drivers: usb: atm: ueagle-atm: Add missing const qualifier
[linux-2.6/next.git] / mm / shmem.c
blobd221a1cfd7b196175ab9134aac147b22400c13e6
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
34 static struct vfsmount *shm_mnt;
36 #ifdef CONFIG_SHMEM
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
102 struct shmem_xattr {
103 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
104 char *name; /* xattr name */
105 size_t size;
106 char value[0];
109 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
110 enum sgp_type {
111 SGP_READ, /* don't exceed i_size, don't allocate page */
112 SGP_CACHE, /* don't exceed i_size, may allocate page */
113 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
114 SGP_WRITE, /* may exceed i_size, may allocate page */
117 #ifdef CONFIG_TMPFS
118 static unsigned long shmem_default_max_blocks(void)
120 return totalram_pages / 2;
123 static unsigned long shmem_default_max_inodes(void)
125 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
127 #endif
129 static int shmem_getpage(struct inode *inode, unsigned long idx,
130 struct page **pagep, enum sgp_type sgp, int *type);
132 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
135 * The above definition of ENTRIES_PER_PAGE, and the use of
136 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
137 * might be reconsidered if it ever diverges from PAGE_SIZE.
139 * Mobility flags are masked out as swap vectors cannot move
141 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
142 PAGE_CACHE_SHIFT-PAGE_SHIFT);
145 static inline void shmem_dir_free(struct page *page)
147 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
150 static struct page **shmem_dir_map(struct page *page)
152 return (struct page **)kmap_atomic(page, KM_USER0);
155 static inline void shmem_dir_unmap(struct page **dir)
157 kunmap_atomic(dir, KM_USER0);
160 static swp_entry_t *shmem_swp_map(struct page *page)
162 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
165 static inline void shmem_swp_balance_unmap(void)
168 * When passing a pointer to an i_direct entry, to code which
169 * also handles indirect entries and so will shmem_swp_unmap,
170 * we must arrange for the preempt count to remain in balance.
171 * What kmap_atomic of a lowmem page does depends on config
172 * and architecture, so pretend to kmap_atomic some lowmem page.
174 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
177 static inline void shmem_swp_unmap(swp_entry_t *entry)
179 kunmap_atomic(entry, KM_USER1);
182 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
184 return sb->s_fs_info;
188 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
189 * for shared memory and for shared anonymous (/dev/zero) mappings
190 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
191 * consistent with the pre-accounting of private mappings ...
193 static inline int shmem_acct_size(unsigned long flags, loff_t size)
195 return (flags & VM_NORESERVE) ?
196 0 : security_vm_enough_memory_kern(VM_ACCT(size));
199 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
201 if (!(flags & VM_NORESERVE))
202 vm_unacct_memory(VM_ACCT(size));
206 * ... whereas tmpfs objects are accounted incrementally as
207 * pages are allocated, in order to allow huge sparse files.
208 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
209 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
211 static inline int shmem_acct_block(unsigned long flags)
213 return (flags & VM_NORESERVE) ?
214 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
217 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
219 if (flags & VM_NORESERVE)
220 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
223 static const struct super_operations shmem_ops;
224 static const struct address_space_operations shmem_aops;
225 static const struct file_operations shmem_file_operations;
226 static const struct inode_operations shmem_inode_operations;
227 static const struct inode_operations shmem_dir_inode_operations;
228 static const struct inode_operations shmem_special_inode_operations;
229 static const struct vm_operations_struct shmem_vm_ops;
231 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
232 .ra_pages = 0, /* No readahead */
233 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
236 static LIST_HEAD(shmem_swaplist);
237 static DEFINE_MUTEX(shmem_swaplist_mutex);
239 static void shmem_free_blocks(struct inode *inode, long pages)
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 if (sbinfo->max_blocks) {
243 percpu_counter_add(&sbinfo->used_blocks, -pages);
244 spin_lock(&inode->i_lock);
245 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
246 spin_unlock(&inode->i_lock);
250 static int shmem_reserve_inode(struct super_block *sb)
252 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
253 if (sbinfo->max_inodes) {
254 spin_lock(&sbinfo->stat_lock);
255 if (!sbinfo->free_inodes) {
256 spin_unlock(&sbinfo->stat_lock);
257 return -ENOSPC;
259 sbinfo->free_inodes--;
260 spin_unlock(&sbinfo->stat_lock);
262 return 0;
265 static void shmem_free_inode(struct super_block *sb)
267 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
268 if (sbinfo->max_inodes) {
269 spin_lock(&sbinfo->stat_lock);
270 sbinfo->free_inodes++;
271 spin_unlock(&sbinfo->stat_lock);
276 * shmem_recalc_inode - recalculate the size of an inode
277 * @inode: inode to recalc
279 * We have to calculate the free blocks since the mm can drop
280 * undirtied hole pages behind our back.
282 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
283 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
285 * It has to be called with the spinlock held.
287 static void shmem_recalc_inode(struct inode *inode)
289 struct shmem_inode_info *info = SHMEM_I(inode);
290 long freed;
292 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
293 if (freed > 0) {
294 info->alloced -= freed;
295 shmem_unacct_blocks(info->flags, freed);
296 shmem_free_blocks(inode, freed);
301 * shmem_swp_entry - find the swap vector position in the info structure
302 * @info: info structure for the inode
303 * @index: index of the page to find
304 * @page: optional page to add to the structure. Has to be preset to
305 * all zeros
307 * If there is no space allocated yet it will return NULL when
308 * page is NULL, else it will use the page for the needed block,
309 * setting it to NULL on return to indicate that it has been used.
311 * The swap vector is organized the following way:
313 * There are SHMEM_NR_DIRECT entries directly stored in the
314 * shmem_inode_info structure. So small files do not need an addional
315 * allocation.
317 * For pages with index > SHMEM_NR_DIRECT there is the pointer
318 * i_indirect which points to a page which holds in the first half
319 * doubly indirect blocks, in the second half triple indirect blocks:
321 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
322 * following layout (for SHMEM_NR_DIRECT == 16):
324 * i_indirect -> dir --> 16-19
325 * | +-> 20-23
327 * +-->dir2 --> 24-27
328 * | +-> 28-31
329 * | +-> 32-35
330 * | +-> 36-39
332 * +-->dir3 --> 40-43
333 * +-> 44-47
334 * +-> 48-51
335 * +-> 52-55
337 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
339 unsigned long offset;
340 struct page **dir;
341 struct page *subdir;
343 if (index < SHMEM_NR_DIRECT) {
344 shmem_swp_balance_unmap();
345 return info->i_direct+index;
347 if (!info->i_indirect) {
348 if (page) {
349 info->i_indirect = *page;
350 *page = NULL;
352 return NULL; /* need another page */
355 index -= SHMEM_NR_DIRECT;
356 offset = index % ENTRIES_PER_PAGE;
357 index /= ENTRIES_PER_PAGE;
358 dir = shmem_dir_map(info->i_indirect);
360 if (index >= ENTRIES_PER_PAGE/2) {
361 index -= ENTRIES_PER_PAGE/2;
362 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
363 index %= ENTRIES_PER_PAGE;
364 subdir = *dir;
365 if (!subdir) {
366 if (page) {
367 *dir = *page;
368 *page = NULL;
370 shmem_dir_unmap(dir);
371 return NULL; /* need another page */
373 shmem_dir_unmap(dir);
374 dir = shmem_dir_map(subdir);
377 dir += index;
378 subdir = *dir;
379 if (!subdir) {
380 if (!page || !(subdir = *page)) {
381 shmem_dir_unmap(dir);
382 return NULL; /* need a page */
384 *dir = subdir;
385 *page = NULL;
387 shmem_dir_unmap(dir);
388 return shmem_swp_map(subdir) + offset;
391 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
393 long incdec = value? 1: -1;
395 entry->val = value;
396 info->swapped += incdec;
397 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
398 struct page *page = kmap_atomic_to_page(entry);
399 set_page_private(page, page_private(page) + incdec);
404 * shmem_swp_alloc - get the position of the swap entry for the page.
405 * @info: info structure for the inode
406 * @index: index of the page to find
407 * @sgp: check and recheck i_size? skip allocation?
409 * If the entry does not exist, allocate it.
411 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
413 struct inode *inode = &info->vfs_inode;
414 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
415 struct page *page = NULL;
416 swp_entry_t *entry;
418 if (sgp != SGP_WRITE &&
419 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
420 return ERR_PTR(-EINVAL);
422 while (!(entry = shmem_swp_entry(info, index, &page))) {
423 if (sgp == SGP_READ)
424 return shmem_swp_map(ZERO_PAGE(0));
426 * Test used_blocks against 1 less max_blocks, since we have 1 data
427 * page (and perhaps indirect index pages) yet to allocate:
428 * a waste to allocate index if we cannot allocate data.
