2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA contorller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
38 #include <asm/fsldma.h>
41 static void dma_init(struct fsldma_chan
*chan
)
43 /* Reset the channel */
44 DMA_OUT(chan
, &chan
->regs
->mr
, 0, 32);
46 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
48 /* Set the channel to below modes:
49 * EIE - Error interrupt enable
50 * EOSIE - End of segments interrupt enable (basic mode)
51 * EOLNIE - End of links interrupt enable
53 DMA_OUT(chan
, &chan
->regs
->mr
, FSL_DMA_MR_EIE
54 | FSL_DMA_MR_EOLNIE
| FSL_DMA_MR_EOSIE
, 32);
57 /* Set the channel to below modes:
58 * EOTIE - End-of-transfer interrupt enable
59 * PRC_RM - PCI read multiple
61 DMA_OUT(chan
, &chan
->regs
->mr
, FSL_DMA_MR_EOTIE
62 | FSL_DMA_MR_PRC_RM
, 32);
67 static void set_sr(struct fsldma_chan
*chan
, u32 val
)
69 DMA_OUT(chan
, &chan
->regs
->sr
, val
, 32);
72 static u32
get_sr(struct fsldma_chan
*chan
)
74 return DMA_IN(chan
, &chan
->regs
->sr
, 32);
77 static void set_desc_cnt(struct fsldma_chan
*chan
,
78 struct fsl_dma_ld_hw
*hw
, u32 count
)
80 hw
->count
= CPU_TO_DMA(chan
, count
, 32);
83 static void set_desc_src(struct fsldma_chan
*chan
,
84 struct fsl_dma_ld_hw
*hw
, dma_addr_t src
)
88 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
89 ? ((u64
)FSL_DMA_SATR_SREADTYPE_SNOOP_READ
<< 32) : 0;
90 hw
->src_addr
= CPU_TO_DMA(chan
, snoop_bits
| src
, 64);
93 static void set_desc_dst(struct fsldma_chan
*chan
,
94 struct fsl_dma_ld_hw
*hw
, dma_addr_t dst
)
98 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
99 ? ((u64
)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE
<< 32) : 0;
100 hw
->dst_addr
= CPU_TO_DMA(chan
, snoop_bits
| dst
, 64);
103 static void set_desc_next(struct fsldma_chan
*chan
,
104 struct fsl_dma_ld_hw
*hw
, dma_addr_t next
)
108 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
110 hw
->next_ln_addr
= CPU_TO_DMA(chan
, snoop_bits
| next
, 64);
113 static void set_cdar(struct fsldma_chan
*chan
, dma_addr_t addr
)
115 DMA_OUT(chan
, &chan
->regs
->cdar
, addr
| FSL_DMA_SNEN
, 64);
118 static dma_addr_t
get_cdar(struct fsldma_chan
*chan
)
120 return DMA_IN(chan
, &chan
->regs
->cdar
, 64) & ~FSL_DMA_SNEN
;
123 static dma_addr_t
get_ndar(struct fsldma_chan
*chan
)
125 return DMA_IN(chan
, &chan
->regs
->ndar
, 64);
128 static u32
get_bcr(struct fsldma_chan
*chan
)
130 return DMA_IN(chan
, &chan
->regs
->bcr
, 32);
133 static int dma_is_idle(struct fsldma_chan
*chan
)
135 u32 sr
= get_sr(chan
);
136 return (!(sr
& FSL_DMA_SR_CB
)) || (sr
& FSL_DMA_SR_CH
);
139 static void dma_start(struct fsldma_chan
*chan
)
143 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
145 if ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
) {
146 if (chan
->feature
& FSL_DMA_CHAN_PAUSE_EXT
) {
147 DMA_OUT(chan
, &chan
->regs
->bcr
, 0, 32);
148 mode
|= FSL_DMA_MR_EMP_EN
;
150 mode
&= ~FSL_DMA_MR_EMP_EN
;
154 if (chan
->feature
& FSL_DMA_CHAN_START_EXT
)
155 mode
|= FSL_DMA_MR_EMS_EN
;
157 mode
|= FSL_DMA_MR_CS
;
159 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
162 static void dma_halt(struct fsldma_chan
*chan
)
167 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
168 mode
|= FSL_DMA_MR_CA
;
169 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
171 mode
&= ~(FSL_DMA_MR_CS
| FSL_DMA_MR_EMS_EN
| FSL_DMA_MR_CA
);
172 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
174 for (i
= 0; i
< 100; i
++) {
175 if (dma_is_idle(chan
))
181 if (!dma_is_idle(chan
))
182 dev_err(chan
->dev
, "DMA halt timeout!\n");
185 static void set_ld_eol(struct fsldma_chan
*chan
,
186 struct fsl_desc_sw
*desc
)
190 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
193 desc
->hw
.next_ln_addr
= CPU_TO_DMA(chan
,
194 DMA_TO_CPU(chan
, desc
->hw
.next_ln_addr
, 64) | FSL_DMA_EOL
199 * fsl_chan_set_src_loop_size - Set source address hold transfer size
200 * @chan : Freescale DMA channel
201 * @size : Address loop size, 0 for disable loop
203 * The set source address hold transfer size. The source
204 * address hold or loop transfer size is when the DMA transfer
205 * data from source address (SA), if the loop size is 4, the DMA will
206 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
207 * SA + 1 ... and so on.
