2 * linux/arch/arm/mm/mm-armv.c
4 * Copyright (C) 1998-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * Page table sludge for ARM v3 and v4 processor architectures.
12 #include <linux/config.h>
13 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/bootmem.h>
17 #include <linux/highmem.h>
18 #include <linux/nodemask.h>
20 #include <asm/pgalloc.h>
23 #include <asm/setup.h>
24 #include <asm/tlbflush.h>
26 #include <asm/mach/map.h>
28 #define CPOLICY_UNCACHED 0
29 #define CPOLICY_BUFFERED 1
30 #define CPOLICY_WRITETHROUGH 2
31 #define CPOLICY_WRITEBACK 3
32 #define CPOLICY_WRITEALLOC 4
34 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
35 static unsigned int ecc_mask __initdata
= 0;
36 pgprot_t pgprot_kernel
;
38 EXPORT_SYMBOL(pgprot_kernel
);
43 const char policy
[16];
49 static struct cachepolicy cache_policies
[] __initdata
= {
53 .pmd
= PMD_SECT_UNCACHED
,
58 .pmd
= PMD_SECT_BUFFERED
,
59 .pte
= PTE_BUFFERABLE
,
61 .policy
= "writethrough",
66 .policy
= "writeback",
69 .pte
= PTE_BUFFERABLE
|PTE_CACHEABLE
,
71 .policy
= "writealloc",
74 .pte
= PTE_BUFFERABLE
|PTE_CACHEABLE
,
79 * These are useful for identifing cache coherency
80 * problems by allowing the cache or the cache and
81 * writebuffer to be turned off. (Note: the write
82 * buffer should not be on and the cache off).
84 static void __init
early_cachepolicy(char **p
)
88 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
89 int len
= strlen(cache_policies
[i
].policy
);
91 if (memcmp(*p
, cache_policies
[i
].policy
, len
) == 0) {
93 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
94 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
99 if (i
== ARRAY_SIZE(cache_policies
))
100 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
102 set_cr(cr_alignment
);
105 static void __init
early_nocache(char **__unused
)
107 char *p
= "buffered";
108 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
109 early_cachepolicy(&p
);
112 static void __init
early_nowrite(char **__unused
)
114 char *p
= "uncached";
115 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
116 early_cachepolicy(&p
);
119 static void __init
early_ecc(char **p
)
121 if (memcmp(*p
, "on", 2) == 0) {
122 ecc_mask
= PMD_PROTECTION
;
124 } else if (memcmp(*p
, "off", 3) == 0) {
130 __early_param("nocache", early_nocache
);
131 __early_param("nowb", early_nowrite
);
132 __early_param("cachepolicy=", early_cachepolicy
);
133 __early_param("ecc=", early_ecc
);
135 static int __init
noalign_setup(char *__unused
)
137 cr_alignment
&= ~CR_A
;
138 cr_no_alignment
&= ~CR_A
;
139 set_cr(cr_alignment
);
143 __setup("noalign", noalign_setup
);
145 #define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)
147 static inline pmd_t
*pmd_off(pgd_t
*pgd
, unsigned long virt
)
149 return pmd_offset(pgd
, virt
);
152 static inline pmd_t
*pmd_off_k(unsigned long virt
)
154 return pmd_off(pgd_offset_k(virt
), virt
);
158 * need to get a 16k page for level 1
160 pgd_t
*get_pgd_slow(struct mm_struct
*mm
)
162 pgd_t
*new_pgd
, *init_pgd
;
163 pmd_t
*new_pmd
, *init_pmd
;
164 pte_t
*new_pte
, *init_pte
;
166 new_pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
, 2);
170 memzero(new_pgd
, FIRST_KERNEL_PGD_NR
* sizeof(pgd_t
));
173 * Copy over the kernel and IO PGD entries
175 init_pgd
= pgd_offset_k(0);
176 memcpy(new_pgd
+ FIRST_KERNEL_PGD_NR
, init_pgd
+ FIRST_KERNEL_PGD_NR
,
177 (PTRS_PER_PGD
- FIRST_KERNEL_PGD_NR
) * sizeof(pgd_t
));
179 clean_dcache_area(new_pgd
, PTRS_PER_PGD
* sizeof(pgd_t
));
181 if (!vectors_high()) {
183 * This lock is here just to satisfy pmd_alloc and pte_lock
185 spin_lock(&mm
->page_table_lock
);
188 * On ARM, first page must always be allocated since it
189 * contains the machine vectors.
