Linux 2.6.13-rc4
[linux-2.6/next.git] / arch / mips / mm / c-sb1.c
blobab30afd63b3257ee80515a922cf8bd2dfe6f0c72
1 /*
2 * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
3 * Copyright (C) 1997, 2001 Ralf Baechle (ralf@gnu.org)
4 * Copyright (C) 2000, 2001, 2002, 2003 Broadcom Corporation
5 * Copyright (C) 2004 Maciej W. Rozycki
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/config.h>
22 #include <linux/init.h>
24 #include <asm/asm.h>
25 #include <asm/bootinfo.h>
26 #include <asm/cacheops.h>
27 #include <asm/cpu.h>
28 #include <asm/mipsregs.h>
29 #include <asm/mmu_context.h>
30 #include <asm/uaccess.h>
32 extern void sb1_dma_init(void);
34 /* These are probed at ld_mmu time */
35 static unsigned long icache_size;
36 static unsigned long dcache_size;
38 static unsigned short icache_line_size;
39 static unsigned short dcache_line_size;
41 static unsigned int icache_index_mask;
42 static unsigned int dcache_index_mask;
44 static unsigned short icache_assoc;
45 static unsigned short dcache_assoc;
47 static unsigned short icache_sets;
48 static unsigned short dcache_sets;
50 static unsigned int icache_range_cutoff;
51 static unsigned int dcache_range_cutoff;
54 * The dcache is fully coherent to the system, with one
55 * big caveat: the instruction stream. In other words,
56 * if we miss in the icache, and have dirty data in the
57 * L1 dcache, then we'll go out to memory (or the L2) and
58 * get the not-as-recent data.
60 * So the only time we have to flush the dcache is when
61 * we're flushing the icache. Since the L2 is fully
62 * coherent to everything, including I/O, we never have
63 * to flush it
66 #define cache_set_op(op, addr) \
67 __asm__ __volatile__( \
68 " .set noreorder \n" \
69 " .set mips64\n\t \n" \
70 " cache %0, (0<<13)(%1) \n" \
71 " cache %0, (1<<13)(%1) \n" \
72 " cache %0, (2<<13)(%1) \n" \
73 " cache %0, (3<<13)(%1) \n" \
74 " .set mips0 \n" \
75 " .set reorder" \
76 : \
77 : "i" (op), "r" (addr))
79 #define sync() \
80 __asm__ __volatile( \
81 " .set mips64\n\t \n" \
82 " sync \n" \
83 " .set mips0")
85 #define mispredict() \
86 __asm__ __volatile__( \
87 " bnezl $0, 1f \n" /* Force mispredict */ \
88 "1: \n");
91 * Writeback and invalidate the entire dcache
93 static inline void __sb1_writeback_inv_dcache_all(void)
95 unsigned long addr = 0;
97 while (addr < dcache_line_size * dcache_sets) {
98 cache_set_op(Index_Writeback_Inv_D, addr);
99 addr += dcache_line_size;
104 * Writeback and invalidate a range of the dcache. The addresses are
105 * virtual, and since we're using index ops and bit 12 is part of both
106 * the virtual frame and physical index, we have to clear both sets
107 * (bit 12 set and cleared).
109 static inline void __sb1_writeback_inv_dcache_range(unsigned long start,
110 unsigned long end)
112 unsigned long index;
114 start &= ~(dcache_line_size - 1);
115 end = (end + dcache_line_size - 1) & ~(dcache_line_size - 1);
117 while (start != end) {
118 index = start & dcache_index_mask;
119 cache_set_op(Index_Writeback_Inv_D, index);
120 cache_set_op(Index_Writeback_Inv_D, index ^ (1<<12));
121 start += dcache_line_size;
123 sync();
127 * Writeback and invalidate a range of the dcache. With physical
128 * addresseses, we don't have to worry about possible bit 12 aliasing.
129 * XXXKW is it worth turning on KX and using hit ops with xkphys?
131 static inline void __sb1_writeback_inv_dcache_phys_range(unsigned long start,
132 unsigned long end)
134 start &= ~(dcache_line_size - 1);
135 end = (end + dcache_line_size - 1) & ~(dcache_line_size - 1);
137 while (start != end) {
138 cache_set_op(Index_Writeback_Inv_D, start & dcache_index_mask);
139 start += dcache_line_size;
141 sync();
146 * Invalidate the entire icache
148 static inline void __sb1_flush_icache_all(void)
150 unsigned long addr = 0;
152 while (addr < icache_line_size * icache_sets) {
153 cache_set_op(Index_Invalidate_I, addr);
154 addr += icache_line_size;
159 * Flush the icache for a given physical page. Need to writeback the
160 * dcache first, then invalidate the icache. If the page isn't
161 * executable, nothing is required.
