new_gsintmsk
= gsintmsk
& ~ints
;
270 if (new_gsintmsk
!= gsintmsk
)
271 writel(new_gsintmsk
, hsotg
->regs
+ S3C_GINTMSK
);
275 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
276 * @hsotg: The device state
277 * @ep: The endpoint index
278 * @dir_in: True if direction is in.
279 * @en: The enable value, true to enable
281 * Set or clear the mask for an individual endpoint's interrupt
284 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg
*hsotg
,
285 unsigned int ep
, unsigned int dir_in
,
295 local_irq_save(flags
);
296 daint
= readl(hsotg
->regs
+ S3C_DAINTMSK
);
301 writel(daint
, hsotg
->regs
+ S3C_DAINTMSK
);
302 local_irq_restore(flags
);
306 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
307 * @hsotg: The device instance.
309 static void s3c_hsotg_init_fifo(struct s3c_hsotg
*hsotg
)
317 /* the ryu 2.6.24 release ahs
318 writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
319 writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
320 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
321 hsotg->regs + S3C_GNPTXFSIZ);
324 /* set FIFO sizes to 2048/1024 */
326 writel(2048, hsotg
->regs
+ S3C_GRXFSIZ
);
327 writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
328 S3C_GNPTXFSIZ_NPTxFDep(1024),
329 hsotg
->regs
+ S3C_GNPTXFSIZ
);
331 /* arange all the rest of the TX FIFOs, as some versions of this
332 * block have overlapping default addresses. This also ensures
333 * that if the settings have been changed, then they are set to
336 /* start at the end of the GNPTXFSIZ, rounded up */
340 /* currently we allocate TX FIFOs for all possible endpoints,
341 * and assume that they are all the same size. */
343 for (ep
= 0; ep
<= 15; ep
++) {
345 val
|= size
<< S3C_DPTXFSIZn_DPTxFSize_SHIFT
;
348 writel(val
, hsotg
->regs
+ S3C_DPTXFSIZn(ep
));
351 /* according to p428 of the design guide, we need to ensure that
352 * all fifos are flushed before continuing */
354 writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh
|
355 S3C_GRSTCTL_RxFFlsh
, hsotg
->regs
+ S3C_GRSTCTL
);
357 /* wait until the fifos are both flushed */
360 val
= readl(hsotg
->regs
+ S3C_GRSTCTL
);
362 if ((val
& (S3C_GRSTCTL_TxFFlsh
| S3C_GRSTCTL_RxFFlsh
)) == 0)
365 if (--timeout
== 0) {
367 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
374 dev_dbg(hsotg
->dev
, "FIFOs reset, timeout at %d\n", timeout
);
378 * @ep: USB endpoint to allocate request for.
379 * @flags: Allocation flags
381 * Allocate a new USB request structure appropriate for the specified endpoint
383 static struct usb_request
*s3c_hsotg_ep_alloc_request(struct usb_ep
*ep
,
386 struct s3c_hsotg_req
*req
;
388 req
= kzalloc(sizeof(struct s3c_hsotg_req
), flags
);
392 INIT_LIST_HEAD(&req
->queue
);
394 req
->req
.dma
= DMA_ADDR_INVALID
;
399 * is_ep_periodic - return true if the endpoint is in periodic mode.
400 * @hs_ep: The endpoint to query.
402 * Returns true if the endpoint is in periodic mode, meaning it is being
403 * used for an Interrupt or ISO transfer.
405 static inline int is_ep_periodic(struct s3c_hsotg_ep
*hs_ep
)
407 return hs_ep
->periodic
;
411 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
412 * @hsotg: The device state.
413 * @hs_ep: The endpoint for the request
414 * @hs_req: The request being processed.
416 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
417 * of a request to ensure the buffer is ready for access by the caller.
419 static void s3c_hsotg_unmap_dma(struct s3c_hsotg
*hsotg
,
420 struct s3c_hsotg_ep
*hs_ep
,
421 struct s3c_hsotg_req
*hs_req
)
423 struct usb_request
*req
= &hs_req
->req
;
424 enum dma_data_direction dir
;
426 dir
= hs_ep
->dir_in
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
428 /* ignore this if we're not moving any data */
429 if (hs_req
->req
.length
== 0)
432 if (hs_req
->mapped
) {
433 /* we mapped this, so unmap and remove the dma */
435 dma_unmap_single(hsotg
->dev
, req
->dma
, req
->length
, dir
);
437 req
->dma
= DMA_ADDR_INVALID
;
440 dma_sync_single_for_cpu(hsotg
->dev
, req
->dma
, req
->length
, dir
);
445 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
446 * @hsotg: The controller state.
447 * @hs_ep: The endpoint we're going to write for.
448 * @hs_req: The request to write data for.
450 * This is called when the TxFIFO has some space in it to hold a new
451 * transmission and we have something to give it. The actual setup of
452 * the data size is done elsewhere, so all we have to do is to actually
455 * The return value is zero if there is more space (or nothing was done)
456 * otherwise -ENOSPC is returned if the FIFO space was used up.
458 * This routine is only needed for PIO
460 static int s3c_hsotg_write_fifo(struct s3c_hsotg
*hsotg
,
461 struct s3c_hsotg_ep
*hs_ep
,
462 struct s3c_hsotg_req
*hs_req
)
464 bool periodic
= is_ep_periodic(hs_ep
);
465 u32 gnptxsts
= readl(hsotg
->regs
+ S3C_GNPTXSTS
);
466 int buf_pos
= hs_req
->req
.actual
;
467 int to_write
= hs_ep
->size_loaded
;
472 to_write
-= (buf_pos
- hs_ep
->last_load
);
474 /* if there's nothing to write, get out early */
478 if (periodic
&& !hsotg
->dedicated_fifos
) {
479 u32 epsize
= readl(hsotg
->regs
+ S3C_DIEPTSIZ(hs_ep
->index
));
483 /* work out how much data was loaded so we can calculate
484 * how much data is left in the fifo. */
486 size_left
= S3C_DxEPTSIZ_XferSize_GET(epsize
);
488 /* if shared fifo, we cannot write anything until the
489 * previous data has been completely sent.
491 if (hs_ep
->fifo_load
!= 0) {
492 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_PTxFEmp
);
496 dev_dbg(hsotg
->dev
, "%s: left=%d, load=%d, fifo=%d, size %d\n",
498 hs_ep
->size_loaded
, hs_ep
->fifo_load
, hs_ep
->fifo_size
);
500 /* how much of the data has moved */
501 size_done
= hs_ep
->size_loaded
- size_left
;
503 /* how much data is left in the fifo */
504 can_write
= hs_ep
->fifo_load
- size_done
;
505 dev_dbg(hsotg
->dev
, "%s: => can_write1=%d\n",
506 __func__
, can_write
);
508 can_write
= hs_ep
->fifo_size
- can_write
;
509 dev_dbg(hsotg
->dev
, "%s: => can_write2=%d\n",
510 __func__
, can_write
);
512 if (can_write
<= 0) {
513 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_PTxFEmp
);
516 } else if (hsotg
->dedicated_fifos
&& hs_ep
->index
!= 0) {
517 can_write
= readl(hsotg
->regs
+ S3C_DTXFSTS(hs_ep
->index
));
522 if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts
) == 0) {
524 "%s: no queue slots available (0x%08x)\n",
527 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_NPTxFEmp
);
531 can_write
= S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts
);
532 can_write
*= 4; /* fifo size is in 32bit quantities. */
535 dev_dbg(hsotg
->dev
, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
536 __func__
, gnptxsts
, can_write
, to_write
, hs_ep
->ep
.maxpacket
);
538 /* limit to 512 bytes of data, it seems at least on the non-periodic
539 * FIFO, requests of >512 cause the endpoint to get stuck with a
540 * fragment of the end of the transfer in it.
545 /* limit the write to one max-packet size worth of data, but allow
546 * the transfer to return that it did not run out of fifo space
548 if (to_write
> hs_ep
->ep
.maxpacket
) {
549 to_write
= hs_ep
->ep
.maxpacket
;
551 s3c_hsotg_en_gsint(hsotg
,
552 periodic
? S3C_GINTSTS_PTxFEmp
:
553 S3C_GINTSTS_NPTxFEmp
);
556 /* see if we can write data */
558 if (to_write
> can_write
) {
559 to_write
= can_write
;
560 pkt_round
= to_write
% hs_ep
->ep
.maxpacket
;
562 /* Not sure, but we probably shouldn't be writing partial
563 * packets into the FIFO, so round the write down to an
564 * exact number of packets.
566 * Note, we do not currently check to see if we can ever
567 * write a full packet or not to the FIFO.
571 to_write
-= pkt_round
;
573 /* enable correct FIFO interrupt to alert us when there
574 * is more room left. */
576 s3c_hsotg_en_gsint(hsotg
,
577 periodic
? S3C_GINTSTS_PTxFEmp
:
578 S3C_GINTSTS_NPTxFEmp
);
581 dev_dbg(hsotg
->dev
, "write %d/%d, can_write %d, done %d\n",
582 to_write
, hs_req
->req
.length
, can_write
, buf_pos
);
587 hs_req
->req
.actual
= buf_pos
+ to_write
;
588 hs_ep
->total_data
+= to_write
;
591 hs_ep
->fifo_load
+= to_write
;
593 to_write
= DIV_ROUND_UP(to_write
, 4);
594 data
= hs_req
->req
.buf
+ buf_pos
;
596 writesl(hsotg
->regs
+ S3C_EPFIFO(hs_ep
->index
), data
, to_write
);
598 return (to_write
>= can_write
) ? -ENOSPC
: 0;
602 * get_ep_limit - get the maximum data legnth for this endpoint
603 * @hs_ep: The endpoint
605 * Return the maximum data that can be queued in one go on a given endpoint
606 * so that transfers that are too long can be split.
608 static unsigned get_ep_limit(struct s3c_hsotg_ep
*hs_ep
)
610 int index
= hs_ep
->index
;
615 maxsize
= S3C_DxEPTSIZ_XferSize_LIMIT
+ 1;
616 maxpkt
= S3C_DxEPTSIZ_PktCnt_LIMIT
+ 1;
620 maxpkt
= S3C_DIEPTSIZ0_PktCnt_LIMIT
+ 1;
625 /* we made the constant loading easier above by using +1 */
629 /* constrain by packet count if maxpkts*pktsize is greater
630 * than the length register size. */
632 if ((maxpkt
* hs_ep
->ep
.maxpacket
) < maxsize
)
633 maxsize
= maxpkt
* hs_ep
->ep
.maxpacket
;
639 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
640 * @hsotg: The controller state.
641 * @hs_ep: The endpoint to process a request for
642 * @hs_req: The request to start.
643 * @continuing: True if we are doing more for the current request.
645 * Start the given request running by setting the endpoint registers
646 * appropriately, and writing any data to the FIFOs.
648 static void s3c_hsotg_start_req(struct s3c_hsotg
*hsotg
,
649 struct s3c_hsotg_ep
*hs_ep
,
650 struct s3c_hsotg_req
*hs_req
,
653 struct usb_request
*ureq
= &hs_req
->req
;
654 int index
= hs_ep
->index
;
655 int dir_in
= hs_ep
->dir_in
;
665 if (hs_ep
->req
&& !continuing
) {
666 dev_err(hsotg
->dev
, "%s: active request\n", __func__
);
669 } else if (hs_ep
->req
!= hs_req
&& continuing
) {
671 "%s: continue different req\n", __func__
);
677 epctrl_reg
= dir_in
? S3C_DIEPCTL(index
) : S3C_DOEPCTL(index
);
678 epsize_reg
= dir_in
? S3C_DIEPTSIZ(index
) : S3C_DOEPTSIZ(index
);
680 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
681 __func__
, readl(hsotg
->regs
+ epctrl_reg
), index
,
682 hs_ep
->dir_in
? "in" : "out");
684 /* If endpoint is stalled, we will restart request later */
685 ctrl
= readl(hsotg
->regs
+ epctrl_reg
);
687 if (ctrl
& S3C_DxEPCTL_Stall
) {
688 dev_warn(hsotg
->dev
, "%s: ep%d is stalled\n", __func__
, index
);
692 length
= ureq
->length
- ureq
->actual
;
696 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
697 ureq
->buf
, length
, ureq
->dma
,
698 ureq
->no_interrupt
, ureq
->zero
, ureq
->short_not_ok
);
700 maxreq
= get_ep_limit(hs_ep
);
701 if (length
> maxreq
) {
702 int round
= maxreq
% hs_ep
->ep
.maxpacket
;
704 dev_dbg(hsotg
->dev
, "%s: length %d, max-req %d, r %d\n",
705 __func__
, length
, maxreq
, round
);
707 /* round down to multiple of packets */
715 packets
= DIV_ROUND_UP(length
, hs_ep
->ep
.maxpacket
);
717 packets
= 1; /* send one packet if length is zero. */
719 if (dir_in
&& index
!= 0)
720 epsize
= S3C_DxEPTSIZ_MC(1);
724 if (index
!= 0 && ureq
->zero
) {
725 /* test for the packets being exactly right for the
728 if (length
== (packets
* hs_ep
->ep
.maxpacket
))
732 epsize
|= S3C_DxEPTSIZ_PktCnt(packets
);
733 epsize
|= S3C_DxEPTSIZ_XferSize(length
);
735 dev_dbg(hsotg
->dev
, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
736 __func__
, packets
, length
, ureq
->length
, epsize
, epsize_reg
);
738 /* store the request as the current one we're doing */
741 /* write size / packets */
742 writel(epsize
, hsotg
->regs
+ epsize_reg
);
744 if (using_dma(hsotg
)) {
745 unsigned int dma_reg
;
747 /* write DMA address to control register, buffer already
748 * synced by s3c_hsotg_ep_queue(). */
750 dma_reg
= dir_in
? S3C_DIEPDMA(index
) : S3C_DOEPDMA(index
);
751 writel(ureq
->dma
, hsotg
->regs
+ dma_reg
);
753 dev_dbg(hsotg
->dev
, "%s: 0x%08x => 0x%08x\n",
754 __func__
, ureq
->dma
, dma_reg
);
757 ctrl
|= S3C_DxEPCTL_EPEna
; /* ensure ep enabled */
758 ctrl
|= S3C_DxEPCTL_USBActEp
;
759 ctrl
|= S3C_DxEPCTL_CNAK
; /* clear NAK set by core */
761 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
762 writel(ctrl
, hsotg
->regs
+ epctrl_reg
);
764 /* set these, it seems that DMA support increments past the end
765 * of the packet buffer so we need to calculate the length from
766 * this information. */
767 hs_ep
->size_loaded
= length
;
768 hs_ep
->last_load
= ureq
->actual
;
770 if (dir_in
&& !using_dma(hsotg
)) {
771 /* set these anyway, we may need them for non-periodic in */
772 hs_ep
->fifo_load
= 0;
774 s3c_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
777 /* clear the INTknTXFEmpMsk when we start request, more as a aide
778 * to debugging to see what is going on. */
780 writel(S3C_DIEPMSK_INTknTXFEmpMsk
,
781 hsotg
->regs
+ S3C_DIEPINT(index
));
783 /* Note, trying to clear the NAK here causes problems with transmit
784 * on the S3C6400 ending up with the TXFIFO becoming full. */
786 /* check ep is enabled */
787 if (!(readl(hsotg
->regs
+ epctrl_reg
) & S3C_DxEPCTL_EPEna
))
789 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
790 index
, readl(hsotg
->regs
+ epctrl_reg
));
792 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n",
793 __func__
, readl(hsotg
->regs
+ epctrl_reg
));
797 * s3c_hsotg_map_dma - map the DMA memory being used for the request
798 * @hsotg: The device state.
