2 * drivers/ata/sata_dwc_460ex.c
4 * Synopsys DesignWare Cores (DWC) SATA host driver
6 * Author: Mark Miesfeld <mmiesfeld@amcc.com>
8 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9 * Copyright 2008 DENX Software Engineering
11 * Based on versions provided by AMCC and Synopsys which are:
12 * Copyright 2006 Applied Micro Circuits Corporation
13 * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
21 #ifdef CONFIG_SATA_DWC_DEBUG
25 #ifdef CONFIG_SATA_DWC_VDEBUG
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/of_platform.h>
35 #include <linux/platform_device.h>
36 #include <linux/libata.h>
37 #include <linux/slab.h>
40 #include <scsi/scsi_host.h>
41 #include <scsi/scsi_cmnd.h>
43 /* These two are defined in "libata.h" */
46 #define DRV_NAME "sata-dwc"
47 #define DRV_VERSION "1.3"
49 /* SATA DMA driver Globals */
50 #define DMA_NUM_CHANS 1
51 #define DMA_NUM_CHAN_REGS 8
53 /* SATA DMA Register definitions */
54 #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/
57 u32 low
; /* Low bits 0-31 */
58 u32 high
; /* High bits 32-63 */
61 /* DMA Per Channel registers */
62 struct dma_chan_regs
{
63 struct dmareg sar
; /* Source Address */
64 struct dmareg dar
; /* Destination address */
65 struct dmareg llp
; /* Linked List Pointer */
66 struct dmareg ctl
; /* Control */
67 struct dmareg sstat
; /* Source Status not implemented in core */
68 struct dmareg dstat
; /* Destination Status not implemented in core*/
69 struct dmareg sstatar
; /* Source Status Address not impl in core */
70 struct dmareg dstatar
; /* Destination Status Address not implemente */
71 struct dmareg cfg
; /* Config */
72 struct dmareg sgr
; /* Source Gather */
73 struct dmareg dsr
; /* Destination Scatter */
76 /* Generic Interrupt Registers */
77 struct dma_interrupt_regs
{
78 struct dmareg tfr
; /* Transfer Interrupt */
79 struct dmareg block
; /* Block Interrupt */
80 struct dmareg srctran
; /* Source Transfer Interrupt */
81 struct dmareg dsttran
; /* Dest Transfer Interrupt */
82 struct dmareg error
; /* Error */
86 struct dma_chan_regs chan_regs
[DMA_NUM_CHAN_REGS
];
87 struct dma_interrupt_regs interrupt_raw
; /* Raw Interrupt */
88 struct dma_interrupt_regs interrupt_status
; /* Interrupt Status */
89 struct dma_interrupt_regs interrupt_mask
; /* Interrupt Mask */
90 struct dma_interrupt_regs interrupt_clear
; /* Interrupt Clear */
91 struct dmareg statusInt
; /* Interrupt combined*/
92 struct dmareg rq_srcreg
; /* Src Trans Req */
93 struct dmareg rq_dstreg
; /* Dst Trans Req */
94 struct dmareg rq_sgl_srcreg
; /* Sngl Src Trans Req*/
95 struct dmareg rq_sgl_dstreg
; /* Sngl Dst Trans Req*/
96 struct dmareg rq_lst_srcreg
; /* Last Src Trans Req*/
97 struct dmareg rq_lst_dstreg
; /* Last Dst Trans Req*/
98 struct dmareg dma_cfg
; /* DMA Config */
99 struct dmareg dma_chan_en
; /* DMA Channel Enable*/
100 struct dmareg dma_id
; /* DMA ID */
101 struct dmareg dma_test
; /* DMA Test */
102 struct dmareg res1
; /* reserved */
103 struct dmareg res2
; /* reserved */
106 * Param 6 = dma_param[0], Param 5 = dma_param[1],
107 * Param 4 = dma_param[2] ...
109 struct dmareg dma_params
[6];
112 /* Data structure for linked list item */
114 u32 sar
; /* Source Address */
115 u32 dar
; /* Destination address */
116 u32 llp
; /* Linked List Pointer */
117 struct dmareg ctl
; /* Control */
118 struct dmareg dstat
; /* Destination Status */
122 SATA_DWC_DMAC_LLI_SZ
= (sizeof(struct lli
)),
123 SATA_DWC_DMAC_LLI_NUM
= 256,
124 SATA_DWC_DMAC_LLI_TBL_SZ
= (SATA_DWC_DMAC_LLI_SZ
* \
125 SATA_DWC_DMAC_LLI_NUM
),
126 SATA_DWC_DMAC_TWIDTH_BYTES
= 4,
127 SATA_DWC_DMAC_CTRL_TSIZE_MAX
= (0x00000800 * \
128 SATA_DWC_DMAC_TWIDTH_BYTES
),
131 /* DMA Register Operation Bits */
133 DMA_EN
= 0x00000001, /* Enable AHB DMA */
134 DMA_CTL_LLP_SRCEN
= 0x10000000, /* Blk chain enable Src */
135 DMA_CTL_LLP_DSTEN
= 0x08000000, /* Blk chain enable Dst */
138 #define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */
139 #define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */
141 #define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \
142 ((0x000000001 << (ch)) << 8))
143 /* Disable channel */
144 #define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8))
145 /* Transfer Type & Flow Controller */
146 #define DMA_CTL_TTFC(type) (((type) & 0x7) << 20)
147 #define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */
148 #define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */
149 /* Src Burst Transaction Length */
150 #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
151 /* Dst Burst Transaction Length */
152 #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
153 /* Source Transfer Width */
154 #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
155 /* Destination Transfer Width */
156 #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
158 /* Assign HW handshaking interface (x) to destination / source peripheral */
159 #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
160 #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
161 #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
164 * This define is used to set block chaining disabled in the control low
165 * register. It is already in little endian format so it can be &'d dirctly.