430 if (sbinfo->max_blocks) {
431 if (percpu_counter_compare(&sbinfo->used_blocks,
432 sbinfo->max_blocks - 1) >= 0)
433 return ERR_PTR(-ENOSPC);
434 percpu_counter_inc(&sbinfo->used_blocks);
435 spin_lock(&inode->i_lock);
436 inode->i_blocks += BLOCKS_PER_PAGE;
437 spin_unlock(&inode->i_lock);
440 spin_unlock(&info->lock);
441 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
442 spin_lock(&info->lock);
444 if (!page) {
445 shmem_free_blocks(inode, 1);
446 return ERR_PTR(-ENOMEM);
448 if (sgp != SGP_WRITE &&
449 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
450 entry = ERR_PTR(-EINVAL);
451 break;
453 if (info->next_index <= index)
454 info->next_index = index + 1;
456 if (page) {
457 /* another task gave its page, or truncated the file */
458 shmem_free_blocks(inode, 1);
459 shmem_dir_free(page);
461 if (info->next_index <= index && !IS_ERR(entry))
462 info->next_index = index + 1;
463 return entry;
467 * shmem_free_swp - free some swap entries in a directory
468 * @dir: pointer to the directory
469 * @edir: pointer after last entry of the directory
470 * @punch_lock: pointer to spinlock when needed for the holepunch case
472 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
473 spinlock_t *punch_lock)
475 spinlock_t *punch_unlock = NULL;
476 swp_entry_t *ptr;
477 int freed = 0;
479 for (ptr = dir; ptr < edir; ptr++) {
480 if (ptr->val) {
481 if (unlikely(punch_lock)) {
482 punch_unlock = punch_lock;
483 punch_lock = NULL;
484 spin_lock(punch_unlock);
485 if (!ptr->val)
486 continue;
488 free_swap_and_cache(*ptr);
489 *ptr = (swp_entry_t){0};
490 freed++;
493 if (punch_unlock)
494 spin_unlock(punch_unlock);
495 return freed;
498 static int shmem_map_and_free_swp(struct page *subdir, int offset,
499 int limit, struct page ***dir, spinlock_t *punch_lock)
501 swp_entry_t *ptr;
502 int freed = 0;
504 ptr = shmem_swp_map(subdir);
505 for (; offset < limit; offset += LATENCY_LIMIT) {
506 int size = limit - offset;
507 if (size > LATENCY_LIMIT)
508 size = LATENCY_LIMIT;
509 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
510 punch_lock);
511 if (need_resched()) {
512 shmem_swp_unmap(ptr);
513 if (*dir) {
514 shmem_dir_unmap(*dir);
515 *dir = NULL;
517 cond_resched();
518 ptr = shmem_swp_map(subdir);
521 shmem_swp_unmap(ptr);
522 return freed;
525 static void shmem_free_pages(struct list_head *next)
527 struct page *page;
528 int freed = 0;
530 do {
531 page = container_of(next, struct page, lru);
532 next = next->next;
533 shmem_dir_free(page);
534 freed++;
535 if (freed >= LATENCY_LIMIT) {
536 cond_resched();
537 freed = 0;
539 } while (next);
542 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
544 struct shmem_inode_info *info = SHMEM_I(inode);
545 unsigned long idx;
546 unsigned long size;
547 unsigned long limit;
548 unsigned long stage;
549 unsigned long diroff;
550 struct page **dir;
551 struct page *topdir;
552 struct page *middir;
553 struct page *subdir;
554 swp_entry_t *ptr;
555 LIST_HEAD(pages_to_free);
556 long nr_pages_to_free = 0;
557 long nr_swaps_freed = 0;
558 int offset;
559 int freed;
560 int punch_hole;
561 spinlock_t *needs_lock;
562 spinlock_t *punch_lock;
563 unsigned long upper_limit;
565 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
566 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
567 if (idx >= info->next_index)
568 return;
570 spin_lock(&info->lock);
571 info->flags |= SHMEM_TRUNCATE;
572 if (likely(end == (loff_t) -1)) {
573 limit = info->next_index;
574 upper_limit = SHMEM_MAX_INDEX;
575 info->next_index = idx;
576 needs_lock = NULL;
577 punch_hole = 0;
578 } else {
579 if (end + 1 >= inode->i_size) { /* we may free a little more */
580 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
581 PAGE_CACHE_SHIFT;
582 upper_limit = SHMEM_MAX_INDEX;
583 } else {
584 limit = (end + 1) >> PAGE_CACHE_SHIFT;
585 upper_limit = limit;
587 needs_lock = &info->lock;
588 punch_hole = 1;
591 topdir = info->i_indirect;
592 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
593 info->i_indirect = NULL;
594 nr_pages_to_free++;
595 list_add(&topdir->lru, &pages_to_free);
597 spin_unlock(&info->lock);
599 if (info->swapped && idx < SHMEM_NR_DIRECT) {
600 ptr = info->i_direct;
601 size = limit;
602 if (size > SHMEM_NR_DIRECT)
603 size = SHMEM_NR_DIRECT;
604 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
608 * If there are no indirect blocks or we are punching a hole
609 * below indirect blocks, nothing to be done.
611 if (!topdir || limit <= SHMEM_NR_DIRECT)
612 goto done2;
615 * The truncation case has already dropped info->lock, and we're safe
616 * because i_size and next_index have already been lowered, preventing
617 * access beyond. But in the punch_hole case, we still need to take
618 * the lock when updating the swap directory, because there might be
619 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
620 * shmem_writepage. However, whenever we find we can remove a whole
621 * directory page (not at the misaligned start or end of the range),
622 * we first NULLify its pointer in the level above, and then have no
623 * need to take the lock when updating its contents: needs_lock and
624 * punch_lock (either pointing to info->lock or NULL) manage this.
627 upper_limit -= SHMEM_NR_DIRECT;
628 limit -= SHMEM_NR_DIRECT;
629 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
630 offset = idx % ENTRIES_PER_PAGE;
631 idx -= offset;
633 dir = shmem_dir_map(topdir);
634 stage = ENTRIES_PER_PAGEPAGE/2;
635 if (idx < ENTRIES_PER_PAGEPAGE/2) {
636 middir = topdir;
637 diroff = idx/ENTRIES_PER_PAGE;
638 } else {
639 dir += ENTRIES_PER_PAGE/2;
640 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
641 while (stage <= idx)
642 stage += ENTRIES_PER_PAGEPAGE;
643 middir = *dir;
644 if (*dir) {
645 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
646 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
647 if (!diroff && !offset && upper_limit >= stage) {
648 if (needs_lock) {
649 spin_lock(needs_lock);
650 *dir = NULL;
651 spin_unlock(needs_lock);
652 needs_lock = NULL;
653 } else
654 *dir = NULL;
655 nr_pages_to_free++;
656 list_add(&middir->lru, &pages_to_free);
658 shmem_dir_unmap(dir);
659 dir = shmem_dir_map(middir);
660 } else {
661 diroff = 0;
662 offset = 0;
663 idx = stage;
667 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
668 if (unlikely(idx == stage)) {
669 shmem_dir_unmap(dir);
670 dir = shmem_dir_map(topdir) +
671 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
672 while (!*dir) {
673 dir++;
674 idx += ENTRIES_PER_PAGEPAGE;
675 if (idx >= limit)
676 goto done1;
678 stage = idx + ENTRIES_PER_PAGEPAGE;
679 middir = *dir;
680 if (punch_hole)
681 needs_lock = &info->lock;
682 if (upper_limit >= stage) {
683 if (needs_lock) {
684 spin_lock(needs_lock);
685 *dir = NULL;
686 spin_unlock(needs_lock);
687 needs_lock = NULL;
688 } else
689 *dir = NULL;
690 nr_pages_to_free++;
691 list_add(&middir->lru, &pages_to_free);
693 shmem_dir_unmap(dir);
694 cond_resched();
695 dir = shmem_dir_map(middir);
696 diroff = 0;
698 punch_lock = needs_lock;
699 subdir = dir[diroff];
700 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
701 if (needs_lock) {
702 spin_lock(needs_lock);
703 dir[diroff] = NULL;
704 spin_unlock(needs_lock);
705 punch_lock = NULL;
706 } else
707 dir[diroff] = NULL;
708 nr_pages_to_free++;
709 list_add(&subdir->lru, &pages_to_free);
711 if (subdir && page_private(subdir) /* has swap entries */) {
712 size = limit - idx;
713 if (size > ENTRIES_PER_PAGE)
714 size = ENTRIES_PER_PAGE;
715 freed = shmem_map_and_free_swp(subdir,
716 offset, size, &dir, punch_lock);
717 if (!dir)
718 dir = shmem_dir_map(middir);
719 nr_swaps_freed += freed;
720 if (offset || punch_lock) {
721 spin_lock(&info->lock);
722 set_page_private(subdir,
723 page_private(subdir) - freed);
724 spin_unlock(&info->lock);
725 } else
726 BUG_ON(page_private(subdir) != freed);
728 offset = 0;
730 done1:
731 shmem_dir_unmap(dir);
732 done2:
733 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
735 * Call truncate_inode_pages again: racing shmem_unuse_inode
736 * may have swizzled a page in from swap since
737 * truncate_pagecache or generic_delete_inode did it, before we
738 * lowered next_index. Also, though shmem_getpage checks
739 * i_size before adding to cache, no recheck after: so fix the
740 * narrow window there too.
742 * Recalling truncate_inode_pages_range and unmap_mapping_range
743 * every time for punch_hole (which never got a chance to clear
744 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
745 * yet hardly ever necessary: try to optimize them out later.
747 truncate_inode_pages_range(inode->i_mapping, start, end);
748 if (punch_hole)
749 unmap_mapping_range(inode->i_mapping, start,
750 end - start, 1);
753 spin_lock(&info->lock);
754 info->flags &= ~SHMEM_TRUNCATE;
755 info->swapped -= nr_swaps_freed;
756 if (nr_pages_to_free)
757 shmem_free_blocks(inode, nr_pages_to_free);
758 shmem_recalc_inode(inode);
759 spin_unlock(&info->lock);
762 * Empty swap vector directory pages to be freed?
764 if (!list_empty(&pages_to_free)) {
765 pages_to_free.prev->next = NULL;
766 shmem_free_pages(pages_to_free.next);
770 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
772 struct inode *inode = dentry->d_inode;
773 loff_t newsize = attr->ia_size;
774 int error;
776 error = inode_change_ok(inode, attr);
777 if (error)
778 return error;
780 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
781 && newsize != inode->i_size) {
782 struct page *page = NULL;
784 if (newsize < inode->i_size) {
786 * If truncating down to a partial page, then
787 * if that page is already allocated, hold it
788 * in memory until the truncation is over, so
789 * truncate_partial_page cannot miss it were
790 * it assigned to swap.
792 if (newsize & (PAGE_CACHE_SIZE-1)) {
793 (void) shmem_getpage(inode,
794 newsize >> PAGE_CACHE_SHIFT,
795 &page, SGP_READ, NULL);
796 if (page)
797 unlock_page(page);
800 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
801 * detect if any pages might have been added to cache
802 * after truncate_inode_pages. But we needn't bother
803 * if it's being fully truncated to zero-length: the
804 * nrpages check is efficient enough in that case.
