2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
29 #ifdef CONFIG_TREE_PREEMPT_RCU
31 struct rcu_state rcu_preempt_state
= RCU_STATE_INITIALIZER(rcu_preempt_state
);
32 DEFINE_PER_CPU(struct rcu_data
, rcu_preempt_data
);
34 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
);
37 * Tell them what RCU they are running.
39 static void __init
rcu_bootup_announce(void)
42 "Experimental preemptable hierarchical RCU implementation.\n");
46 * Return the number of RCU-preempt batches processed thus far
47 * for debug and statistics.
49 long rcu_batches_completed_preempt(void)
51 return rcu_preempt_state
.completed
;
53 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt
);
56 * Return the number of RCU batches processed thus far for debug & stats.
58 long rcu_batches_completed(void)
60 return rcu_batches_completed_preempt();
62 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
65 * Force a quiescent state for preemptible RCU.
67 void rcu_force_quiescent_state(void)
69 force_quiescent_state(&rcu_preempt_state
, 0);
71 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
74 * Record a preemptable-RCU quiescent state for the specified CPU. Note
75 * that this just means that the task currently running on the CPU is
76 * not in a quiescent state. There might be any number of tasks blocked
77 * while in an RCU read-side critical section.
79 static void rcu_preempt_qs(int cpu
)
81 struct rcu_data
*rdp
= &per_cpu(rcu_preempt_data
, cpu
);
82 rdp
->passed_quiesc_completed
= rdp
->gpnum
- 1;
84 rdp
->passed_quiesc
= 1;
88 * We have entered the scheduler, and the current task might soon be
89 * context-switched away from. If this task is in an RCU read-side
90 * critical section, we will no longer be able to rely on the CPU to
91 * record that fact, so we enqueue the task on the appropriate entry
92 * of the blocked_tasks[] array. The task will dequeue itself when
93 * it exits the outermost enclosing RCU read-side critical section.
94 * Therefore, the current grace period cannot be permitted to complete
95 * until the blocked_tasks[] entry indexed by the low-order bit of
98 * Caller must disable preemption.
100 static void rcu_preempt_note_context_switch(int cpu
)
102 struct task_struct
*t
= current
;
105 struct rcu_data
*rdp
;
106 struct rcu_node
*rnp
;
108 if (t
->rcu_read_lock_nesting
&&
109 (t
->rcu_read_unlock_special
& RCU_READ_UNLOCK_BLOCKED
) == 0) {
111 /* Possibly blocking in an RCU read-side critical section. */
112 rdp
= rcu_preempt_state
.rda
[cpu
];
114 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
115 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_BLOCKED
;
116 t
->rcu_blocked_node
= rnp
;
119 * If this CPU has already checked in, then this task
120 * will hold up the next grace period rather than the
121 * current grace period. Queue the task accordingly.
122 * If the task is queued for the current grace period
123 * (i.e., this CPU has not yet passed through a quiescent
124 * state for the current grace period), then as long
125 * as that task remains queued, the current grace period
128 * But first, note that the current CPU must still be
131 WARN_ON_ONCE((rdp
->grpmask
& rnp
->qsmaskinit
) == 0);
132 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
133 phase
= (rnp
->gpnum
+ !(rnp
->qsmask
& rdp
->grpmask
)) & 0x1;
134 list_add(&t
->rcu_node_entry
, &rnp
->blocked_tasks
[phase
]);
135 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
139 * Either we were not in an RCU read-side critical section to
140 * begin with, or we have now recorded that critical section
141 * globally. Either way, we can now note a quiescent state
142 * for this CPU. Again, if we were in an RCU read-side critical
143 * section, and if that critical section was blocking the current
144 * grace period, then the fact that the task has been enqueued
145 * means that we continue to block the current grace period.
148 local_irq_save(flags
);
149 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_NEED_QS
;
150 local_irq_restore(flags
);
154 * Tree-preemptable RCU implementation for rcu_read_lock().
155 * Just increment ->rcu_read_lock_nesting, shared state will be updated
158 void __rcu_read_lock(void)
160 ACCESS_ONCE(current
->rcu_read_lock_nesting
)++;
161 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
163 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
166 * Check for preempted RCU readers blocking the current grace period
167 * for the specified rcu_node structure. If the caller needs a reliable
168 * answer, it must hold the rcu_node's ->lock.