799 * @hs_ep: The endpoint the request is on.
800 * @req: The request being processed.
802 * We've been asked to queue a request, so ensure that the memory buffer
803 * is correctly setup for DMA. If we've been passed an extant DMA address
804 * then ensure the buffer has been synced to memory. If our buffer has no
805 * DMA memory, then we map the memory and mark our request to allow us to
806 * cleanup on completion.
808 static int s3c_hsotg_map_dma(struct s3c_hsotg
*hsotg
,
809 struct s3c_hsotg_ep
*hs_ep
,
810 struct usb_request
*req
)
812 enum dma_data_direction dir
;
813 struct s3c_hsotg_req
*hs_req
= our_req(req
);
815 dir
= hs_ep
->dir_in
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
817 /* if the length is zero, ignore the DMA data */
818 if (hs_req
->req
.length
== 0)
821 if (req
->dma
== DMA_ADDR_INVALID
) {
824 dma
= dma_map_single(hsotg
->dev
, req
->buf
, req
->length
, dir
);
826 if (unlikely(dma_mapping_error(hsotg
->dev
, dma
)))
830 dev_err(hsotg
->dev
, "%s: unaligned dma buffer\n",
833 dma_unmap_single(hsotg
->dev
, dma
, req
->length
, dir
);
840 dma_sync_single_for_cpu(hsotg
->dev
, req
->dma
, req
->length
, dir
);
847 dev_err(hsotg
->dev
, "%s: failed to map buffer %p, %d bytes\n",
848 __func__
, req
->buf
, req
->length
);
853 static int s3c_hsotg_ep_queue(struct usb_ep
*ep
, struct usb_request
*req
,
856 struct s3c_hsotg_req
*hs_req
= our_req(req
);
857 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
858 struct s3c_hsotg
*hs
= hs_ep
->parent
;
859 unsigned long irqflags
;
862 dev_dbg(hs
->dev
, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
863 ep
->name
, req
, req
->length
, req
->buf
, req
->no_interrupt
,
864 req
->zero
, req
->short_not_ok
);
866 /* initialise status of the request */
867 INIT_LIST_HEAD(&hs_req
->queue
);
869 req
->status
= -EINPROGRESS
;
871 /* if we're using DMA, sync the buffers as necessary */
873 int ret
= s3c_hsotg_map_dma(hs
, hs_ep
, req
);
878 spin_lock_irqsave(&hs_ep
->lock
, irqflags
);
880 first
= list_empty(&hs_ep
->queue
);
881 list_add_tail(&hs_req
->queue
, &hs_ep
->queue
);
884 s3c_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
886 spin_unlock_irqrestore(&hs_ep
->lock
, irqflags
);
891 static void s3c_hsotg_ep_free_request(struct usb_ep
*ep
,
892 struct usb_request
*req
)
894 struct s3c_hsotg_req
*hs_req
= our_req(req
);
900 * s3c_hsotg_complete_oursetup - setup completion callback
901 * @ep: The endpoint the request was on.
902 * @req: The request completed.
904 * Called on completion of any requests the driver itself
905 * submitted that need cleaning up.
907 static void s3c_hsotg_complete_oursetup(struct usb_ep
*ep
,
908 struct usb_request
*req
)
910 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
911 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
913 dev_dbg(hsotg
->dev
, "%s: ep %p, req %p\n", __func__
, ep
, req
);
915 s3c_hsotg_ep_free_request(ep
, req
);
919 * ep_from_windex - convert control wIndex value to endpoint
920 * @hsotg: The driver state.
921 * @windex: The control request wIndex field (in host order).
923 * Convert the given wIndex into a pointer to an driver endpoint
924 * structure, or return NULL if it is not a valid endpoint.
926 static struct s3c_hsotg_ep
*ep_from_windex(struct s3c_hsotg
*hsotg
,
929 struct s3c_hsotg_ep
*ep
= &hsotg
->eps
[windex
& 0x7F];
930 int dir
= (windex
& USB_DIR_IN
) ? 1 : 0;
931 int idx
= windex
& 0x7F;
936 if (idx
> S3C_HSOTG_EPS
)
939 if (idx
&& ep
->dir_in
!= dir
)
946 * s3c_hsotg_send_reply - send reply to control request
947 * @hsotg: The device state
949 * @buff: Buffer for request
950 * @length: Length of reply.
952 * Create a request and queue it on the given endpoint. This is useful as
953 * an internal method of sending replies to certain control requests, etc.
955 static int s3c_hsotg_send_reply(struct s3c_hsotg
*hsotg
,
956 struct s3c_hsotg_ep
*ep
,
960 struct usb_request
*req
;
963 dev_dbg(hsotg
->dev
, "%s: buff %p, len %d\n", __func__
, buff
, length
);
965 req
= s3c_hsotg_ep_alloc_request(&ep
->ep
, GFP_ATOMIC
);
966 hsotg
->ep0_reply
= req
;
968 dev_warn(hsotg
->dev
, "%s: cannot alloc req\n", __func__
);
972 req
->buf
= hsotg
->ep0_buff
;
973 req
->length
= length
;
974 req
->zero
= 1; /* always do zero-length final transfer */
975 req
->complete
= s3c_hsotg_complete_oursetup
;
978 memcpy(req
->buf
, buff
, length
);
982 ret
= s3c_hsotg_ep_queue(&ep
->ep
, req
, GFP_ATOMIC
);
984 dev_warn(hsotg
->dev
, "%s: cannot queue req\n", __func__
);
992 * s3c_hsotg_process_req_status - process request GET_STATUS
993 * @hsotg: The device state
994 * @ctrl: USB control request
996 static int s3c_hsotg_process_req_status(struct s3c_hsotg
*hsotg
,
997 struct usb_ctrlrequest
*ctrl
)
999 struct s3c_hsotg_ep
*ep0
= &hsotg
->eps
[0];
1000 struct s3c_hsotg_ep
*ep
;
1004 dev_dbg(hsotg
->dev
, "%s: USB_REQ_GET_STATUS\n", __func__
);
1007 dev_warn(hsotg
->dev
, "%s: direction out?\n", __func__
);
1011 switch (ctrl
->bRequestType
& USB_RECIP_MASK
) {
1012 case USB_RECIP_DEVICE
:
1013 reply
= cpu_to_le16(0); /* bit 0 => self powered,
1014 * bit 1 => remote wakeup */
1017 case USB_RECIP_INTERFACE
:
1018 /* currently, the data result should be zero */
1019 reply
= cpu_to_le16(0);
1022 case USB_RECIP_ENDPOINT
:
1023 ep
= ep_from_windex(hsotg
, le16_to_cpu(ctrl
->wIndex
));
1027 reply
= cpu_to_le16(ep
->halted
? 1 : 0);
1034 if (le16_to_cpu(ctrl
->wLength
) != 2)
1037 ret
= s3c_hsotg_send_reply(hsotg
, ep0
, &reply
, 2);
1039 dev_err(hsotg
->dev
, "%s: failed to send reply\n", __func__
);
1046 static int s3c_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
);
1049 * get_ep_head - return the first request on the endpoint
1050 * @hs_ep: The controller endpoint to get
1052 * Get the first request on the endpoint.
1054 static struct s3c_hsotg_req
*get_ep_head(struct s3c_hsotg_ep
*hs_ep
)
1056 if (list_empty(&hs_ep
->queue
))
1059 return list_first_entry(&hs_ep
->queue
, struct s3c_hsotg_req
, queue
);
1063 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1064 * @hsotg: The device state
1065 * @ctrl: USB control request
1067 static int s3c_hsotg_process_req_feature(struct s3c_hsotg
*hsotg
,
1068 struct usb_ctrlrequest
*ctrl
)
1070 struct s3c_hsotg_ep
*ep0
= &hsotg
->eps
[0];
1071 struct s3c_hsotg_req
*hs_req
;
1073 bool set
= (ctrl
->bRequest
== USB_REQ_SET_FEATURE
);
1074 struct s3c_hsotg_ep
*ep
;
1077 dev_dbg(hsotg
->dev
, "%s: %s_FEATURE\n",
1078 __func__
, set
? "SET" : "CLEAR");
1080 if (ctrl
->bRequestType
== USB_RECIP_ENDPOINT
) {
1081 ep
= ep_from_windex(hsotg
, le16_to_cpu(ctrl
->wIndex
));
1083 dev_dbg(hsotg
->dev
, "%s: no endpoint for 0x%04x\n",
1084 __func__
, le16_to_cpu(ctrl
->wIndex
));
1088 switch (le16_to_cpu(ctrl
->wValue
)) {
1089 case USB_ENDPOINT_HALT
:
1090 s3c_hsotg_ep_sethalt(&ep
->ep
, set
);
1092 ret
= s3c_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1095 "%s: failed to send reply\n", __func__
);
1101 * If we have request in progress,
1107 list_del_init(&hs_req
->queue
);
1108 hs_req
->req
.complete(&ep
->ep
,
1112 /* If we have pending request, then start it */
1113 restart
= !list_empty(&ep
->queue
);
1115 hs_req
= get_ep_head(ep
);
1116 s3c_hsotg_start_req(hsotg
, ep
,
1127 return -ENOENT
; /* currently only deal with endpoint */
1133 * s3c_hsotg_process_control - process a control request
1134 * @hsotg: The device state
1135 * @ctrl: The control request received
1137 * The controller has received the SETUP phase of a control request, and
1138 * needs to work out what to do next (and whether to pass it on to the
1141 static void s3c_hsotg_process_control(struct s3c_hsotg
*hsotg
,
1142 struct usb_ctrlrequest
*ctrl
)
1144 struct s3c_hsotg_ep
*ep0
= &hsotg
->eps
[0];
1150 dev_dbg(hsotg
->dev
, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1151 ctrl
->bRequest
, ctrl
->bRequestType
,
1152 ctrl
->wValue
, ctrl
->wLength
);
1154 /* record the direction of the request, for later use when enquing
1155 * packets onto EP0. */
1157 ep0
->dir_in
= (ctrl
->bRequestType
& USB_DIR_IN
) ? 1 : 0;
1158 dev_dbg(hsotg
->dev
, "ctrl: dir_in=%d\n", ep0
->dir_in
);
1160 /* if we've no data with this request, then the last part of the
1161 * transaction is going to implicitly be IN. */
1162 if (ctrl
->wLength
== 0)
1165 if ((ctrl
->bRequestType
& USB_TYPE_MASK
) == USB_TYPE_STANDARD
) {
1166 switch (ctrl
->bRequest
) {
1167 case USB_REQ_SET_ADDRESS
:
1168 dcfg
= readl(hsotg
->regs
+ S3C_DCFG
);
1169 dcfg
&= ~S3C_DCFG_DevAddr_MASK
;
1170 dcfg
|= ctrl
->wValue
<< S3C_DCFG_DevAddr_SHIFT
;
1171 writel(dcfg
, hsotg
->regs
+ S3C_DCFG
);
1173 dev_info(hsotg
->dev
, "new address %d\n", ctrl
->wValue
);
1175 ret
= s3c_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1178 case USB_REQ_GET_STATUS
:
1179 ret
= s3c_hsotg_process_req_status(hsotg
, ctrl
);
1182 case USB_REQ_CLEAR_FEATURE
:
1183 case USB_REQ_SET_FEATURE
:
1184 ret
= s3c_hsotg_process_req_feature(hsotg
, ctrl
);
1189 /* as a fallback, try delivering it to the driver to deal with */
1191 if (ret
== 0 && hsotg
->driver
) {
1192 ret
= hsotg
->driver
->setup(&hsotg
->gadget
, ctrl
);
1194 dev_dbg(hsotg
->dev
, "driver->setup() ret %d\n", ret
);
1197 /* the request is either unhandlable, or is not formatted correctly
1198 * so respond with a STALL for the status stage to indicate failure.