806 if (newsize) {
807 struct shmem_inode_info *info = SHMEM_I(inode);
808 spin_lock(&info->lock);
809 info->flags &= ~SHMEM_PAGEIN;
810 spin_unlock(&info->lock);
814 /* XXX(truncate): truncate_setsize should be called last */
815 truncate_setsize(inode, newsize);
816 if (page)
817 page_cache_release(page);
818 shmem_truncate_range(inode, newsize, (loff_t)-1);
821 setattr_copy(inode, attr);
822 #ifdef CONFIG_TMPFS_POSIX_ACL
823 if (attr->ia_valid & ATTR_MODE)
824 error = generic_acl_chmod(inode);
825 #endif
826 return error;
829 static void shmem_evict_inode(struct inode *inode)
831 struct shmem_inode_info *info = SHMEM_I(inode);
832 struct shmem_xattr *xattr, *nxattr;
834 if (inode->i_mapping->a_ops == &shmem_aops) {
835 truncate_inode_pages(inode->i_mapping, 0);
836 shmem_unacct_size(info->flags, inode->i_size);
837 inode->i_size = 0;
838 shmem_truncate_range(inode, 0, (loff_t)-1);
839 if (!list_empty(&info->swaplist)) {
840 mutex_lock(&shmem_swaplist_mutex);
841 list_del_init(&info->swaplist);
842 mutex_unlock(&shmem_swaplist_mutex);
846 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
847 kfree(xattr->name);
848 kfree(xattr);
850 BUG_ON(inode->i_blocks);
851 shmem_free_inode(inode->i_sb);
852 end_writeback(inode);
855 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
857 swp_entry_t *ptr;
859 for (ptr = dir; ptr < edir; ptr++) {
860 if (ptr->val == entry.val)
861 return ptr - dir;
863 return -1;
866 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
868 struct address_space *mapping;
869 unsigned long idx;
870 unsigned long size;
871 unsigned long limit;
872 unsigned long stage;
873 struct page **dir;
874 struct page *subdir;
875 swp_entry_t *ptr;
876 int offset;
877 int error;
879 idx = 0;
880 ptr = info->i_direct;
881 spin_lock(&info->lock);
882 if (!info->swapped) {
883 list_del_init(&info->swaplist);
884 goto lost2;
886 limit = info->next_index;
887 size = limit;
888 if (size > SHMEM_NR_DIRECT)
889 size = SHMEM_NR_DIRECT;
890 offset = shmem_find_swp(entry, ptr, ptr+size);
891 if (offset >= 0) {
892 shmem_swp_balance_unmap();
893 goto found;
895 if (!info->i_indirect)
896 goto lost2;
898 dir = shmem_dir_map(info->i_indirect);
899 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
901 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
902 if (unlikely(idx == stage)) {
903 shmem_dir_unmap(dir-1);
904 if (cond_resched_lock(&info->lock)) {
905 /* check it has not been truncated */
906 if (limit > info->next_index) {
907 limit = info->next_index;
908 if (idx >= limit)
909 goto lost2;
912 dir = shmem_dir_map(info->i_indirect) +
913 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
914 while (!*dir) {
915 dir++;
916 idx += ENTRIES_PER_PAGEPAGE;
917 if (idx >= limit)
918 goto lost1;
920 stage = idx + ENTRIES_PER_PAGEPAGE;
921 subdir = *dir;
922 shmem_dir_unmap(dir);
923 dir = shmem_dir_map(subdir);
925 subdir = *dir;
926 if (subdir && page_private(subdir)) {
927 ptr = shmem_swp_map(subdir);
928 size = limit - idx;
929 if (size > ENTRIES_PER_PAGE)
930 size = ENTRIES_PER_PAGE;
931 offset = shmem_find_swp(entry, ptr, ptr+size);
932 shmem_swp_unmap(ptr);
933 if (offset >= 0) {
934 shmem_dir_unmap(dir);
935 ptr = shmem_swp_map(subdir);
936 goto found;
940 lost1:
941 shmem_dir_unmap(dir-1);
942 lost2:
943 spin_unlock(&info->lock);
944 return 0;
945 found:
946 idx += offset;
947 ptr += offset;
950 * Move _head_ to start search for next from here.
951 * But be careful: shmem_evict_inode checks list_empty without taking
952 * mutex, and there's an instant in list_move_tail when info->swaplist
953 * would appear empty, if it were the only one on shmem_swaplist. We
954 * could avoid doing it if inode NULL; or use this minor optimization.
956 if (shmem_swaplist.next != &info->swaplist)
957 list_move_tail(&shmem_swaplist, &info->swaplist);
960 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
961 * but also to hold up shmem_evict_inode(): so inode cannot be freed
962 * beneath us (pagelock doesn't help until the page is in pagecache).
964 mapping = info->vfs_inode.i_mapping;
965 error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
966 /* which does mem_cgroup_uncharge_cache_page on error */
968 if (error == -EEXIST) {
969 struct page *filepage = find_get_page(mapping, idx);
970 error = 1;
971 if (filepage) {
973 * There might be a more uptodate page coming down
974 * from a stacked writepage: forget our swappage if so.
976 if (PageUptodate(filepage))
977 error = 0;
978 page_cache_release(filepage);
981 if (!error) {
982 delete_from_swap_cache(page);
983 set_page_dirty(page);
984 info->flags |= SHMEM_PAGEIN;
985 shmem_swp_set(info, ptr, 0);
986 swap_free(entry);
987 error = 1; /* not an error, but entry was found */
989 shmem_swp_unmap(ptr);
990 spin_unlock(&info->lock);
991 return error;
995 * shmem_unuse() search for an eventually swapped out shmem page.
997 int shmem_unuse(swp_entry_t entry, struct page *page)
999 struct list_head *p, *next;
1000 struct shmem_inode_info *info;
1001 int found = 0;
1002 int error;
1005 * Charge page using GFP_KERNEL while we can wait, before taking
1006 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1007 * Charged back to the user (not to caller) when swap account is used.
1008 * add_to_page_cache() will be called with GFP_NOWAIT.
1010 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
1011 if (error)
1012 goto out;
1014 * Try to preload while we can wait, to not make a habit of
1015 * draining atomic reserves; but don't latch on to this cpu,
1016 * it's okay if sometimes we get rescheduled after this.
1018 error = radix_tree_preload(GFP_KERNEL);
1019 if (error)
1020 goto uncharge;
1021 radix_tree_preload_end();
1023 mutex_lock(&shmem_swaplist_mutex);
1024 list_for_each_safe(p, next, &shmem_swaplist) {
1025 info = list_entry(p, struct shmem_inode_info, swaplist);
1026 found = shmem_unuse_inode(info, entry, page);
1027 cond_resched();
1028 if (found)
1029 break;
1031 mutex_unlock(&shmem_swaplist_mutex);
1033 uncharge:
1034 if (!found)
1035 mem_cgroup_uncharge_cache_page(page);
1036 if (found < 0)
1037 error = found;
1038 out:
1039 unlock_page(page);
1040 page_cache_release(page);
1041 return error;
1045 * Move the page from the page cache to the swap cache.
1047 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1049 struct shmem_inode_info *info;
1050 swp_entry_t *entry, swap;
1051 struct address_space *mapping;
1052 unsigned long index;
1053 struct inode *inode;
1055 BUG_ON(!PageLocked(page));
1056 mapping = page->mapping;
1057 index = page->index;
1058 inode = mapping->host;
1059 info = SHMEM_I(inode);
1060 if (info->flags & VM_LOCKED)
1061 goto redirty;
1062 if (!total_swap_pages)
1063 goto redirty;
1066 * shmem_backing_dev_info's capabilities prevent regular writeback or
1067 * sync from ever calling shmem_writepage; but a stacking filesystem
1068 * may use the ->writepage of its underlying filesystem, in which case
1069 * tmpfs should write out to swap only in response to memory pressure,
1070 * and not for the writeback threads or sync. However, in those cases,
1071 * we do still want to check if there's a redundant swappage to be
1072 * discarded.
1074 if (wbc->for_reclaim)
1075 swap = get_swap_page();
1076 else
1077 swap.val = 0;
1080 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1081 * if it's not already there. Do it now because we cannot take
1082 * mutex while holding spinlock, and must do so before the page
1083 * is moved to swap cache, when its pagelock no longer protects
1084 * the inode from eviction. But don't unlock the mutex until
1085 * we've taken the spinlock, because shmem_unuse_inode() will
1086 * prune a !swapped inode from the swaplist under both locks.
1088 if (swap.val) {
1089 mutex_lock(&shmem_swaplist_mutex);
1090 if (list_empty(&info->swaplist))
1091 list_add_tail(&info->swaplist, &shmem_swaplist);
1094 spin_lock(&info->lock);
1095 if (swap.val)
1096 mutex_unlock(&shmem_swaplist_mutex);
1098 if (index >= info->next_index) {
1099 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1100 goto unlock;
1102 entry = shmem_swp_entry(info, index, NULL);
1103 if (entry->val) {
1105 * The more uptodate page coming down from a stacked
1106 * writepage should replace our old swappage.
1108 free_swap_and_cache(*entry);
1109 shmem_swp_set(info, entry, 0);
1111 shmem_recalc_inode(inode);
1113 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1114 delete_from_page_cache(page);
1115 shmem_swp_set(info, entry, swap.val);
1116 shmem_swp_unmap(entry);
1117 swap_shmem_alloc(swap);
1118 spin_unlock(&info->lock);
1119 BUG_ON(page_mapped(page));
1120 swap_writepage(page, wbc);
1121 return 0;
1124 shmem_swp_unmap(entry);
1125 unlock:
1126 spin_unlock(&info->lock);
1128 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1129 * clear SWAP_HAS_CACHE flag.