166 * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
169 DMA_CTL_LLP_DISABLE_LE32
= 0xffffffe7,
170 DMA_CTL_TTFC_P2M_DMAC
= 0x00000002, /* Per to mem, DMAC cntr */
171 DMA_CTL_TTFC_M2P_PER
= 0x00000003, /* Mem to per, peripheral cntr */
172 DMA_CTL_SINC_INC
= 0x00000000, /* Source Address Increment */
173 DMA_CTL_SINC_DEC
= 0x00000200,
174 DMA_CTL_SINC_NOCHANGE
= 0x00000400,
175 DMA_CTL_DINC_INC
= 0x00000000, /* Destination Address Increment */
176 DMA_CTL_DINC_DEC
= 0x00000080,
177 DMA_CTL_DINC_NOCHANGE
= 0x00000100,
178 DMA_CTL_INT_EN
= 0x00000001, /* Interrupt Enable */
180 /* Channel Configuration Register high bits */
181 DMA_CFG_FCMOD_REQ
= 0x00000001, /* Flow Control - request based */
182 DMA_CFG_PROTCTL
= (0x00000003 << 2),/* Protection Control */
184 /* Channel Configuration Register low bits */
185 DMA_CFG_RELD_DST
= 0x80000000, /* Reload Dest / Src Addr */
186 DMA_CFG_RELD_SRC
= 0x40000000,
187 DMA_CFG_HS_SELSRC
= 0x00000800, /* Software handshake Src/ Dest */
188 DMA_CFG_HS_SELDST
= 0x00000400,
189 DMA_CFG_FIFOEMPTY
= (0x00000001 << 9), /* FIFO Empty bit */
191 /* Channel Linked List Pointer Register */
192 DMA_LLP_AHBMASTER1
= 0, /* List Master Select */
193 DMA_LLP_AHBMASTER2
= 1,
195 SATA_DWC_MAX_PORTS
= 1,
197 SATA_DWC_SCR_OFFSET
= 0x24,
198 SATA_DWC_REG_OFFSET
= 0x64,
201 /* DWC SATA Registers */
202 struct sata_dwc_regs
{
203 u32 fptagr
; /* 1st party DMA tag */
204 u32 fpbor
; /* 1st party DMA buffer offset */
205 u32 fptcr
; /* 1st party DMA Xfr count */
206 u32 dmacr
; /* DMA Control */
207 u32 dbtsr
; /* DMA Burst Transac size */
208 u32 intpr
; /* Interrupt Pending */
209 u32 intmr
; /* Interrupt Mask */
210 u32 errmr
; /* Error Mask */
211 u32 llcr
; /* Link Layer Control */
212 u32 phycr
; /* PHY Control */
213 u32 physr
; /* PHY Status */
214 u32 rxbistpd
; /* Recvd BIST pattern def register */
215 u32 rxbistpd1
; /* Recvd BIST data dword1 */
216 u32 rxbistpd2
; /* Recvd BIST pattern data dword2 */
217 u32 txbistpd
; /* Trans BIST pattern def register */
218 u32 txbistpd1
; /* Trans BIST data dword1 */
219 u32 txbistpd2
; /* Trans BIST data dword2 */
220 u32 bistcr
; /* BIST Control Register */
221 u32 bistfctr
; /* BIST FIS Count Register */
222 u32 bistsr
; /* BIST Status Register */
223 u32 bistdecr
; /* BIST Dword Error count register */
224 u32 res
[15]; /* Reserved locations */
225 u32 testr
; /* Test Register */
226 u32 versionr
; /* Version Register */
227 u32 idr
; /* ID Register */
228 u32 unimpl
[192]; /* Unimplemented */
229 u32 dmadr
[256]; /* FIFO Locations in DMA Mode */
233 SCR_SCONTROL_DET_ENABLE
= 0x00000001,
234 SCR_SSTATUS_DET_PRESENT
= 0x00000001,
235 SCR_SERROR_DIAG_X
= 0x04000000,
236 /* DWC SATA Register Operations */
237 SATA_DWC_TXFIFO_DEPTH
= 0x01FF,
238 SATA_DWC_RXFIFO_DEPTH
= 0x01FF,
239 SATA_DWC_DMACR_TMOD_TXCHEN
= 0x00000004,
240 SATA_DWC_DMACR_TXCHEN
= (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN
),
241 SATA_DWC_DMACR_RXCHEN
= (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN
),
242 SATA_DWC_DMACR_TXRXCH_CLEAR
= SATA_DWC_DMACR_TMOD_TXCHEN
,
243 SATA_DWC_INTPR_DMAT
= 0x00000001,
244 SATA_DWC_INTPR_NEWFP
= 0x00000002,
245 SATA_DWC_INTPR_PMABRT
= 0x00000004,
246 SATA_DWC_INTPR_ERR
= 0x00000008,
247 SATA_DWC_INTPR_NEWBIST
= 0x00000010,
248 SATA_DWC_INTPR_IPF
= 0x10000000,
249 SATA_DWC_INTMR_DMATM
= 0x00000001,
250 SATA_DWC_INTMR_NEWFPM
= 0x00000002,
251 SATA_DWC_INTMR_PMABRTM
= 0x00000004,
252 SATA_DWC_INTMR_ERRM
= 0x00000008,
253 SATA_DWC_INTMR_NEWBISTM
= 0x00000010,
254 SATA_DWC_LLCR_SCRAMEN
= 0x00000001,
255 SATA_DWC_LLCR_DESCRAMEN
= 0x00000002,
256 SATA_DWC_LLCR_RPDEN
= 0x00000004,
257 /* This is all error bits, zero's are reserved fields. */
258 SATA_DWC_SERROR_ERR_BITS
= 0x0FFF0F03
261 #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F)
262 #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
263 SATA_DWC_DMACR_TMOD_TXCHEN)
264 #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
265 SATA_DWC_DMACR_TMOD_TXCHEN)
266 #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
267 #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
269 struct sata_dwc_device
{
270 struct device
*dev
; /* generic device struct */
271 struct ata_probe_ent
*pe
; /* ptr to probe-ent */
272 struct ata_host
*host
;
274 struct sata_dwc_regs
*sata_dwc_regs
; /* DW Synopsys SATA specific */
278 #define SATA_DWC_QCMD_MAX 32
280 struct sata_dwc_device_port
{
281 struct sata_dwc_device
*hsdev
;
282 int cmd_issued
[SATA_DWC_QCMD_MAX
];
283 struct lli
*llit
[SATA_DWC_QCMD_MAX
]; /* DMA LLI table */
284 dma_addr_t llit_dma
[SATA_DWC_QCMD_MAX
];
285 u32 dma_chan
[SATA_DWC_QCMD_MAX
];
286 int dma_pending
[SATA_DWC_QCMD_MAX
];
290 * Commonly used DWC SATA driver Macros
292 #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\
293 (host)->private_data)
294 #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\
295 (ap)->host->private_data)
296 #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\
298 #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\
299 (qc)->ap->host->private_data)
300 #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\
304 SATA_DWC_CMD_ISSUED_NOT
= 0,
305 SATA_DWC_CMD_ISSUED_PEND
= 1,
306 SATA_DWC_CMD_ISSUED_EXEC
= 2,
307 SATA_DWC_CMD_ISSUED_NODATA
= 3,
309 SATA_DWC_DMA_PENDING_NONE
= 0,
310 SATA_DWC_DMA_PENDING_TX
= 1,
311 SATA_DWC_DMA_PENDING_RX
= 2,
314 struct sata_dwc_host_priv
{
315 void __iomem
*scr_addr_sstatus
;
316 u32 sata_dwc_sactive_issued
;
317 u32 sata_dwc_sactive_queued
;
318 u32 dma_interrupt_count
;
319 struct ahb_dma_regs
*sata_dma_regs
;
320 struct device
*dwc_dev
;
322 struct sata_dwc_host_priv host_pvt
;
326 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd
*qc
, u8 tag
);
327 static int sata_dwc_qc_complete(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
329 static void sata_dwc_dma_xfer_complete(struct ata_port
*ap
, u32 check_status
);
330 static void sata_dwc_port_stop(struct ata_port
*ap
);
331 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port
*hsdevp
, u8 tag
);
332 static int dma_dwc_init(struct sata_dwc_device
*hsdev
, int irq
);
333 static void dma_dwc_exit(struct sata_dwc_device
*hsdev
);
334 static int dma_dwc_xfer_setup(struct scatterlist
*sg
, int num_elems
,
335 struct lli
*lli
, dma_addr_t dma_lli
,
336 void __iomem
*addr
, int dir
);
337 static void dma_dwc_xfer_start(int dma_ch
);
339 static const char *get_prot_descript(u8 protocol
)
341 switch ((enum ata_tf_protocols
)protocol
) {
342 case ATA_PROT_NODATA
:
343 return "ATA no data";
350 case ATAPI_PROT_NODATA
:
351 return "ATAPI no data";
361 static const char *get_dma_dir_descript(int dma_dir
)
363 switch ((enum dma_data_direction
)dma_dir
) {
364 case DMA_BIDIRECTIONAL
:
365 return "bidirectional";
368 case DMA_FROM_DEVICE
:
369 return "from device";
375 static void sata_dwc_tf_dump(struct ata_taskfile
*tf
)
377 dev_vdbg(host_pvt
.dwc_dev
, "taskfile cmd: 0x%02x protocol: %s flags:"
378 "0x%lx device: %x\n", tf
->command
,
379 get_prot_descript(tf
->protocol
), tf
->flags
, tf
->device
);
380 dev_vdbg(host_pvt
.dwc_dev
, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
381 "lbam: 0x%x lbah: 0x%x\n", tf