1205 dev_dbg(hsotg
->dev
, "ep0 stall (dir=%d)\n", ep0
->dir_in
);
1206 reg
= (ep0
->dir_in
) ? S3C_DIEPCTL0
: S3C_DOEPCTL0
;
1208 /* S3C_DxEPCTL_Stall will be cleared by EP once it has
1209 * taken effect, so no need to clear later. */
1211 ctrl
= readl(hsotg
->regs
+ reg
);
1212 ctrl
|= S3C_DxEPCTL_Stall
;
1213 ctrl
|= S3C_DxEPCTL_CNAK
;
1214 writel(ctrl
, hsotg
->regs
+ reg
);
1217 "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1218 ctrl
, reg
, readl(hsotg
->regs
+ reg
));
1220 /* don't believe we need to anything more to get the EP
1221 * to reply with a STALL packet */
1225 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg
*hsotg
);
1228 * s3c_hsotg_complete_setup - completion of a setup transfer
1229 * @ep: The endpoint the request was on.
1230 * @req: The request completed.
1232 * Called on completion of any requests the driver itself submitted for
1235 static void s3c_hsotg_complete_setup(struct usb_ep
*ep
,
1236 struct usb_request
*req
)
1238 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
1239 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
1241 if (req
->status
< 0) {
1242 dev_dbg(hsotg
->dev
, "%s: failed %d\n", __func__
, req
->status
);
1246 if (req
->actual
== 0)
1247 s3c_hsotg_enqueue_setup(hsotg
);
1249 s3c_hsotg_process_control(hsotg
, req
->buf
);
1253 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1254 * @hsotg: The device state.
1256 * Enqueue a request on EP0 if necessary to received any SETUP packets
1257 * received from the host.
1259 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg
*hsotg
)
1261 struct usb_request
*req
= hsotg
->ctrl_req
;
1262 struct s3c_hsotg_req
*hs_req
= our_req(req
);
1265 dev_dbg(hsotg
->dev
, "%s: queueing setup request\n", __func__
);
1269 req
->buf
= hsotg
->ctrl_buff
;
1270 req
->complete
= s3c_hsotg_complete_setup
;
1272 if (!list_empty(&hs_req
->queue
)) {
1273 dev_dbg(hsotg
->dev
, "%s already queued???\n", __func__
);
1277 hsotg
->eps
[0].dir_in
= 0;
1279 ret
= s3c_hsotg_ep_queue(&hsotg
->eps
[0].ep
, req
, GFP_ATOMIC
);
1281 dev_err(hsotg
->dev
, "%s: failed queue (%d)\n", __func__
, ret
);
1282 /* Don't think there's much we can do other than watch the
1288 * s3c_hsotg_complete_request - complete a request given to us
1289 * @hsotg: The device state.
1290 * @hs_ep: The endpoint the request was on.
1291 * @hs_req: The request to complete.
1292 * @result: The result code (0 => Ok, otherwise errno)
1294 * The given request has finished, so call the necessary completion
1295 * if it has one and then look to see if we can start a new request
1298 * Note, expects the ep to already be locked as appropriate.
1300 static void s3c_hsotg_complete_request(struct s3c_hsotg
*hsotg
,
1301 struct s3c_hsotg_ep
*hs_ep
,
1302 struct s3c_hsotg_req
*hs_req
,
1308 dev_dbg(hsotg
->dev
, "%s: nothing to complete?\n", __func__
);
1312 dev_dbg(hsotg
->dev
, "complete: ep %p %s, req %p, %d => %p\n",
1313 hs_ep
, hs_ep
->ep
.name
, hs_req
, result
, hs_req
->req
.complete
);
1315 /* only replace the status if we've not already set an error
1316 * from a previous transaction */
1318 if (hs_req
->req
.status
== -EINPROGRESS
)
1319 hs_req
->req
.status
= result
;
1322 list_del_init(&hs_req
->queue
);
1324 if (using_dma(hsotg
))
1325 s3c_hsotg_unmap_dma(hsotg
, hs_ep
, hs_req
);
1327 /* call the complete request with the locks off, just in case the
1328 * request tries to queue more work for this endpoint. */
1330 if (hs_req
->req
.complete
) {
1331 spin_unlock(&hs_ep
->lock
);
1332 hs_req
->req
.complete(&hs_ep
->ep
, &hs_req
->req
);
1333 spin_lock(&hs_ep
->lock
);
1336 /* Look to see if there is anything else to do. Note, the completion
1337 * of the previous request may have caused a new request to be started
1338 * so be careful when doing this. */
1340 if (!hs_ep
->req
&& result
>= 0) {
1341 restart
= !list_empty(&hs_ep
->queue
);
1343 hs_req
= get_ep_head(hs_ep
);
1344 s3c_hsotg_start_req(hsotg
, hs_ep
, hs_req
, false);
1350 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1351 * @hsotg: The device state.
1352 * @hs_ep: The endpoint the request was on.
1353 * @hs_req: The request to complete.
1354 * @result: The result code (0 => Ok, otherwise errno)
1356 * See s3c_hsotg_complete_request(), but called with the endpoint's
1359 static void s3c_hsotg_complete_request_lock(struct s3c_hsotg
*hsotg
,
1360 struct s3c_hsotg_ep
*hs_ep
,
1361 struct s3c_hsotg_req
*hs_req
,
1364 unsigned long flags
;
1366 spin_lock_irqsave(&hs_ep
->lock
, flags
);
1367 s3c_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, result
);
1368 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
1372 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1373 * @hsotg: The device state.
1374 * @ep_idx: The endpoint index for the data
1375 * @size: The size of data in the fifo, in bytes
1377 * The FIFO status shows there is data to read from the FIFO for a given
1378 * endpoint, so sort out whether we need to read the data into a request
1379 * that has been made for that endpoint.
1381 static void s3c_hsotg_rx_data(struct s3c_hsotg
*hsotg
, int ep_idx
, int size
)
1383 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[ep_idx
];
1384 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1385 void __iomem
*fifo
= hsotg
->regs
+ S3C_EPFIFO(ep_idx
);
1391 u32 epctl
= readl(hsotg
->regs
+ S3C_DOEPCTL(ep_idx
));
1394 dev_warn(hsotg
->dev
,
1395 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1396 __func__
, size
, ep_idx
, epctl
);
1398 /* dump the data from the FIFO, we've nothing we can do */
1399 for (ptr
= 0; ptr
< size
; ptr
+= 4)
1405 spin_lock(&hs_ep
->lock
);
1408 read_ptr
= hs_req
->req
.actual
;
1409 max_req
= hs_req
->req
.length
- read_ptr
;
1411 dev_dbg(hsotg
->dev
, "%s: read %d/%d, done %d/%d\n",
1412 __func__
, to_read
, max_req
, read_ptr
, hs_req
->req
.length
);
1414 if (to_read
> max_req
) {
1415 /* more data appeared than we where willing
1416 * to deal with in this request.
1419 /* currently we don't deal this */
1423 hs_ep
->total_data
+= to_read
;
1424 hs_req
->req
.actual
+= to_read
;
1425 to_read
= DIV_ROUND_UP(to_read
, 4);
1427 /* note, we might over-write the buffer end by 3 bytes depending on
1428 * alignment of the data. */
1429 readsl(fifo
, hs_req
->req
.buf
+ read_ptr
, to_read
);
1431 spin_unlock(&hs_ep
->lock
);
1435 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1436 * @hsotg: The device instance
1437 * @req: The request currently on this endpoint
1439 * Generate a zero-length IN packet request for terminating a SETUP
1442 * Note, since we don't write any data to the TxFIFO, then it is
1443 * currently believed that we do not need to wait for any space in
1446 static void s3c_hsotg_send_zlp(struct s3c_hsotg
*hsotg
,
1447 struct s3c_hsotg_req
*req
)
1452 dev_warn(hsotg
->dev
, "%s: no request?\n", __func__
);
1456 if (req
->req
.length
== 0) {
1457 hsotg
->eps
[0].sent_zlp
= 1;
1458 s3c_hsotg_enqueue_setup(hsotg
);
1462 hsotg
->eps
[0].dir_in
= 1;
1463 hsotg
->eps
[0].sent_zlp
= 1;
1465 dev_dbg(hsotg
->dev
, "sending zero-length packet\n");
1467 /* issue a zero-sized packet to terminate this */
1468 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1469 S3C_DxEPTSIZ_XferSize(0), hsotg
->regs
+ S3C_DIEPTSIZ(0));
1471 ctrl
= readl(hsotg
->regs
+ S3C_DIEPCTL0
);
1472 ctrl
|= S3C_DxEPCTL_CNAK
; /* clear NAK set by core */
1473 ctrl
|= S3C_DxEPCTL_EPEna
; /* ensure ep enabled */
1474 ctrl
|= S3C_DxEPCTL_USBActEp
;
1475 writel(ctrl
, hsotg
->regs
+ S3C_DIEPCTL0
);
1479 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1480 * @hsotg: The device instance
1481 * @epnum: The endpoint received from
1482 * @was_setup: Set if processing a SetupDone event.
1484 * The RXFIFO has delivered an OutDone event, which means that the data
1485 * transfer for an OUT endpoint has been completed, either by a short
1486 * packet or by the finish of a transfer.
1488 static void s3c_hsotg_handle_outdone(struct s3c_hsotg
*hsotg
,
1489 int epnum
, bool was_setup
)
1491 u32 epsize
= readl(hsotg
->regs
+ S3C_DOEPTSIZ(epnum
));
1492 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[epnum
];
1493 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1494 struct usb_request
*req
= &hs_req
->req
;
1495 unsigned size_left
= S3C_DxEPTSIZ_XferSize_GET(epsize
);
1499 dev_dbg(hsotg
->dev
, "%s: no request active\n", __func__
);
1503 if (using_dma(hsotg
)) {
1506 /* Calculate the size of the transfer by checking how much
1507 * is left in the endpoint size register and then working it
1508 * out from the amount we loaded for the transfer.
1510 * We need to do this as DMA pointers are always 32bit aligned
1511 * so may overshoot/undershoot the transfer.
1514 size_done
= hs_ep
->size_loaded
- size_left
;
1515 size_done
+= hs_ep
->last_load
;
1517 req
->actual
= size_done
;
1520 /* if there is more request to do, schedule new transfer */
1521 if (req
->actual
< req
->length
&& size_left
== 0) {
1522 s3c_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
1526 if (req
->actual
< req
->length
&& req
->short_not_ok
) {
1527 dev_dbg(hsotg
->dev
, "%s: got %d/%d (short not ok) => error\n",
1528 __func__
, req
->actual
, req
->length
);
1530 /* todo - what should we return here? there's no one else
1531 * even bothering to check the status. */
1535 if (!was_setup
&& req
->complete
!= s3c_hsotg_complete_setup
)
1536 s3c_hsotg_send_zlp(hsotg
, hs_req
);
1539 s3c_hsotg_complete_request_lock(hsotg
, hs_ep
, hs_req
, result
);
1543 * s3c_hsotg_read_frameno - read current frame number
1544 * @hsotg: The device instance
1546 * Return the current frame number
1548 static u32
s3c_hsotg_read_frameno(struct s3c_hsotg
*hsotg
)
1552 dsts
= readl(hsotg
->regs
+ S3C_DSTS
);
1553 dsts
&= S3C_DSTS_SOFFN_MASK
;
1554 dsts
>>= S3C_DSTS_SOFFN_SHIFT
;
1560 * s3c_hsotg_handle_rx - RX FIFO has data
1561 * @hsotg: The device instance
1563 * The IRQ handler has detected that the RX FIFO has some data in it
1564 * that requires processing, so find out what is in there and do the
1567 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1568 * chunks, so if you have x packets received on an endpoint you'll get x
1569 * FIFO events delivered, each with a packet's worth of data in it.
1571 * When using DMA, we should not be processing events from the RXFIFO
1572 * as the actual data should be sent to the memory directly and we turn
1573 * on the completion interrupts to get notifications of transfer completion.