170 static int rcu_preempted_readers(struct rcu_node
*rnp
)
172 int phase
= rnp
->gpnum
& 0x1;
174 return !list_empty(&rnp
->blocked_tasks
[phase
]) ||
175 !list_empty(&rnp
->blocked_tasks
[phase
+ 2]);
179 * Record a quiescent state for all tasks that were previously queued
180 * on the specified rcu_node structure and that were blocking the current
181 * RCU grace period. The caller must hold the specified rnp->lock with
182 * irqs disabled, and this lock is released upon return, but irqs remain
185 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
186 __releases(rnp
->lock
)
189 struct rcu_node
*rnp_p
;
191 if (rnp
->qsmask
!= 0 || rcu_preempted_readers(rnp
)) {
192 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
193 return; /* Still need more quiescent states! */
199 * Either there is only one rcu_node in the tree,
200 * or tasks were kicked up to root rcu_node due to
201 * CPUs going offline.
203 rcu_report_qs_rsp(&rcu_preempt_state
, flags
);
207 /* Report up the rest of the hierarchy. */
209 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
210 raw_spin_lock(&rnp_p
->lock
); /* irqs already disabled. */
211 rcu_report_qs_rnp(mask
, &rcu_preempt_state
, rnp_p
, flags
);
215 * Handle special cases during rcu_read_unlock(), such as needing to
216 * notify RCU core processing or task having blocked during the RCU
217 * read-side critical section.
219 static void rcu_read_unlock_special(struct task_struct
*t
)
224 struct rcu_node
*rnp
;
227 /* NMI handlers cannot block and cannot safely manipulate state. */
231 local_irq_save(flags
);
234 * If RCU core is waiting for this CPU to exit critical section,
235 * let it know that we have done so.
237 special
= t
->rcu_read_unlock_special
;
238 if (special
& RCU_READ_UNLOCK_NEED_QS
) {
239 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_NEED_QS
;
240 rcu_preempt_qs(smp_processor_id());
243 /* Hardware IRQ handlers cannot block. */
245 local_irq_restore(flags
);
249 /* Clean up if blocked during RCU read-side critical section. */
250 if (special
& RCU_READ_UNLOCK_BLOCKED
) {
251 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_BLOCKED
;
254 * Remove this task from the list it blocked on. The
255 * task can migrate while we acquire the lock, but at
256 * most one time. So at most two passes through loop.
259 rnp
= t
->rcu_blocked_node
;
260 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
261 if (rnp
== t
->rcu_blocked_node
)
263 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
265 empty
= !rcu_preempted_readers(rnp
);
266 empty_exp
= !rcu_preempted_readers_exp(rnp
);
267 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
268 list_del_init(&t
->rcu_node_entry
);
269 t
->rcu_blocked_node
= NULL
;
272 * If this was the last task on the current list, and if
273 * we aren't waiting on any CPUs, report the quiescent state.
274 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
277 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
279 rcu_report_unblock_qs_rnp(rnp
, flags
);
282 * If this was the last task on the expedited lists,
283 * then we need to report up the rcu_node hierarchy.
285 if (!empty_exp
&& !rcu_preempted_readers_exp(rnp
))
286 rcu_report_exp_rnp(&rcu_preempt_state
, rnp
);
288 local_irq_restore(flags
);
293 * Tree-preemptable RCU implementation for rcu_read_unlock().
294 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
295 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
296 * invoke rcu_read_unlock_special() to clean up after a context switch
297 * in an RCU read-side critical section and other special cases.
299 void __rcu_read_unlock(void)
301 struct task_struct
*t
= current
;
303 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
304 if (--ACCESS_ONCE(t
->rcu_read_lock_nesting
) == 0 &&
305 unlikely(ACCESS_ONCE(t
->rcu_read_unlock_special
)))
306 rcu_read_unlock_special(t
);
307 #ifdef CONFIG_PROVE_LOCKING
308 WARN_ON_ONCE(ACCESS_ONCE(t
->rcu_read_lock_nesting
) < 0);
309 #endif /* #ifdef CONFIG_PROVE_LOCKING */
311 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
313 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
315 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
318 * Dump detailed information for all tasks blocking the current RCU
319 * grace period on the specified rcu_node structure.