->feature
, tf
->nsect
, tf
->lbal
,
383 dev_vdbg(host_pvt
.dwc_dev
, "hob_feature: 0x%02x hob_nsect: 0x%x "
384 "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
385 tf
->hob_feature
, tf
->hob_nsect
, tf
->hob_lbal
, tf
->hob_lbam
,
390 * Function: get_burst_length_encode
391 * arguments: datalength: length in bytes of data
392 * returns value to be programmed in register corresponding to data length
393 * This value is effectively the log(base 2) of the length
395 static int get_burst_length_encode(int datalength
)
397 int items
= datalength
>> 2; /* div by 4 to get lword count */
417 static void clear_chan_interrupts(int c
)
419 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.tfr
.low
),
421 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.block
.low
),
423 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.srctran
.low
),
425 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.dsttran
.low
),
427 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.error
.low
),
432 * Function: dma_request_channel
434 * returns channel number if available else -1
435 * This function assigns the next available DMA channel from the list to the
438 static int dma_request_channel(void)
442 for (i
= 0; i
< DMA_NUM_CHANS
; i
++) {
443 if (!(in_le32(&(host_pvt
.sata_dma_regs
->dma_chan_en
.low
)) &\
447 dev_err(host_pvt
.dwc_dev
, "%s NO channel chan_en: 0x%08x\n", __func__
,
448 in_le32(&(host_pvt
.sata_dma_regs
->dma_chan_en
.low
)));
453 * Function: dma_dwc_interrupt
454 * arguments: irq, dev_id, pt_regs
455 * returns channel number if available else -1
456 * Interrupt Handler for DW AHB SATA DMA
458 static irqreturn_t
dma_dwc_interrupt(int irq
, void *hsdev_instance
)
461 u32 tfr_reg
, err_reg
;
463 struct sata_dwc_device
*hsdev
=
464 (struct sata_dwc_device
*)hsdev_instance
;
465 struct ata_host
*host
= (struct ata_host
*)hsdev
->host
;
467 struct sata_dwc_device_port
*hsdevp
;
469 unsigned int port
= 0;
471 spin_lock_irqsave(&host
->lock
, flags
);
472 ap
= host
->ports
[port
];
473 hsdevp
= HSDEVP_FROM_AP(ap
);
474 tag
= ap
->link
.active_tag
;
476 tfr_reg
= in_le32(&(host_pvt
.sata_dma_regs
->interrupt_status
.tfr\
478 err_reg
= in_le32(&(host_pvt
.sata_dma_regs
->interrupt_status
.error\
481 dev_dbg(ap
->dev
, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
482 tfr_reg
, err_reg
, hsdevp
->dma_pending
[tag
], port
);
484 for (chan
= 0; chan
< DMA_NUM_CHANS
; chan
++) {
485 /* Check for end-of-transfer interrupt. */
486 if (tfr_reg
& DMA_CHANNEL(chan
)) {
488 * Each DMA command produces 2 interrupts. Only
489 * complete the command after both interrupts have been
490 * seen. (See sata_dwc_isr())
492 host_pvt
.dma_interrupt_count
++;
493 sata_dwc_clear_dmacr(hsdevp
, tag
);
495 if (hsdevp
->dma_pending
[tag
] ==
496 SATA_DWC_DMA_PENDING_NONE
) {
497 dev_err(ap
->dev
, "DMA not pending eot=0x%08x "
498 "err=0x%08x tag=0x%02x pending=%d\n",
499 tfr_reg
, err_reg
, tag
,
500 hsdevp
->dma_pending
[tag
]);
503 if ((host_pvt
.dma_interrupt_count
% 2) == 0)
504 sata_dwc_dma_xfer_complete(ap
, 1);
506 /* Clear the interrupt */
507 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear\
512 /* Check for error interrupt. */
513 if (err_reg
& DMA_CHANNEL(chan
)) {
514 /* TODO Need error handler ! */
515 dev_err(ap
->dev
, "error interrupt err_reg=0x%08x\n",
518 /* Clear the interrupt. */
519 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear\
524 spin_unlock_irqrestore(&host
->lock
, flags
);
529 * Function: dma_request_interrupts
532 * This function registers ISR for a particular DMA channel interrupt
534 static int dma_request_interrupts(struct sata_dwc_device
*hsdev
, int irq
)
539 for (chan
= 0; chan
< DMA_NUM_CHANS
; chan
++) {
540 /* Unmask error interrupt */
541 out_le32(&(host_pvt
.sata_dma_regs
)->interrupt_mask
.error
.low
,
542 DMA_ENABLE_CHAN(chan
));
544 /* Unmask end-of-transfer interrupt */
545 out_le32(&(host_pvt
.sata_dma_regs
)->interrupt_mask
.tfr
.low
,
546 DMA_ENABLE_CHAN(chan
));
549 retval
= request_irq(irq
, dma_dwc_interrupt
, 0, "SATA DMA", hsdev
);
551 dev_err(host_pvt
.dwc_dev
, "%s: could not get IRQ %d\n",
556 /* Mark this interrupt as requested */
557 hsdev
->irq_dma
= irq
;
562 * Function: map_sg_to_lli
563 * The Synopsis driver has a comment proposing that better performance
564 * is possible by only enabling interrupts on the last item in the linked list.
565 * However, it seems that could be a problem if an error happened on one of the
566 * first items. The transfer would halt, but no error interrupt would occur.
567 * Currently this function sets interrupts enabled for each linked list item:
570 static int map_sg_to_lli(struct scatterlist
*sg
, int num_elems
,
571 struct lli
*lli
, dma_addr_t dma_lli
,
572 void __iomem
*dmadr_addr
, int dir
)
579 dev_dbg(host_pvt
.dwc_dev
, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x"
580 " dmadr=0x%08x\n", __func__
, sg
, num_elems
, lli
, (u32
)dma_lli
,
583 bl
= get_burst_length_encode(AHB_DMA_BRST_DFLT
);
585 for (i
= 0; i
< num_elems
; i
++, sg
++) {
589 addr
= (u32
) sg_dma_address(sg
);
590 sg_len
= sg_dma_len(sg
);
592 dev_dbg(host_pvt
.dwc_dev
, "%s: elem=%d sg_addr=0x%x sg_len"
593 "=%d\n", __func__
, i
, addr
, sg_len
);
596 if (idx
>= SATA_DWC_DMAC_LLI_NUM
) {
597 /* The LLI table is not large enough. */
598 dev_err(host_pvt
.dwc_dev
, "LLI table overrun "
602 len
= (sg_len
> SATA_DWC_DMAC_CTRL_TSIZE_MAX
) ?
603 SATA_DWC_DMAC_CTRL_TSIZE_MAX
: sg_len
;
605 offset
= addr
& 0xffff;
606 if ((offset
+ sg_len
) > 0x10000)
607 len
= 0x10000 - offset
;
610 * Make sure a LLI block is not created that will span
611 * 8K max FIS boundary. If the block spans such a FIS
612 * boundary, there is a chance that a DMA burst will
613 * cross that boundary -- this results in an error in
614 * the host controller.
616 if (fis_len
+ len
> 8192) {
617 dev_dbg(host_pvt
.dwc_dev
, "SPLITTING: fis_len="
618 "%d(0x%x) len=%d(0x%x)\n", fis_len
,
620 len
= 8192 - fis_len
;
629 * Set DMA addresses and lower half of control register
630 * based on direction.
632 if (dir
== DMA_FROM_DEVICE
) {
633 lli
[idx
].dar
= cpu_to_le32(addr
);
634 lli
[idx
].sar
= cpu_to_le32((u32
)dmadr_addr
);
636 lli
[idx
].ctl
.low
= cpu_to_le32(
637 DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC
) |
640 DMA_CTL_SRC_MSIZE(bl
) |
641 DMA_CTL_DST_MSIZE(bl
) |
642 DMA_CTL_SINC_NOCHANGE
|
643 DMA_CTL_SRC_TRWID(2) |
644 DMA_CTL_DST_TRWID(2) |
648 } else { /* DMA_TO_DEVICE */
649 lli
[idx
].sar
= cpu_to_le32(addr
);
650 lli
[idx
].dar
= cpu_to_le32((u32
)dmadr_addr
);
652 lli
[idx
].ctl
.low
= cpu_to_le32(
653 DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER
) |
656 DMA_CTL_SRC_MSIZE(bl
) |
657 DMA_CTL_DST_MSIZE(bl
) |
658 DMA_CTL_DINC_NOCHANGE
|
659 DMA_CTL_SRC_TRWID(2) |
660 DMA_CTL_DST_TRWID(2) |
666 dev_dbg(host_pvt
.dwc_dev
, "%s setting ctl.high len: "
667 "0x%08x val: 0x%08x\n", __func__
,
668 len
, DMA_CTL_BLK_TS(len
/ 4));
670 /* Program the LLI CTL high register */
671 lli
[idx
].ctl
.high
= cpu_to_le32(DMA_CTL_BLK_TS\
674 /* Program the next pointer. The next pointer must be
675 * the physical address, not the virtual address.