191 new_pmd
= pmd_alloc(mm
, new_pgd
, 0);
195 new_pte
= pte_alloc_map(mm
, new_pmd
, 0);
199 init_pmd
= pmd_offset(init_pgd
, 0);
200 init_pte
= pte_offset_map_nested(init_pmd
, 0);
201 set_pte(new_pte
, *init_pte
);
202 pte_unmap_nested(init_pte
);
205 spin_unlock(&mm
->page_table_lock
);
211 spin_unlock(&mm
->page_table_lock
);
213 free_pages((unsigned long)new_pgd
, 2);
217 spin_unlock(&mm
->page_table_lock
);
218 free_pages((unsigned long)new_pgd
, 2);
225 void free_pgd_slow(pgd_t
*pgd
)
233 /* pgd is always present and good */
234 pmd
= pmd_off(pgd
, 0);
243 pte
= pmd_page(*pmd
);
245 dec_page_state(nr_page_table_pages
);
249 free_pages((unsigned long) pgd
, 2);
253 * Create a SECTION PGD between VIRT and PHYS in domain
254 * DOMAIN with protection PROT. This operates on half-
255 * pgdir entry increments.
258 alloc_init_section(unsigned long virt
, unsigned long phys
, int prot
)
260 pmd_t
*pmdp
= pmd_off_k(virt
);
262 if (virt
& (1 << 20))
265 *pmdp
= __pmd(phys
| prot
);
266 flush_pmd_entry(pmdp
);
270 * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
273 alloc_init_supersection(unsigned long virt
, unsigned long phys
, int prot
)
277 for (i
= 0; i
< 16; i
+= 1) {
278 alloc_init_section(virt
, phys
& SUPERSECTION_MASK
,
279 prot
| PMD_SECT_SUPER
);
281 virt
+= (PGDIR_SIZE
/ 2);
282 phys
+= (PGDIR_SIZE
/ 2);
287 * Add a PAGE mapping between VIRT and PHYS in domain
288 * DOMAIN with protection PROT. Note that due to the
289 * way we map the PTEs, we must allocate two PTE_SIZE'd
290 * blocks - one for the Linux pte table, and one for
291 * the hardware pte table.
294 alloc_init_page(unsigned long virt
, unsigned long phys
, unsigned int prot_l1
, pgprot_t prot
)
296 pmd_t
*pmdp
= pmd_off_k(virt
);
299 if (pmd_none(*pmdp
)) {
300 unsigned long pmdval
;
301 ptep
= alloc_bootmem_low_pages(2 * PTRS_PER_PTE
*
304 pmdval
= __pa(ptep
) | prot_l1
;
305 pmdp
[0] = __pmd(pmdval
);
306 pmdp
[1] = __pmd(pmdval
+ 256 * sizeof(pte_t
));
307 flush_pmd_entry(pmdp
);
309 ptep
= pte_offset_kernel(pmdp
, virt
);
311 set_pte(ptep
, pfn_pte(phys
>> PAGE_SHIFT
, prot
));
315 * Clear any PGD mapping. On a two-level page table system,
316 * the clearance is done by the middle-level functions (pmd)
317 * rather than the top-level (pgd) functions.