321 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
324 struct list_head
*lp
;
326 struct task_struct
*t
;
328 if (rcu_preempted_readers(rnp
)) {
329 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
330 phase
= rnp
->gpnum
& 0x1;
331 lp
= &rnp
->blocked_tasks
[phase
];
332 list_for_each_entry(t
, lp
, rcu_node_entry
)
334 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
339 * Dump detailed information for all tasks blocking the current RCU
342 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
344 struct rcu_node
*rnp
= rcu_get_root(rsp
);
346 rcu_print_detail_task_stall_rnp(rnp
);
347 rcu_for_each_leaf_node(rsp
, rnp
)
348 rcu_print_detail_task_stall_rnp(rnp
);
351 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
353 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
357 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
360 * Scan the current list of tasks blocked within RCU read-side critical
361 * sections, printing out the tid of each.
363 static void rcu_print_task_stall(struct rcu_node
*rnp
)
365 struct list_head
*lp
;
367 struct task_struct
*t
;
369 if (rcu_preempted_readers(rnp
)) {
370 phase
= rnp
->gpnum
& 0x1;
371 lp
= &rnp
->blocked_tasks
[phase
];
372 list_for_each_entry(t
, lp
, rcu_node_entry
)
373 printk(" P%d", t
->pid
);
377 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
380 * Check that the list of blocked tasks for the newly completed grace
381 * period is in fact empty. It is a serious bug to complete a grace
382 * period that still has RCU readers blocked! This function must be
383 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
384 * must be held by the caller.
386 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
388 WARN_ON_ONCE(rcu_preempted_readers(rnp
));
389 WARN_ON_ONCE(rnp
->qsmask
);
392 #ifdef CONFIG_HOTPLUG_CPU
395 * Handle tasklist migration for case in which all CPUs covered by the
396 * specified rcu_node have gone offline. Move them up to the root
397 * rcu_node. The reason for not just moving them to the immediate
398 * parent is to remove the need for rcu_read_unlock_special() to
399 * make more than two attempts to acquire the target rcu_node's lock.
400 * Returns true if there were tasks blocking the current RCU grace
403 * Returns 1 if there was previously a task blocking the current grace
404 * period on the specified rcu_node structure.
406 * The caller must hold rnp->lock with irqs disabled.
408 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
409 struct rcu_node
*rnp
,
410 struct rcu_data
*rdp
)
413 struct list_head
*lp
;
414 struct list_head
*lp_root
;
416 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
417 struct task_struct
*tp
;
419 if (rnp
== rnp_root
) {
420 WARN_ONCE(1, "Last CPU thought to be offlined?");
421 return 0; /* Shouldn't happen: at least one CPU online. */
423 WARN_ON_ONCE(rnp
!= rdp
->mynode
&&
424 (!list_empty(&rnp
->blocked_tasks
[0]) ||
425 !list_empty(&rnp
->blocked_tasks
[1]) ||
426 !list_empty(&rnp
->blocked_tasks
[2]) ||
427 !list_empty(&rnp
->blocked_tasks
[3])));
430 * Move tasks up to root rcu_node. Rely on the fact that the
431 * root rcu_node can be at most one ahead of the rest of the
432 * rcu_nodes in terms of gp_num value. This fact allows us to
433 * move the blocked_tasks[] array directly, element by element.
435 if (rcu_preempted_readers(rnp
))
436 retval
|= RCU_OFL_TASKS_NORM_GP
;
437 if (rcu_preempted_readers_exp(rnp
))
438 retval
|= RCU_OFL_TASKS_EXP_GP
;
439 for (i
= 0; i
< 4; i
++) {
440 lp
= &rnp
->blocked_tasks
[i
];
441 lp_root
= &rnp_root
->blocked_tasks
[i
];
442 while (!list_empty(lp
)) {
443 tp
= list_entry(lp
->next
, typeof(*tp
), rcu_node_entry
);
444 raw_spin_lock(&rnp_root
->lock
); /* irqs already disabled */
445 list_del(&tp
->rcu_node_entry
);
446 tp
->rcu_blocked_node
= rnp_root
;
447 list_add(&tp
->rcu_node_entry
, lp_root
);
448 raw_spin_unlock(&rnp_root
->lock
); /* irqs remain disabled */
455 * Do CPU-offline processing for preemptable RCU.