677 next_llp
= (dma_lli
+ ((idx
+ 1) * sizeof(struct \
680 /* The last 2 bits encode the list master select. */
681 next_llp
= DMA_LLP_LMS(next_llp
, DMA_LLP_AHBMASTER2
);
683 lli
[idx
].llp
= cpu_to_le32(next_llp
);
691 * The last next ptr has to be zero and the last control low register
692 * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
693 * and destination enable) set back to 0 (disabled.) This is what tells
694 * the core that this is the last item in the linked list.
697 lli
[idx
-1].llp
= 0x00000000;
698 lli
[idx
-1].ctl
.low
&= DMA_CTL_LLP_DISABLE_LE32
;
700 /* Flush cache to memory */
701 dma_cache_sync(NULL
, lli
, (sizeof(struct lli
) * idx
),
709 * Function: dma_dwc_xfer_start
710 * arguments: Channel number
712 * Enables the DMA channel
714 static void dma_dwc_xfer_start(int dma_ch
)
716 /* Enable the DMA channel */
717 out_le32(&(host_pvt
.sata_dma_regs
->dma_chan_en
.low
),
718 in_le32(&(host_pvt
.sata_dma_regs
->dma_chan_en
.low
)) |
719 DMA_ENABLE_CHAN(dma_ch
));
722 static int dma_dwc_xfer_setup(struct scatterlist
*sg
, int num_elems
,
723 struct lli
*lli
, dma_addr_t dma_lli
,
724 void __iomem
*addr
, int dir
)
728 /* Acquire DMA channel */
729 dma_ch
= dma_request_channel();
731 dev_err(host_pvt
.dwc_dev
, "%s: dma channel unavailable\n",
736 /* Convert SG list to linked list of items (LLIs) for AHB DMA */
737 num_lli
= map_sg_to_lli(sg
, num_elems
, lli
, dma_lli
, addr
, dir
);
739 dev_dbg(host_pvt
.dwc_dev
, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
740 " 0x%0xlx addr: %p lli count: %d\n", __func__
, sg
, num_elems
,
741 lli
, (u32
)dma_lli
, addr
, num_lli
);
743 clear_chan_interrupts(dma_ch
);
745 /* Program the CFG register. */
746 out_le32(&(host_pvt
.sata_dma_regs
->chan_regs
[dma_ch
].cfg
.high
),
747 DMA_CFG_PROTCTL
| DMA_CFG_FCMOD_REQ
);
748 out_le32(&(host_pvt
.sata_dma_regs
->chan_regs
[dma_ch
].cfg
.low
), 0);
750 /* Program the address of the linked list */
751 out_le32(&(host_pvt
.sata_dma_regs
->chan_regs
[dma_ch
].llp
.low
),
752 DMA_LLP_LMS(dma_lli
, DMA_LLP_AHBMASTER2
));
754 /* Program the CTL register with src enable / dst enable */
755 out_le32(&(host_pvt
.sata_dma_regs
->chan_regs
[dma_ch
].ctl
.low
),
756 DMA_CTL_LLP_SRCEN
| DMA_CTL_LLP_DSTEN
);
761 * Function: dma_dwc_exit
764 * This function exits the SATA DMA driver
766 static void dma_dwc_exit(struct sata_dwc_device
*hsdev
)
768 dev_dbg(host_pvt
.dwc_dev
, "%s:\n", __func__
);
769 if (host_pvt
.sata_dma_regs
) {
770 iounmap(host_pvt
.sata_dma_regs
);
771 host_pvt
.sata_dma_regs
= NULL
;
774 if (hsdev
->irq_dma
) {
775 free_irq(hsdev
->irq_dma
, hsdev
);
781 * Function: dma_dwc_init
784 * This function initializes the SATA DMA driver
786 static int dma_dwc_init(struct sata_dwc_device
*hsdev
, int irq
)
790 err
= dma_request_interrupts(hsdev
, irq
);
792 dev_err(host_pvt
.dwc_dev
, "%s: dma_request_interrupts returns"
793 " %d\n", __func__
, err
);
798 out_le32(&(host_pvt
.sata_dma_regs
->dma_cfg
.low
), DMA_EN
);
800 dev_notice(host_pvt
.dwc_dev
, "DMA initialized\n");
801 dev_dbg(host_pvt
.dwc_dev
, "SATA DMA registers=0x%p\n", host_pvt
.\
812 static int sata_dwc_scr_read(struct ata_link
*link
, unsigned int scr
, u32
*val
)
814 if (scr
> SCR_NOTIFICATION
) {
815 dev_err(link
->ap
->dev
, "%s: Incorrect SCR offset 0x%02x\n",
820 *val
= in_le32((void *)link
->ap
->ioaddr
.scr_addr
+ (scr
* 4));
821 dev_dbg(link
->ap
->dev
, "%s: id=%d reg=%d val=val=0x%08x\n",
822 __func__
, link
->ap
->print_id
, scr
, *val
);
827 static int sata_dwc_scr_write(struct ata_link
*link
, unsigned int scr
, u32 val
)
829 dev_dbg(link
->ap
->dev
, "%s: id=%d reg=%d val=val=0x%08x\n",
830 __func__
, link
->ap
->print_id
, scr
, val
);
831 if (scr
> SCR_NOTIFICATION
) {
832 dev_err(link
->ap
->dev
, "%s: Incorrect SCR offset 0x%02x\n",
836 out_le32((void *)link
->ap
->ioaddr
.scr_addr
+ (scr
* 4), val
);
841 static u32
core_scr_read(unsigned int scr
)
843 return in_le32((void __iomem
*)(host_pvt
.scr_addr_sstatus
) +\
847 static void core_scr_write(unsigned int scr
, u32 val
)
849 out_le32((void __iomem
*)(host_pvt
.scr_addr_sstatus
) + (scr
* 4),
853 static void clear_serror(void)
856 val
= core_scr_read(SCR_ERROR
);
857 core_scr_write(SCR_ERROR
, val
);
861 static void clear_interrupt_bit(struct sata_dwc_device
*hsdev
, u32 bit
)
863 out_le32(&hsdev
->sata_dwc_regs
->intpr
,
864 in_le32(&hsdev
->sata_dwc_regs
->intpr
));
867 static u32
qcmd_tag_to_mask(u8 tag
)
869 return 0x00000001 << (tag
& 0x1f);
873 static void sata_dwc_error_intr(struct ata_port
*ap
,
874 struct sata_dwc_device
*hsdev
, uint intpr
)
876 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
877 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
878 unsigned int err_mask
= 0, action
= 0;
879 struct ata_queued_cmd
*qc
;
884 ata_ehi_clear_desc(ehi
);
886 serror
= core_scr_read(SCR_ERROR
);
887 status
= ap
->ops
->sff_check_status(ap
);
889 err_reg
= in_le32(&(host_pvt
.sata_dma_regs
->interrupt_status
.error
.\
891 tag
= ap
->link
.active_tag
;
893 dev_err(ap
->dev
, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
894 "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
895 __func__
, serror
, intpr
, status
, host_pvt
.dma_interrupt_count
,
896 hsdevp
->dma_pending
[tag
], hsdevp
->cmd_issued
[tag
], err_reg
);
898 /* Clear error register and interrupt bit */
900 clear_interrupt_bit(hsdev
, SATA_DWC_INTPR_ERR
);
902 /* This is the only error happening now. TODO check for exact error */
904 err_mask
|= AC_ERR_HOST_BUS
;
905 action
|= ATA_EH_RESET
;
907 /* Pass this on to EH */
908 ehi
->serror
|= serror
;
909 ehi
->action
|= action
;
911 qc
= ata_qc_from_tag(ap
, tag
);
913 qc
->err_mask
|= err_mask
;
915 ehi
->err_mask
|= err_mask
;
921 * Function : sata_dwc_isr
922 * arguments : irq, void *dev_instance, struct pt_regs *regs
923 * Return value : irqreturn_t - status of IRQ
924 * This Interrupt handler called via port ops registered function.