319 static inline void clear_mapping(unsigned long virt
)
321 pmd_clear(pmd_off_k(virt
));
325 unsigned int prot_pte
;
326 unsigned int prot_l1
;
327 unsigned int prot_sect
;
331 static struct mem_types mem_types
[] __initdata
= {
333 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
335 .prot_l1
= PMD_TYPE_TABLE
,
336 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_UNCACHED
|
341 .prot_sect
= PMD_TYPE_SECT
,
342 .domain
= DOMAIN_KERNEL
,
345 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_MINICACHE
,
346 .domain
= DOMAIN_KERNEL
,
349 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
351 .prot_l1
= PMD_TYPE_TABLE
,
352 .domain
= DOMAIN_USER
,
354 [MT_HIGH_VECTORS
] = {
355 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
356 L_PTE_USER
| L_PTE_EXEC
,
357 .prot_l1
= PMD_TYPE_TABLE
,
358 .domain
= DOMAIN_USER
,
361 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
362 .domain
= DOMAIN_KERNEL
,
365 .prot_sect
= PMD_TYPE_SECT
,
366 .domain
= DOMAIN_KERNEL
,
368 [MT_IXP2000_DEVICE
] = { /* IXP2400 requires XCB=101 for on-chip I/O */
369 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
371 .prot_l1
= PMD_TYPE_TABLE
,
372 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_UNCACHED
|
373 PMD_SECT_AP_WRITE
| PMD_SECT_BUFFERABLE
|
380 * Adjust the PMD section entries according to the CPU in use.
382 static void __init
build_mem_type_table(void)
384 struct cachepolicy
*cp
;
385 unsigned int cr
= get_cr();
386 int cpu_arch
= cpu_architecture();
389 #if defined(CONFIG_CPU_DCACHE_DISABLE)
390 if (cachepolicy
> CPOLICY_BUFFERED
)
391 cachepolicy
= CPOLICY_BUFFERED
;
392 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
393 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
394 cachepolicy
= CPOLICY_WRITETHROUGH
;
396 if (cpu_arch
< CPU_ARCH_ARMv5
) {
397 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
398 cachepolicy
= CPOLICY_WRITEBACK
;
402 if (cpu_arch
<= CPU_ARCH_ARMv5TEJ
) {
403 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
404 if (mem_types
[i
].prot_l1
)
405 mem_types
[i
].prot_l1
|= PMD_BIT4
;
406 if (mem_types
[i
].prot_sect
)
407 mem_types
[i
].prot_sect
|= PMD_BIT4
;
412 * ARMv6 and above have extended page tables.
414 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
416 * bit 4 becomes XN which we must clear for the
417 * kernel memory mapping.
419 mem_types
[MT_MEMORY
].prot_sect
&= ~PMD_BIT4
;
420 mem_types
[MT_ROM
].prot_sect
&= ~PMD_BIT4
;
422 * Mark cache clean areas and XIP ROM read only
423 * from SVC mode and no access from userspace.