457 static void rcu_preempt_offline_cpu(int cpu
)
459 __rcu_offline_cpu(cpu
, &rcu_preempt_state
);
462 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
465 * Check for a quiescent state from the current CPU. When a task blocks,
466 * the task is recorded in the corresponding CPU's rcu_node structure,
467 * which is checked elsewhere.
469 * Caller must disable hard irqs.
471 static void rcu_preempt_check_callbacks(int cpu
)
473 struct task_struct
*t
= current
;
475 if (t
->rcu_read_lock_nesting
== 0) {
476 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_NEED_QS
;
480 if (per_cpu(rcu_preempt_data
, cpu
).qs_pending
)
481 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_NEED_QS
;
485 * Process callbacks for preemptable RCU.
487 static void rcu_preempt_process_callbacks(void)
489 __rcu_process_callbacks(&rcu_preempt_state
,
490 &__get_cpu_var(rcu_preempt_data
));
494 * Queue a preemptable-RCU callback for invocation after a grace period.
496 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
498 __call_rcu(head
, func
, &rcu_preempt_state
);
500 EXPORT_SYMBOL_GPL(call_rcu
);
503 * synchronize_rcu - wait until a grace period has elapsed.
505 * Control will return to the caller some time after a full grace
506 * period has elapsed, in other words after all currently executing RCU
507 * read-side critical sections have completed. RCU read-side critical
508 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
511 void synchronize_rcu(void)
513 struct rcu_synchronize rcu
;
515 if (!rcu_scheduler_active
)
518 init_completion(&rcu
.completion
);
519 /* Will wake me after RCU finished. */
520 call_rcu(&rcu
.head
, wakeme_after_rcu
);
522 wait_for_completion(&rcu
.completion
);
524 EXPORT_SYMBOL_GPL(synchronize_rcu
);
526 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq
);
527 static long sync_rcu_preempt_exp_count
;
528 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex
);
531 * Return non-zero if there are any tasks in RCU read-side critical
532 * sections blocking the current preemptible-RCU expedited grace period.
533 * If there is no preemptible-RCU expedited grace period currently in
534 * progress, returns zero unconditionally.
536 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
)
538 return !list_empty(&rnp
->blocked_tasks
[2]) ||
539 !list_empty(&rnp
->blocked_tasks
[3]);
543 * return non-zero if there is no RCU expedited grace period in progress
544 * for the specified rcu_node structure, in other words, if all CPUs and
545 * tasks covered by the specified rcu_node structure have done their bit
546 * for the current expedited grace period. Works only for preemptible
547 * RCU -- other RCU implementation use other means.
549 * Caller must hold sync_rcu_preempt_exp_mutex.
551 static int sync_rcu_preempt_exp_done(struct rcu_node
*rnp
)
553 return !rcu_preempted_readers_exp(rnp
) &&
554 ACCESS_ONCE(rnp
->expmask
) == 0;
558 * Report the exit from RCU read-side critical section for the last task
559 * that queued itself during or before the current expedited preemptible-RCU
560 * grace period. This event is reported either to the rcu_node structure on
561 * which the task was queued or to one of that rcu_node structure's ancestors,
562 * recursively up the tree. (Calm down, calm down, we do the recursion
565 * Caller must hold sync_rcu_preempt_exp_mutex.
567 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
572 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
574 if (!sync_rcu_preempt_exp_done(rnp
))
576 if (rnp
->parent
== NULL
) {
577 wake_up(&sync_rcu_preempt_exp_wq
);
581 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
583 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
584 rnp
->expmask
&= ~mask
;
586 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
590 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
591 * grace period for the specified rcu_node structure. If there are no such
592 * tasks, report it up the rcu_node hierarchy.