1131 swapcache_free(swap, NULL);
1132 redirty:
1133 set_page_dirty(page);
1134 if (wbc->for_reclaim)
1135 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1136 unlock_page(page);
1137 return 0;
1140 #ifdef CONFIG_NUMA
1141 #ifdef CONFIG_TMPFS
1142 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1144 char buffer[64];
1146 if (!mpol || mpol->mode == MPOL_DEFAULT)
1147 return; /* show nothing */
1149 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1151 seq_printf(seq, ",mpol=%s", buffer);
1154 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1156 struct mempolicy *mpol = NULL;
1157 if (sbinfo->mpol) {
1158 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1159 mpol = sbinfo->mpol;
1160 mpol_get(mpol);
1161 spin_unlock(&sbinfo->stat_lock);
1163 return mpol;
1165 #endif /* CONFIG_TMPFS */
1167 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1168 struct shmem_inode_info *info, unsigned long idx)
1170 struct mempolicy mpol, *spol;
1171 struct vm_area_struct pvma;
1172 struct page *page;
1174 spol = mpol_cond_copy(&mpol,
1175 mpol_shared_policy_lookup(&info->policy, idx));
1177 /* Create a pseudo vma that just contains the policy */
1178 pvma.vm_start = 0;
1179 pvma.vm_pgoff = idx;
1180 pvma.vm_ops = NULL;
1181 pvma.vm_policy = spol;
1182 page = swapin_readahead(entry, gfp, &pvma, 0);
1183 return page;
1186 static struct page *shmem_alloc_page(gfp_t gfp,
1187 struct shmem_inode_info *info, unsigned long idx)
1189 struct vm_area_struct pvma;
1191 /* Create a pseudo vma that just contains the policy */
1192 pvma.vm_start = 0;
1193 pvma.vm_pgoff = idx;
1194 pvma.vm_ops = NULL;
1195 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1198 * alloc_page_vma() will drop the shared policy reference
1200 return alloc_page_vma(gfp, &pvma, 0);
1202 #else /* !CONFIG_NUMA */
1203 #ifdef CONFIG_TMPFS
1204 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1207 #endif /* CONFIG_TMPFS */
1209 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1210 struct shmem_inode_info *info, unsigned long idx)
1212 return swapin_readahead(entry, gfp, NULL, 0);
1215 static inline struct page *shmem_alloc_page(gfp_t gfp,
1216 struct shmem_inode_info *info, unsigned long idx)
1218 return alloc_page(gfp);
1220 #endif /* CONFIG_NUMA */
1222 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1223 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1225 return NULL;
1227 #endif
1230 * shmem_getpage - either get the page from swap or allocate a new one
1232 * If we allocate a new one we do not mark it dirty. That's up to the
1233 * vm. If we swap it in we mark it dirty since we also free the swap
1234 * entry since a page cannot live in both the swap and page cache
1236 static int shmem_getpage(struct inode *inode, unsigned long idx,
1237 struct page **pagep, enum sgp_type sgp, int *type)
1239 struct address_space *mapping = inode->i_mapping;
1240 struct shmem_inode_info *info = SHMEM_I(inode);
1241 struct shmem_sb_info *sbinfo;
1242 struct page *filepage = *pagep;
1243 struct page *swappage;
1244 struct page *prealloc_page = NULL;
1245 swp_entry_t *entry;
1246 swp_entry_t swap;
1247 gfp_t gfp;
1248 int error;
1250 if (idx >= SHMEM_MAX_INDEX)
1251 return -EFBIG;
1253 if (type)
1254 *type = 0;
1257 * Normally, filepage is NULL on entry, and either found
1258 * uptodate immediately, or allocated and zeroed, or read
1259 * in under swappage, which is then assigned to filepage.
1260 * But shmem_readpage (required for splice) passes in a locked
1261 * filepage, which may be found not uptodate by other callers
1262 * too, and may need to be copied from the swappage read in.
1264 repeat:
1265 if (!filepage)
1266 filepage = find_lock_page(mapping, idx);
1267 if (filepage && PageUptodate(filepage))
1268 goto done;
1269 gfp = mapping_gfp_mask(mapping);
1270 if (!filepage) {
1272 * Try to preload while we can wait, to not make a habit of
1273 * draining atomic reserves; but don't latch on to this cpu.
1275 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1276 if (error)
1277 goto failed;
1278 radix_tree_preload_end();
1279 if (sgp != SGP_READ && !prealloc_page) {
1280 /* We don't care if this fails */
1281 prealloc_page = shmem_alloc_page(gfp, info, idx);
1282 if (prealloc_page) {
1283 if (mem_cgroup_cache_charge(prealloc_page,
1284 current->mm, GFP_KERNEL)) {
1285 page_cache_release(prealloc_page);
1286 prealloc_page = NULL;
1291 error = 0;
1293 spin_lock(&info->lock);
1294 shmem_recalc_inode(inode);
1295 entry = shmem_swp_alloc(info, idx, sgp);
1296 if (IS_ERR(entry)) {
1297 spin_unlock(&info->lock);
1298 error = PTR_ERR(entry);
1299 goto failed;
1301 swap = *entry;
1303 if (swap.val) {
1304 /* Look it up and read it in.. */
1305 swappage = lookup_swap_cache(swap);
1306 if (!swappage) {
1307 shmem_swp_unmap(entry);
1308 spin_unlock(&info->lock);
1309 /* here we actually do the io */
1310 if (type)
1311 *type |= VM_FAULT_MAJOR;
1312 swappage = shmem_swapin(swap, gfp, info, idx);
1313 if (!swappage) {
1314 spin_lock(&info->lock);
1315 entry = shmem_swp_alloc(info, idx, sgp);
1316 if (IS_ERR(entry))
1317 error = PTR_ERR(entry);
1318 else {
1319 if (entry->val == swap.val)
1320 error = -ENOMEM;
1321 shmem_swp_unmap(entry);
1323 spin_unlock(&info->lock);
1324 if (error)
1325 goto failed;
1326 goto repeat;
1328 wait_on_page_locked(swappage);
1329 page_cache_release(swappage);
1330 goto repeat;
1333 /* We have to do this with page locked to prevent races */
1334 if (!trylock_page(swappage)) {
1335 shmem_swp_unmap(entry);
1336 spin_unlock(&info->lock);
1337 wait_on_page_locked(swappage);
1338 page_cache_release(swappage);
1339 goto repeat;
1341 if (PageWriteback(swappage)) {
1342 shmem_swp_unmap(entry);
1343 spin_unlock(&info->lock);
1344 wait_on_page_writeback(swappage);
1345 unlock_page(swappage);
1346 page_cache_release(swappage);
1347 goto repeat;
1349 if (!PageUptodate(swappage)) {
1350 shmem_swp_unmap(entry);
1351 spin_unlock(&info->lock);
1352 unlock_page(swappage);
1353 page_cache_release(swappage);
1354 error = -EIO;
1355 goto failed;
1358 if (filepage) {
1359 shmem_swp_set(info, entry, 0);
1360 shmem_swp_unmap(entry);
1361 delete_from_swap_cache(swappage);
1362 spin_unlock(&info->lock);
1363 copy_highpage(filepage, swappage);
1364 unlock_page(swappage);
1365 page_cache_release(swappage);
1366 flush_dcache_page(filepage);
1367 SetPageUptodate(filepage);
1368 set_page_dirty(filepage);
1369 swap_free(swap);
1370 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1371 idx, GFP_NOWAIT))) {
1372 info->flags |= SHMEM_PAGEIN;
1373 shmem_swp_set(info, entry, 0);
1374 shmem_swp_unmap(entry);
1375 delete_from_swap_cache(swappage);
1376 spin_unlock(&info->lock);
1377 filepage = swappage;
1378 set_page_dirty(filepage);
1379 swap_free(swap);
1380 } else {
1381 shmem_swp_unmap(entry);
1382 spin_unlock(&info->lock);
1383 if (error == -ENOMEM) {
1385 * reclaim from proper memory cgroup and
1386 * call memcg's OOM if needed.
1388 error = mem_cgroup_shmem_charge_fallback(
1389 swappage,
1390 current->mm,
1391 gfp);
1392 if (error) {
1393 unlock_page(swappage);
1394 page_cache_release(swappage);
1395 goto failed;
1398 unlock_page(swappage);
1399 page_cache_release(swappage);
1400 goto repeat;
1402 } else if (sgp == SGP_READ && !filepage) {
1403 shmem_swp_unmap(entry);
1404 filepage = find_get_page(mapping, idx);
1405 if (filepage &&
1406 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1407 spin_unlock(&info->lock);
1408 wait_on_page_locked(filepage);
1409 page_cache_release(filepage);
1410 filepage = NULL;
1411 goto repeat;
1413 spin_unlock(&info->lock);
1414 } else {
1415 shmem_swp_unmap(entry);
1416 sbinfo = SHMEM_SB(inode->i_sb);
1417 if (sbinfo->max_blocks) {
1418 if (percpu_counter_compare(&sbinfo->used_blocks,
1419 sbinfo->max_blocks) >= 0 ||
1420 shmem_acct_block(info->flags))
1421 goto nospace;
1422 percpu_counter_inc(&sbinfo->used_blocks);
1423 spin_lock(&inode->i_lock);
1424 inode->i_blocks += BLOCKS_PER_PAGE;
1425 spin_unlock(&inode->i_lock);
1426 } else if (shmem_acct_block(info->flags))
1427 goto nospace;
1429 if (!filepage) {
1430 int ret;
1432 if (!prealloc_page) {
1433 spin_unlock(&info->lock);
1434 filepage = shmem_alloc_page(gfp, info, idx);
1435 if (!filepage) {
1436 shmem_unacct_blocks(info->flags, 1);
1437 shmem_free_blocks(inode, 1);
1438 error = -ENOMEM;
1439 goto failed;
1441 SetPageSwapBacked(filepage);
1444 * Precharge page while we can wait, compensate
1445 * after
1447 error = mem_cgroup_cache_charge(filepage,
1448 current->mm, GFP_KERNEL);
1449 if (error) {
1450 page_cache_release(filepage);
1451 shmem_unacct_blocks(info->flags, 1);
1452 shmem_free_blocks(inode, 1);
1453 filepage = NULL;
1454 goto failed;
1457 spin_lock(&info->lock);
1458 } else {
1459 filepage = prealloc_page;
1460 prealloc_page = NULL;
1461 SetPageSwapBacked(filepage);
1464 entry = shmem_swp_alloc(info, idx, sgp);
1465 if (IS_ERR(entry))
1466 error = PTR_ERR(entry);
1467 else {
1468 swap = *entry;
1469 shmem_swp_unmap(entry);
1471 ret = error || swap.val;
1472 if (ret)
1473 mem_cgroup_uncharge_cache_page(filepage);
1474 else
1475 ret = add_to_page_cache_lru(filepage, mapping,
1476 idx, GFP_NOWAIT);
1478 * At add_to_page_cache_lru() failure, uncharge will
1479 * be done automatically.
1481 if (ret) {
1482 spin_unlock(&info->lock);
1483 page_cache_release(filepage);
1484 shmem_unacct_blocks(info->flags, 1);
1485 shmem_free_blocks(inode, 1);
1486 filepage = NULL;
1487 if (error)
1488 goto failed;
1489 goto repeat;
1491 info->flags |= SHMEM_PAGEIN;
1494 info->alloced++;
1495 spin_unlock(&info->lock);
1496 clear_highpage(filepage);
1497 flush_dcache_page(filepage);
1498 SetPageUptodate(filepage);
1499 if (sgp == SGP_DIRTY)
1500 set_page_dirty(filepage);
1502 done:
1503 *pagep = filepage;
1504 error = 0;
1505 goto out;
1507 nospace:
1509 * Perhaps the page was brought in from swap between find_lock_page
1510 * and taking info->lock? We allow for that at add_to_page_cache_lru,
1511 * but must also avoid reporting a spurious ENOSPC while working on a
1512 * full tmpfs. (When filepage has been passed in to shmem_getpage, it
1513 * is already in page cache, which prevents this race from occurring.)