209 static void fsl_chan_set_src_loop_size(struct fsldma_chan
*chan
, int size
)
213 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
217 mode
&= ~FSL_DMA_MR_SAHE
;
223 mode
|= FSL_DMA_MR_SAHE
| (__ilog2(size
) << 14);
227 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
231 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
232 * @chan : Freescale DMA channel
233 * @size : Address loop size, 0 for disable loop
235 * The set destination address hold transfer size. The destination
236 * address hold or loop transfer size is when the DMA transfer
237 * data to destination address (TA), if the loop size is 4, the DMA will
238 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
239 * TA + 1 ... and so on.
241 static void fsl_chan_set_dst_loop_size(struct fsldma_chan
*chan
, int size
)
245 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
249 mode
&= ~FSL_DMA_MR_DAHE
;
255 mode
|= FSL_DMA_MR_DAHE
| (__ilog2(size
) << 16);
259 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
263 * fsl_chan_set_request_count - Set DMA Request Count for external control
264 * @chan : Freescale DMA channel
265 * @size : Number of bytes to transfer in a single request
267 * The Freescale DMA channel can be controlled by the external signal DREQ#.
268 * The DMA request count is how many bytes are allowed to transfer before
269 * pausing the channel, after which a new assertion of DREQ# resumes channel
272 * A size of 0 disables external pause control. The maximum size is 1024.
274 static void fsl_chan_set_request_count(struct fsldma_chan
*chan
, int size
)
280 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
281 mode
|= (__ilog2(size
) << 24) & 0x0f000000;
283 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
287 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
288 * @chan : Freescale DMA channel
289 * @enable : 0 is disabled, 1 is enabled.
291 * The Freescale DMA channel can be controlled by the external signal DREQ#.
292 * The DMA Request Count feature should be used in addition to this feature
293 * to set the number of bytes to transfer before pausing the channel.
295 static void fsl_chan_toggle_ext_pause(struct fsldma_chan
*chan
, int enable
)
298 chan
->feature
|= FSL_DMA_CHAN_PAUSE_EXT
;
300 chan
->feature
&= ~FSL_DMA_CHAN_PAUSE_EXT
;
304 * fsl_chan_toggle_ext_start - Toggle channel external start status
305 * @chan : Freescale DMA channel
306 * @enable : 0 is disabled, 1 is enabled.
308 * If enable the external start, the channel can be started by an
309 * external DMA start pin. So the dma_start() does not start the
310 * transfer immediately. The DMA channel will wait for the
311 * control pin asserted.
313 static void fsl_chan_toggle_ext_start(struct fsldma_chan
*chan
, int enable
)
316 chan
->feature
|= FSL_DMA_CHAN_START_EXT
;
318 chan
->feature
&= ~FSL_DMA_CHAN_START_EXT
;
321 static void append_ld_queue(struct fsldma_chan
*chan
,
322 struct fsl_desc_sw
*desc
)
324 struct fsl_desc_sw
*tail
= to_fsl_desc(chan
->ld_pending
.prev
);
326 if (list_empty(&chan
->ld_pending
))
330 * Add the hardware descriptor to the chain of hardware descriptors
331 * that already exists in memory.
333 * This will un-set the EOL bit of the existing transaction, and the
334 * last link in this transaction will become the EOL descriptor.
336 set_desc_next(chan
, &tail
->hw
, desc
->async_tx
.phys
);
339 * Add the software descriptor and all children to the list
340 * of pending transactions
343 list_splice_tail_init(&desc
->tx_list
, &chan
->ld_pending
);
346 static dma_cookie_t
fsl_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
348 struct fsldma_chan
*chan
= to_fsl_chan(tx
->chan
);
349 struct fsl_desc_sw
*desc
= tx_to_fsl_desc(tx
);
350 struct fsl_desc_sw
*child
;
354 spin_lock_irqsave(&chan
->desc_lock
, flags
);
357 * assign cookies to all of the software descriptors
358 * that make up this transaction
360 cookie
= chan
->common
.cookie
;
361 list_for_each_entry(child
, &desc
->tx_list
, node
) {
366 child
->async_tx
.cookie
= cookie
;
369 chan
->common
.cookie
= cookie
;
371 /* put this transaction onto the tail of the pending queue */
372 append_ld_queue(chan
, desc
);
374 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
380 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
381 * @chan : Freescale DMA channel
383 * Return - The descriptor allocated. NULL for failed.