1575 static void s3c_hsotg_handle_rx(struct s3c_hsotg
*hsotg
)
1577 u32 grxstsr
= readl(hsotg
->regs
+ S3C_GRXSTSP
);
1578 u32 epnum
, status
, size
;
1580 WARN_ON(using_dma(hsotg
));
1582 epnum
= grxstsr
& S3C_GRXSTS_EPNum_MASK
;
1583 status
= grxstsr
& S3C_GRXSTS_PktSts_MASK
;
1585 size
= grxstsr
& S3C_GRXSTS_ByteCnt_MASK
;
1586 size
>>= S3C_GRXSTS_ByteCnt_SHIFT
;
1589 dev_dbg(hsotg
->dev
, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1590 __func__
, grxstsr
, size
, epnum
);
1592 #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1594 switch (status
>> S3C_GRXSTS_PktSts_SHIFT
) {
1595 case __status(S3C_GRXSTS_PktSts_GlobalOutNAK
):
1596 dev_dbg(hsotg
->dev
, "GlobalOutNAK\n");
1599 case __status(S3C_GRXSTS_PktSts_OutDone
):
1600 dev_dbg(hsotg
->dev
, "OutDone (Frame=0x%08x)\n",
1601 s3c_hsotg_read_frameno(hsotg
));
1603 if (!using_dma(hsotg
))
1604 s3c_hsotg_handle_outdone(hsotg
, epnum
, false);
1607 case __status(S3C_GRXSTS_PktSts_SetupDone
):
1609 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1610 s3c_hsotg_read_frameno(hsotg
),
1611 readl(hsotg
->regs
+ S3C_DOEPCTL(0)));
1613 s3c_hsotg_handle_outdone(hsotg
, epnum
, true);
1616 case __status(S3C_GRXSTS_PktSts_OutRX
):
1617 s3c_hsotg_rx_data(hsotg
, epnum
, size
);
1620 case __status(S3C_GRXSTS_PktSts_SetupRX
):
1622 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1623 s3c_hsotg_read_frameno(hsotg
),
1624 readl(hsotg
->regs
+ S3C_DOEPCTL(0)));
1626 s3c_hsotg_rx_data(hsotg
, epnum
, size
);
1630 dev_warn(hsotg
->dev
, "%s: unknown status %08x\n",
1633 s3c_hsotg_dump(hsotg
);
1639 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1640 * @mps: The maximum packet size in bytes.
1642 static u32
s3c_hsotg_ep0_mps(unsigned int mps
)
1646 return S3C_D0EPCTL_MPS_64
;
1648 return S3C_D0EPCTL_MPS_32
;
1650 return S3C_D0EPCTL_MPS_16
;
1652 return S3C_D0EPCTL_MPS_8
;
1655 /* bad max packet size, warn and return invalid result */
1661 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1662 * @hsotg: The driver state.
1663 * @ep: The index number of the endpoint
1664 * @mps: The maximum packet size in bytes
1666 * Configure the maximum packet size for the given endpoint, updating
1667 * the hardware control registers to reflect this.
1669 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg
*hsotg
,
1670 unsigned int ep
, unsigned int mps
)
1672 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[ep
];
1673 void __iomem
*regs
= hsotg
->regs
;
1678 /* EP0 is a special case */
1679 mpsval
= s3c_hsotg_ep0_mps(mps
);
1683 if (mps
>= S3C_DxEPCTL_MPS_LIMIT
+1)
1689 hs_ep
->ep
.maxpacket
= mps
;
1691 /* update both the in and out endpoint controldir_ registers, even
1692 * if one of the directions may not be in use. */
1694 reg
= readl(regs
+ S3C_DIEPCTL(ep
));
1695 reg
&= ~S3C_DxEPCTL_MPS_MASK
;
1697 writel(reg
, regs
+ S3C_DIEPCTL(ep
));
1699 reg
= readl(regs
+ S3C_DOEPCTL(ep
));
1700 reg
&= ~S3C_DxEPCTL_MPS_MASK
;
1702 writel(reg
, regs
+ S3C_DOEPCTL(ep
));
1707 dev_err(hsotg
->dev
, "ep%d: bad mps of %d\n", ep
, mps
);
1711 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1712 * @hsotg: The driver state
1713 * @idx: The index for the endpoint (0..15)
1715 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg
*hsotg
, unsigned int idx
)
1720 writel(S3C_GRSTCTL_TxFNum(idx
) | S3C_GRSTCTL_TxFFlsh
,
1721 hsotg
->regs
+ S3C_GRSTCTL
);
1723 /* wait until the fifo is flushed */
1727 val
= readl(hsotg
->regs
+ S3C_GRSTCTL
);
1729 if ((val
& (S3C_GRSTCTL_TxFFlsh
)) == 0)
1732 if (--timeout
== 0) {
1734 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1743 * s3c_hsotg_trytx - check to see if anything needs transmitting
1744 * @hsotg: The driver state
1745 * @hs_ep: The driver endpoint to check.
1747 * Check to see if there is a request that has data to send, and if so
1748 * make an attempt to write data into the FIFO.
1750 static int s3c_hsotg_trytx(struct s3c_hsotg
*hsotg
,
1751 struct s3c_hsotg_ep
*hs_ep
)
1753 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1755 if (!hs_ep
->dir_in
|| !hs_req
)
1758 if (hs_req
->req
.actual
< hs_req
->req
.length
) {
1759 dev_dbg(hsotg
->dev
, "trying to write more for ep%d\n",
1761 return s3c_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
1768 * s3c_hsotg_complete_in - complete IN transfer
1769 * @hsotg: The device state.
1770 * @hs_ep: The endpoint that has just completed.
1772 * An IN transfer has been completed, update the transfer's state and then
1773 * call the relevant completion routines.
1775 static void s3c_hsotg_complete_in(struct s3c_hsotg
*hsotg
,
1776 struct s3c_hsotg_ep
*hs_ep
)
1778 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1779 u32 epsize
= readl(hsotg
->regs
+ S3C_DIEPTSIZ(hs_ep
->index
));
1780 int size_left
, size_done
;
1783 dev_dbg(hsotg
->dev
, "XferCompl but no req\n");
1787 /* Calculate the size of the transfer by checking how much is left
1788 * in the endpoint size register and then working it out from
1789 * the amount we loaded for the transfer.
1791 * We do this even for DMA, as the transfer may have incremented
1792 * past the end of the buffer (DMA transfers are always 32bit
1796 size_left
= S3C_DxEPTSIZ_XferSize_GET(epsize
);
1798 size_done
= hs_ep
->size_loaded
- size_left
;
1799 size_done
+= hs_ep
->last_load
;
1801 if (hs_req
->req
.actual
!= size_done
)
1802 dev_dbg(hsotg
->dev
, "%s: adjusting size done %d => %d\n",
1803 __func__
, hs_req
->req
.actual
, size_done
);
1805 hs_req
->req
.actual
= size_done
;
1807 /* if we did all of the transfer, and there is more data left
1808 * around, then try restarting the rest of the request */
1810 if (!size_left
&& hs_req
->req
.actual
< hs_req
->req
.length
) {
1811 dev_dbg(hsotg
->dev
, "%s trying more for req...\n", __func__
);
1812 s3c_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
1814 s3c_hsotg_complete_request_lock(hsotg
, hs_ep
, hs_req
, 0);
1818 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1819 * @hsotg: The driver state
1820 * @idx: The index for the endpoint (0..15)
1821 * @dir_in: Set if this is an IN endpoint
1823 * Process and clear any interrupt pending for an individual endpoint
1825 static void s3c_hsotg_epint(struct s3c_hsotg
*hsotg
, unsigned int idx
,
1828 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[idx
];
1829 u32 epint_reg
= dir_in
? S3C_DIEPINT(idx
) : S3C_DOEPINT(idx
);
1830 u32 epctl_reg
= dir_in
? S3C_DIEPCTL(idx
) : S3C_DOEPCTL(idx
);
1831 u32 epsiz_reg
= dir_in
? S3C_DIEPTSIZ(idx
) : S3C_DOEPTSIZ(idx
);
1834 ints
= readl(hsotg
->regs
+ epint_reg
);
1836 /* Clear endpoint interrupts */
1837 writel(ints
, hsotg
->regs
+ epint_reg
);
1839 dev_dbg(hsotg
->dev
, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1840 __func__
, idx
, dir_in
? "in" : "out", ints
);
1842 if (ints
& S3C_DxEPINT_XferCompl
) {
1844 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1845 __func__
, readl(hsotg
->regs
+ epctl_reg
),
1846 readl(hsotg
->regs
+ epsiz_reg
));
1848 /* we get OutDone from the FIFO, so we only need to look
1849 * at completing IN requests here */
1851 s3c_hsotg_complete_in(hsotg
, hs_ep
);
1853 if (idx
== 0 && !hs_ep
->req
)
1854 s3c_hsotg_enqueue_setup(hsotg
);
1855 } else if (using_dma(hsotg
)) {
1856 /* We're using DMA, we need to fire an OutDone here
1857 * as we ignore the RXFIFO. */
1859 s3c_hsotg_handle_outdone(hsotg
, idx
, false);
1863 if (ints
& S3C_DxEPINT_EPDisbld
) {
1864 dev_dbg(hsotg
->dev
, "%s: EPDisbld\n", __func__
);
1867 int epctl
= readl(hsotg
->regs
+ epctl_reg
);
1869 s3c_hsotg_txfifo_flush(hsotg
, idx
);
1871 if ((epctl
& S3C_DxEPCTL_Stall
) &&
1872 (epctl
& S3C_DxEPCTL_EPType_Bulk
)) {
1873 int dctl
= readl(hsotg
->regs
+ S3C_DCTL
);
1875 dctl
|= S3C_DCTL_CGNPInNAK
;
1876 writel(dctl
, hsotg
->regs
+ S3C_DCTL
);
1881 if (ints
& S3C_DxEPINT_AHBErr
)
1882 dev_dbg(hsotg
->dev
, "%s: AHBErr\n", __func__
);
1884 if (ints
& S3C_DxEPINT_Setup
) { /* Setup or Timeout */
1885 dev_dbg(hsotg
->dev
, "%s: Setup/Timeout\n", __func__
);
1887 if (using_dma(hsotg
) && idx
== 0) {
1888 /* this is the notification we've received a
1889 * setup packet. In non-DMA mode we'd get this
1890 * from the RXFIFO, instead we need to process
1891 * the setup here. */
1896 s3c_hsotg_handle_outdone(hsotg
, 0, true);
1900 if (ints
& S3C_DxEPINT_Back2BackSetup
)
1901 dev_dbg(hsotg
->dev
, "%s: B2BSetup/INEPNakEff\n", __func__
);
1904 /* not sure if this is important, but we'll clear it anyway
1906 if (ints
& S3C_DIEPMSK_INTknTXFEmpMsk
) {
1907 dev_dbg(hsotg
->dev
, "%s: ep%d: INTknTXFEmpMsk\n",
1911 /* this probably means something bad is happening */
1912 if (ints
& S3C_DIEPMSK_INTknEPMisMsk
) {
1913 dev_warn(hsotg
->dev
, "%s: ep%d: INTknEP\n",
1917 /* FIFO has space or is empty (see GAHBCFG) */
1918 if (hsotg
->dedicated_fifos
&&
1919 ints
& S3C_DIEPMSK_TxFIFOEmpty
) {
1920 dev_dbg(hsotg
->dev
, "%s: ep%d: TxFIFOEmpty\n",
1922 s3c_hsotg_trytx(hsotg
, hs_ep
);
1928 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1929 * @hsotg: The device state.
1931 * Handle updating the device settings after the enumeration phase has
1934 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg
*hsotg
)
1936 u32 dsts
= readl(hsotg
->regs
+ S3C_DSTS
);
1937 int ep0_mps
= 0, ep_mps
;
1939 /* This should signal the finish of the enumeration phase
1940 * of the USB handshaking, so we should now know what rate
1941 * we connected at. */
1943 dev_dbg(hsotg
->dev
, "EnumDone (DSTS=0x%08x)\n", dsts
);
1945 /* note, since we're limited by the size of transfer on EP0, and
1946 * it seems IN transfers must be a even number of packets we do
1947 * not advertise a 64byte MPS on EP0. */
1949 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1950 switch (dsts
& S3C_DSTS_EnumSpd_MASK
) {
1951 case S3C_DSTS_EnumSpd_FS
:
1952 case S3C_DSTS_EnumSpd_FS48
:
1953 hsotg
->gadget
.speed
= USB_SPEED_FULL
;
1954 dev_info(hsotg
->dev
, "new device is full-speed\n");
1956 ep0_mps
= EP0_MPS_LIMIT
;
1960 case S3C_DSTS_EnumSpd_HS
:
1961 dev_info(hsotg
->dev
, "new device is high-speed\n");
1962 hsotg
->gadget
.speed
= USB_SPEED_HIGH
;
1964 ep0_mps
= EP0_MPS_LIMIT
;
1968 case S3C_DSTS_EnumSpd_LS
:
1969 hsotg
->gadget
.speed
= USB_SPEED_LOW
;
1970 dev_info(hsotg
->dev
, "new device is low-speed\n");
1972 /* note, we don't actually support LS in this driver at the
1973 * moment, and the documentation seems to imply that it isn't
1974 * supported by the PHYs on some of the devices.
1979 /* we should now know the maximum packet size for an
1980 * endpoint, so set the endpoints to a default value. */
1984 s3c_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
);
1985 for (i
= 1; i
< S3C_HSOTG_EPS
; i
++)
1986 s3c_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
);
1989 /* ensure after enumeration our EP0 is active */
1991 s3c_hsotg_enqueue_setup(hsotg
);
1993 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1994 readl(hsotg
->regs
+ S3C_DIEPCTL0
),
1995 readl(hsotg
->regs
+ S3C_DOEPCTL0
));
1999 * kill_all_requests - remove all requests from the endpoint's queue
2000 * @hsotg: The device state.