594 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
597 sync_rcu_preempt_exp_init(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
601 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
602 list_splice_init(&rnp
->blocked_tasks
[0], &rnp
->blocked_tasks
[2]);
603 list_splice_init(&rnp
->blocked_tasks
[1], &rnp
->blocked_tasks
[3]);
604 must_wait
= rcu_preempted_readers_exp(rnp
);
605 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
607 rcu_report_exp_rnp(rsp
, rnp
);
611 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
612 * is to invoke synchronize_sched_expedited() to push all the tasks to
613 * the ->blocked_tasks[] lists, move all entries from the first set of
614 * ->blocked_tasks[] lists to the second set, and finally wait for this
615 * second set to drain.
617 void synchronize_rcu_expedited(void)
620 struct rcu_node
*rnp
;
621 struct rcu_state
*rsp
= &rcu_preempt_state
;
625 smp_mb(); /* Caller's modifications seen first by other CPUs. */
626 snap
= ACCESS_ONCE(sync_rcu_preempt_exp_count
) + 1;
627 smp_mb(); /* Above access cannot bleed into critical section. */
630 * Acquire lock, falling back to synchronize_rcu() if too many
631 * lock-acquisition failures. Of course, if someone does the
632 * expedited grace period for us, just leave.
634 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex
)) {
636 udelay(trycount
* num_online_cpus());
641 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count
) - snap
) > 0)
642 goto mb_ret
; /* Others did our work for us. */
644 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count
) - snap
) > 0)
645 goto unlock_mb_ret
; /* Others did our work for us. */
647 /* force all RCU readers onto blocked_tasks[]. */
648 synchronize_sched_expedited();
650 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
652 /* Initialize ->expmask for all non-leaf rcu_node structures. */
653 rcu_for_each_nonleaf_node_breadth_first(rsp
, rnp
) {
654 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
655 rnp
->expmask
= rnp
->qsmaskinit
;
656 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
659 /* Snapshot current state of ->blocked_tasks[] lists. */
660 rcu_for_each_leaf_node(rsp
, rnp
)
661 sync_rcu_preempt_exp_init(rsp
, rnp
);
662 if (NUM_RCU_NODES
> 1)
663 sync_rcu_preempt_exp_init(rsp
, rcu_get_root(rsp
));
665 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
667 /* Wait for snapshotted ->blocked_tasks[] lists to drain. */
668 rnp
= rcu_get_root(rsp
);
669 wait_event(sync_rcu_preempt_exp_wq
,
670 sync_rcu_preempt_exp_done(rnp
));
672 /* Clean up and exit. */
673 smp_mb(); /* ensure expedited GP seen before counter increment. */
674 ACCESS_ONCE(sync_rcu_preempt_exp_count
)++;
676 mutex_unlock(&sync_rcu_preempt_exp_mutex
);
678 smp_mb(); /* ensure subsequent action seen after grace period. */
680 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
683 * Check to see if there is any immediate preemptable-RCU-related work
686 static int rcu_preempt_pending(int cpu
)
688 return __rcu_pending(&rcu_preempt_state
,
689 &per_cpu(rcu_preempt_data
, cpu
));
693 * Does preemptable RCU need the CPU to stay out of dynticks mode?
695 static int rcu_preempt_needs_cpu(int cpu
)
697 return !!per_cpu(rcu_preempt_data
, cpu
).nxtlist
;
701 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
703 void rcu_barrier(void)
705 _rcu_barrier(&rcu_preempt_state
, call_rcu
);
707 EXPORT_SYMBOL_GPL(rcu_barrier
);
710 * Initialize preemptable RCU's per-CPU data.
712 static void __cpuinit
rcu_preempt_init_percpu_data(int cpu
)
714 rcu_init_percpu_data(cpu
, &rcu_preempt_state
, 1);
718 * Move preemptable RCU's callbacks to ->orphan_cbs_list.
720 static void rcu_preempt_send_cbs_to_orphanage(void)
722 rcu_send_cbs_to_orphanage(&rcu_preempt_state
);
726 * Initialize preemptable RCU's state structures.