385 static struct fsl_desc_sw
*fsl_dma_alloc_descriptor(
386 struct fsldma_chan
*chan
)
388 struct fsl_desc_sw
*desc
;
391 desc
= dma_pool_alloc(chan
->desc_pool
, GFP_ATOMIC
, &pdesc
);
393 dev_dbg(chan
->dev
, "out of memory for link desc\n");
397 memset(desc
, 0, sizeof(*desc
));
398 INIT_LIST_HEAD(&desc
->tx_list
);
399 dma_async_tx_descriptor_init(&desc
->async_tx
, &chan
->common
);
400 desc
->async_tx
.tx_submit
= fsl_dma_tx_submit
;
401 desc
->async_tx
.phys
= pdesc
;
408 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
409 * @chan : Freescale DMA channel
411 * This function will create a dma pool for descriptor allocation.
413 * Return - The number of descriptors allocated.
415 static int fsl_dma_alloc_chan_resources(struct dma_chan
*dchan
)
417 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
419 /* Has this channel already been allocated? */
424 * We need the descriptor to be aligned to 32bytes
425 * for meeting FSL DMA specification requirement.
427 chan
->desc_pool
= dma_pool_create("fsl_dma_engine_desc_pool",
429 sizeof(struct fsl_desc_sw
),
430 __alignof__(struct fsl_desc_sw
), 0);
431 if (!chan
->desc_pool
) {
432 dev_err(chan
->dev
, "unable to allocate channel %d "
433 "descriptor pool\n", chan
->id
);
437 /* there is at least one descriptor free to be allocated */
442 * fsldma_free_desc_list - Free all descriptors in a queue
443 * @chan: Freescae DMA channel
444 * @list: the list to free
446 * LOCKING: must hold chan->desc_lock
448 static void fsldma_free_desc_list(struct fsldma_chan
*chan
,
449 struct list_head
*list
)
451 struct fsl_desc_sw
*desc
, *_desc
;
453 list_for_each_entry_safe(desc
, _desc
, list
, node
) {
454 list_del(&desc
->node
);
455 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
459 static void fsldma_free_desc_list_reverse(struct fsldma_chan
*chan
,
460 struct list_head
*list
)
462 struct fsl_desc_sw
*desc
, *_desc
;
464 list_for_each_entry_safe_reverse(desc
, _desc
, list
, node
) {
465 list_del(&desc
->node
);
466 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
471 * fsl_dma_free_chan_resources - Free all resources of the channel.
472 * @chan : Freescale DMA channel
474 static void fsl_dma_free_chan_resources(struct dma_chan
*dchan
)
476 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
479 dev_dbg(chan
->dev
, "Free all channel resources.\n");
480 spin_lock_irqsave(&chan
->desc_lock
, flags
);
481 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
482 fsldma_free_desc_list(chan
, &chan
->ld_running
);
483 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
485 dma_pool_destroy(chan
->desc_pool
);
486 chan
->desc_pool
= NULL
;
489 static struct dma_async_tx_descriptor
*
490 fsl_dma_prep_interrupt(struct dma_chan
*dchan
, unsigned long flags
)
492 struct fsldma_chan
*chan
;
493 struct fsl_desc_sw
*new;
498 chan
= to_fsl_chan(dchan
);
500 new = fsl_dma_alloc_descriptor(chan
);
502 dev_err(chan
->dev
, "No free memory for link descriptor\n");
506 new->async_tx
.cookie
= -EBUSY
;
507 new->async_tx
.flags
= flags
;
509 /* Insert the link descriptor to the LD ring */
510 list_add_tail(&new->node
, &new->tx_list
);
512 /* Set End-of-link to the last link descriptor of new list*/
513 set_ld_eol(chan
, new);
515 return &new->async_tx
;
518 static struct dma_async_tx_descriptor
*fsl_dma_prep_memcpy(
519 struct dma_chan
*dchan
, dma_addr_t dma_dst
, dma_addr_t dma_src
,
520 size_t len
, unsigned long flags
)
522 struct fsldma_chan
*chan
;
523 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new;
532 chan
= to_fsl_chan(dchan
);
536 /* Allocate the link descriptor from DMA pool */
537 new = fsl_dma_alloc_descriptor(chan
);
540 "No free memory for link descriptor\n");
543 #ifdef FSL_DMA_LD_DEBUG
544 dev_dbg(chan
->dev
, "new link desc alloc %p\n", new);
547 copy
= min(len
, (size_t)FSL_DMA_BCR_MAX_CNT
);
549 set_desc_cnt(chan
, &new->hw
, copy
);
550 set_desc_src(chan
, &new->hw
, dma_src
);
551 set_desc_dst(chan
, &new->hw
, dma_dst
);
556 set_desc_next(chan
, &prev
->hw
, new->async_tx
.phys
);
558 new->async_tx
.cookie
= 0;
559 async_tx_ack(&new->async_tx
);
566 /* Insert the link descriptor to the LD ring */
567 list_add_tail(&new->node
, &first
->tx_list
);
570 new->async_tx
.flags
= flags
; /* client is in control of this ack */
571 new->async_tx
.cookie
= -EBUSY
;
573 /* Set End-of-link to the last link descriptor of new list*/
574 set_ld_eol(chan
, new);
576 return &first
->async_tx
;
582 fsldma_free_desc_list_reverse(chan
, &first
->tx_list
);
587 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
589 * @sgl: scatterlist to transfer to/from
590 * @sg_len: number of entries in @scatterlist
591 * @direction: DMA direction
592 * @flags: DMAEngine flags
594 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
595 * DMA_SLAVE API, this gets the device-specific information from the
596 * chan->private variable.