2001 * @ep: The endpoint the requests may be on.
2002 * @result: The result code to use.
2003 * @force: Force removal of any current requests
2005 * Go through the requests on the given endpoint and mark them
2006 * completed with the given result code.
2008 static void kill_all_requests(struct s3c_hsotg
*hsotg
,
2009 struct s3c_hsotg_ep
*ep
,
2010 int result
, bool force
)
2012 struct s3c_hsotg_req
*req
, *treq
;
2013 unsigned long flags
;
2015 spin_lock_irqsave(&ep
->lock
, flags
);
2017 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
) {
2018 /* currently, we can't do much about an already
2019 * running request on an in endpoint */
2021 if (ep
->req
== req
&& ep
->dir_in
&& !force
)
2024 s3c_hsotg_complete_request(hsotg
, ep
, req
,
2028 spin_unlock_irqrestore(&ep
->lock
, flags
);
2031 #define call_gadget(_hs, _entry) \
2032 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
2033 (_hs)->driver && (_hs)->driver->_entry) \
2034 (_hs)->driver->_entry(&(_hs)->gadget);
2037 * s3c_hsotg_disconnect_irq - disconnect irq service
2038 * @hsotg: The device state.
2040 * A disconnect IRQ has been received, meaning that the host has
2041 * lost contact with the bus. Remove all current transactions
2042 * and signal the gadget driver that this has happened.
2044 static void s3c_hsotg_disconnect_irq(struct s3c_hsotg
*hsotg
)
2048 for (ep
= 0; ep
< S3C_HSOTG_EPS
; ep
++)
2049 kill_all_requests(hsotg
, &hsotg
->eps
[ep
], -ESHUTDOWN
, true);
2051 call_gadget(hsotg
, disconnect
);
2055 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2056 * @hsotg: The device state:
2057 * @periodic: True if this is a periodic FIFO interrupt
2059 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg
*hsotg
, bool periodic
)
2061 struct s3c_hsotg_ep
*ep
;
2064 /* look through for any more data to transmit */
2066 for (epno
= 0; epno
< S3C_HSOTG_EPS
; epno
++) {
2067 ep
= &hsotg
->eps
[epno
];
2072 if ((periodic
&& !ep
->periodic
) ||
2073 (!periodic
&& ep
->periodic
))
2076 ret
= s3c_hsotg_trytx(hsotg
, ep
);
2082 static struct s3c_hsotg
*our_hsotg
;
2084 /* IRQ flags which will trigger a retry around the IRQ loop */
2085 #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
2086 S3C_GINTSTS_PTxFEmp | \
2090 * s3c_hsotg_irq - handle device interrupt
2091 * @irq: The IRQ number triggered
2092 * @pw: The pw value when registered the handler.
2094 static irqreturn_t
s3c_hsotg_irq(int irq
, void *pw
)
2096 struct s3c_hsotg
*hsotg
= pw
;
2097 int retry_count
= 8;
2102 gintsts
= readl(hsotg
->regs
+ S3C_GINTSTS
);
2103 gintmsk
= readl(hsotg
->regs
+ S3C_GINTMSK
);
2105 dev_dbg(hsotg
->dev
, "%s: %08x %08x (%08x) retry %d\n",
2106 __func__
, gintsts
, gintsts
& gintmsk
, gintmsk
, retry_count
);
2110 if (gintsts
& S3C_GINTSTS_OTGInt
) {
2111 u32 otgint
= readl(hsotg
->regs
+ S3C_GOTGINT
);
2113 dev_info(hsotg
->dev
, "OTGInt: %08x\n", otgint
);
2115 writel(otgint
, hsotg
->regs
+ S3C_GOTGINT
);
2118 if (gintsts
& S3C_GINTSTS_DisconnInt
) {
2119 dev_dbg(hsotg
->dev
, "%s: DisconnInt\n", __func__
);
2120 writel(S3C_GINTSTS_DisconnInt
, hsotg
->regs
+ S3C_GINTSTS
);
2122 s3c_hsotg_disconnect_irq(hsotg
);
2125 if (gintsts
& S3C_GINTSTS_SessReqInt
) {
2126 dev_dbg(hsotg
->dev
, "%s: SessReqInt\n", __func__
);
2127 writel(S3C_GINTSTS_SessReqInt
, hsotg
->regs
+ S3C_GINTSTS
);
2130 if (gintsts
& S3C_GINTSTS_EnumDone
) {
2131 writel(S3C_GINTSTS_EnumDone
, hsotg
->regs
+ S3C_GINTSTS
);
2133 s3c_hsotg_irq_enumdone(hsotg
);
2136 if (gintsts
& S3C_GINTSTS_ConIDStsChng
) {
2137 dev_dbg(hsotg
->dev
, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2138 readl(hsotg
->regs
+ S3C_DSTS
),
2139 readl(hsotg
->regs
+ S3C_GOTGCTL
));
2141 writel(S3C_GINTSTS_ConIDStsChng
, hsotg
->regs
+ S3C_GINTSTS
);
2144 if (gintsts
& (S3C_GINTSTS_OEPInt
| S3C_GINTSTS_IEPInt
)) {
2145 u32 daint
= readl(hsotg
->regs
+ S3C_DAINT
);
2146 u32 daint_out
= daint
>> S3C_DAINT_OutEP_SHIFT
;
2147 u32 daint_in
= daint
& ~(daint_out
<< S3C_DAINT_OutEP_SHIFT
);
2150 dev_dbg(hsotg
->dev
, "%s: daint=%08x\n", __func__
, daint
);
2152 for (ep
= 0; ep
< 15 && daint_out
; ep
++, daint_out
>>= 1) {
2154 s3c_hsotg_epint(hsotg
, ep
, 0);
2157 for (ep
= 0; ep
< 15 && daint_in
; ep
++, daint_in
>>= 1) {
2159 s3c_hsotg_epint(hsotg
, ep
, 1);
2163 if (gintsts
& S3C_GINTSTS_USBRst
) {
2164 dev_info(hsotg
->dev
, "%s: USBRst\n", __func__
);
2165 dev_dbg(hsotg
->dev
, "GNPTXSTS=%08x\n",
2166 readl(hsotg
->regs
+ S3C_GNPTXSTS
));
2168 writel(S3C_GINTSTS_USBRst
, hsotg
->regs
+ S3C_GINTSTS
);
2170 kill_all_requests(hsotg
, &hsotg
->eps
[0], -ECONNRESET
, true);
2172 /* it seems after a reset we can end up with a situation
2173 * where the TXFIFO still has data in it... the docs
2174 * suggest resetting all the fifos, so use the init_fifo
2175 * code to relayout and flush the fifos.
2178 s3c_hsotg_init_fifo(hsotg
);
2180 s3c_hsotg_enqueue_setup(hsotg
);
2183 /* check both FIFOs */
2185 if (gintsts
& S3C_GINTSTS_NPTxFEmp
) {
2186 dev_dbg(hsotg
->dev
, "NPTxFEmp\n");
2188 /* Disable the interrupt to stop it happening again
2189 * unless one of these endpoint routines decides that
2190 * it needs re-enabling */
2192 s3c_hsotg_disable_gsint(hsotg
, S3C_GINTSTS_NPTxFEmp
);
2193 s3c_hsotg_irq_fifoempty(hsotg
, false);
2196 if (gintsts
& S3C_GINTSTS_PTxFEmp
) {
2197 dev_dbg(hsotg
->dev
, "PTxFEmp\n");
2199 /* See note in S3C_GINTSTS_NPTxFEmp */
2201 s3c_hsotg_disable_gsint(hsotg
, S3C_GINTSTS_PTxFEmp
);
2202 s3c_hsotg_irq_fifoempty(hsotg
, true);
2205 if (gintsts
& S3C_GINTSTS_RxFLvl
) {
2206 /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2207 * we need to retry s3c_hsotg_handle_rx if this is still
2210 s3c_hsotg_handle_rx(hsotg
);
2213 if (gintsts
& S3C_GINTSTS_ModeMis
) {
2214 dev_warn(hsotg
->dev
, "warning, mode mismatch triggered\n");
2215 writel(S3C_GINTSTS_ModeMis
, hsotg
->regs
+ S3C_GINTSTS
);
2218 if (gintsts
& S3C_GINTSTS_USBSusp
) {
2219 dev_info(hsotg
->dev
, "S3C_GINTSTS_USBSusp\n");
2220 writel(S3C_GINTSTS_USBSusp
, hsotg
->regs
+ S3C_GINTSTS
);
2222 call_gadget(hsotg
, suspend
);
2225 if (gintsts
& S3C_GINTSTS_WkUpInt
) {
2226 dev_info(hsotg
->dev
, "S3C_GINTSTS_WkUpIn\n");
2227 writel(S3C_GINTSTS_WkUpInt
, hsotg
->regs
+ S3C_GINTSTS
);
2229 call_gadget(hsotg
, resume
);
2232 if (gintsts
& S3C_GINTSTS_ErlySusp
) {
2233 dev_dbg(hsotg
->dev
, "S3C_GINTSTS_ErlySusp\n");
2234 writel(S3C_GINTSTS_ErlySusp
, hsotg
->regs
+ S3C_GINTSTS
);
2237 /* these next two seem to crop-up occasionally causing the core
2238 * to shutdown the USB transfer, so try clearing them and logging
2239 * the occurrence. */
2241 if (gintsts
& S3C_GINTSTS_GOUTNakEff
) {
2242 dev_info(hsotg
->dev
, "GOUTNakEff triggered\n");
2244 writel(S3C_DCTL_CGOUTNak
, hsotg
->regs
+ S3C_DCTL
);
2246 s3c_hsotg_dump(hsotg
);
2249 if (gintsts
& S3C_GINTSTS_GINNakEff
) {
2250 dev_info(hsotg
->dev
, "GINNakEff triggered\n");
2252 writel(S3C_DCTL_CGNPInNAK
, hsotg
->regs
+ S3C_DCTL
);
2254 s3c_hsotg_dump(hsotg
);
2257 /* if we've had fifo events, we should try and go around the
2258 * loop again to see if there's any point in returning yet. */
2260 if (gintsts
& IRQ_RETRY_MASK
&& --retry_count
> 0)
2267 * s3c_hsotg_ep_enable - enable the given endpoint
2268 * @ep: The USB endpint to configure
2269 * @desc: The USB endpoint descriptor to configure with.
2271 * This is called from the USB gadget code's usb_ep_enable().
2273 static int s3c_hsotg_ep_enable(struct usb_ep
*ep
,
2274 const struct usb_endpoint_descriptor
*desc
)
2276 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2277 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
2278 unsigned long flags
;
2279 int index
= hs_ep
->index
;
2287 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2288 __func__
, ep
->name
, desc
->bEndpointAddress
, desc
->bmAttributes
,
2289 desc
->wMaxPacketSize
, desc
->bInterval
);
2291 /* not to be called for EP0 */
2292 WARN_ON(index
== 0);
2294 dir_in
= (desc
->bEndpointAddress
& USB_ENDPOINT_DIR_MASK
) ? 1 : 0;
2295 if (dir_in
!= hs_ep
->dir_in
) {
2296 dev_err(hsotg
->dev
, "%s: direction mismatch!\n", __func__
);
2300 mps
= le16_to_cpu(desc
->wMaxPacketSize
);
2302 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2304 epctrl_reg
= dir_in
? S3C_DIEPCTL(index
) : S3C_DOEPCTL(index
);
2305 epctrl
= readl(hsotg
->regs
+ epctrl_reg
);
2307 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2308 __func__
, epctrl
, epctrl_reg
);
2310 spin_lock_irqsave(&hs_ep
->lock
, flags
);
2312 epctrl
&= ~(S3C_DxEPCTL_EPType_MASK
| S3C_DxEPCTL_MPS_MASK
);
2313 epctrl
|= S3C_DxEPCTL_MPS(mps
);
2315 /* mark the endpoint as active, otherwise the core may ignore
2316 * transactions entirely for this endpoint */
2317 epctrl
|= S3C_DxEPCTL_USBActEp
;
2319 /* set the NAK status on the endpoint, otherwise we might try and
2320 * do something with data that we've yet got a request to process
2321 * since the RXFIFO will take data for an endpoint even if the
2322 * size register hasn't been set.
2325 epctrl
|= S3C_DxEPCTL_SNAK
;
2327 /* update the endpoint state */
2328 hs_ep
->ep
.maxpacket
= mps
;
2330 /* default, set to non-periodic */
2331 hs_ep
->periodic
= 0;
2333 switch (desc
->bmAttributes
& USB_ENDPOINT_XFERTYPE_MASK
) {
2334 case USB_ENDPOINT_XFER_ISOC
:
2335 dev_err(hsotg
->dev
, "no current ISOC support\n");
2339 case USB_ENDPOINT_XFER_BULK
:
2340 epctrl
|= S3C_DxEPCTL_EPType_Bulk
;
2343 case USB_ENDPOINT_XFER_INT
:
2345 /* Allocate our TxFNum by simply using the index
2346 * of the endpoint for the moment. We could do
2347 * something better if the host indicates how
2348 * many FIFOs we are expecting to use. */
2350 hs_ep
->periodic
= 1;
2351 epctrl
|= S3C_DxEPCTL_TxFNum(index
);
2354 epctrl
|= S3C_DxEPCTL_EPType_Intterupt
;
2357 case USB_ENDPOINT_XFER_CONTROL
:
2358 epctrl
|= S3C_DxEPCTL_EPType_Control
;
2362 /* if the hardware has dedicated fifos, we must give each IN EP
2363 * a unique tx-fifo even if it is non-periodic.