728 static void __init
__rcu_init_preempt(void)
730 RCU_INIT_FLAVOR(&rcu_preempt_state
, rcu_preempt_data
);
734 * Check for a task exiting while in a preemptable-RCU read-side
735 * critical section, clean up if so. No need to issue warnings,
736 * as debug_check_no_locks_held() already does this if lockdep
741 struct task_struct
*t
= current
;
743 if (t
->rcu_read_lock_nesting
== 0)
745 t
->rcu_read_lock_nesting
= 1;
749 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
752 * Tell them what RCU they are running.
754 static void __init
rcu_bootup_announce(void)
756 printk(KERN_INFO
"Hierarchical RCU implementation.\n");
760 * Return the number of RCU batches processed thus far for debug & stats.
762 long rcu_batches_completed(void)
764 return rcu_batches_completed_sched();
766 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
769 * Force a quiescent state for RCU, which, because there is no preemptible
770 * RCU, becomes the same as rcu-sched.
772 void rcu_force_quiescent_state(void)
774 rcu_sched_force_quiescent_state();
776 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
779 * Because preemptable RCU does not exist, we never have to check for
780 * CPUs being in quiescent states.
782 static void rcu_preempt_note_context_switch(int cpu
)
787 * Because preemptable RCU does not exist, there are never any preempted
790 static int rcu_preempted_readers(struct rcu_node
*rnp
)
795 #ifdef CONFIG_HOTPLUG_CPU
797 /* Because preemptible RCU does not exist, no quieting of tasks. */
798 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
800 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
803 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
805 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
808 * Because preemptable RCU does not exist, we never have to check for
809 * tasks blocked within RCU read-side critical sections.
811 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
816 * Because preemptable RCU does not exist, we never have to check for
817 * tasks blocked within RCU read-side critical sections.
819 static void rcu_print_task_stall(struct rcu_node
*rnp
)
823 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
826 * Because there is no preemptable RCU, there can be no readers blocked,
827 * so there is no need to check for blocked tasks. So check only for
828 * bogus qsmask values.
830 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
832 WARN_ON_ONCE(rnp
->qsmask
);
835 #ifdef CONFIG_HOTPLUG_CPU
838 * Because preemptable RCU does not exist, it never needs to migrate
839 * tasks that were blocked within RCU read-side critical sections, and
840 * such non-existent tasks cannot possibly have been blocking the current
843 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
844 struct rcu_node
*rnp
,
845 struct rcu_data
*rdp
)
851 * Because preemptable RCU does not exist, it never needs CPU-offline
854 static void rcu_preempt_offline_cpu(int cpu
)
858 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
861 * Because preemptable RCU does not exist, it never has any callbacks
864 static void rcu_preempt_check_callbacks(int cpu
)
869 * Because preemptable RCU does not exist, it never has any callbacks
872 static void rcu_preempt_process_callbacks(void)
877 * In classic RCU, call_rcu() is just call_rcu_sched().
879 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
881 call_rcu_sched(head
, func
);
883 EXPORT_SYMBOL_GPL(call_rcu
);
886 * Wait for an rcu-preempt grace period, but make it happen quickly.
887 * But because preemptable RCU does not exist, map to rcu-sched.
889 void synchronize_rcu_expedited(void)
891 synchronize_sched_expedited();
893 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
895 #ifdef CONFIG_HOTPLUG_CPU
898 * Because preemptable RCU does not exist, there is never any need to
899 * report on tasks preempted in RCU read-side critical sections during
900 * expedited RCU grace periods.
902 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
907 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
910 * Because preemptable RCU does not exist, it never has any work to do.
912 static int rcu_preempt_pending(int cpu
)
918 * Because preemptable RCU does not exist, it never needs any CPU.
920 static int rcu_preempt_needs_cpu(int cpu
)
926 * Because preemptable RCU does not exist, rcu_barrier() is just
927 * another name for rcu_barrier_sched().
929 void rcu_barrier(void)
933 EXPORT_SYMBOL_GPL(rcu_barrier
);
936 * Because preemptable RCU does not exist, there is no per-CPU
937 * data to initialize.
939 static void __cpuinit
rcu_preempt_init_percpu_data(int cpu
)
944 * Because there is no preemptable RCU, there are no callbacks to move.
946 static void rcu_preempt_send_cbs_to_orphanage(void)
951 * Because preemptable RCU does not exist, it need not be initialized.