598 static struct dma_async_tx_descriptor
*fsl_dma_prep_slave_sg(
599 struct dma_chan
*dchan
, struct scatterlist
*sgl
, unsigned int sg_len
,
600 enum dma_data_direction direction
, unsigned long flags
)
602 struct fsldma_chan
*chan
;
603 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new = NULL
;
604 struct fsl_dma_slave
*slave
;
608 struct scatterlist
*sg
;
611 struct fsl_dma_hw_addr
*hw
;
612 dma_addr_t dma_dst
, dma_src
;
620 chan
= to_fsl_chan(dchan
);
621 slave
= dchan
->private;
623 if (list_empty(&slave
->addresses
))
626 hw
= list_first_entry(&slave
->addresses
, struct fsl_dma_hw_addr
, entry
);
630 * Build the hardware transaction to copy from the scatterlist to
631 * the hardware, or from the hardware to the scatterlist
633 * If you are copying from the hardware to the scatterlist and it
634 * takes two hardware entries to fill an entire page, then both
635 * hardware entries will be coalesced into the same page
637 * If you are copying from the scatterlist to the hardware and a
638 * single page can fill two hardware entries, then the data will
639 * be read out of the page into the first hardware entry, and so on
641 for_each_sg(sgl
, sg
, sg_len
, i
) {
644 /* Loop until the entire scatterlist entry is used */
645 while (sg_used
< sg_dma_len(sg
)) {
648 * If we've used up the current hardware address/length
649 * pair, we need to load a new one
651 * This is done in a while loop so that descriptors with
652 * length == 0 will be skipped
654 while (hw_used
>= hw
->length
) {
657 * If the current hardware entry is the last
658 * entry in the list, we're finished
660 if (list_is_last(&hw
->entry
, &slave
->addresses
))
663 /* Get the next hardware address/length pair */
664 hw
= list_entry(hw
->entry
.next
,
665 struct fsl_dma_hw_addr
, entry
);
669 /* Allocate the link descriptor from DMA pool */
670 new = fsl_dma_alloc_descriptor(chan
);
672 dev_err(chan
->dev
, "No free memory for "
673 "link descriptor\n");
676 #ifdef FSL_DMA_LD_DEBUG
677 dev_dbg(chan
->dev
, "new link desc alloc %p\n", new);
681 * Calculate the maximum number of bytes to transfer,
682 * making sure it is less than the DMA controller limit
684 copy
= min_t(size_t, sg_dma_len(sg
) - sg_used
,
685 hw
->length
- hw_used
);
686 copy
= min_t(size_t, copy
, FSL_DMA_BCR_MAX_CNT
);
690 * from the hardware to the scatterlist
693 * from the scatterlist to the hardware
695 if (direction
== DMA_FROM_DEVICE
) {
696 dma_src
= hw
->address
+ hw_used
;
697 dma_dst
= sg_dma_address(sg
) + sg_used
;
699 dma_src
= sg_dma_address(sg
) + sg_used
;
700 dma_dst
= hw
->address
+ hw_used
;
703 /* Fill in the descriptor */
704 set_desc_cnt(chan
, &new->hw
, copy
);
705 set_desc_src(chan
, &new->hw
, dma_src
);
706 set_desc_dst(chan
, &new->hw
, dma_dst
);
709 * If this is not the first descriptor, chain the
710 * current descriptor after the previous descriptor
715 set_desc_next(chan
, &prev
->hw
,
719 new->async_tx
.cookie
= 0;
720 async_tx_ack(&new->async_tx
);
726 /* Insert the link descriptor into the LD ring */
727 list_add_tail(&new->node
, &first
->tx_list
);
733 /* All of the hardware address/length pairs had length == 0 */
737 new->async_tx
.flags
= flags
;
738 new->async_tx
.cookie
= -EBUSY
;
740 /* Set End-of-link to the last link descriptor of new list */
741 set_ld_eol(chan
, new);
743 /* Enable extra controller features */
744 if (chan
->set_src_loop_size
)
745 chan
->set_src_loop_size(chan
, slave
->src_loop_size
);
747 if (chan
->set_dst_loop_size
)
748 chan
->set_dst_loop_size(chan
, slave
->dst_loop_size
);
750 if (chan
->toggle_ext_start
)
751 chan
->toggle_ext_start(chan
, slave
->external_start
);
753 if (chan
->toggle_ext_pause
)
754 chan
->toggle_ext_pause(chan
, slave
->external_pause
);
756 if (chan
->set_request_count
)
757 chan
->set_request_count(chan
, slave
->request_count
);
759 return &first
->async_tx
;
762 /* If first was not set, then we failed to allocate the very first
763 * descriptor, and we're done */
768 * First is set, so all of the descriptors we allocated have been added
769 * to first->tx_list, INCLUDING "first" itself. Therefore we
770 * must traverse the list backwards freeing each descriptor in turn
772 * We're re-using variables for the loop, oh well
774 fsldma_free_desc_list_reverse(chan
, &first
->tx_list
);
778 static int fsl_dma_device_control(struct dma_chan
*dchan
,
779 enum dma_ctrl_cmd cmd
, unsigned long arg
)
781 struct fsldma_chan
*chan
;
784 /* Only supports DMA_TERMINATE_ALL */
785 if (cmd
!= DMA_TERMINATE_ALL
)
791 chan
= to_fsl_chan(dchan
);
793 /* Halt the DMA engine */
796 spin_lock_irqsave(&chan
->desc_lock
, flags
);
798 /* Remove and free all of the descriptors in the LD queue */
799 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
800 fsldma_free_desc_list(chan
, &chan
->ld_running
);
802 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
808 * fsl_dma_update_completed_cookie - Update the completed cookie.