2365 if (dir_in
&& hsotg
->dedicated_fifos
)
2366 epctrl
|= S3C_DxEPCTL_TxFNum(index
);
2368 /* for non control endpoints, set PID to D0 */
2370 epctrl
|= S3C_DxEPCTL_SetD0PID
;
2372 dev_dbg(hsotg
->dev
, "%s: write DxEPCTL=0x%08x\n",
2375 writel(epctrl
, hsotg
->regs
+ epctrl_reg
);
2376 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x\n",
2377 __func__
, readl(hsotg
->regs
+ epctrl_reg
));
2379 /* enable the endpoint interrupt */
2380 s3c_hsotg_ctrl_epint(hsotg
, index
, dir_in
, 1);
2383 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
2387 static int s3c_hsotg_ep_disable(struct usb_ep
*ep
)
2389 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2390 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
2391 int dir_in
= hs_ep
->dir_in
;
2392 int index
= hs_ep
->index
;
2393 unsigned long flags
;
2397 dev_info(hsotg
->dev
, "%s(ep %p)\n", __func__
, ep
);
2399 if (ep
== &hsotg
->eps
[0].ep
) {
2400 dev_err(hsotg
->dev
, "%s: called for ep0\n", __func__
);
2404 epctrl_reg
= dir_in
? S3C_DIEPCTL(index
) : S3C_DOEPCTL(index
);
2406 /* terminate all requests with shutdown */
2407 kill_all_requests(hsotg
, hs_ep
, -ESHUTDOWN
, false);
2409 spin_lock_irqsave(&hs_ep
->lock
, flags
);
2411 ctrl
= readl(hsotg
->regs
+ epctrl_reg
);
2412 ctrl
&= ~S3C_DxEPCTL_EPEna
;
2413 ctrl
&= ~S3C_DxEPCTL_USBActEp
;
2414 ctrl
|= S3C_DxEPCTL_SNAK
;
2416 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
2417 writel(ctrl
, hsotg
->regs
+ epctrl_reg
);
2419 /* disable endpoint interrupts */
2420 s3c_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 0);
2422 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
2427 * on_list - check request is on the given endpoint
2428 * @ep: The endpoint to check.
2429 * @test: The request to test if it is on the endpoint.
2431 static bool on_list(struct s3c_hsotg_ep
*ep
, struct s3c_hsotg_req
*test
)
2433 struct s3c_hsotg_req
*req
, *treq
;
2435 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
) {
2443 static int s3c_hsotg_ep_dequeue(struct usb_ep
*ep
, struct usb_request
*req
)
2445 struct s3c_hsotg_req
*hs_req
= our_req(req
);
2446 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2447 struct s3c_hsotg
*hs
= hs_ep
->parent
;
2448 unsigned long flags
;
2450 dev_info(hs
->dev
, "ep_dequeue(%p,%p)\n", ep
, req
);
2452 spin_lock_irqsave(&hs_ep
->lock
, flags
);
2454 if (!on_list(hs_ep
, hs_req
)) {
2455 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
2459 s3c_hsotg_complete_request(hs
, hs_ep
, hs_req
, -ECONNRESET
);
2460 spin_unlock_irqrestore(&hs_ep
->lock
, flags
);
2465 static int s3c_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
)
2467 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2468 struct s3c_hsotg
*hs
= hs_ep
->parent
;
2469 int index
= hs_ep
->index
;
2470 unsigned long irqflags
;
2475 dev_info(hs
->dev
, "%s(ep %p %s, %d)\n", __func__
, ep
, ep
->name
, value
);
2477 spin_lock_irqsave(&hs_ep
->lock
, irqflags
);
2479 /* write both IN and OUT control registers */
2481 epreg
= S3C_DIEPCTL(index
);
2482 epctl
= readl(hs
->regs
+ epreg
);
2485 epctl
|= S3C_DxEPCTL_Stall
+ S3C_DxEPCTL_SNAK
;
2486 if (epctl
& S3C_DxEPCTL_EPEna
)
2487 epctl
|= S3C_DxEPCTL_EPDis
;
2489 epctl
&= ~S3C_DxEPCTL_Stall
;
2490 xfertype
= epctl
& S3C_DxEPCTL_EPType_MASK
;
2491 if (xfertype
== S3C_DxEPCTL_EPType_Bulk
||
2492 xfertype
== S3C_DxEPCTL_EPType_Intterupt
)
2493 epctl
|= S3C_DxEPCTL_SetD0PID
;
2496 writel(epctl
, hs
->regs
+ epreg
);
2498 epreg
= S3C_DOEPCTL(index
);
2499 epctl
= readl(hs
->regs
+ epreg
);
2502 epctl
|= S3C_DxEPCTL_Stall
;
2504 epctl
&= ~S3C_DxEPCTL_Stall
;
2505 xfertype
= epctl
& S3C_DxEPCTL_EPType_MASK
;
2506 if (xfertype
== S3C_DxEPCTL_EPType_Bulk
||
2507 xfertype
== S3C_DxEPCTL_EPType_Intterupt
)
2508 epctl
|= S3C_DxEPCTL_SetD0PID
;
2511 writel(epctl
, hs
->regs
+ epreg
);
2513 spin_unlock_irqrestore(&hs_ep
->lock
, irqflags
);
2518 static struct usb_ep_ops s3c_hsotg_ep_ops
= {
2519 .enable
= s3c_hsotg_ep_enable
,
2520 .disable
= s3c_hsotg_ep_disable
,
2521 .alloc_request
= s3c_hsotg_ep_alloc_request
,
2522 .free_request
= s3c_hsotg_ep_free_request
,
2523 .queue
= s3c_hsotg_ep_queue
,
2524 .dequeue
= s3c_hsotg_ep_dequeue
,
2525 .set_halt
= s3c_hsotg_ep_sethalt
,
2526 /* note, don't believe we have any call for the fifo routines */
2530 * s3c_hsotg_corereset - issue softreset to the core
2531 * @hsotg: The device state
2533 * Issue a soft reset to the core, and await the core finishing it.
2535 static int s3c_hsotg_corereset(struct s3c_hsotg
*hsotg
)
2540 dev_dbg(hsotg
->dev
, "resetting core\n");
2542 /* issue soft reset */
2543 writel(S3C_GRSTCTL_CSftRst
, hsotg
->regs
+ S3C_GRSTCTL
);
2547 grstctl
= readl(hsotg
->regs
+ S3C_GRSTCTL
);
2548 } while ((grstctl
& S3C_GRSTCTL_CSftRst
) && timeout
-- > 0);
2550 if (grstctl
& S3C_GRSTCTL_CSftRst
) {
2551 dev_err(hsotg
->dev
, "Failed to get CSftRst asserted\n");
2558 u32 grstctl
= readl(hsotg
->regs
+ S3C_GRSTCTL
);
2560 if (timeout
-- < 0) {
2561 dev_info(hsotg
->dev
,
2562 "%s: reset failed, GRSTCTL=%08x\n",
2567 if (!(grstctl
& S3C_GRSTCTL_AHBIdle
))
2570 break; /* reset done */
2573 dev_dbg(hsotg
->dev
, "reset successful\n");
2577 static int s3c_hsotg_start(struct usb_gadget_driver
*driver
,
2578 int (*bind
)(struct usb_gadget
*))
2580 struct s3c_hsotg
*hsotg
= our_hsotg
;
2584 printk(KERN_ERR
"%s: called with no device\n", __func__
);
2589 dev_err(hsotg
->dev
, "%s: no driver\n", __func__
);
2593 if (driver
->speed
!= USB_SPEED_HIGH
&&
2594 driver
->speed
!= USB_SPEED_FULL
) {
2595 dev_err(hsotg
->dev
, "%s: bad speed\n", __func__
);
2598 if (!bind
|| !driver
->setup
) {
2599 dev_err(hsotg
->dev
, "%s: missing entry points\n", __func__
);
2603 WARN_ON(hsotg
->driver
);
2605 driver
->driver
.bus
= NULL
;
2606 hsotg
->driver
= driver
;
2607 hsotg
->gadget
.dev
.driver
= &driver
->driver
;
2608 hsotg
->gadget
.dev
.dma_mask
= hsotg
->dev
->dma_mask
;
2609 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
2611 ret
= device_add(&hsotg
->gadget
.dev
);
2613 dev_err(hsotg
->dev
, "failed to register gadget device\n");
2617 ret
= bind(&hsotg
->gadget
);
2619 dev_err(hsotg
->dev
, "failed bind %s\n", driver
->driver
.name
);
2621 hsotg
->gadget
.dev
.driver
= NULL
;
2622 hsotg
->driver
= NULL
;
2626 /* we must now enable ep0 ready for host detection and then
2627 * set configuration. */
2629 s3c_hsotg_corereset(hsotg
);
2631 /* set the PLL on, remove the HNP/SRP and set the PHY */
2632 writel(S3C_GUSBCFG_PHYIf16
| S3C_GUSBCFG_TOutCal(7) |
2633 (0x5 << 10), hsotg
->regs
+ S3C_GUSBCFG
);
2635 /* looks like soft-reset changes state of FIFOs */
2636 s3c_hsotg_init_fifo(hsotg
);
2638 __orr32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_SftDiscon
);
2640 writel(1 << 18 | S3C_DCFG_DevSpd_HS
, hsotg
->regs
+ S3C_DCFG
);
2642 /* Clear any pending OTG interrupts */
2643 writel(0xffffffff, hsotg
->regs
+ S3C_GOTGINT
);
2645 /* Clear any pending interrupts */
2646 writel(0xffffffff, hsotg
->regs
+ S3C_GINTSTS
);
2648 writel(S3C_GINTSTS_DisconnInt
| S3C_GINTSTS_SessReqInt
|
2649 S3C_GINTSTS_ConIDStsChng
| S3C_GINTSTS_USBRst
|
2650 S3C_GINTSTS_EnumDone
| S3C_GINTSTS_OTGInt
|
2651 S3C_GINTSTS_USBSusp
| S3C_GINTSTS_WkUpInt
|
2652 S3C_GINTSTS_GOUTNakEff
| S3C_GINTSTS_GINNakEff
|
2653 S3C_GINTSTS_ErlySusp
,
2654 hsotg
->regs
+ S3C_GINTMSK
);
2656 if (using_dma(hsotg
))
2657 writel(S3C_GAHBCFG_GlblIntrEn
| S3C_GAHBCFG_DMAEn
|
2658 S3C_GAHBCFG_HBstLen_Incr4
,
2659 hsotg
->regs
+ S3C_GAHBCFG
);
2661 writel(S3C_GAHBCFG_GlblIntrEn
, hsotg
->regs
+ S3C_GAHBCFG
);
2663 /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2664 * up being flooded with interrupts if the host is polling the
2665 * endpoint to try and read data. */
2667 writel(S3C_DIEPMSK_TimeOUTMsk
| S3C_DIEPMSK_AHBErrMsk
|
2668 S3C_DIEPMSK_INTknEPMisMsk
|
2669 S3C_DIEPMSK_EPDisbldMsk
| S3C_DIEPMSK_XferComplMsk
|
2670 ((hsotg
->dedicated_fifos
) ? S3C_DIEPMSK_TxFIFOEmpty
: 0),
2671 hsotg
->regs
+ S3C_DIEPMSK
);
2673 /* don't need XferCompl, we get that from RXFIFO in slave mode. In
2674 * DMA mode we may need this. */
2675 writel(S3C_DOEPMSK_SetupMsk
| S3C_DOEPMSK_AHBErrMsk
|
2676 S3C_DOEPMSK_EPDisbldMsk
|
2677 (using_dma(hsotg
) ? (S3C_DIEPMSK_XferComplMsk
|
2678 S3C_DIEPMSK_TimeOUTMsk
) : 0),
2679 hsotg
->regs
+ S3C_DOEPMSK
);
2681 writel(0, hsotg
->regs
+ S3C_DAINTMSK
);
2683 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2684 readl(hsotg
->regs
+ S3C_DIEPCTL0
),
2685 readl(hsotg
->regs
+ S3C_DOEPCTL0
));
2687 /* enable in and out endpoint interrupts */
2688 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_OEPInt
| S3C_GINTSTS_IEPInt
);
2690 /* Enable the RXFIFO when in slave mode, as this is how we collect
2691 * the data. In DMA mode, we get events from the FIFO but also
2692 * things we cannot process, so do not use it. */
2693 if (!using_dma(hsotg
))
2694 s3c_hsotg_en_gsint(hsotg
, S3C_GINTSTS_RxFLvl
);
2696 /* Enable interrupts for EP0 in and out */
2697 s3c_hsotg_ctrl_epint(hsotg
, 0, 0, 1);
2698 s3c_hsotg_ctrl_epint(hsotg
, 0, 1, 1);
2700 __orr32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_PWROnPrgDone
);
2701 udelay(10); /* see openiboot */
2702 __bic32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_PWROnPrgDone
);
2704 dev_dbg(hsotg
->dev
, "DCTL=0x%08x\n", readl(hsotg
->regs
+ S3C_DCTL
));
2706 /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2707 writing to the EPCTL register.. */
2709 /* set to read 1 8byte packet */
2710 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2711 S3C_DxEPTSIZ_XferSize(8), hsotg
->regs
+ DOEPTSIZ0
);
2713 writel(s3c_hsotg_ep0_mps(hsotg
->eps
[0].ep
.maxpacket
) |
2714 S3C_DxEPCTL_CNAK
| S3C_DxEPCTL_EPEna
|
2715 S3C_DxEPCTL_USBActEp
,
2716 hsotg
->regs
+ S3C_DOEPCTL0
);
2718 /* enable, but don't activate EP0in */
2719 writel(s3c_hsotg_ep0_mps(hsotg
->eps
[0].ep
.maxpacket
) |
2720 S3C_DxEPCTL_USBActEp
, hsotg
->regs
+ S3C_DIEPCTL0
);
2722 s3c_hsotg_enqueue_setup(hsotg
);
2724 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2725 readl(hsotg
->regs
+ S3C_DIEPCTL0
),
2726 readl(hsotg
->regs
+ S3C_DOEPCTL0
));
2728 /* clear global NAKs */
2729 writel(S3C_DCTL_CGOUTNak
| S3C_DCTL_CGNPInNAK
,
2730 hsotg
->regs
+ S3C_DCTL
);
2732 /* must be at-least 3ms to allow bus to see disconnect */
2735 /* remove the soft-disconnect and let's go */
2736 __bic32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_SftDiscon
);
2738 /* report to the user, and return */
2740 dev_info(hsotg
->dev
, "bound driver %s\n", driver
->driver
.name
);
2744 hsotg
->driver
= NULL
;
2745 hsotg
->gadget
.dev
.driver
= NULL
;
2749 static int s3c_hsotg_stop(struct usb_gadget_driver
*driver
)
2751 struct s3c_hsotg
*hsotg
= our_hsotg
;
2757 if (!driver
|| driver
!= hsotg
->driver
|| !driver
->unbind
)
2760 /* all endpoints should be shutdown */
2761 for (ep
= 0; ep
< S3C_HSOTG_EPS
; ep
++)
2762 s3c_hsotg_ep_disable(&hsotg
->eps
[ep
].ep
);
2764 call_gadget(hsotg
, disconnect
);
2766 driver
->unbind(&hsotg
->gadget
);
2767 hsotg
->driver
= NULL
;
2768 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
2770 device_del(&hsotg
->gadget
.dev
);
2772 dev_info(hsotg
->dev
, "unregistered gadget driver '%s'\n",
2773 driver
->driver
.name
);
2778 static int s3c_hsotg_gadget_getframe(struct usb_gadget
*gadget
)
2780 return s3c_hsotg_read_frameno(to_hsotg(gadget
));
2783 static struct usb_gadget_ops s3c_hsotg_gadget_ops
= {
2784 .get_frame
= s3c_hsotg_gadget_getframe
,
2785 .start
= s3c_hsotg_start
,
2786 .stop
= s3c_hsotg_stop
,
2790 * s3c_hsotg_initep - initialise a single endpoint
2791 * @hsotg: The device state.