925 * .irq_handler = sata_dwc_isr
927 static irqreturn_t
sata_dwc_isr(int irq
, void *dev_instance
)
929 struct ata_host
*host
= (struct ata_host
*)dev_instance
;
930 struct sata_dwc_device
*hsdev
= HSDEV_FROM_HOST(host
);
932 struct ata_queued_cmd
*qc
;
935 int handled
, num_processed
, port
= 0;
936 uint intpr
, sactive
, sactive2
, tag_mask
;
937 struct sata_dwc_device_port
*hsdevp
;
938 host_pvt
.sata_dwc_sactive_issued
= 0;
940 spin_lock_irqsave(&host
->lock
, flags
);
942 /* Read the interrupt register */
943 intpr
= in_le32(&hsdev
->sata_dwc_regs
->intpr
);
945 ap
= host
->ports
[port
];
946 hsdevp
= HSDEVP_FROM_AP(ap
);
948 dev_dbg(ap
->dev
, "%s intpr=0x%08x active_tag=%d\n", __func__
, intpr
,
949 ap
->link
.active_tag
);
951 /* Check for error interrupt */
952 if (intpr
& SATA_DWC_INTPR_ERR
) {
953 sata_dwc_error_intr(ap
, hsdev
, intpr
);
958 /* Check for DMA SETUP FIS (FP DMA) interrupt */
959 if (intpr
& SATA_DWC_INTPR_NEWFP
) {
960 clear_interrupt_bit(hsdev
, SATA_DWC_INTPR_NEWFP
);
962 tag
= (u8
)(in_le32(&hsdev
->sata_dwc_regs
->fptagr
));
963 dev_dbg(ap
->dev
, "%s: NEWFP tag=%d\n", __func__
, tag
);
964 if (hsdevp
->cmd_issued
[tag
] != SATA_DWC_CMD_ISSUED_PEND
)
965 dev_warn(ap
->dev
, "CMD tag=%d not pending?\n", tag
);
967 host_pvt
.sata_dwc_sactive_issued
|= qcmd_tag_to_mask(tag
);
969 qc
= ata_qc_from_tag(ap
, tag
);
971 * Start FP DMA for NCQ command. At this point the tag is the
972 * active tag. It is the tag that matches the command about to
975 qc
->ap
->link
.active_tag
= tag
;
976 sata_dwc_bmdma_start_by_tag(qc
, tag
);
981 sactive
= core_scr_read(SCR_ACTIVE
);
982 tag_mask
= (host_pvt
.sata_dwc_sactive_issued
| sactive
) ^ sactive
;
984 /* If no sactive issued and tag_mask is zero then this is not NCQ */
985 if (host_pvt
.sata_dwc_sactive_issued
== 0 && tag_mask
== 0) {
986 if (ap
->link
.active_tag
== ATA_TAG_POISON
)
989 tag
= ap
->link
.active_tag
;
990 qc
= ata_qc_from_tag(ap
, tag
);
992 /* DEV interrupt w/ no active qc? */
993 if (unlikely(!qc
|| (qc
->tf
.flags
& ATA_TFLAG_POLLING
))) {
994 dev_err(ap
->dev
, "%s interrupt with no active qc "
995 "qc=%p\n", __func__
, qc
);
996 ap
->ops
->sff_check_status(ap
);
1000 status
= ap
->ops
->sff_check_status(ap
);
1002 qc
->ap
->link
.active_tag
= tag
;
1003 hsdevp
->cmd_issued
[tag
] = SATA_DWC_CMD_ISSUED_NOT
;
1005 if (status
& ATA_ERR
) {
1006 dev_dbg(ap
->dev
, "interrupt ATA_ERR (0x%x)\n", status
);
1007 sata_dwc_qc_complete(ap
, qc
, 1);
1012 dev_dbg(ap
->dev
, "%s non-NCQ cmd interrupt, protocol: %s\n",
1013 __func__
, get_prot_descript(qc
->tf
.protocol
));
1015 if (ata_is_dma(qc
->tf
.protocol
)) {
1017 * Each DMA transaction produces 2 interrupts. The DMAC
1018 * transfer complete interrupt and the SATA controller
1019 * operation done interrupt. The command should be
1020 * completed only after both interrupts are seen.
1022 host_pvt
.dma_interrupt_count
++;
1023 if (hsdevp
->dma_pending
[tag
] == \
1024 SATA_DWC_DMA_PENDING_NONE
) {
1025 dev_err(ap
->dev
, "%s: DMA not pending "
1026 "intpr=0x%08x status=0x%08x pending"
1027 "=%d\n", __func__
, intpr
, status
,
1028 hsdevp
->dma_pending
[tag
]);
1031 if ((host_pvt
.dma_interrupt_count
% 2) == 0)
1032 sata_dwc_dma_xfer_complete(ap
, 1);
1033 } else if (ata_is_pio(qc
->tf
.protocol
)) {
1034 ata_sff_hsm_move(ap
, qc
, status
, 0);
1038 if (unlikely(sata_dwc_qc_complete(ap
, qc
, 1)))
1047 * This is a NCQ command. At this point we need to figure out for which
1048 * tags we have gotten a completion interrupt. One interrupt may serve
1049 * as completion for more than one operation when commands are queued
1050 * (NCQ). We need to process each completed command.
1053 /* process completed commands */
1054 sactive
= core_scr_read(SCR_ACTIVE
);
1055 tag_mask
= (host_pvt
.sata_dwc_sactive_issued
| sactive
) ^ sactive
;
1057 if (sactive
!= 0 || (host_pvt
.sata_dwc_sactive_issued
) > 1 || \
1059 dev_dbg(ap
->dev
, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x"
1060 "tag_mask=0x%08x\n", __func__
, sactive
,
1061 host_pvt
.sata_dwc_sactive_issued
, tag_mask
);
1064 if ((tag_mask
| (host_pvt
.sata_dwc_sactive_issued
)) != \
1065 (host_pvt
.sata_dwc_sactive_issued
)) {
1066 dev_warn(ap
->dev
, "Bad tag mask? sactive=0x%08x "
1067 "(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask"
1068 "=0x%08x\n", sactive
, host_pvt
.sata_dwc_sactive_issued
,
1072 /* read just to clear ... not bad if currently still busy */
1073 status
= ap
->ops
->sff_check_status(ap
);
1074 dev_dbg(ap
->dev
, "%s ATA status register=0x%x\n", __func__
, status
);
1080 while (!(tag_mask
& 0x00000001)) {
1085 tag_mask
&= (~0x00000001);
1086 qc
= ata_qc_from_tag(ap
, tag
);
1088 /* To be picked up by completion functions */
1089 qc
->ap
->link
.active_tag
= tag
;
1090 hsdevp
->cmd_issued
[tag
] = SATA_DWC_CMD_ISSUED_NOT
;
1092 /* Let libata/scsi layers handle error */
1093 if (status
& ATA_ERR
) {
1094 dev_dbg(ap
->dev
, "%s ATA_ERR (0x%x)\n", __func__
,
1096 sata_dwc_qc_complete(ap
, qc
, 1);
1101 /* Process completed command */
1102 dev_dbg(ap
->dev
, "%s NCQ command, protocol: %s\n", __func__
,
1103 get_prot_descript(qc
->tf
.protocol
));
1104 if (ata_is_dma(qc
->tf
.protocol
)) {
1105 host_pvt
.dma_interrupt_count
++;
1106 if (hsdevp
->dma_pending
[tag
] == \
1107 SATA_DWC_DMA_PENDING_NONE
)
1108 dev_warn(ap
->dev
, "%s: DMA not pending?\n",
1110 if ((host_pvt
.dma_interrupt_count
% 2) == 0)
1111 sata_dwc_dma_xfer_complete(ap
, 1);
1113 if (unlikely(sata_dwc_qc_complete(ap
, qc
, 1)))
1119 ap
->stats
.idle_irq
++;
1120 dev_warn(ap
->dev
, "STILL BUSY IRQ ata%d: irq trap\n",
1122 } /* while tag_mask */
1125 * Check to see if any commands completed while we were processing our
1126 * initial set of completed commands (read status clears interrupts,
1127 * so we might miss a completed command interrupt if one came in while
1128 * we were processing --we read status as part of processing a completed
1131 sactive2
= core_scr_read(SCR_ACTIVE
);
1132 if (sactive2
!= sactive
) {
1133 dev_dbg(ap
->dev
, "More completed - sactive=0x%x sactive2"
1134 "=0x%x\n", sactive
, sactive2
);
1139 spin_unlock_irqrestore(&host
->lock
, flags
);
1140 return IRQ_RETVAL(handled
);
1143 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port
*hsdevp
, u8 tag
)
1145 struct sata_dwc_device
*hsdev
= HSDEV_FROM_HSDEVP(hsdevp
);
1147 if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_RX
) {
1148 out_le32(&(hsdev
->sata_dwc_regs
->dmacr
),
1149 SATA_DWC_DMACR_RX_CLEAR(
1150 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
))));
1151 } else if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_TX
) {
1152 out_le32(&(hsdev
->sata_dwc_regs
->dmacr
),
1153 SATA_DWC_DMACR_TX_CLEAR(
1154 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
))));
1157 * This should not happen, it indicates the driver is out of
1158 * sync. If it does happen, clear dmacr anyway.