809 * @chan : Freescale DMA channel
813 static void fsl_dma_update_completed_cookie(struct fsldma_chan
*chan
)
815 struct fsl_desc_sw
*desc
;
819 spin_lock_irqsave(&chan
->desc_lock
, flags
);
821 if (list_empty(&chan
->ld_running
)) {
822 dev_dbg(chan
->dev
, "no running descriptors\n");
826 /* Get the last descriptor, update the cookie to that */
827 desc
= to_fsl_desc(chan
->ld_running
.prev
);
828 if (dma_is_idle(chan
))
829 cookie
= desc
->async_tx
.cookie
;
831 cookie
= desc
->async_tx
.cookie
- 1;
832 if (unlikely(cookie
< DMA_MIN_COOKIE
))
833 cookie
= DMA_MAX_COOKIE
;
836 chan
->completed_cookie
= cookie
;
839 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
843 * fsldma_desc_status - Check the status of a descriptor
844 * @chan: Freescale DMA channel
845 * @desc: DMA SW descriptor
847 * This function will return the status of the given descriptor
849 static enum dma_status
fsldma_desc_status(struct fsldma_chan
*chan
,
850 struct fsl_desc_sw
*desc
)
852 return dma_async_is_complete(desc
->async_tx
.cookie
,
853 chan
->completed_cookie
,
854 chan
->common
.cookie
);
858 * fsl_chan_ld_cleanup - Clean up link descriptors
859 * @chan : Freescale DMA channel
861 * This function clean up the ld_queue of DMA channel.
863 static void fsl_chan_ld_cleanup(struct fsldma_chan
*chan
)
865 struct fsl_desc_sw
*desc
, *_desc
;
868 spin_lock_irqsave(&chan
->desc_lock
, flags
);
870 dev_dbg(chan
->dev
, "chan completed_cookie = %d\n", chan
->completed_cookie
);
871 list_for_each_entry_safe(desc
, _desc
, &chan
->ld_running
, node
) {
872 dma_async_tx_callback callback
;
873 void *callback_param
;
875 if (fsldma_desc_status(chan
, desc
) == DMA_IN_PROGRESS
)
878 /* Remove from the list of running transactions */
879 list_del(&desc
->node
);
881 /* Run the link descriptor callback function */
882 callback
= desc
->async_tx
.callback
;
883 callback_param
= desc
->async_tx
.callback_param
;
885 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
886 dev_dbg(chan
->dev
, "LD %p callback\n", desc
);
887 callback(callback_param
);
888 spin_lock_irqsave(&chan
->desc_lock
, flags
);
891 /* Run any dependencies, then free the descriptor */
892 dma_run_dependencies(&desc
->async_tx
);
893 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
896 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
900 * fsl_chan_xfer_ld_queue - transfer any pending transactions
901 * @chan : Freescale DMA channel
903 * This will make sure that any pending transactions will be run.
904 * If the DMA controller is idle, it will be started. Otherwise,
905 * the DMA controller's interrupt handler will start any pending
906 * transactions when it becomes idle.