163 static void local_sb1_flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
165 int cpu = smp_processor_id();
167 #ifndef CONFIG_SMP
168 if (!(vma->vm_flags & VM_EXEC))
169 return;
170 #endif
172 __sb1_writeback_inv_dcache_range(addr, addr + PAGE_SIZE);
175 * Bumping the ASID is probably cheaper than the flush ...
177 if (cpu_context(cpu, vma->vm_mm) != 0)
178 drop_mmu_context(vma->vm_mm, cpu);
181 #ifdef CONFIG_SMP
182 struct flush_cache_page_args {
183 struct vm_area_struct *vma;
184 unsigned long addr;
185 unsigned long pfn;
188 static void sb1_flush_cache_page_ipi(void *info)
190 struct flush_cache_page_args *args = info;
192 local_sb1_flush_cache_page(args->vma, args->addr, args->pfn);
195 /* Dirty dcache could be on another CPU, so do the IPIs */
196 static void sb1_flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
198 struct flush_cache_page_args args;
200 if (!(vma->vm_flags & VM_EXEC))
201 return;
203 addr &= PAGE_MASK;
204 args.vma = vma;
205 args.addr = addr;
206 args.pfn = pfn;
207 on_each_cpu(sb1_flush_cache_page_ipi, (void *) &args, 1, 1);
209 #else
210 void sb1_flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
211 __attribute__((alias("local_sb1_flush_cache_page")));
212 #endif
215 * Invalidate a range of the icache. The addresses are virtual, and
216 * the cache is virtually indexed and tagged. However, we don't
217 * necessarily have the right ASID context, so use index ops instead
218 * of hit ops.
220 static inline void __sb1_flush_icache_range(unsigned long start,
221 unsigned long end)
223 start &= ~(icache_line_size - 1);
224 end = (end + icache_line_size - 1) & ~(icache_line_size - 1);
226 while (start != end) {
227 cache_set_op(Index_Invalidate_I, start & icache_index_mask);
228 start += icache_line_size;
230 mispredict();
231 sync();
236 * Invalidate all caches on this CPU
238 static void local_sb1___flush_cache_all(void)
240 __sb1_writeback_inv_dcache_all();
241 __sb1_flush_icache_all();
244 #ifdef CONFIG_SMP
245 void sb1___flush_cache_all_ipi(void *ignored)
246 __attribute__((alias("local_sb1___flush_cache_all")));
248 static void sb1___flush_cache_all(void)
250 on_each_cpu(sb1___flush_cache_all_ipi, 0, 1, 1);
252 #else
253 void sb1___flush_cache_all(void)
254 __attribute__((alias("local_sb1___flush_cache_all")));
255 #endif
258 * When flushing a range in the icache, we have to first writeback
259 * the dcache for the same range, so new ifetches will see any
260 * data that was dirty in the dcache.
262 * The start/end arguments are Kseg addresses (possibly mapped Kseg).
265 static void local_sb1_flush_icache_range(unsigned long start,
266 unsigned long end)
268 /* Just wb-inv the whole dcache if the range is big enough */
269 if ((end - start) > dcache_range_cutoff)
270 __sb1_writeback_inv_dcache_all();
271 else
272 __sb1_writeback_inv_dcache_range(start, end);
274 /* Just flush the whole icache if the range is big enough */
275 if ((end - start) > icache_range_cutoff)
276 __sb1_flush_icache_all();
277 else
278 __sb1_flush_icache_range(start, end);
281 #ifdef CONFIG_SMP
282 struct flush_icache_range_args {
283 unsigned long start;
284 unsigned long end;
287 static void sb1_flush_icache_range_ipi(void *info)
289 struct flush_icache_range_args *args = info;
291 local_sb1_flush_icache_range(args->start, args->end);
294 void sb1_flush_icache_range(unsigned long start, unsigned long end)
296 struct flush_icache_range_args args;
298 args.start = start;
299 args.end = end;
300 on_each_cpu(sb1_flush_icache_range_ipi, &args, 1, 1);
302 #else
303 void sb1_flush_icache_range(unsigned long start, unsigned long end)
304 __attribute__((alias("local_sb1_flush_icache_range")));
305 #endif
308 * Flush the icache for a given physical page. Need to writeback the
309 * dcache first, then invalidate the icache. If the page isn't
310 * executable, nothing is required.