1160 dev_err(host_pvt
.dwc_dev
, "%s DMA protocol RX and"
1161 "TX DMA not pending tag=0x%02x pending=%d"
1162 " dmacr: 0x%08x\n", __func__
, tag
,
1163 hsdevp
->dma_pending
[tag
],
1164 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
)));
1165 out_le32(&(hsdev
->sata_dwc_regs
->dmacr
),
1166 SATA_DWC_DMACR_TXRXCH_CLEAR
);
1170 static void sata_dwc_dma_xfer_complete(struct ata_port
*ap
, u32 check_status
)
1172 struct ata_queued_cmd
*qc
;
1173 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1174 struct sata_dwc_device
*hsdev
= HSDEV_FROM_AP(ap
);
1177 tag
= ap
->link
.active_tag
;
1178 qc
= ata_qc_from_tag(ap
, tag
);
1180 dev_err(ap
->dev
, "failed to get qc");
1186 dev_info(ap
->dev
, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1187 "dmacr=0x%08x\n", __func__
, qc
->tag
, qc
->tf
.command
,
1188 get_dma_dir_descript(qc
->dma_dir
),
1189 get_prot_descript(qc
->tf
.protocol
),
1190 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
)));
1194 if (ata_is_dma(qc
->tf
.protocol
)) {
1195 if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_NONE
) {
1196 dev_err(ap
->dev
, "%s DMA protocol RX and TX DMA not "
1197 "pending dmacr: 0x%08x\n", __func__
,
1198 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
)));
1201 hsdevp
->dma_pending
[tag
] = SATA_DWC_DMA_PENDING_NONE
;
1202 sata_dwc_qc_complete(ap
, qc
, check_status
);
1203 ap
->link
.active_tag
= ATA_TAG_POISON
;
1205 sata_dwc_qc_complete(ap
, qc
, check_status
);
1209 static int sata_dwc_qc_complete(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
1215 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1216 host_pvt
.sata_dwc_sactive_queued
= 0;
1217 dev_dbg(ap
->dev
, "%s checkstatus? %x\n", __func__
, check_status
);
1219 if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_TX
)
1220 dev_err(ap
->dev
, "TX DMA PENDING\n");
1221 else if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_RX
)
1222 dev_err(ap
->dev
, "RX DMA PENDING\n");
1223 dev_dbg(ap
->dev
, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1224 " protocol=%d\n", qc
->tf
.command
, status
, ap
->print_id
,
1227 /* clear active bit */
1228 mask
= (~(qcmd_tag_to_mask(tag
)));
1229 host_pvt
.sata_dwc_sactive_queued
= (host_pvt
.sata_dwc_sactive_queued
) \
1231 host_pvt
.sata_dwc_sactive_issued
= (host_pvt
.sata_dwc_sactive_issued
) \
1233 ata_qc_complete(qc
);
1237 static void sata_dwc_enable_interrupts(struct sata_dwc_device
*hsdev
)
1239 /* Enable selective interrupts by setting the interrupt maskregister*/
1240 out_le32(&hsdev
->sata_dwc_regs
->intmr
,
1241 SATA_DWC_INTMR_ERRM
|
1242 SATA_DWC_INTMR_NEWFPM
|
1243 SATA_DWC_INTMR_PMABRTM
|
1244 SATA_DWC_INTMR_DMATM
);
1246 * Unmask the error bits that should trigger an error interrupt by
1247 * setting the error mask register.
1249 out_le32(&hsdev
->sata_dwc_regs
->errmr
, SATA_DWC_SERROR_ERR_BITS
);
1251 dev_dbg(host_pvt
.dwc_dev
, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1252 __func__
, in_le32(&hsdev
->sata_dwc_regs
->intmr
),
1253 in_le32(&hsdev
->sata_dwc_regs
->errmr
));
1256 static void sata_dwc_setup_port(struct ata_ioports
*port
, unsigned long base
)
1258 port
->cmd_addr
= (void *)base
+ 0x00;
1259 port
->data_addr
= (void *)base
+ 0x00;
1261 port
->error_addr
= (void *)base
+ 0x04;
1262 port
->feature_addr
= (void *)base
+ 0x04;
1264 port
->nsect_addr
= (void *)base
+ 0x08;
1266 port
->lbal_addr
= (void *)base
+ 0x0c;
1267 port
->lbam_addr
= (void *)base
+ 0x10;
1268 port
->lbah_addr
= (void *)base
+ 0x14;
1270 port
->device_addr
= (void *)base
+ 0x18;
1271 port
->command_addr
= (void *)base
+ 0x1c;
1272 port
->status_addr
= (void *)base
+ 0x1c;
1274 port
->altstatus_addr
= (void *)base
+ 0x20;
1275 port
->ctl_addr
= (void *)base
+ 0x20;
1279 * Function : sata_dwc_port_start
1280 * arguments : struct ata_ioports *port
1281 * Return value : returns 0 if success, error code otherwise
1282 * This function allocates the scatter gather LLI table for AHB DMA
1284 static int sata_dwc_port_start(struct ata_port
*ap
)
1287 struct sata_dwc_device
*hsdev
;
1288 struct sata_dwc_device_port
*hsdevp
= NULL
;
1289 struct device
*pdev
;
1292 hsdev
= HSDEV_FROM_AP(ap
);
1294 dev_dbg(ap
->dev
, "%s: port_no=%d\n", __func__
, ap
->port_no
);
1296 hsdev
->host
= ap
->host
;
1297 pdev
= ap
->host
->dev
;
1299 dev_err(ap
->dev
, "%s: no ap->host->dev\n", __func__
);
1304 /* Allocate Port Struct */
1305 hsdevp
= kzalloc(sizeof(*hsdevp
), GFP_KERNEL
);
1307 dev_err(ap
->dev
, "%s: kmalloc failed for hsdevp\n", __func__
);
1311 hsdevp
->hsdev
= hsdev
;
1313 for (i
= 0; i
< SATA_DWC_QCMD_MAX
; i
++)
1314 hsdevp
->cmd_issued
[i
] = SATA_DWC_CMD_ISSUED_NOT
;
1316 ap
->bmdma_prd
= 0; /* set these so libata doesn't use them */
1317 ap
->bmdma_prd_dma
= 0;
1320 * DMA - Assign scatter gather LLI table. We can't use the libata
1321 * version since it's PRD is IDE PCI specific.