1515 if (!filepage) {
1516 struct page *page = find_get_page(mapping, idx);
1517 if (page) {
1518 spin_unlock(&info->lock);
1519 page_cache_release(page);
1520 goto repeat;
1523 spin_unlock(&info->lock);
1524 error = -ENOSPC;
1525 failed:
1526 if (*pagep != filepage) {
1527 unlock_page(filepage);
1528 page_cache_release(filepage);
1530 out:
1531 if (prealloc_page) {
1532 mem_cgroup_uncharge_cache_page(prealloc_page);
1533 page_cache_release(prealloc_page);
1535 return error;
1538 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1540 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1541 int error;
1542 int ret;
1544 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1545 return VM_FAULT_SIGBUS;
1547 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1548 if (error)
1549 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1550 if (ret & VM_FAULT_MAJOR) {
1551 count_vm_event(PGMAJFAULT);
1552 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1554 return ret | VM_FAULT_LOCKED;
1557 #ifdef CONFIG_NUMA
1558 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1560 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1561 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1564 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1565 unsigned long addr)
1567 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1568 unsigned long idx;
1570 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1571 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1573 #endif
1575 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1577 struct inode *inode = file->f_path.dentry->d_inode;
1578 struct shmem_inode_info *info = SHMEM_I(inode);
1579 int retval = -ENOMEM;
1581 spin_lock(&info->lock);
1582 if (lock && !(info->flags & VM_LOCKED)) {
1583 if (!user_shm_lock(inode->i_size, user))
1584 goto out_nomem;
1585 info->flags |= VM_LOCKED;
1586 mapping_set_unevictable(file->f_mapping);
1588 if (!lock && (info->flags & VM_LOCKED) && user) {
1589 user_shm_unlock(inode->i_size, user);
1590 info->flags &= ~VM_LOCKED;
1591 mapping_clear_unevictable(file->f_mapping);
1592 scan_mapping_unevictable_pages(file->f_mapping);
1594 retval = 0;
1596 out_nomem:
1597 spin_unlock(&info->lock);
1598 return retval;
1601 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1603 file_accessed(file);
1604 vma->vm_ops = &shmem_vm_ops;
1605 vma->vm_flags |= VM_CAN_NONLINEAR;
1606 return 0;
1609 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1610 int mode, dev_t dev, unsigned long flags)
1612 struct inode *inode;
1613 struct shmem_inode_info *info;
1614 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1616 if (shmem_reserve_inode(sb))
1617 return NULL;
1619 inode = new_inode(sb);
1620 if (inode) {
1621 inode->i_ino = get_next_ino();
1622 inode_init_owner(inode, dir, mode);
1623 inode->i_blocks = 0;
1624 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1625 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1626 inode->i_generation = get_seconds();
1627 info = SHMEM_I(inode);
1628 memset(info, 0, (char *)inode - (char *)info);
1629 spin_lock_init(&info->lock);
1630 info->flags = flags & VM_NORESERVE;
1631 INIT_LIST_HEAD(&info->swaplist);
1632 INIT_LIST_HEAD(&info->xattr_list);
1633 cache_no_acl(inode);
1635 switch (mode & S_IFMT) {
1636 default:
1637 inode->i_op = &shmem_special_inode_operations;
1638 init_special_inode(inode, mode, dev);
1639 break;
1640 case S_IFREG:
1641 inode->i_mapping->a_ops = &shmem_aops;
1642 inode->i_op = &shmem_inode_operations;
1643 inode->i_fop = &shmem_file_operations;
1644 mpol_shared_policy_init(&info->policy,
1645 shmem_get_sbmpol(sbinfo));
1646 break;
1647 case S_IFDIR:
1648 inc_nlink(inode);
1649 /* Some things misbehave if size == 0 on a directory */
1650 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1651 inode->i_op = &shmem_dir_inode_operations;
1652 inode->i_fop = &simple_dir_operations;
1653 break;
1654 case S_IFLNK:
1656 * Must not load anything in the rbtree,
1657 * mpol_free_shared_policy will not be called.
1659 mpol_shared_policy_init(&info->policy, NULL);
1660 break;
1662 } else
1663 shmem_free_inode(sb);
1664 return inode;
1667 #ifdef CONFIG_TMPFS
1668 static const struct inode_operations shmem_symlink_inode_operations;
1669 static const struct inode_operations shmem_symlink_inline_operations;
1672 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1673 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1674 * below the loop driver, in the generic fashion that many filesystems support.
1676 static int shmem_readpage(struct file *file, struct page *page)
1678 struct inode *inode = page->mapping->host;
1679 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1680 unlock_page(page);
1681 return error;
1684 static int
1685 shmem_write_begin(struct file *file, struct address_space *mapping,
1686 loff_t pos, unsigned len, unsigned flags,
1687 struct page **pagep, void **fsdata)
1689 struct inode *inode = mapping->host;
1690 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1691 *pagep = NULL;
1692 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1695 static int
1696 shmem_write_end(struct file *file, struct address_space *mapping,
1697 loff_t pos, unsigned len, unsigned copied,
1698 struct page *page, void *fsdata)
1700 struct inode *inode = mapping->host;
1702 if (pos + copied > inode->i_size)
1703 i_size_write(inode, pos + copied);
1705 set_page_dirty(page);
1706 unlock_page(page);
1707 page_cache_release(page);
1709 return copied;
1712 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1714 struct inode *inode = filp->f_path.dentry->d_inode;
1715 struct address_space *mapping = inode->i_mapping;
1716 unsigned long index, offset;
1717 enum sgp_type sgp = SGP_READ;
1720 * Might this read be for a stacking filesystem? Then when reading
1721 * holes of a sparse file, we actually need to allocate those pages,
1722 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1724 if (segment_eq(get_fs(), KERNEL_DS))
1725 sgp = SGP_DIRTY;
1727 index = *ppos >> PAGE_CACHE_SHIFT;
1728 offset = *ppos & ~PAGE_CACHE_MASK;
1730 for (;;) {
1731 struct page *page = NULL;
1732 unsigned long end_index, nr, ret;
1733 loff_t i_size = i_size_read(inode);
1735 end_index = i_size >> PAGE_CACHE_SHIFT;
1736 if (index > end_index)
1737 break;
1738 if (index == end_index) {
1739 nr = i_size & ~PAGE_CACHE_MASK;
1740 if (nr <= offset)
1741 break;
1744 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1745 if (desc->error) {
1746 if (desc->error == -EINVAL)
1747 desc->error = 0;
1748 break;
1750 if (page)
1751 unlock_page(page);
1754 * We must evaluate after, since reads (unlike writes)
1755 * are called without i_mutex protection against truncate
1757 nr = PAGE_CACHE_SIZE;
1758 i_size = i_size_read(inode);
1759 end_index = i_size >> PAGE_CACHE_SHIFT;
1760 if (index == end_index) {
1761 nr = i_size & ~PAGE_CACHE_MASK;
1762 if (nr <= offset) {
1763 if (page)
1764 page_cache_release(page);
1765 break;
1768 nr -= offset;
1770 if (page) {
1772 * If users can be writing to this page using arbitrary
1773 * virtual addresses, take care about potential aliasing
1774 * before reading the page on the kernel side.
1776 if (mapping_writably_mapped(mapping))
1777 flush_dcache_page(page);
1779 * Mark the page accessed if we read the beginning.
1781 if (!offset)
1782 mark_page_accessed(page);
1783 } else {
1784 page = ZERO_PAGE(0);
1785 page_cache_get(page);
1789 * Ok, we have the page, and it's up-to-date, so
1790 * now we can copy it to user space...
1792 * The actor routine returns how many bytes were actually used..
1793 * NOTE! This may not be the same as how much of a user buffer
1794 * we filled up (we may be padding etc), so we can only update
1795 * "pos" here (the actor routine has to update the user buffer
1796 * pointers and the remaining count).
1798 ret = actor(desc, page, offset, nr);
1799 offset += ret;
1800 index += offset >> PAGE_CACHE_SHIFT;
1801 offset &= ~PAGE_CACHE_MASK;
1803 page_cache_release(page);
1804 if (ret != nr || !desc->count)
1805 break;
1807 cond_resched();
1810 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1811 file_accessed(filp);
1814 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1815 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1817 struct file *filp = iocb->ki_filp;
1818 ssize_t retval;
1819 unsigned long seg;
1820 size_t count;
1821 loff_t *ppos = &iocb->ki_pos;
1823 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1824 if (retval)
1825 return retval;
1827 for (seg = 0; seg < nr_segs; seg++) {
1828 read_descriptor_t desc;
1830 desc.written = 0;
1831 desc.arg.buf = iov[seg].iov_base;
1832 desc.count = iov[seg].iov_len;
1833 if (desc.count == 0)
1834 continue;
1835 desc.error = 0;
1836 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1837 retval += desc.written;
1838 if (desc.error) {
1839 retval = retval ?: desc.error;
1840 break;
1842 if (desc.count > 0)
1843 break;
1845 return retval;
1848 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1850 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1852 buf->f_type = TMPFS_MAGIC;
1853 buf->f_bsize = PAGE_CACHE_SIZE;
1854 buf->f_namelen = NAME_MAX;
1855 if (sbinfo->max_blocks) {
1856 buf->f_blocks = sbinfo->max_blocks;
1857 buf->f_bavail = buf->f_bfree =
1858 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1860 if (sbinfo->max_inodes) {
1861 buf->f_files = sbinfo->max_inodes;
1862 buf->f_ffree = sbinfo->free_inodes;
1864 /* else leave those fields 0 like simple_statfs */
1865 return 0;
1869 * File creation. Allocate an inode, and we're done..
1871 static int
1872 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1874 struct inode *inode;
1875 int error = -ENOSPC;
1877 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1878 if (inode) {
1879 error = security_inode_init_security(inode, dir,
1880 &dentry->d_name, NULL,
1881 NULL, NULL);
1882 if (error) {
1883 if (error != -EOPNOTSUPP) {
1884 iput(inode);
1885 return error;
1888 #ifdef CONFIG_TMPFS_POSIX_ACL
1889 error = generic_acl_init(inode, dir);
1890 if (error) {
1891 iput(inode);
1892 return error;
1894 #else
1895 error = 0;
1896 #endif
1897 dir->i_size += BOGO_DIRENT_SIZE;
1898 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1899 d_instantiate(dentry, inode);
1900 dget(dentry); /* Extra count - pin the dentry in core */
1902 return error;
1905 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1907 int error;
1909 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1910 return error;
1911 inc_nlink(dir);
1912 return 0;
1915 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1916 struct nameidata *nd)
1918 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1922 * Link a file..