312 static void local_sb1_flush_icache_page(struct vm_area_struct *vma,
313 struct page *page)
315 unsigned long start;
316 int cpu = smp_processor_id();
318 #ifndef CONFIG_SMP
319 if (!(vma->vm_flags & VM_EXEC))
320 return;
321 #endif
323 /* Need to writeback any dirty data for that page, we have the PA */
324 start = (unsigned long)(page-mem_map) << PAGE_SHIFT;
325 __sb1_writeback_inv_dcache_phys_range(start, start + PAGE_SIZE);
327 * If there's a context, bump the ASID (cheaper than a flush,
328 * since we don't know VAs!)
330 if (cpu_context(cpu, vma->vm_mm) != 0) {
331 drop_mmu_context(vma->vm_mm, cpu);
335 #ifdef CONFIG_SMP
336 struct flush_icache_page_args {
337 struct vm_area_struct *vma;
338 struct page *page;
341 static void sb1_flush_icache_page_ipi(void *info)
343 struct flush_icache_page_args *args = info;
344 local_sb1_flush_icache_page(args->vma, args->page);
347 /* Dirty dcache could be on another CPU, so do the IPIs */
348 static void sb1_flush_icache_page(struct vm_area_struct *vma,
349 struct page *page)
351 struct flush_icache_page_args args;
353 if (!(vma->vm_flags & VM_EXEC))
354 return;
355 args.vma = vma;
356 args.page = page;
357 on_each_cpu(sb1_flush_icache_page_ipi, (void *) &args, 1, 1);
359 #else
360 void sb1_flush_icache_page(struct vm_area_struct *vma, struct page *page)
361 __attribute__((alias("local_sb1_flush_icache_page")));
362 #endif
365 * A signal trampoline must fit into a single cacheline.
367 static void local_sb1_flush_cache_sigtramp(unsigned long addr)
369 cache_set_op(Index_Writeback_Inv_D, addr & dcache_index_mask);
370 cache_set_op(Index_Writeback_Inv_D, (addr ^ (1<<12)) & dcache_index_mask);
371 cache_set_op(Index_Invalidate_I, addr & icache_index_mask);
372 mispredict();
375 #ifdef CONFIG_SMP
376 static void sb1_flush_cache_sigtramp_ipi(void *info)
378 unsigned long iaddr = (unsigned long) info;
379 local_sb1_flush_cache_sigtramp(iaddr);
382 static void sb1_flush_cache_sigtramp(unsigned long addr)
384 on_each_cpu(sb1_flush_cache_sigtramp_ipi, (void *) addr, 1, 1);
386 #else
387 void sb1_flush_cache_sigtramp(unsigned long addr)
388 __attribute__((alias("local_sb1_flush_cache_sigtramp")));
389 #endif
393 * Anything that just flushes dcache state can be ignored, as we're always
394 * coherent in dcache space. This is just a dummy function that all the
395 * nop'ed routines point to
397 static void sb1_nop(void)
402 * Cache set values (from the mips64 spec)
403 * 0 - 64
404 * 1 - 128
405 * 2 - 256
406 * 3 - 512
407 * 4 - 1024
408 * 5 - 2048
409 * 6 - 4096
410 * 7 - Reserved
413 static unsigned int decode_cache_sets(unsigned int config_field)
415 if (config_field == 7) {
416 /* JDCXXX - Find a graceful way to abort. */
417 return 0;
419 return (1<<(config_field + 6));
423 * Cache line size values (from the mips64 spec)
424 * 0 - No cache present.