908 static void fsl_chan_xfer_ld_queue(struct fsldma_chan
*chan
)
910 struct fsl_desc_sw
*desc
;
913 spin_lock_irqsave(&chan
->desc_lock
, flags
);
916 * If the list of pending descriptors is empty, then we
917 * don't need to do any work at all
919 if (list_empty(&chan
->ld_pending
)) {
920 dev_dbg(chan
->dev
, "no pending LDs\n");
925 * The DMA controller is not idle, which means the interrupt
926 * handler will start any queued transactions when it runs
927 * at the end of the current transaction
929 if (!dma_is_idle(chan
)) {
930 dev_dbg(chan
->dev
, "DMA controller still busy\n");
936 * make sure the dma_halt() function really un-wedges the
937 * controller as much as possible
942 * If there are some link descriptors which have not been
943 * transferred, we need to start the controller
947 * Move all elements from the queue of pending transactions
948 * onto the list of running transactions
950 desc
= list_first_entry(&chan
->ld_pending
, struct fsl_desc_sw
, node
);
951 list_splice_tail_init(&chan
->ld_pending
, &chan
->ld_running
);
954 * Program the descriptor's address into the DMA controller,
955 * then start the DMA transaction
957 set_cdar(chan
, desc
->async_tx
.phys
);
961 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
965 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
966 * @chan : Freescale DMA channel
968 static void fsl_dma_memcpy_issue_pending(struct dma_chan
*dchan
)
970 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
971 fsl_chan_xfer_ld_queue(chan
);
975 * fsl_tx_status - Determine the DMA status
976 * @chan : Freescale DMA channel
978 static enum dma_status
fsl_tx_status(struct dma_chan
*dchan
,
980 struct dma_tx_state
*txstate
)
982 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
983 dma_cookie_t last_used
;
984 dma_cookie_t last_complete
;
986 fsl_chan_ld_cleanup(chan
);
988 last_used
= dchan
->cookie
;
989 last_complete
= chan
->completed_cookie
;
991 dma_set_tx_state(txstate
, last_complete
, last_used
, 0);
993 return dma_async_is_complete(cookie
, last_complete
, last_used
);
996 /*----------------------------------------------------------------------------*/
997 /* Interrupt Handling */
998 /*----------------------------------------------------------------------------*/
1000 static irqreturn_t
fsldma_chan_irq(int irq
, void *data
)
1002 struct fsldma_chan
*chan
= data
;
1003 int update_cookie
= 0;
1007 /* save and clear the status register */
1008 stat
= get_sr(chan
);
1010 dev_dbg(chan
->dev
, "irq: channel %d, stat = 0x%x\n", chan
->id
, stat
);
1012 stat
&= ~(FSL_DMA_SR_CB
| FSL_DMA_SR_CH
);
1016 if (stat
& FSL_DMA_SR_TE
)
1017 dev_err(chan
->dev
, "Transfer Error!\n");
1021 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1022 * triger a PE interrupt.
1024 if (stat
& FSL_DMA_SR_PE
) {
1025 dev_dbg(chan
->dev
, "irq: Programming Error INT\n");
1026 if (get_bcr(chan
) == 0) {
1027 /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
1028 * Now, update the completed cookie, and continue the
1029 * next uncompleted transfer.
1034 stat
&= ~FSL_DMA_SR_PE
;
1038 * If the link descriptor segment transfer finishes,
1039 * we will recycle the used descriptor.
1041 if (stat
& FSL_DMA_SR_EOSI
) {
1042 dev_dbg(chan
->dev
, "irq: End-of-segments INT\n");
1043 dev_dbg(chan
->dev
, "irq: clndar 0x%llx, nlndar 0x%llx\n",
1044 (unsigned long long)get_cdar(chan
),
1045 (unsigned long long)get_ndar(chan
));
1046 stat
&= ~FSL_DMA_SR_EOSI
;
1051 * For MPC8349, EOCDI event need to update cookie
1052 * and start the next transfer if it exist.
1054 if (stat
& FSL_DMA_SR_EOCDI
) {
1055 dev_dbg(chan
->dev
, "irq: End-of-Chain link INT\n");
1056 stat
&= ~FSL_DMA_SR_EOCDI
;
1062 * If it current transfer is the end-of-transfer,
1063 * we should clear the Channel Start bit for
1064 * prepare next transfer.
1066 if (stat
& FSL_DMA_SR_EOLNI
) {
1067 dev_dbg(chan
->dev
, "irq: End-of-link INT\n");
1068 stat
&= ~FSL_DMA_SR_EOLNI
;
1073 fsl_dma_update_completed_cookie(chan
);
1075 fsl_chan_xfer_ld_queue(chan
);
1077 dev_dbg(chan
->dev
, "irq: unhandled sr 0x%02x\n", stat
);
1079 dev_dbg(chan
->dev
, "irq: Exit\n");
1080 tasklet_schedule(&chan
->tasklet
);
1084 static void dma_do_tasklet(unsigned long data
)
1086 struct fsldma_chan
*chan
= (struct fsldma_chan