2792 * @hs_ep: The endpoint to be initialised.
2793 * @epnum: The endpoint number
2795 * Initialise the given endpoint (as part of the probe and device state
2796 * creation) to give to the gadget driver. Setup the endpoint name, any
2797 * direction information and other state that may be required.
2799 static void __devinit
s3c_hsotg_initep(struct s3c_hsotg
*hsotg
,
2800 struct s3c_hsotg_ep
*hs_ep
,
2808 else if ((epnum
% 2) == 0) {
2815 hs_ep
->index
= epnum
;
2817 snprintf(hs_ep
->name
, sizeof(hs_ep
->name
), "ep%d%s", epnum
, dir
);
2819 INIT_LIST_HEAD(&hs_ep
->queue
);
2820 INIT_LIST_HEAD(&hs_ep
->ep
.ep_list
);
2822 spin_lock_init(&hs_ep
->lock
);
2824 /* add to the list of endpoints known by the gadget driver */
2826 list_add_tail(&hs_ep
->ep
.ep_list
, &hsotg
->gadget
.ep_list
);
2828 hs_ep
->parent
= hsotg
;
2829 hs_ep
->ep
.name
= hs_ep
->name
;
2830 hs_ep
->ep
.maxpacket
= epnum
? 512 : EP0_MPS_LIMIT
;
2831 hs_ep
->ep
.ops
= &s3c_hsotg_ep_ops
;
2833 /* Read the FIFO size for the Periodic TX FIFO, even if we're
2834 * an OUT endpoint, we may as well do this if in future the
2835 * code is changed to make each endpoint's direction changeable.
2838 ptxfifo
= readl(hsotg
->regs
+ S3C_DPTXFSIZn(epnum
));
2839 hs_ep
->fifo_size
= S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo
) * 4;
2841 /* if we're using dma, we need to set the next-endpoint pointer
2842 * to be something valid.
2845 if (using_dma(hsotg
)) {
2846 u32 next
= S3C_DxEPCTL_NextEp((epnum
+ 1) % 15);
2847 writel(next
, hsotg
->regs
+ S3C_DIEPCTL(epnum
));
2848 writel(next
, hsotg
->regs
+ S3C_DOEPCTL(epnum
));
2853 * s3c_hsotg_otgreset - reset the OtG phy block
2854 * @hsotg: The host state.
2856 * Power up the phy, set the basic configuration and start the PHY.
2858 static void s3c_hsotg_otgreset(struct s3c_hsotg
*hsotg
)
2860 struct clk
*xusbxti
;
2863 pwr
= readl(S3C_PHYPWR
);
2865 writel(pwr
, S3C_PHYPWR
);
2868 osc
= hsotg
->plat
->is_osc
? S3C_PHYCLK_EXT_OSC
: 0;
2870 xusbxti
= clk_get(hsotg
->dev
, "xusbxti");
2871 if (xusbxti
&& !IS_ERR(xusbxti
)) {
2872 switch (clk_get_rate(xusbxti
)) {
2874 osc
|= S3C_PHYCLK_CLKSEL_12M
;
2877 osc
|= S3C_PHYCLK_CLKSEL_24M
;
2881 /* default reference clock */
2887 writel(osc
| 0x10, S3C_PHYCLK
);
2889 /* issue a full set of resets to the otg and core */
2891 writel(S3C_RSTCON_PHY
, S3C_RSTCON
);
2892 udelay(20); /* at-least 10uS */
2893 writel(0, S3C_RSTCON
);
2897 static void s3c_hsotg_init(struct s3c_hsotg
*hsotg
)
2901 /* unmask subset of endpoint interrupts */
2903 writel(S3C_DIEPMSK_TimeOUTMsk
| S3C_DIEPMSK_AHBErrMsk
|
2904 S3C_DIEPMSK_EPDisbldMsk
| S3C_DIEPMSK_XferComplMsk
,
2905 hsotg
->regs
+ S3C_DIEPMSK
);
2907 writel(S3C_DOEPMSK_SetupMsk
| S3C_DOEPMSK_AHBErrMsk
|
2908 S3C_DOEPMSK_EPDisbldMsk
| S3C_DOEPMSK_XferComplMsk
,
2909 hsotg
->regs
+ S3C_DOEPMSK
);
2911 writel(0, hsotg
->regs
+ S3C_DAINTMSK
);
2913 /* Be in disconnected state until gadget is registered */
2914 __orr32(hsotg
->regs
+ S3C_DCTL
, S3C_DCTL_SftDiscon
);
2917 /* post global nak until we're ready */
2918 writel(S3C_DCTL_SGNPInNAK
| S3C_DCTL_SGOUTNak
,
2919 hsotg
->regs
+ S3C_DCTL
);
2924 dev_dbg(hsotg
->dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2925 readl(hsotg
->regs
+ S3C_GRXFSIZ
),
2926 readl(hsotg
->regs
+ S3C_GNPTXFSIZ
));
2928 s3c_hsotg_init_fifo(hsotg
);
2930 /* set the PLL on, remove the HNP/SRP and set the PHY */
2931 writel(S3C_GUSBCFG_PHYIf16
| S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2932 hsotg
->regs
+ S3C_GUSBCFG
);
2934 writel(using_dma(hsotg
) ? S3C_GAHBCFG_DMAEn
: 0x0,
2935 hsotg
->regs
+ S3C_GAHBCFG
);
2937 /* check hardware configuration */
2939 cfg4
= readl(hsotg
->regs
+ 0x50);
2940 hsotg
->dedicated_fifos
= (cfg4
>> 25) & 1;
2942 dev_info(hsotg
->dev
, "%s fifos\n",
2943 hsotg
->dedicated_fifos
? "dedicated" : "shared");
2946 static void s3c_hsotg_dump(struct s3c_hsotg
*hsotg
)
2949 struct device
*dev
= hsotg
->dev
;
2950 void __iomem
*regs
= hsotg
->regs
;
2954 dev_info(dev
, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2955 readl(regs
+ S3C_DCFG
), readl(regs
+ S3C_DCTL
),
2956 readl(regs
+ S3C_DIEPMSK
));
2958 dev_info(dev
, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2959 readl(regs
+ S3C_GAHBCFG
), readl(regs
+ 0x44));
2961 dev_info(dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2962 readl(regs
+ S3C_GRXFSIZ
), readl(regs
+ S3C_GNPTXFSIZ
));
2964 /* show periodic fifo settings */
2966 for (idx
= 1; idx
<= 15; idx
++) {
2967 val
= readl(regs
+ S3C_DPTXFSIZn(idx
));
2968 dev_info(dev
, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx
,
2969 val
>> S3C_DPTXFSIZn_DPTxFSize_SHIFT
,
2970 val
& S3C_DPTXFSIZn_DPTxFStAddr_MASK
);
2973 for (idx
= 0; idx
< 15; idx
++) {
2975 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx
,
2976 readl(regs
+ S3C_DIEPCTL(idx
)),
2977 readl(regs
+ S3C_DIEPTSIZ(idx
)),
2978 readl(regs
+ S3C_DIEPDMA(idx
)));
2980 val
= readl(regs
+ S3C_DOEPCTL(idx
));
2982 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2983 idx
, readl(regs
+ S3C_DOEPCTL(idx
)),
2984 readl(regs
+ S3C_DOEPTSIZ(idx
)),
2985 readl(regs
+ S3C_DOEPDMA(idx
)));
2989 dev_info(dev
, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2990 readl(regs
+ S3C_DVBUSDIS
), readl(regs
+ S3C_DVBUSPULSE
));
2996 * state_show - debugfs: show overall driver and device state.
2997 * @seq: The seq file to write to.
2998 * @v: Unused parameter.
3000 * This debugfs entry shows the overall state of the hardware and
3001 * some general information about each of the endpoints available
3004 static int state_show(struct seq_file
*seq
, void *v
)
3006 struct s3c_hsotg
*hsotg
= seq
->private;
3007 void __iomem
*regs
= hsotg
->regs
;
3010 seq_printf(seq
, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3011 readl(regs
+ S3C_DCFG
),
3012 readl(regs
+ S3C_DCTL
),
3013 readl(regs
+ S3C_DSTS
));
3015 seq_printf(seq
, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3016 readl(regs
+ S3C_DIEPMSK
), readl(regs
+ S3C_DOEPMSK
));
3018 seq_printf(seq
, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3019 readl(regs
+ S3C_GINTMSK
),
3020 readl(regs
+ S3C_GINTSTS
));
3022 seq_printf(seq
, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3023 readl(regs
+ S3C_DAINTMSK
),
3024 readl(regs
+ S3C_DAINT
));
3026 seq_printf(seq
, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3027 readl(regs
+ S3C_GNPTXSTS
),
3028 readl(regs
+ S3C_GRXSTSR
));
3030 seq_printf(seq
, "\nEndpoint status:\n");
3032 for (idx
= 0; idx
< 15; idx
++) {
3035 in
= readl(regs
+ S3C_DIEPCTL(idx
));
3036 out
= readl(regs
+ S3C_DOEPCTL(idx
));
3038 seq_printf(seq
, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3041 in
= readl(regs
+ S3C_DIEPTSIZ(idx
));
3042 out
= readl(regs
+ S3C_DOEPTSIZ(idx
));
3044 seq_printf(seq
, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3047 seq_printf(seq
, "\n");
3053 static int state_open(struct inode
*inode
, struct file
*file
)
3055 return single_open(file
, state_show
, inode
->i_private
);
3058 static const struct file_operations state_fops
= {
3059 .owner
= THIS_MODULE
,
3062 .llseek
= seq_lseek
,
3063 .release
= single_release
,
3067 * fifo_show - debugfs: show the fifo information
3068 * @seq: The seq_file to write data to.
3069 * @v: Unused parameter.
3071 * Show the FIFO information for the overall fifo and all the
3072 * periodic transmission FIFOs.