1924 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1926 struct inode *inode = old_dentry->d_inode;
1927 int ret;
1930 * No ordinary (disk based) filesystem counts links as inodes;
1931 * but each new link needs a new dentry, pinning lowmem, and
1932 * tmpfs dentries cannot be pruned until they are unlinked.
1934 ret = shmem_reserve_inode(inode->i_sb);
1935 if (ret)
1936 goto out;
1938 dir->i_size += BOGO_DIRENT_SIZE;
1939 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1940 inc_nlink(inode);
1941 ihold(inode); /* New dentry reference */
1942 dget(dentry); /* Extra pinning count for the created dentry */
1943 d_instantiate(dentry, inode);
1944 out:
1945 return ret;
1948 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1950 struct inode *inode = dentry->d_inode;
1952 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1953 shmem_free_inode(inode->i_sb);
1955 dir->i_size -= BOGO_DIRENT_SIZE;
1956 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1957 drop_nlink(inode);
1958 dput(dentry); /* Undo the count from "create" - this does all the work */
1959 return 0;
1962 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1964 if (!simple_empty(dentry))
1965 return -ENOTEMPTY;
1967 drop_nlink(dentry->d_inode);
1968 drop_nlink(dir);
1969 return shmem_unlink(dir, dentry);
1973 * The VFS layer already does all the dentry stuff for rename,
1974 * we just have to decrement the usage count for the target if
1975 * it exists so that the VFS layer correctly free's it when it
1976 * gets overwritten.
1978 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1980 struct inode *inode = old_dentry->d_inode;
1981 int they_are_dirs = S_ISDIR(inode->i_mode);
1983 if (!simple_empty(new_dentry))
1984 return -ENOTEMPTY;
1986 if (new_dentry->d_inode) {
1987 (void) shmem_unlink(new_dir, new_dentry);
1988 if (they_are_dirs)
1989 drop_nlink(old_dir);
1990 } else if (they_are_dirs) {
1991 drop_nlink(old_dir);
1992 inc_nlink(new_dir);
1995 old_dir->i_size -= BOGO_DIRENT_SIZE;
1996 new_dir->i_size += BOGO_DIRENT_SIZE;
1997 old_dir->i_ctime = old_dir->i_mtime =
1998 new_dir->i_ctime = new_dir->i_mtime =
1999 inode->i_ctime = CURRENT_TIME;
2000 return 0;
2003 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2005 int error;
2006 int len;
2007 struct inode *inode;
2008 struct page *page = NULL;
2009 char *kaddr;
2010 struct shmem_inode_info *info;
2012 len = strlen(symname) + 1;
2013 if (len > PAGE_CACHE_SIZE)
2014 return -ENAMETOOLONG;
2016 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2017 if (!inode)
2018 return -ENOSPC;
2020 error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2021 NULL, NULL);
2022 if (error) {
2023 if (error != -EOPNOTSUPP) {
2024 iput(inode);
2025 return error;
2027 error = 0;
2030 info = SHMEM_I(inode);
2031 inode->i_size = len-1;
2032 if (len <= SHMEM_SYMLINK_INLINE_LEN) {
2033 /* do it inline */
2034 memcpy(info->inline_symlink, symname, len);
2035 inode->i_op = &shmem_symlink_inline_operations;
2036 } else {
2037 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2038 if (error) {
2039 iput(inode);
2040 return error;
2042 inode->i_mapping->a_ops = &shmem_aops;
2043 inode->i_op = &shmem_symlink_inode_operations;
2044 kaddr = kmap_atomic(page, KM_USER0);
2045 memcpy(kaddr, symname, len);
2046 kunmap_atomic(kaddr, KM_USER0);
2047 set_page_dirty(page);
2048 unlock_page(page);
2049 page_cache_release(page);
2051 dir->i_size += BOGO_DIRENT_SIZE;
2052 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2053 d_instantiate(dentry, inode);
2054 dget(dentry);
2055 return 0;
2058 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2060 nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
2061 return NULL;
2064 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2066 struct page *page = NULL;
2067 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2068 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2069 if (page)
2070 unlock_page(page);
2071 return page;
2074 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2076 if (!IS_ERR(nd_get_link(nd))) {
2077 struct page *page = cookie;
2078 kunmap(page);
2079 mark_page_accessed(page);
2080 page_cache_release(page);
2084 #ifdef CONFIG_TMPFS_XATTR
2086 * Superblocks without xattr inode operations may get some security.* xattr
2087 * support from the LSM "for free". As soon as we have any other xattrs
2088 * like ACLs, we also need to implement the security.* handlers at
2089 * filesystem level, though.
2092 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2093 void *buffer, size_t size)
2095 struct shmem_inode_info *info;
2096 struct shmem_xattr *xattr;
2097 int ret = -ENODATA;
2099 info = SHMEM_I(dentry->d_inode);
2101 spin_lock(&info->lock);
2102 list_for_each_entry(xattr, &info->xattr_list, list) {
2103 if (strcmp(name, xattr->name))
2104 continue;
2106 ret = xattr->size;
2107 if (buffer) {
2108 if (size < xattr->size)
2109 ret = -ERANGE;
2110 else
2111 memcpy(buffer, xattr->value, xattr->size);
2113 break;
2115 spin_unlock(&info->lock);
2116 return ret;
2119 static int shmem_xattr_set(struct dentry *dentry, const char *name,
2120 const void *value, size_t size, int flags)
2122 struct inode *inode = dentry->d_inode;
2123 struct shmem_inode_info *info = SHMEM_I(inode);
2124 struct shmem_xattr *xattr;
2125 struct shmem_xattr *new_xattr = NULL;
2126 size_t len;
2127 int err = 0;
2129 /* value == NULL means remove */
2130 if (value) {
2131 /* wrap around? */
2132 len = sizeof(*new_xattr) + size;
2133 if (len <= sizeof(*new_xattr))
2134 return -ENOMEM;
2136 new_xattr = kmalloc(len, GFP_KERNEL);
2137 if (!new_xattr)
2138 return -ENOMEM;
2140 new_xattr->name = kstrdup(name, GFP_KERNEL);
2141 if (!new_xattr->name) {
2142 kfree(new_xattr);
2143 return -ENOMEM;
2146 new_xattr->size = size;
2147 memcpy(new_xattr->value, value, size);
2150 spin_lock(&info->lock);
2151 list_for_each_entry(xattr, &info->xattr_list, list) {
2152 if (!strcmp(name, xattr->name)) {
2153 if (flags & XATTR_CREATE) {
2154 xattr = new_xattr;
2155 err = -EEXIST;
2156 } else if (new_xattr) {
2157 list_replace(&xattr->list, &new_xattr->list);
2158 } else {
2159 list_del(&xattr->list);
2161 goto out;
2164 if (flags & XATTR_REPLACE) {
2165 xattr = new_xattr;
2166 err = -ENODATA;
2167 } else {
2168 list_add(&new_xattr->list, &info->xattr_list);
2169 xattr = NULL;
2171 out:
2172 spin_unlock(&info->lock);
2173 if (xattr)
2174 kfree(xattr->name);
2175 kfree(xattr);
2176 return err;
2180 static const struct xattr_handler *shmem_xattr_handlers[] = {
2181 #ifdef CONFIG_TMPFS_POSIX_ACL
2182 &generic_acl_access_handler,
2183 &generic_acl_default_handler,
2184 #endif
2185 NULL
2188 static int shmem_xattr_validate(const char *name)
2190 struct { const char *prefix; size_t len; } arr[] = {
2191 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2192 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2194 int i;
2196 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2197 size_t preflen = arr[i].len;
2198 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2199 if (!name[preflen])
2200 return -EINVAL;
2201 return 0;
2204 return -EOPNOTSUPP;
2207 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2208 void *buffer, size_t size)
2210 int err;
2213 * If this is a request for a synthetic attribute in the system.*
2214 * namespace use the generic infrastructure to resolve a handler
2215 * for it via sb->s_xattr.
2217 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2218 return generic_getxattr(dentry, name, buffer, size);
2220 err = shmem_xattr_validate(name);
2221 if (err)
2222 return err;
2224 return shmem_xattr_get(dentry, name, buffer, size);
2227 static int shmem_setxattr(struct dentry *dentry, const char *name,
2228 const void *value, size_t size, int flags)
2230 int err;
2233 * If this is a request for a synthetic attribute in the system.*
2234 * namespace use the generic infrastructure to resolve a handler
2235 * for it via sb->s_xattr.
2237 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2238 return generic_setxattr(dentry, name, value, size, flags);
2240 err = shmem_xattr_validate(name);
2241 if (err)
2242 return err;
2244 if (size == 0)
2245 value = ""; /* empty EA, do not remove */
2247 return shmem_xattr_set(dentry, name, value, size, flags);
2251 static int shmem_removexattr(struct dentry *dentry, const char *name)
2253 int err;
2256 * If this is a request for a synthetic attribute in the system.*
2257 * namespace use the generic infrastructure to resolve a handler
2258 * for it via sb->s_xattr.