*)data
;
1087 fsl_chan_ld_cleanup(chan
);
1090 static irqreturn_t
fsldma_ctrl_irq(int irq
, void *data
)
1092 struct fsldma_device
*fdev
= data
;
1093 struct fsldma_chan
*chan
;
1094 unsigned int handled
= 0;
1098 gsr
= (fdev
->feature
& FSL_DMA_BIG_ENDIAN
) ? in_be32(fdev
->regs
)
1099 : in_le32(fdev
->regs
);
1101 dev_dbg(fdev
->dev
, "IRQ: gsr 0x%.8x\n", gsr
);
1103 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1104 chan
= fdev
->chan
[i
];
1109 dev_dbg(fdev
->dev
, "IRQ: chan %d\n", chan
->id
);
1110 fsldma_chan_irq(irq
, chan
);
1118 return IRQ_RETVAL(handled
);
1121 static void fsldma_free_irqs(struct fsldma_device
*fdev
)
1123 struct fsldma_chan
*chan
;
1126 if (fdev
->irq
!= NO_IRQ
) {
1127 dev_dbg(fdev
->dev
, "free per-controller IRQ\n");
1128 free_irq(fdev
->irq
, fdev
);
1132 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1133 chan
= fdev
->chan
[i
];
1134 if (chan
&& chan
->irq
!= NO_IRQ
) {
1135 dev_dbg(fdev
->dev
, "free channel %d IRQ\n", chan
->id
);
1136 free_irq(chan
->irq
, chan
);
1141 static int fsldma_request_irqs(struct fsldma_device
*fdev
)
1143 struct fsldma_chan
*chan
;
1147 /* if we have a per-controller IRQ, use that */
1148 if (fdev
->irq
!= NO_IRQ
) {
1149 dev_dbg(fdev
->dev
, "request per-controller IRQ\n");
1150 ret
= request_irq(fdev
->irq
, fsldma_ctrl_irq
, IRQF_SHARED
,
1151 "fsldma-controller", fdev
);
1155 /* no per-controller IRQ, use the per-channel IRQs */
1156 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1157 chan
= fdev
->chan
[i
];
1161 if (chan
->irq
== NO_IRQ
) {
1162 dev_err(fdev
->dev
, "no interrupts property defined for "
1163 "DMA channel %d. Please fix your "
1164 "device tree\n", chan
->id
);
1169 dev_dbg(fdev
->dev
, "request channel %d IRQ\n", chan
->id
);
1170 ret
= request_irq(chan
->irq
, fsldma_chan_irq
, IRQF_SHARED
,
1171 "fsldma-chan", chan
);
1173 dev_err(fdev
->dev
, "unable to request IRQ for DMA "
1174 "channel %d\n", chan
->id
);
1182 for (/* none */; i
>= 0; i
--) {
1183 chan
= fdev
->chan
[i
];
1187 if (chan
->irq
== NO_IRQ
)
1190 free_irq(chan
->irq
, chan
);
1196 /*----------------------------------------------------------------------------*/
1197 /* OpenFirmware Subsystem */
1198 /*----------------------------------------------------------------------------*/
1200 static int __devinit
fsl_dma_chan_probe(struct fsldma_device
*fdev
,
1201 struct device_node
*node
, u32 feature
, const char *compatible
)
1203 struct fsldma_chan
*chan
;
1204 struct resource res
;
1208 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
1210 dev_err(fdev
->dev
, "no free memory for DMA channels!\n");
1215 /* ioremap registers for use */
1216 chan
->regs
= of_iomap(node
, 0);
1218 dev_err(fdev
->dev
, "unable to ioremap registers\n");
1223 err
= of_address_to_resource(node
, 0, &res
);
1225 dev_err(fdev
->dev
, "unable to find 'reg' property\n");
1226 goto out_iounmap_regs
;
1229 chan
->feature
= feature
;
1231 fdev
->feature
= chan
->feature
;
1234 * If the DMA device's feature is different than the feature
1235 * of its channels, report the bug
1237 WARN_ON(fdev
->feature
!= chan
->feature
);
1239 chan
->dev
= fdev
->dev
;
1240 chan
->id
= ((res
.start
- 0x100) & 0xfff) >> 7;
1241 if (chan
->id
>= FSL_DMA_MAX_CHANS_PER_DEVICE
) {
1242 dev_err(fdev
->dev
, "too many channels for device\n");
1244 goto out_iounmap_regs
;
1247 fdev
->chan
[chan
->id
] = chan
;
1248 tasklet_init(&chan
->tasklet
, dma_do_tasklet
, (unsigned long)chan
);
1250 /* Initialize the channel */
1253 /* Clear cdar registers */
1256 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
1257 case FSL_DMA_IP_85XX
:
1258 chan
->toggle_ext_pause
= fsl_chan_toggle_ext_pause
;
1259 case FSL_DMA_IP_83XX
:
1260 chan
->toggle_ext_start
= fsl_chan_toggle_ext_start
;
1261 chan
->set_src_loop_size
= fsl_chan_set_src_loop_size
;
1262 chan
->set_dst_loop_size
= fsl_chan_set_dst_loop_size
;
1263 chan
->set_request_count
= fsl_chan_set_request_count
;
1266 spin_lock_init(&chan
->desc_lock
);
1267 INIT_LIST_HEAD(&chan
->ld_pending
);
1268 INIT_LIST_HEAD(&chan
->ld_running
);
1270 chan
->common
.device
= &fdev
->common
;
1272 /* find the IRQ line, if it exists in the device tree */
1273 chan
->irq
= irq_of_parse_and_map(node
, 0);
1275 /* Add the channel to DMA device channel list */