425 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
426 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
427 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
429 mem_types
[MT_DEVICE
].prot_pte
|= L_PTE_BUFFERABLE
;
430 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
433 cp
= &cache_policies
[cachepolicy
];
435 if (cpu_arch
>= CPU_ARCH_ARMv5
) {
436 mem_types
[MT_LOW_VECTORS
].prot_pte
|= cp
->pte
& PTE_CACHEABLE
;
437 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= cp
->pte
& PTE_CACHEABLE
;
439 mem_types
[MT_LOW_VECTORS
].prot_pte
|= cp
->pte
;
440 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= cp
->pte
;
441 mem_types
[MT_MINICLEAN
].prot_sect
&= ~PMD_SECT_TEX(1);
444 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
445 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
446 mem_types
[MT_MEMORY
].prot_sect
|= ecc_mask
| cp
->pmd
;
447 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
449 for (i
= 0; i
< 16; i
++) {
450 unsigned long v
= pgprot_val(protection_map
[i
]);
451 v
&= (~(PTE_BUFFERABLE
|PTE_CACHEABLE
)) | cp
->pte
;
452 protection_map
[i
] = __pgprot(v
);
455 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
456 L_PTE_DIRTY
| L_PTE_WRITE
|
457 L_PTE_EXEC
| cp
->pte
);
461 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
465 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
468 printk("Memory policy: ECC %sabled, Data cache %s\n",
469 ecc_mask
? "en" : "dis", cp
->policy
);
472 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
475 * Create the page directory entries and any necessary
476 * page tables for the mapping specified by `md'. We
477 * are able to cope here with varying sizes and address
478 * offsets, and we take full advantage of sections and
481 static void __init
create_mapping(struct map_desc
*md
)
483 unsigned long virt
, length
;
484 int prot_sect
, prot_l1
, domain
;
488 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
489 printk(KERN_WARNING
"BUG: not creating mapping for "
490 "0x%08lx at 0x%08lx in user region\n",
491 md
->physical
, md
->virtual);
495 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
496 md
->virtual >= PAGE_OFFSET
&& md
->virtual < VMALLOC_END
) {
497 printk(KERN_WARNING
"BUG: mapping for 0x%08lx at 0x%08lx "
498 "overlaps vmalloc space\n",
499 md
->physical
, md
->virtual);
502 domain
= mem_types
[md
->type
].domain
;
503 prot_pte
= __pgprot(mem_types
[md
->type
].prot_pte
);
504 prot_l1
= mem_types
[md
->type
].prot_l1
| PMD_DOMAIN(domain
);
505 prot_sect
= mem_types
[md
->type
].prot_sect
| PMD_DOMAIN(domain
);
508 off
= md
->physical
- virt
;
511 if (mem_types
[md
->type
].prot_l1
== 0 &&
512 (virt
& 0xfffff || (virt
+ off
) & 0xfffff || (virt
+ length
) & 0xfffff)) {
513 printk(KERN_WARNING
"BUG: map for 0x%08lx at 0x%08lx can not "
514 "be mapped using pages, ignoring.\n",
515 md
->physical
, md
->virtual);
519 while ((virt
& 0xfffff || (virt
+ off
) & 0xfffff) && length
>= PAGE_SIZE
) {
520 alloc_init_page(virt
, virt
+ off
, prot_l1
, prot_pte
);
526 /* N.B. ARMv6 supersections are only defined to work with domain 0.
527 * Since domain assignments can in fact be arbitrary, the
528 * 'domain == 0' check below is required to insure that ARMv6
529 * supersections are only allocated for domain 0 regardless
530 * of the actual domain assignments in use.
532 if (cpu_architecture() >= CPU_ARCH_ARMv6
&& domain
== 0) {
533 /* Align to supersection boundary */
534 while ((virt
& ~SUPERSECTION_MASK
|| (virt
+ off
) &
535 ~SUPERSECTION_MASK
) && length
>= (PGDIR_SIZE
/ 2)) {
536 alloc_init_section(virt
, virt
+ off
, prot_sect
);
538 virt
+= (PGDIR_SIZE
/ 2);
539 length
-= (PGDIR_SIZE
/ 2);
542 while (length
>= SUPERSECTION_SIZE
) {
543 alloc_init_supersection(virt
, virt
+ off
, prot_sect
);
545 virt
+= SUPERSECTION_SIZE
;
546 length
-= SUPERSECTION_SIZE
;
551 * A section mapping covers half a "pgdir" entry.