2260 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2261 return generic_removexattr(dentry, name);
2263 err = shmem_xattr_validate(name);
2264 if (err)
2265 return err;
2267 return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
2270 static bool xattr_is_trusted(const char *name)
2272 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2275 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2277 bool trusted = capable(CAP_SYS_ADMIN);
2278 struct shmem_xattr *xattr;
2279 struct shmem_inode_info *info;
2280 size_t used = 0;
2282 info = SHMEM_I(dentry->d_inode);
2284 spin_lock(&info->lock);
2285 list_for_each_entry(xattr, &info->xattr_list, list) {
2286 size_t len;
2288 /* skip "trusted." attributes for unprivileged callers */
2289 if (!trusted && xattr_is_trusted(xattr->name))
2290 continue;
2292 len = strlen(xattr->name) + 1;
2293 used += len;
2294 if (buffer) {
2295 if (size < used) {
2296 used = -ERANGE;
2297 break;
2299 memcpy(buffer, xattr->name, len);
2300 buffer += len;
2303 spin_unlock(&info->lock);
2305 return used;
2307 #endif /* CONFIG_TMPFS_XATTR */
2309 static const struct inode_operations shmem_symlink_inline_operations = {
2310 .readlink = generic_readlink,
2311 .follow_link = shmem_follow_link_inline,
2312 #ifdef CONFIG_TMPFS_XATTR
2313 .setxattr = shmem_setxattr,
2314 .getxattr = shmem_getxattr,
2315 .listxattr = shmem_listxattr,
2316 .removexattr = shmem_removexattr,
2317 #endif
2320 static const struct inode_operations shmem_symlink_inode_operations = {
2321 .readlink = generic_readlink,
2322 .follow_link = shmem_follow_link,
2323 .put_link = shmem_put_link,
2324 #ifdef CONFIG_TMPFS_XATTR
2325 .setxattr = shmem_setxattr,
2326 .getxattr = shmem_getxattr,
2327 .listxattr = shmem_listxattr,
2328 .removexattr = shmem_removexattr,
2329 #endif
2332 static struct dentry *shmem_get_parent(struct dentry *child)
2334 return ERR_PTR(-ESTALE);
2337 static int shmem_match(struct inode *ino, void *vfh)
2339 __u32 *fh = vfh;
2340 __u64 inum = fh[2];
2341 inum = (inum << 32) | fh[1];
2342 return ino->i_ino == inum && fh[0] == ino->i_generation;
2345 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2346 struct fid *fid, int fh_len, int fh_type)
2348 struct inode *inode;
2349 struct dentry *dentry = NULL;
2350 u64 inum = fid->raw[2];
2351 inum = (inum << 32) | fid->raw[1];
2353 if (fh_len < 3)
2354 return NULL;
2356 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2357 shmem_match, fid->raw);
2358 if (inode) {
2359 dentry = d_find_alias(inode);
2360 iput(inode);
2363 return dentry;
2366 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2367 int connectable)
2369 struct inode *inode = dentry->d_inode;
2371 if (*len < 3) {
2372 *len = 3;
2373 return 255;
2376 if (inode_unhashed(inode)) {
2377 /* Unfortunately insert_inode_hash is not idempotent,
2378 * so as we hash inodes here rather than at creation
2379 * time, we need a lock to ensure we only try
2380 * to do it once
2382 static DEFINE_SPINLOCK(lock);
2383 spin_lock(&lock);
2384 if (inode_unhashed(inode))
2385 __insert_inode_hash(inode,
2386 inode->i_ino + inode->i_generation);
2387 spin_unlock(&lock);
2390 fh[0] = inode->i_generation;
2391 fh[1] = inode->i_ino;
2392 fh[2] = ((__u64)inode->i_ino) >> 32;
2394 *len = 3;
2395 return 1;
2398 static const struct export_operations shmem_export_ops = {
2399 .get_parent = shmem_get_parent,
2400 .encode_fh = shmem_encode_fh,
2401 .fh_to_dentry = shmem_fh_to_dentry,
2404 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2405 bool remount)
2407 char *this_char, *value, *rest;
2409 while (options != NULL) {
2410 this_char = options;
2411 for (;;) {
2413 * NUL-terminate this option: unfortunately,
2414 * mount options form a comma-separated list,
2415 * but mpol's nodelist may also contain commas.
2417 options = strchr(options, ',');
2418 if (options == NULL)
2419 break;
2420 options++;
2421 if (!isdigit(*options)) {
2422 options[-1] = '\0';
2423 break;
2426 if (!*this_char)
2427 continue;
2428 if ((value = strchr(this_char,'=')) != NULL) {
2429 *value++ = 0;
2430 } else {
2431 printk(KERN_ERR
2432 "tmpfs: No value for mount option '%s'\n",
2433 this_char);
2434 return 1;
2437 if (!strcmp(this_char,"size")) {
2438 unsigned long long size;
2439 size = memparse(value,&rest);
2440 if (*rest == '%') {
2441 size <<= PAGE_SHIFT;
2442 size *= totalram_pages;
2443 do_div(size, 100);
2444 rest++;
2446 if (*rest)
2447 goto bad_val;
2448 sbinfo->max_blocks =
2449 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2450 } else if (!strcmp(this_char,"nr_blocks")) {
2451 sbinfo->max_blocks = memparse(value, &rest);
2452 if (*rest)
2453 goto bad_val;
2454 } else if (!strcmp(this_char,"nr_inodes")) {
2455 sbinfo->max_inodes = memparse(value, &rest);
2456 if (*rest)
2457 goto bad_val;
2458 } else if (!strcmp(this_char,"mode")) {
2459 if (remount)
2460 continue;
2461 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2462 if (*rest)
2463 goto bad_val;
2464 } else if (!strcmp(this_char,"uid")) {
2465 if (remount)
2466 continue;
2467 sbinfo->uid = simple_strtoul(value, &rest, 0);
2468 if (*rest)
2469 goto bad_val;
2470 } else if (!strcmp(this_char,"gid")) {
2471 if (remount)
2472 continue;
2473 sbinfo->gid = simple_strtoul(value, &rest, 0);
2474 if (*rest)
2475 goto bad_val;
2476 } else if (!strcmp(this_char,"mpol")) {
2477 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2478 goto bad_val;
2479 } else {
2480 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2481 this_char);
2482 return 1;
2485 return 0;
2487 bad_val:
2488 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2489 value, this_char);
2490 return 1;
2494 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2496 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2497 struct shmem_sb_info config = *sbinfo;
2498 unsigned long inodes;
2499 int error = -EINVAL;
2501 if (shmem_parse_options(data, &config, true))
2502 return error;
2504 spin_lock(&sbinfo->stat_lock);
2505 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2506 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2507 goto out;
2508 if (config.max_inodes < inodes)
2509 goto out;
2511 * Those tests also disallow limited->unlimited while any are in
2512 * use, so i_blocks will always be zero when max_blocks is zero;
2513 * but we must separately disallow unlimited->limited, because
2514 * in that case we have no record of how much is already in use.
2516 if (config.max_blocks && !sbinfo->max_blocks)
2517 goto out;
2518 if (config.max_inodes && !sbinfo->max_inodes)
2519 goto out;
2521 error = 0;
2522 sbinfo->max_blocks = config.max_blocks;
2523 sbinfo->max_inodes = config.max_inodes;
2524 sbinfo->free_inodes = config.max_inodes - inodes;
2526 mpol_put(sbinfo->mpol);
2527 sbinfo->mpol = config.mpol; /* transfers initial ref */
2528 out:
2529 spin_unlock(&sbinfo->stat_lock);
2530 return error;
2533 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2535 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2537 if (sbinfo->max_blocks != shmem_default_max_blocks())
2538 seq_printf(seq, ",size=%luk",
2539 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2540 if (sbinfo->max_inodes != shmem_default_max_inodes())
2541 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2542 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2543 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2544 if (sbinfo->uid != 0)
2545 seq_printf(seq, ",uid=%u", sbinfo->uid);
2546 if (sbinfo->gid != 0)
2547 seq_printf(seq, ",gid=%u", sbinfo->gid);
2548 shmem_show_mpol(seq, sbinfo->mpol);
2549 return 0;
2551 #endif /* CONFIG_TMPFS */
2553 static void shmem_put_super(struct super_block *sb)
2555 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2557 percpu_counter_destroy(&sbinfo->used_blocks);
2558 kfree(sbinfo);
2559 sb->s_fs_info = NULL;
2562 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2564 struct inode *inode;
2565 struct dentry *root;
2566 struct shmem_sb_info *sbinfo;
2567 int err = -ENOMEM;
2569 /* Round up to L1_CACHE_BYTES to resist false sharing */
2570 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2571 L1_CACHE_BYTES), GFP_KERNEL);
2572 if (!sbinfo)
2573 return -ENOMEM;
2575 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2576 sbinfo->uid = current_fsuid();
2577 sbinfo->gid = current_fsgid();
2578 sb->s_fs_info = sbinfo;
2580 #ifdef CONFIG_TMPFS
2582 * Per default we only allow half of the physical ram per
2583 * tmpfs instance, limiting inodes to one per page of lowmem;
2584 * but the internal instance is left unlimited.