1323 for (i
= 0; i
< SATA_DWC_QCMD_MAX
; i
++) {
1324 hsdevp
->llit
[i
] = dma_alloc_coherent(pdev
,
1325 SATA_DWC_DMAC_LLI_TBL_SZ
,
1326 &(hsdevp
->llit_dma
[i
]),
1328 if (!hsdevp
->llit
[i
]) {
1329 dev_err(ap
->dev
, "%s: dma_alloc_coherent failed\n",
1336 if (ap
->port_no
== 0) {
1337 dev_dbg(ap
->dev
, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1339 out_le32(&hsdev
->sata_dwc_regs
->dmacr
,
1340 SATA_DWC_DMACR_TXRXCH_CLEAR
);
1342 dev_dbg(ap
->dev
, "%s: setting burst size in DBTSR\n",
1344 out_le32(&hsdev
->sata_dwc_regs
->dbtsr
,
1345 (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT
) |
1346 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT
)));
1349 /* Clear any error bits before libata starts issuing commands */
1351 ap
->private_data
= hsdevp
;
1355 sata_dwc_port_stop(ap
);
1356 dev_dbg(ap
->dev
, "%s: fail\n", __func__
);
1358 dev_dbg(ap
->dev
, "%s: done\n", __func__
);
1364 static void sata_dwc_port_stop(struct ata_port
*ap
)
1367 struct sata_dwc_device
*hsdev
= HSDEV_FROM_AP(ap
);
1368 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1370 dev_dbg(ap
->dev
, "%s: ap->id = %d\n", __func__
, ap
->print_id
);
1372 if (hsdevp
&& hsdev
) {
1373 /* deallocate LLI table */
1374 for (i
= 0; i
< SATA_DWC_QCMD_MAX
; i
++) {
1375 dma_free_coherent(ap
->host
->dev
,
1376 SATA_DWC_DMAC_LLI_TBL_SZ
,
1377 hsdevp
->llit
[i
], hsdevp
->llit_dma
[i
]);
1382 ap
->private_data
= NULL
;
1386 * Function : sata_dwc_exec_command_by_tag
1387 * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1388 * Return value : None
1389 * This function keeps track of individual command tag ids and calls
1390 * ata_exec_command in libata
1392 static void sata_dwc_exec_command_by_tag(struct ata_port
*ap
,
1393 struct ata_taskfile
*tf
,
1394 u8 tag
, u32 cmd_issued
)
1396 unsigned long flags
;
1397 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1399 dev_dbg(ap
->dev
, "%s cmd(0x%02x): %s tag=%d\n", __func__
, tf
->command
,
1400 ata_get_cmd_descript(tf
->command
), tag
);
1402 spin_lock_irqsave(&ap
->host
->lock
, flags
);
1403 hsdevp
->cmd_issued
[tag
] = cmd_issued
;
1404 spin_unlock_irqrestore(&ap
->host
->lock
, flags
);
1406 * Clear SError before executing a new command.
1407 * sata_dwc_scr_write and read can not be used here. Clearing the PM
1408 * managed SError register for the disk needs to be done before the
1409 * task file is loaded.
1412 ata_sff_exec_command(ap
, tf
);
1415 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd
*qc
, u8 tag
)
1417 sata_dwc_exec_command_by_tag(qc
->ap
, &qc
->tf
, tag
,
1418 SATA_DWC_CMD_ISSUED_PEND
);
1421 static void sata_dwc_bmdma_setup(struct ata_queued_cmd
*qc
)
1425 if (ata_is_ncq(qc
->tf
.protocol
)) {
1426 dev_dbg(qc
->ap
->dev
, "%s: ap->link.sactive=0x%08x tag=%d\n",
1427 __func__
, qc
->ap
->link
.sactive
, tag
);
1431 sata_dwc_bmdma_setup_by_tag(qc
, tag
);
1434 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd
*qc
, u8 tag
)
1438 struct sata_dwc_device
*hsdev
= HSDEV_FROM_QC(qc
);
1439 struct ata_port
*ap
= qc
->ap
;
1440 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1441 int dir
= qc
->dma_dir
;
1442 dma_chan
= hsdevp
->dma_chan
[tag
];
1444 if (hsdevp
->cmd_issued
[tag
] != SATA_DWC_CMD_ISSUED_NOT
) {
1446 if (dir
== DMA_TO_DEVICE
)
1447 hsdevp
->dma_pending
[tag
] = SATA_DWC_DMA_PENDING_TX
;
1449 hsdevp
->dma_pending
[tag
] = SATA_DWC_DMA_PENDING_RX
;
1451 dev_err(ap
->dev
, "%s: Command not pending cmd_issued=%d "
1452 "(tag=%d) DMA NOT started\n", __func__
,
1453 hsdevp
->cmd_issued
[tag
], tag
);
1457 dev_dbg(ap
->dev
, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1458 "start_dma? %x\n", __func__
, qc
, tag
, qc
->tf
.command
,
1459 get_dma_dir_descript(qc
->dma_dir
), start_dma
);
1460 sata_dwc_tf_dump(&(qc
->tf
));
1463 reg
= core_scr_read(SCR_ERROR
);
1464 if (reg
& SATA_DWC_SERROR_ERR_BITS
) {
1465 dev_err(ap
->dev
, "%s: ****** SError=0x%08x ******\n",
1469 if (dir
== DMA_TO_DEVICE
)
1470 out_le32(&hsdev
->sata_dwc_regs
->dmacr
,
1471 SATA_DWC_DMACR_TXCHEN
);
1473 out_le32(&hsdev
->sata_dwc_regs
->dmacr
,
1474 SATA_DWC_DMACR_RXCHEN
);
1476 /* Enable AHB DMA transfer on the specified channel */
1477 dma_dwc_xfer_start(dma_chan
);
1481 static void sata_dwc_bmdma_start(struct ata_queued_cmd
*qc
)
1485 if (ata_is_ncq(qc
->tf
.protocol
)) {
1486 dev_dbg(qc
->ap
->dev
, "%s: ap->link.sactive=0x%08x tag=%d\n",
1487 __func__
, qc
->ap
->link
.sactive
, tag
);
1491 dev_dbg(qc
->ap
->dev
, "%s\n", __func__
);
1492 sata_dwc_bmdma_start_by_tag(qc
, tag
);
1496 * Function : sata_dwc_qc_prep_by_tag
1497 * arguments : ata_queued_cmd *qc, u8 tag
1498 * Return value : None
1499 * qc_prep for a particular queued command based on tag
1501 static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd
*qc
, u8 tag
)
1503 struct scatterlist
*sg
= qc
->sg
;
1504 struct ata_port
*ap
= qc
->ap
;
1506 struct sata_dwc_device
*hsdev
= HSDEV_FROM_AP(ap
);
1507 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1509 dev_dbg(ap
->dev
, "%s: port=%d dma dir=%s n_elem=%d\n",
1510 __func__
, ap
->port_no
, get_dma_dir_descript(qc
->dma_dir
),
1513 dma_chan
= dma_dwc_xfer_setup(sg
, qc
->n_elem
, hsdevp
->llit
[tag
],
1514 hsdevp
->llit_dma
[tag
],
1515 (void *__iomem
)(&hsdev
->sata_dwc_regs
->\
1516 dmadr
), qc
->dma_dir
);
1518 dev_err(ap
->dev
, "%s: dma_dwc_xfer_setup returns err %d\n",
1519 __func__
, dma_chan
);
1522 hsdevp
->dma_chan
[tag
] = dma_chan
;
1525 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd
*qc
)
1529 struct ata_port
*ap
= qc
->ap
;
1532 if (qc
->tag
> 0 || ap
->link
.sactive
> 1)
1533 dev_info(ap
->dev
, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1534 "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1535 __func__
, ap
->print_id
, qc
->tf
.command
,
1536 ata_get_cmd_descript(qc
->tf
.command
),
1537 qc
->tag
, get_prot_descript(qc
->tf
.protocol
),
1538 ap
->link
.active_tag
, ap
->link
.sactive
);
1541 if (!ata_is_ncq(qc
->tf
.protocol
))
1543 sata_dwc_qc_prep_by_tag(qc
, tag
);
1545 if (ata_is_ncq(qc
->tf
.protocol
)) {
1546 sactive
= core_scr_read(SCR_ACTIVE
);
1547 sactive
|= (0x00000001 << tag
);
1548 core_scr_write(SCR_ACTIVE
, sactive
);
1550 dev_dbg(qc
->ap
->dev
, "%s: tag=%d ap->link.sactive = 0x%08x "
1551 "sactive=0x%08x\n", __func__
, tag
, qc
->ap
->link
.sactive
,
1554 ap
->ops
->sff_tf_load(ap
, &qc
->tf
);
1555 sata_dwc_exec_command_by_tag(ap
, &qc
->tf
, qc
->tag
,
1556 SATA_DWC_CMD_ISSUED_PEND
);
1558 ata_sff_qc_issue(qc
);
1564 * Function : sata_dwc_qc_prep
1565 * arguments : ata_queued_cmd *qc
1566 * Return value : None
1567 * qc_prep for a particular queued command
1570 static void sata_dwc_qc_prep(struct ata_queued_cmd
*qc
)
1572 if ((qc
->dma_dir
== DMA_NONE
) || (qc
->tf
.protocol
== ATA_PROT_PIO
))
1577 dev_info(qc
->ap
->dev
, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1578 __func__
, qc
->tag
, qc
->ap
->link
.active_tag
);
1584 static void sata_dwc_error_handler(struct ata_port
*ap
)
1586 ap
->link
.flags
|= ATA_LFLAG_NO_HRST
;
1587 ata_sff_error_handler(ap
);
1591 * scsi mid-layer and libata interface structures
1593 static struct scsi_host_template sata_dwc_sht
= {
1594 ATA_NCQ_SHT(DRV_NAME
),
1596 * test-only: Currently this driver doesn't handle NCQ
1597 * correctly. We enable NCQ but set the queue depth to a
1598 * max of 1. This will get fixed in in a future release.