553 while (length
>= (PGDIR_SIZE
/ 2)) {
554 alloc_init_section(virt
, virt
+ off
, prot_sect
);
556 virt
+= (PGDIR_SIZE
/ 2);
557 length
-= (PGDIR_SIZE
/ 2);
560 while (length
>= PAGE_SIZE
) {
561 alloc_init_page(virt
, virt
+ off
, prot_l1
, prot_pte
);
569 * In order to soft-boot, we need to insert a 1:1 mapping in place of
570 * the user-mode pages. This will then ensure that we have predictable
571 * results when turning the mmu off
573 void setup_mm_for_reboot(char mode
)
575 unsigned long pmdval
;
579 int cpu_arch
= cpu_architecture();
581 if (current
->mm
&& current
->mm
->pgd
)
582 pgd
= current
->mm
->pgd
;
586 for (i
= 0; i
< FIRST_USER_PGD_NR
+ USER_PTRS_PER_PGD
; i
++) {
587 pmdval
= (i
<< PGDIR_SHIFT
) |
588 PMD_SECT_AP_WRITE
| PMD_SECT_AP_READ
|
590 if (cpu_arch
<= CPU_ARCH_ARMv5TEJ
)
592 pmd
= pmd_off(pgd
, i
<< PGDIR_SHIFT
);
593 pmd
[0] = __pmd(pmdval
);
594 pmd
[1] = __pmd(pmdval
+ (1 << (PGDIR_SHIFT
- 1)));
595 flush_pmd_entry(pmd
);
599 extern void _stext
, _etext
;
602 * Setup initial mappings. We use the page we allocated for zero page to hold
603 * the mappings, which will get overwritten by the vectors in traps_init().
604 * The mappings must be in virtual address order.
606 void __init
memtable_init(struct meminfo
*mi
)
608 struct map_desc
*init_maps
, *p
, *q
;
609 unsigned long address
= 0;
612 build_mem_type_table();
614 init_maps
= p
= alloc_bootmem_low_pages(PAGE_SIZE
);
616 #ifdef CONFIG_XIP_KERNEL
617 p
->physical
= CONFIG_XIP_PHYS_ADDR
& PMD_MASK
;
618 p
->virtual = (unsigned long)&_stext
& PMD_MASK
;
619 p
->length
= ((unsigned long)&_etext
- p
->virtual + ~PMD_MASK
) & PMD_MASK
;
624 for (i
= 0; i
< mi
->nr_banks
; i
++) {
625 if (mi
->bank
[i
].size
== 0)
628 p
->physical
= mi
->bank
[i
].start
;
629 p
->virtual = __phys_to_virt(p
->physical
);
630 p
->length
= mi
->bank
[i
].size
;
636 p
->physical
= FLUSH_BASE_PHYS
;
637 p
->virtual = FLUSH_BASE
;
638 p
->length
= PGDIR_SIZE
;
639 p
->type
= MT_CACHECLEAN
;
643 #ifdef FLUSH_BASE_MINICACHE
644 p
->physical
= FLUSH_BASE_PHYS
+ PGDIR_SIZE
;
645 p
->virtual = FLUSH_BASE_MINICACHE
;
646 p
->length
= PGDIR_SIZE
;
647 p
->type
= MT_MINICLEAN
;
652 * Go through the initial mappings, but clear out any
653 * pgdir entries that are not in the description.
657 if (address
< q
->virtual || q
== p
) {
658 clear_mapping(address
);
659 address
+= PGDIR_SIZE
;
663 address
= q
->virtual + q
->length
;
664 address
= (address
+ PGDIR_SIZE
- 1) & PGDIR_MASK
;
668 } while (address
!= 0);
671 * Create a mapping for the machine vectors at the high-vectors
672 * location (0xffff0000). If we aren't using high-vectors, also
673 * create a mapping at the low-vectors virtual address.
675 init_maps
->physical
= virt_to_phys(init_maps
);
676 init_maps
->virtual = 0xffff0000;
677 init_maps
->length
= PAGE_SIZE
;
678 init_maps
->type
= MT_HIGH_VECTORS
;
679 create_mapping(init_maps
);
681 if (!vectors_high()) {
682 init_maps
->virtual = 0;
683 init_maps
->type
= MT_LOW_VECTORS
;
684 create_mapping(init_maps
);
688 local_flush_tlb_all();
690 top_pmd
= pmd_off_k(0xffff0000);
694 * Create the architecture specific mappings
696 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
700 for (i
= 0; i
< nr
; i
++)
701 create_mapping(io_desc
+ i
);