3074 static int fifo_show(struct seq_file
*seq
, void *v
)
3076 struct s3c_hsotg
*hsotg
= seq
->private;
3077 void __iomem
*regs
= hsotg
->regs
;
3081 seq_printf(seq
, "Non-periodic FIFOs:\n");
3082 seq_printf(seq
, "RXFIFO: Size %d\n", readl(regs
+ S3C_GRXFSIZ
));
3084 val
= readl(regs
+ S3C_GNPTXFSIZ
);
3085 seq_printf(seq
, "NPTXFIFO: Size %d, Start 0x%08x\n",
3086 val
>> S3C_GNPTXFSIZ_NPTxFDep_SHIFT
,
3087 val
& S3C_GNPTXFSIZ_NPTxFStAddr_MASK
);
3089 seq_printf(seq
, "\nPeriodic TXFIFOs:\n");
3091 for (idx
= 1; idx
<= 15; idx
++) {
3092 val
= readl(regs
+ S3C_DPTXFSIZn(idx
));
3094 seq_printf(seq
, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx
,
3095 val
>> S3C_DPTXFSIZn_DPTxFSize_SHIFT
,
3096 val
& S3C_DPTXFSIZn_DPTxFStAddr_MASK
);
3102 static int fifo_open(struct inode
*inode
, struct file
*file
)
3104 return single_open(file
, fifo_show
, inode
->i_private
);
3107 static const struct file_operations fifo_fops
= {
3108 .owner
= THIS_MODULE
,
3111 .llseek
= seq_lseek
,
3112 .release
= single_release
,
3116 static const char *decode_direction(int is_in
)
3118 return is_in
? "in" : "out";
3122 * ep_show - debugfs: show the state of an endpoint.
3123 * @seq: The seq_file to write data to.
3124 * @v: Unused parameter.
3126 * This debugfs entry shows the state of the given endpoint (one is
3127 * registered for each available).
3129 static int ep_show(struct seq_file
*seq
, void *v
)
3131 struct s3c_hsotg_ep
*ep
= seq
->private;
3132 struct s3c_hsotg
*hsotg
= ep
->parent
;
3133 struct s3c_hsotg_req
*req
;
3134 void __iomem
*regs
= hsotg
->regs
;
3135 int index
= ep
->index
;
3136 int show_limit
= 15;
3137 unsigned long flags
;
3139 seq_printf(seq
, "Endpoint index %d, named %s, dir %s:\n",
3140 ep
->index
, ep
->ep
.name
, decode_direction(ep
->dir_in
));
3142 /* first show the register state */
3144 seq_printf(seq
, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3145 readl(regs
+ S3C_DIEPCTL(index
)),
3146 readl(regs
+ S3C_DOEPCTL(index
)));
3148 seq_printf(seq
, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3149 readl(regs
+ S3C_DIEPDMA(index
)),
3150 readl(regs
+ S3C_DOEPDMA(index
)));
3152 seq_printf(seq
, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3153 readl(regs
+ S3C_DIEPINT(index
)),
3154 readl(regs
+ S3C_DOEPINT(index
)));
3156 seq_printf(seq
, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3157 readl(regs
+ S3C_DIEPTSIZ(index
)),
3158 readl(regs
+ S3C_DOEPTSIZ(index
)));
3160 seq_printf(seq
, "\n");
3161 seq_printf(seq
, "mps %d\n", ep
->ep
.maxpacket
);
3162 seq_printf(seq
, "total_data=%ld\n", ep
->total_data
);
3164 seq_printf(seq
, "request list (%p,%p):\n",
3165 ep
->queue
.next
, ep
->queue
.prev
);
3167 spin_lock_irqsave(&ep
->lock
, flags
);
3169 list_for_each_entry(req
, &ep
->queue
, queue
) {
3170 if (--show_limit
< 0) {
3171 seq_printf(seq
, "not showing more requests...\n");
3175 seq_printf(seq
, "%c req %p: %d bytes @%p, ",
3176 req
== ep
->req
? '*' : ' ',
3177 req
, req
->req
.length
, req
->req
.buf
);
3178 seq_printf(seq
, "%d done, res %d\n",
3179 req
->req
.actual
, req
->req
.status
);
3182 spin_unlock_irqrestore(&ep
->lock
, flags
);
3187 static int ep_open(struct inode
*inode
, struct file
*file
)
3189 return single_open(file
, ep_show
, inode
->i_private
);
3192 static const struct file_operations ep_fops
= {
3193 .owner
= THIS_MODULE
,
3196 .llseek
= seq_lseek
,
3197 .release
= single_release
,
3201 * s3c_hsotg_create_debug - create debugfs directory and files
3202 * @hsotg: The driver state
3204 * Create the debugfs files to allow the user to get information
3205 * about the state of the system. The directory name is created
3206 * with the same name as the device itself, in case we end up
3207 * with multiple blocks in future systems.
3209 static void __devinit
s3c_hsotg_create_debug(struct s3c_hsotg
*hsotg
)
3211 struct dentry
*root
;
3214 root
= debugfs_create_dir(dev_name(hsotg
->dev
), NULL
);
3215 hsotg
->debug_root
= root
;
3217 dev_err(hsotg
->dev
, "cannot create debug root\n");
3221 /* create general state file */
3223 hsotg
->debug_file
= debugfs_create_file("state", 0444, root
,
3224 hsotg
, &state_fops
);
3226 if (IS_ERR(hsotg
->debug_file
))
3227 dev_err(hsotg
->dev
, "%s: failed to create state\n", __func__
);
3229 hsotg
->debug_fifo
= debugfs_create_file("fifo", 0444, root
,
3232 if (IS_ERR(hsotg
->debug_fifo
))
3233 dev_err(hsotg
->dev
, "%s: failed to create fifo\n", __func__
);
3235 /* create one file for each endpoint */
3237 for (epidx
= 0; epidx
< S3C_HSOTG_EPS
; epidx
++) {
3238 struct s3c_hsotg_ep
*ep
= &hsotg
->eps
[epidx
];
3240 ep
->debugfs
= debugfs_create_file(ep
->name
, 0444,
3241 root
, ep
, &ep_fops
);
3243 if (IS_ERR(ep
->debugfs
))
3244 dev_err(hsotg
->dev
, "failed to create %s debug file\n",
3250 * s3c_hsotg_delete_debug - cleanup debugfs entries
3251 * @hsotg: The driver state
3253 * Cleanup (remove) the debugfs files for use on module exit.
3255 static void __devexit
s3c_hsotg_delete_debug(struct s3c_hsotg
*hsotg
)
3259 for (epidx
= 0; epidx
< S3C_HSOTG_EPS
; epidx
++) {
3260 struct s3c_hsotg_ep
*ep
= &hsotg
->eps
[epidx
];
3261 debugfs_remove(ep
->debugfs
);
3264 debugfs_remove(hsotg
->debug_file
);
3265 debugfs_remove(hsotg
->debug_fifo
);
3266 debugfs_remove(hsotg
->debug_root
);
3270 * s3c_hsotg_gate - set the hardware gate for the block
3271 * @pdev: The device we bound to
3274 * Set the hardware gate setting into the block. If we end up on
3275 * something other than an S3C64XX, then we might need to change this
3276 * to using a platform data callback, or some other mechanism.
3278 static void s3c_hsotg_gate(struct platform_device
*pdev
, bool on
)
3280 unsigned long flags
;
3283 local_irq_save(flags
);
3285 others
= __raw_readl(S3C64XX_OTHERS
);
3287 others
|= S3C64XX_OTHERS_USBMASK
;
3289 others
&= ~S3C64XX_OTHERS_USBMASK
;
3290 __raw_writel(others
, S3C64XX_OTHERS
);
3292 local_irq_restore(flags
);
3295 static struct s3c_hsotg_plat s3c_hsotg_default_pdata
;
3297 static int __devinit
s3c_hsotg_probe(struct platform_device
*pdev
)
3299 struct s3c_hsotg_plat
*plat
= pdev
->dev
.platform_data
;
3300 struct device
*dev
= &pdev
->dev
;
3301 struct s3c_hsotg
*hsotg
;
3302 struct resource
*res
;
3307 plat
= &s3c_hsotg_default_pdata
;
3309 hsotg
= kzalloc(sizeof(struct s3c_hsotg
) +
3310 sizeof(struct s3c_hsotg_ep
) * S3C_HSOTG_EPS
,
3313 dev_err(dev
, "cannot get memory\n");
3320 hsotg
->clk
= clk_get(&pdev
->dev
, "otg");
3321 if (IS_ERR(hsotg
->clk
)) {
3322 dev_err(dev
, "cannot get otg clock\n");
3323 ret
= PTR_ERR(hsotg
->clk
);
3327 platform_set_drvdata(pdev
, hsotg
);
3329 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3331 dev_err(dev
, "cannot find register resource 0\n");
3336 hsotg
->regs_res
= request_mem_region(res
->start
, resource_size(res
),
3338 if (!hsotg
->regs_res
) {
3339 dev_err(dev
, "cannot reserve registers\n");
3344 hsotg
->regs
= ioremap(res
->start
, resource_size(res
));
3346 dev_err(dev
, "cannot map registers\n");
3351 ret
= platform_get_irq(pdev
, 0);
3353 dev_err(dev
, "cannot find IRQ\n");
3359 ret
= request_irq(ret
, s3c_hsotg_irq
, 0, dev_name(dev
), hsotg
);
3361 dev_err(dev
, "cannot claim IRQ\n");
3365 dev_info(dev
, "regs %p, irq %d\n", hsotg
->regs
, hsotg
->irq
);
3367 device_initialize(&hsotg
->gadget
.dev
);
3369 dev_set_name(&hsotg
->gadget
.dev
, "gadget");
3371 hsotg
->gadget
.is_dualspeed
= 1;
3372 hsotg
->gadget
.ops
= &s3c_hsotg_gadget_ops
;
3373 hsotg
->gadget
.name
= dev_name(dev
);
3375 hsotg
->gadget
.dev
.parent
= dev
;
3376 hsotg
->gadget
.dev
.dma_mask
= dev
->dma_mask
;
3378 /* setup endpoint information */
3380 INIT_LIST_HEAD(&hsotg
->gadget
.ep_list
);
3381 hsotg
->gadget
.ep0
= &hsotg
->eps
[0].ep
;
3383 /* allocate EP0 request */
3385 hsotg
->ctrl_req
= s3c_hsotg_ep_alloc_request(&hsotg
->eps
[0].ep
,
3387 if (!hsotg
->ctrl_req
) {
3388 dev_err(dev
, "failed to allocate ctrl req\n");
3392 /* reset the system */
3394 clk_enable(hsotg
->clk
);
3396 s3c_hsotg_gate(pdev
, true);
3398 s3c_hsotg_otgreset(hsotg
);
3399 s3c_hsotg_corereset(hsotg
);
3400 s3c_hsotg_init(hsotg
);
3402 /* initialise the endpoints now the core has been initialised */
3403 for (epnum
= 0; epnum
< S3C_HSOTG_EPS
; epnum
++)
3404 s3c_hsotg_initep(hsotg
, &hsotg
->eps
[epnum
], epnum
);
3406 ret
= usb_add_gadget_udc(&pdev
->dev
, &hsotg
->gadget
);
3410 s3c_hsotg_create_debug(hsotg
);
3412 s3c_hsotg_dump(hsotg
);
3418 s3c_hsotg_gate(pdev
, false);
3419 clk_disable(hsotg
->clk
);
3420 clk_put(hsotg
->clk
);
3423 iounmap(hsotg
->regs
);
3426 release_resource(hsotg
->regs_res
);
3427 kfree(hsotg
->regs_res
);
3429 clk_put(hsotg
->clk
);
3435 static int __devexit
s3c_hsotg_remove(struct platform_device
*pdev
)
3437 struct s3c_hsotg
*hsotg
= platform_get_drvdata(pdev
);
3439 usb_del_gadget_udc(&hsotg
->gadget
);
3441 s3c_hsotg_delete_debug(hsotg
);
3443 usb_gadget_unregister_driver(hsotg
->driver
);
3445 free_irq(hsotg
->irq
, hsotg
);
3446 iounmap(hsotg
->regs
);
3448 release_resource(hsotg
->regs_res
);
3449 kfree(hsotg
->regs_res
);
3451 s3c_hsotg_gate(pdev
, false);
3453 clk_disable(hsotg
->clk
);
3454 clk_put(hsotg
->clk
);
3461 #define s3c_hsotg_suspend NULL
3462 #define s3c_hsotg_resume NULL
3465 static struct platform_driver s3c_hsotg_driver
= {
3467 .name
= "s3c-hsotg",
3468 .owner
= THIS_MODULE
,
3470 .probe
= s3c_hsotg_probe
,
3471 .remove
= __devexit_p(s3c_hsotg_remove
),
3472 .suspend
= s3c_hsotg_suspend
,
3473 .resume
= s3c_hsotg_resume
,
3476 static int __init
s3c_hsotg_modinit(void)
3478 return platform_driver_register(&s3c_hsotg_driver
);
3481 static void __exit
s3c_hsotg_modexit(void)
3483 platform_driver_unregister(&s3c_hsotg_driver
);
3486 module_init(s3c_hsotg_modinit
);
3487 module_exit(s3c_hsotg_modexit
);
3489 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3490 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3491 MODULE_LICENSE("GPL");
3492 MODULE_ALIAS("platform:s3c-hsotg");