1600 .sg_tablesize
= LIBATA_MAX_PRD
,
1601 .can_queue
= ATA_DEF_QUEUE
, /* ATA_MAX_QUEUE */
1602 .dma_boundary
= ATA_DMA_BOUNDARY
,
1605 static struct ata_port_operations sata_dwc_ops
= {
1606 .inherits
= &ata_sff_port_ops
,
1608 .error_handler
= sata_dwc_error_handler
,
1610 .qc_prep
= sata_dwc_qc_prep
,
1611 .qc_issue
= sata_dwc_qc_issue
,
1613 .scr_read
= sata_dwc_scr_read
,
1614 .scr_write
= sata_dwc_scr_write
,
1616 .port_start
= sata_dwc_port_start
,
1617 .port_stop
= sata_dwc_port_stop
,
1619 .bmdma_setup
= sata_dwc_bmdma_setup
,
1620 .bmdma_start
= sata_dwc_bmdma_start
,
1623 static const struct ata_port_info sata_dwc_port_info
[] = {
1625 .flags
= ATA_FLAG_SATA
| ATA_FLAG_NCQ
,
1626 .pio_mask
= ATA_PIO4
,
1627 .udma_mask
= ATA_UDMA6
,
1628 .port_ops
= &sata_dwc_ops
,
1632 static int sata_dwc_probe(struct platform_device
*ofdev
)
1634 struct sata_dwc_device
*hsdev
;
1636 char *ver
= (char *)&versionr
;
1640 struct ata_host
*host
;
1641 struct ata_port_info pi
= sata_dwc_port_info
[0];
1642 const struct ata_port_info
*ppi
[] = { &pi
, NULL
};
1644 /* Allocate DWC SATA device */
1645 hsdev
= kzalloc(sizeof(*hsdev
), GFP_KERNEL
);
1646 if (hsdev
== NULL
) {
1647 dev_err(&ofdev
->dev
, "kmalloc failed for hsdev\n");
1652 /* Ioremap SATA registers */
1653 base
= of_iomap(ofdev
->dev
.of_node
, 0);
1655 dev_err(&ofdev
->dev
, "ioremap failed for SATA register"
1660 hsdev
->reg_base
= base
;
1661 dev_dbg(&ofdev
->dev
, "ioremap done for SATA register address\n");
1663 /* Synopsys DWC SATA specific Registers */
1664 hsdev
->sata_dwc_regs
= (void *__iomem
)(base
+ SATA_DWC_REG_OFFSET
);
1666 /* Allocate and fill host */
1667 host
= ata_host_alloc_pinfo(&ofdev
->dev
, ppi
, SATA_DWC_MAX_PORTS
);
1669 dev_err(&ofdev
->dev
, "ata_host_alloc_pinfo failed\n");
1674 host
->private_data
= hsdev
;
1677 host
->ports
[0]->ioaddr
.cmd_addr
= base
;
1678 host
->ports
[0]->ioaddr
.scr_addr
= base
+ SATA_DWC_SCR_OFFSET
;
1679 host_pvt
.scr_addr_sstatus
= base
+ SATA_DWC_SCR_OFFSET
;
1680 sata_dwc_setup_port(&host
->ports
[0]->ioaddr
, (unsigned long)base
);
1682 /* Read the ID and Version Registers */
1683 idr
= in_le32(&hsdev
->sata_dwc_regs
->idr
);
1684 versionr
= in_le32(&hsdev
->sata_dwc_regs
->versionr
);
1685 dev_notice(&ofdev
->dev
, "id %d, controller version %c.%c%c\n",
1686 idr
, ver
[0], ver
[1], ver
[2]);
1688 /* Get SATA DMA interrupt number */
1689 irq
= irq_of_parse_and_map(ofdev
->dev
.of_node
, 1);
1690 if (irq
== NO_IRQ
) {
1691 dev_err(&ofdev
->dev
, "no SATA DMA irq\n");
1696 /* Get physical SATA DMA register base address */
1697 host_pvt
.sata_dma_regs
= of_iomap(ofdev
->dev
.of_node
, 1);
1698 if (!(host_pvt
.sata_dma_regs
)) {
1699 dev_err(&ofdev
->dev
, "ioremap failed for AHBDMA register"
1705 /* Save dev for later use in dev_xxx() routines */
1706 host_pvt
.dwc_dev
= &ofdev
->dev
;
1708 /* Initialize AHB DMAC */
1709 dma_dwc_init(hsdev
, irq
);
1711 /* Enable SATA Interrupts */
1712 sata_dwc_enable_interrupts(hsdev
);
1714 /* Get SATA interrupt number */
1715 irq
= irq_of_parse_and_map(ofdev
->dev
.of_node
, 0);
1716 if (irq
== NO_IRQ
) {
1717 dev_err(&ofdev
->dev
, "no SATA DMA irq\n");
1723 * Now, register with libATA core, this will also initiate the
1724 * device discovery process, invoking our port_start() handler &
1725 * error_handler() to execute a dummy Softreset EH session
1727 rc
= ata_host_activate(host
, irq
, sata_dwc_isr
, 0, &sata_dwc_sht
);
1730 dev_err(&ofdev
->dev
, "failed to activate host");
1732 dev_set_drvdata(&ofdev
->dev
, host
);
1736 /* Free SATA DMA resources */
1737 dma_dwc_exit(hsdev
);
1747 static int sata_dwc_remove(struct platform_device
*ofdev
)
1749 struct device
*dev
= &ofdev
->dev
;
1750 struct ata_host
*host
= dev_get_drvdata(dev
);
1751 struct sata_dwc_device
*hsdev
= host
->private_data
;
1753 ata_host_detach(host
);
1754 dev_set_drvdata(dev
, NULL
);
1756 /* Free SATA DMA resources */
1757 dma_dwc_exit(hsdev
);
1759 iounmap(hsdev
->reg_base
);
1762 dev_dbg(&ofdev
->dev
, "done\n");
1766 static const struct of_device_id sata_dwc_match
[] = {
1767 { .compatible
= "amcc,sata-460ex", },
1770 MODULE_DEVICE_TABLE(of
, sata_dwc_match
);
1772 static struct platform_driver sata_dwc_driver
= {
1775 .owner
= THIS_MODULE
,
1776 .of_match_table
= sata_dwc_match
,
1778 .probe
= sata_dwc_probe
,
1779 .remove
= sata_dwc_remove
,
1782 static int __init
sata_dwc_init(void)
1784 return platform_driver_register(&sata_dwc_driver
);
1787 static void __exit
sata_dwc_exit(void)
1789 platform_driver_unregister(&sata_dwc_driver
);
1792 module_init(sata_dwc_init
);
1793 module_exit(sata_dwc_exit
);
1795 MODULE_LICENSE("GPL");
1796 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1797 MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1798 MODULE_VERSION(DRV_VERSION
);