425 * 1 - 4 bytes
426 * 2 - 8 bytes
427 * 3 - 16 bytes
428 * 4 - 32 bytes
429 * 5 - 64 bytes
430 * 6 - 128 bytes
431 * 7 - Reserved
434 static unsigned int decode_cache_line_size(unsigned int config_field)
436 if (config_field == 0) {
437 return 0;
438 } else if (config_field == 7) {
439 /* JDCXXX - Find a graceful way to abort. */
440 return 0;
442 return (1<<(config_field + 1));
446 * Relevant bits of the config1 register format (from the MIPS32/MIPS64 specs)
448 * 24:22 Icache sets per way
449 * 21:19 Icache line size
450 * 18:16 Icache Associativity
451 * 15:13 Dcache sets per way
452 * 12:10 Dcache line size
453 * 9:7 Dcache Associativity
456 static char *way_string[] = {
457 "direct mapped", "2-way", "3-way", "4-way",
458 "5-way", "6-way", "7-way", "8-way",
461 static __init void probe_cache_sizes(void)
463 u32 config1;
465 config1 = read_c0_config1();
466 icache_line_size = decode_cache_line_size((config1 >> 19) & 0x7);
467 dcache_line_size = decode_cache_line_size((config1 >> 10) & 0x7);
468 icache_sets = decode_cache_sets((config1 >> 22) & 0x7);
469 dcache_sets = decode_cache_sets((config1 >> 13) & 0x7);
470 icache_assoc = ((config1 >> 16) & 0x7) + 1;
471 dcache_assoc = ((config1 >> 7) & 0x7) + 1;
472 icache_size = icache_line_size * icache_sets * icache_assoc;
473 dcache_size = dcache_line_size * dcache_sets * dcache_assoc;
474 /* Need to remove non-index bits for index ops */
475 icache_index_mask = (icache_sets - 1) * icache_line_size;
476 dcache_index_mask = (dcache_sets - 1) * dcache_line_size;
478 * These are for choosing range (index ops) versus all.
479 * icache flushes all ways for each set, so drop icache_assoc.
480 * dcache flushes all ways and each setting of bit 12 for each
481 * index, so drop dcache_assoc and halve the dcache_sets.
483 icache_range_cutoff = icache_sets * icache_line_size;
484 dcache_range_cutoff = (dcache_sets / 2) * icache_line_size;
486 printk("Primary instruction cache %ldkB, %s, linesize %d bytes.\n",
487 icache_size >> 10, way_string[icache_assoc - 1],
488 icache_line_size);
489 printk("Primary data cache %ldkB, %s, linesize %d bytes.\n",
490 dcache_size >> 10, way_string[dcache_assoc - 1],
491 dcache_line_size);
495 * This is called from loadmmu.c. We have to set up all the
496 * memory management function pointers, as well as initialize
497 * the caches and tlbs
499 void ld_mmu_sb1(void)
501 extern char except_vec2_sb1;
502 extern char handle_vec2_sb1;
504 /* Special cache error handler for SB1 */
505 memcpy((void *)(CAC_BASE + 0x100), &except_vec2_sb1, 0x80);
506 memcpy((void *)(UNCAC_BASE + 0x100), &except_vec2_sb1, 0x80);
507 memcpy((void *)CKSEG1ADDR(&handle_vec2_sb1), &handle_vec2_sb1, 0x80);
509 probe_cache_sizes();
511 #ifdef CONFIG_SIBYTE_DMA_PAGEOPS
512 sb1_dma_init();
513 #endif
516 * None of these are needed for the SB1 - the Dcache is
517 * physically indexed and tagged, so no virtual aliasing can
518 * occur
520 flush_cache_range = (void *) sb1_nop;
521 flush_cache_mm = (void (*)(struct mm_struct *))sb1_nop;
522 flush_cache_all = sb1_nop;
524 /* These routines are for Icache coherence with the Dcache */
525 flush_icache_range = sb1_flush_icache_range;
526 flush_icache_page = sb1_flush_icache_page;
527 flush_icache_all = __sb1_flush_icache_all; /* local only */
529 /* This implies an Icache flush too, so can't be nop'ed */
530 flush_cache_page = sb1_flush_cache_page;
532 flush_cache_sigtramp = sb1_flush_cache_sigtramp;
533 flush_data_cache_page = (void *) sb1_nop;
535 /* Full flush */
536 __flush_cache_all = sb1___flush_cache_all;
538 change_c0_config(CONF_CM_CMASK, CONF_CM_DEFAULT);
541 * This is the only way to force the update of K0 to complete
542 * before subsequent instruction fetch.
544 __asm__ __volatile__(
545 ".set push \n"
546 " .set noat \n"
547 " .set noreorder \n"
548 " .set mips3 \n"
549 " " STR(PTR_LA) " $1, 1f \n"
550 " " STR(MTC0) " $1, $14 \n"
551 " eret \n"
552 "1: .set pop"
555 : "memory");
557 flush_cache_all();