2586 if (!(sb->s_flags & MS_NOUSER)) {
2587 sbinfo->max_blocks = shmem_default_max_blocks();
2588 sbinfo->max_inodes = shmem_default_max_inodes();
2589 if (shmem_parse_options(data, sbinfo, false)) {
2590 err = -EINVAL;
2591 goto failed;
2594 sb->s_export_op = &shmem_export_ops;
2595 #else
2596 sb->s_flags |= MS_NOUSER;
2597 #endif
2599 spin_lock_init(&sbinfo->stat_lock);
2600 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2601 goto failed;
2602 sbinfo->free_inodes = sbinfo->max_inodes;
2604 sb->s_maxbytes = SHMEM_MAX_BYTES;
2605 sb->s_blocksize = PAGE_CACHE_SIZE;
2606 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2607 sb->s_magic = TMPFS_MAGIC;
2608 sb->s_op = &shmem_ops;
2609 sb->s_time_gran = 1;
2610 #ifdef CONFIG_TMPFS_XATTR
2611 sb->s_xattr = shmem_xattr_handlers;
2612 #endif
2613 #ifdef CONFIG_TMPFS_POSIX_ACL
2614 sb->s_flags |= MS_POSIXACL;
2615 #endif
2617 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2618 if (!inode)
2619 goto failed;
2620 inode->i_uid = sbinfo->uid;
2621 inode->i_gid = sbinfo->gid;
2622 root = d_alloc_root(inode);
2623 if (!root)
2624 goto failed_iput;
2625 sb->s_root = root;
2626 return 0;
2628 failed_iput:
2629 iput(inode);
2630 failed:
2631 shmem_put_super(sb);
2632 return err;
2635 static struct kmem_cache *shmem_inode_cachep;
2637 static struct inode *shmem_alloc_inode(struct super_block *sb)
2639 struct shmem_inode_info *p;
2640 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2641 if (!p)
2642 return NULL;
2643 return &p->vfs_inode;
2646 static void shmem_i_callback(struct rcu_head *head)
2648 struct inode *inode = container_of(head, struct inode, i_rcu);
2649 INIT_LIST_HEAD(&inode->i_dentry);
2650 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2653 static void shmem_destroy_inode(struct inode *inode)
2655 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2656 /* only struct inode is valid if it's an inline symlink */
2657 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2659 call_rcu(&inode->i_rcu, shmem_i_callback);
2662 static void init_once(void *foo)
2664 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2666 inode_init_once(&p->vfs_inode);
2669 static int init_inodecache(void)
2671 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2672 sizeof(struct shmem_inode_info),
2673 0, SLAB_PANIC, init_once);
2674 return 0;
2677 static void destroy_inodecache(void)
2679 kmem_cache_destroy(shmem_inode_cachep);
2682 static const struct address_space_operations shmem_aops = {
2683 .writepage = shmem_writepage,
2684 .set_page_dirty = __set_page_dirty_no_writeback,
2685 #ifdef CONFIG_TMPFS
2686 .readpage = shmem_readpage,
2687 .write_begin = shmem_write_begin,
2688 .write_end = shmem_write_end,
2689 #endif
2690 .migratepage = migrate_page,
2691 .error_remove_page = generic_error_remove_page,
2694 static const struct file_operations shmem_file_operations = {
2695 .mmap = shmem_mmap,
2696 #ifdef CONFIG_TMPFS
2697 .llseek = generic_file_llseek,
2698 .read = do_sync_read,
2699 .write = do_sync_write,
2700 .aio_read = shmem_file_aio_read,
2701 .aio_write = generic_file_aio_write,
2702 .fsync = noop_fsync,
2703 .splice_read = generic_file_splice_read,
2704 .splice_write = generic_file_splice_write,
2705 #endif
2708 static const struct inode_operations shmem_inode_operations = {
2709 .setattr = shmem_notify_change,
2710 .truncate_range = shmem_truncate_range,
2711 #ifdef CONFIG_TMPFS_XATTR
2712 .setxattr = shmem_setxattr,
2713 .getxattr = shmem_getxattr,
2714 .listxattr = shmem_listxattr,
2715 .removexattr = shmem_removexattr,
2716 #endif
2717 #ifdef CONFIG_TMPFS_POSIX_ACL
2718 .check_acl = generic_check_acl,
2719 #endif
2723 static const struct inode_operations shmem_dir_inode_operations = {
2724 #ifdef CONFIG_TMPFS
2725 .create = shmem_create,
2726 .lookup = simple_lookup,
2727 .link = shmem_link,
2728 .unlink = shmem_unlink,
2729 .symlink = shmem_symlink,
2730 .mkdir = shmem_mkdir,
2731 .rmdir = shmem_rmdir,
2732 .mknod = shmem_mknod,
2733 .rename = shmem_rename,
2734 #endif
2735 #ifdef CONFIG_TMPFS_XATTR
2736 .setxattr = shmem_setxattr,
2737 .getxattr = shmem_getxattr,
2738 .listxattr = shmem_listxattr,
2739 .removexattr = shmem_removexattr,
2740 #endif
2741 #ifdef CONFIG_TMPFS_POSIX_ACL
2742 .setattr = shmem_notify_change,
2743 .check_acl = generic_check_acl,
2744 #endif
2747 static const struct inode_operations shmem_special_inode_operations = {
2748 #ifdef CONFIG_TMPFS_XATTR
2749 .setxattr = shmem_setxattr,
2750 .getxattr = shmem_getxattr,
2751 .listxattr = shmem_listxattr,
2752 .removexattr = shmem_removexattr,
2753 #endif
2754 #ifdef CONFIG_TMPFS_POSIX_ACL
2755 .setattr = shmem_notify_change,
2756 .check_acl = generic_check_acl,
2757 #endif
2760 static const struct super_operations shmem_ops = {
2761 .alloc_inode = shmem_alloc_inode,
2762 .destroy_inode = shmem_destroy_inode,
2763 #ifdef CONFIG_TMPFS
2764 .statfs = shmem_statfs,
2765 .remount_fs = shmem_remount_fs,
2766 .show_options = shmem_show_options,
2767 #endif
2768 .evict_inode = shmem_evict_inode,
2769 .drop_inode = generic_delete_inode,
2770 .put_super = shmem_put_super,
2773 static const struct vm_operations_struct shmem_vm_ops = {
2774 .fault = shmem_fault,
2775 #ifdef CONFIG_NUMA
2776 .set_policy = shmem_set_policy,
2777 .get_policy = shmem_get_policy,
2778 #endif
2782 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2783 int flags, const char *dev_name, void *data)
2785 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2788 static struct file_system_type tmpfs_fs_type = {
2789 .owner = THIS_MODULE,
2790 .name = "tmpfs",
2791 .mount = shmem_mount,
2792 .kill_sb = kill_litter_super,
2795 int __init init_tmpfs(void)
2797 int error;
2799 error = bdi_init(&shmem_backing_dev_info);
2800 if (error)
2801 goto out4;
2803 error = init_inodecache();
2804 if (error)
2805 goto out3;
2807 error = register_filesystem(&tmpfs_fs_type);
2808 if (error) {
2809 printk(KERN_ERR "Could not register tmpfs\n");
2810 goto out2;
2813 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2814 tmpfs_fs_type.name, NULL);
2815 if (IS_ERR(shm_mnt)) {
2816 error = PTR_ERR(shm_mnt);
2817 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2818 goto out1;
2820 return 0;
2822 out1:
2823 unregister_filesystem(&tmpfs_fs_type);
2824 out2:
2825 destroy_inodecache();
2826 out3:
2827 bdi_destroy(&shmem_backing_dev_info);
2828 out4:
2829 shm_mnt = ERR_PTR(error);
2830 return error;
2833 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2835 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2836 * @inode: the inode to be searched
2837 * @pgoff: the offset to be searched
2838 * @pagep: the pointer for the found page to be stored
2839 * @ent: the pointer for the found swap entry to be stored
2841 * If a page is found, refcount of it is incremented. Callers should handle
2842 * these refcount.
2844 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2845 struct page **pagep, swp_entry_t *ent)
2847 swp_entry_t entry = { .val = 0 }, *ptr;
2848 struct page *page = NULL;
2849 struct shmem_inode_info *info = SHMEM_I(inode);
2851 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2852 goto out;
2854 spin_lock(&info->lock);
2855 ptr = shmem_swp_entry(info, pgoff, NULL);
2856 #ifdef CONFIG_SWAP
2857 if (ptr && ptr->val) {
2858 entry.val = ptr->val;
2859 page = find_get_page(&swapper_space, entry.val);
2860 } else
2861 #endif
2862 page = find_get_page(inode->i_mapping, pgoff);
2863 if (ptr)
2864 shmem_swp_unmap(ptr);
2865 spin_unlock(&info->lock);
2866 out:
2867 *pagep = page;
2868 *ent = entry;
2870 #endif
2872 #else /* !CONFIG_SHMEM */
2875 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2877 * This is intended for small system where the benefits of the full
2878 * shmem code (swap-backed and resource-limited) are outweighed by
2879 * their complexity. On systems without swap this code should be
2880 * effectively equivalent, but much lighter weight.
2883 #include <linux/ramfs.h>
2885 static struct file_system_type tmpfs_fs_type = {
2886 .name = "tmpfs",
2887 .mount = ramfs_mount,
2888 .kill_sb = kill_litter_super,
2891 int __init init_tmpfs(void)
2893 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2895 shm_mnt = kern_mount(&tmpfs_fs_type);
2896 BUG_ON(IS_ERR(shm_mnt));
2898 return 0;
2901 int shmem_unuse(swp_entry_t entry, struct page *page)
2903 return 0;
2906 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2908 return 0;
2911 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2913 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2914 * @inode: the inode to be searched
2915 * @pgoff: the offset to be searched
2916 * @pagep: the pointer for the found page to be stored
2917 * @ent: the pointer for the found swap entry to be stored
2919 * If a page is found, refcount of it is incremented. Callers should handle
2920 * these refcount.
2922 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2923 struct page **pagep, swp_entry_t *ent)
2925 struct page *page = NULL;
2927 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2928 goto out;
2929 page = find_get_page(inode->i_mapping, pgoff);
2930 out:
2931 *pagep = page;
2932 *ent = (swp_entry_t){ .val = 0 };
2934 #endif
2936 #define shmem_vm_ops generic_file_vm_ops
2937 #define shmem_file_operations ramfs_file_operations
2938 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2939 #define shmem_acct_size(flags, size) 0
2940 #define shmem_unacct_size(flags, size) do {} while (0)
2941 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2943 #endif /* CONFIG_SHMEM */
2945 /* common code */
2948 * shmem_file_setup - get an unlinked file living in tmpfs
2949 * @name: name for dentry (to be seen in /proc/<pid>/maps
2950 * @size: size to be set for the file
2951 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2953 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2955 int error;
2956 struct file *file;
2957 struct inode *inode;
2958 struct path path;
2959 struct dentry *root;
2960 struct qstr this;
2962 if (IS_ERR(shm_mnt))
2963 return (void *)shm_mnt;
2965 if (size < 0 || size > SHMEM_MAX_BYTES)
2966 return ERR_PTR(-EINVAL);
2968 if (shmem_acct_size(flags, size))
2969 return ERR_PTR(-ENOMEM);
2971 error = -ENOMEM;
2972 this.name = name;
2973 this.len = strlen(name);
2974 this.hash = 0; /* will go */
2975 root = shm_mnt->mnt_root;
2976 path.dentry = d_alloc(root, &this);
2977 if (!path.dentry)
2978 goto put_memory;
2979 path.mnt = mntget(shm_mnt);
2981 error = -ENOSPC;
2982 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2983 if (!inode)
2984 goto put_dentry;
2986 d_instantiate(path.dentry, inode);
2987 inode->i_size = size;
2988 inode->i_nlink = 0; /* It is unlinked */
2989 #ifndef CONFIG_MMU
2990 error = ramfs_nommu_expand_for_mapping(inode, size);
2991 if (error)
2992 goto put_dentry;
2993 #endif
2995 error = -ENFILE;
2996 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2997 &shmem_file_operations);
2998 if (!file)
2999 goto put_dentry;
3001 return file;
3003 put_dentry:
3004 path_put(&path);
3005 put_memory:
3006 shmem_unacct_size(flags, size);
3007 return ERR_PTR(error);
3009 EXPORT_SYMBOL_GPL(shmem_file_setup);
3012 * shmem_zero_setup - setup a shared anonymous mapping
3013 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3015 int shmem_zero_setup(struct vm_area_struct *vma)
3017 struct file *file;
3018 loff_t size = vma->vm_end - vma->vm_start;
3020 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3021 if (IS_ERR(file))
3022 return PTR_ERR(file);
3024 if (vma->vm_file)
3025 fput(vma->vm_file);
3026 vma->vm_file = file;
3027 vma->vm_ops = &shmem_vm_ops;
3028 vma->vm_flags |= VM_CAN_NONLINEAR;
3029 return 0;