1276 list_add_tail(&chan
->common
.device_node
, &fdev
->common
.channels
);
1277 fdev
->common
.chancnt
++;
1279 dev_info(fdev
->dev
, "#%d (%s), irq %d\n", chan
->id
, compatible
,
1280 chan
->irq
!= NO_IRQ
? chan
->irq
: fdev
->irq
);
1285 iounmap(chan
->regs
);
1292 static void fsl_dma_chan_remove(struct fsldma_chan
*chan
)
1294 irq_dispose_mapping(chan
->irq
);
1295 list_del(&chan
->common
.device_node
);
1296 iounmap(chan
->regs
);
1300 static int __devinit
fsldma_of_probe(struct of_device
*op
,
1301 const struct of_device_id
*match
)
1303 struct fsldma_device
*fdev
;
1304 struct device_node
*child
;
1307 fdev
= kzalloc(sizeof(*fdev
), GFP_KERNEL
);
1309 dev_err(&op
->dev
, "No enough memory for 'priv'\n");
1314 fdev
->dev
= &op
->dev
;
1315 INIT_LIST_HEAD(&fdev
->common
.channels
);
1317 /* ioremap the registers for use */
1318 fdev
->regs
= of_iomap(op
->dev
.of_node
, 0);
1320 dev_err(&op
->dev
, "unable to ioremap registers\n");
1325 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1326 fdev
->irq
= irq_of_parse_and_map(op
->dev
.of_node
, 0);
1328 dma_cap_set(DMA_MEMCPY
, fdev
->common
.cap_mask
);
1329 dma_cap_set(DMA_INTERRUPT
, fdev
->common
.cap_mask
);
1330 dma_cap_set(DMA_SLAVE
, fdev
->common
.cap_mask
);
1331 fdev
->common
.device_alloc_chan_resources
= fsl_dma_alloc_chan_resources
;
1332 fdev
->common
.device_free_chan_resources
= fsl_dma_free_chan_resources
;
1333 fdev
->common
.device_prep_dma_interrupt
= fsl_dma_prep_interrupt
;
1334 fdev
->common
.device_prep_dma_memcpy
= fsl_dma_prep_memcpy
;
1335 fdev
->common
.device_tx_status
= fsl_tx_status
;
1336 fdev
->common
.device_issue_pending
= fsl_dma_memcpy_issue_pending
;
1337 fdev
->common
.device_prep_slave_sg
= fsl_dma_prep_slave_sg
;
1338 fdev
->common
.device_control
= fsl_dma_device_control
;
1339 fdev
->common
.dev
= &op
->dev
;
1341 dev_set_drvdata(&op
->dev
, fdev
);
1344 * We cannot use of_platform_bus_probe() because there is no
1345 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1348 for_each_child_of_node(op
->dev
.of_node
, child
) {
1349 if (of_device_is_compatible(child
, "fsl,eloplus-dma-channel")) {
1350 fsl_dma_chan_probe(fdev
, child
,
1351 FSL_DMA_IP_85XX
| FSL_DMA_BIG_ENDIAN
,
1352 "fsl,eloplus-dma-channel");
1355 if (of_device_is_compatible(child
, "fsl,elo-dma-channel")) {
1356 fsl_dma_chan_probe(fdev
, child
,
1357 FSL_DMA_IP_83XX
| FSL_DMA_LITTLE_ENDIAN
,
1358 "fsl,elo-dma-channel");
1363 * Hookup the IRQ handler(s)
1365 * If we have a per-controller interrupt, we prefer that to the
1366 * per-channel interrupts to reduce the number of shared interrupt
1367 * handlers on the same IRQ line
1369 err
= fsldma_request_irqs(fdev
);
1371 dev_err(fdev
->dev
, "unable to request IRQs\n");
1375 dma_async_device_register(&fdev
->common
);
1379 irq_dispose_mapping(fdev
->irq
);
1385 static int fsldma_of_remove(struct of_device
*op
)
1387 struct fsldma_device
*fdev
;
1390 fdev
= dev_get_drvdata(&op
->dev
);
1391 dma_async_device_unregister(&fdev
->common
);
1393 fsldma_free_irqs(fdev
);
1395 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1397 fsl_dma_chan_remove(fdev
->chan
[i
]);
1400 iounmap(fdev
->regs
);
1401 dev_set_drvdata(&op
->dev
, NULL
);
1407 static const struct of_device_id fsldma_of_ids
[] = {
1408 { .compatible
= "fsl,eloplus-dma", },
1409 { .compatible
= "fsl,elo-dma", },
1413 static struct of_platform_driver fsldma_of_driver
= {
1415 .name
= "fsl-elo-dma",
1416 .owner
= THIS_MODULE
,
1417 .of_match_table
= fsldma_of_ids
,
1419 .probe
= fsldma_of_probe
,
1420 .remove
= fsldma_of_remove
,
1423 /*----------------------------------------------------------------------------*/
1424 /* Module Init / Exit */
1425 /*----------------------------------------------------------------------------*/
1427 static __init
int fsldma_init(void)
1431 pr_info("Freescale Elo / Elo Plus DMA driver\n");
1433 ret
= of_register_platform_driver(&fsldma_of_driver
);
1435 pr_err("fsldma: failed to register platform driver\n");
1440 static void __exit
fsldma_exit(void)
1442 of_unregister_platform_driver(&fsldma_of_driver
);
1445 subsys_initcall(fsldma_init
);
1446 module_exit(fsldma_exit
);
1448 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1449 MODULE_LICENSE("GPL");