953 static void __init
__rcu_init_preempt(void)
957 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
959 #if !defined(CONFIG_RCU_FAST_NO_HZ)
962 * Check to see if any future RCU-related work will need to be done
963 * by the current CPU, even if none need be done immediately, returning
964 * 1 if so. This function is part of the RCU implementation; it is -not-
965 * an exported member of the RCU API.
967 * Because we have preemptible RCU, just check whether this CPU needs
968 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
969 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
971 int rcu_needs_cpu(int cpu
)
973 return rcu_needs_cpu_quick_check(cpu
);
977 * Check to see if we need to continue a callback-flush operations to
978 * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
979 * entry is not configured, so we never do need to.
981 static void rcu_needs_cpu_flush(void)
985 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
987 #define RCU_NEEDS_CPU_FLUSHES 5
988 static DEFINE_PER_CPU(int, rcu_dyntick_drain
);
989 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff
);
992 * Check to see if any future RCU-related work will need to be done
993 * by the current CPU, even if none need be done immediately, returning
994 * 1 if so. This function is part of the RCU implementation; it is -not-
995 * an exported member of the RCU API.
997 * Because we are not supporting preemptible RCU, attempt to accelerate
998 * any current grace periods so that RCU no longer needs this CPU, but
999 * only if all other CPUs are already in dynticks-idle mode. This will
1000 * allow the CPU cores to be powered down immediately, as opposed to after
1001 * waiting many milliseconds for grace periods to elapse.
1003 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1004 * disabled, we do one pass of force_quiescent_state(), then do a
1005 * raise_softirq() to cause rcu_process_callbacks() to be invoked later.
1006 * The per-cpu rcu_dyntick_drain variable controls the sequencing.
1008 int rcu_needs_cpu(int cpu
)
1013 /* Don't bother unless we are the last non-dyntick-idle CPU. */
1014 for_each_cpu_not(thatcpu
, nohz_cpu_mask
)
1015 if (thatcpu
!= cpu
) {
1016 per_cpu(rcu_dyntick_drain
, cpu
) = 0;
1017 per_cpu(rcu_dyntick_holdoff
, cpu
) = jiffies
- 1;
1018 return rcu_needs_cpu_quick_check(cpu
);
1021 /* Check and update the rcu_dyntick_drain sequencing. */
1022 if (per_cpu(rcu_dyntick_drain
, cpu
) <= 0) {
1023 /* First time through, initialize the counter. */
1024 per_cpu(rcu_dyntick_drain
, cpu
) = RCU_NEEDS_CPU_FLUSHES
;
1025 } else if (--per_cpu(rcu_dyntick_drain
, cpu
) <= 0) {
1026 /* We have hit the limit, so time to give up. */
1027 per_cpu(rcu_dyntick_holdoff
, cpu
) = jiffies
;
1028 return rcu_needs_cpu_quick_check(cpu
);
1031 /* Do one step pushing remaining RCU callbacks through. */
1032 if (per_cpu(rcu_sched_data
, cpu
).nxtlist
) {
1034 force_quiescent_state(&rcu_sched_state
, 0);
1035 c
= c
|| per_cpu(rcu_sched_data
, cpu
).nxtlist
;
1037 if (per_cpu(rcu_bh_data
, cpu
).nxtlist
) {
1039 force_quiescent_state(&rcu_bh_state
, 0);
1040 c
= c
|| per_cpu(rcu_bh_data
, cpu
).nxtlist
;
1043 /* If RCU callbacks are still pending, RCU still needs this CPU. */
1045 raise_softirq(RCU_SOFTIRQ
);
1046 per_cpu(rcu_dyntick_holdoff
, cpu
) = jiffies
;
1052 * Check to see if we need to continue a callback-flush operations to
1053 * allow the last CPU to enter dyntick-idle mode.
1055 static void rcu_needs_cpu_flush(void)
1057 int cpu
= smp_processor_id();
1058 unsigned long flags
;
1060 if (per_cpu(rcu_dyntick_drain
, cpu
) <= 0)
1062 local_irq_save(flags
);
1063 (void)rcu_needs_cpu(cpu
);
1064 local_irq_restore(flags
);
1067 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */