2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
21 /* max queue in one round of service */
22 static const int cfq_quantum
= 4;
23 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max
= 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty
= 2;
28 static const int cfq_slice_sync
= HZ
/ 10;
29 static int cfq_slice_async
= HZ
/ 25;
30 static const int cfq_slice_async_rq
= 2;
31 static int cfq_slice_idle
= HZ
/ 125;
32 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
33 static const int cfq_hist_divisor
= 4;
36 * offset from end of service tree
38 #define CFQ_IDLE_DELAY (HZ / 5)
41 * below this threshold, we consider thinktime immediate
43 #define CFQ_MIN_TT (2)
45 #define CFQ_SLICE_SCALE (5)
46 #define CFQ_HW_QUEUE_MIN (5)
47 #define CFQ_SERVICE_SHIFT 12
49 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
50 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
51 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
54 ((struct cfq_io_context *) (rq)->elevator_private)
55 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
57 static struct kmem_cache
*cfq_pool
;
58 static struct kmem_cache
*cfq_ioc_pool
;
60 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
61 static struct completion
*ioc_gone
;
62 static DEFINE_SPINLOCK(ioc_gone_lock
);
64 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68 #define sample_valid(samples) ((samples) > 80)
69 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
72 * Most of our rbtree usage is for sorting with min extraction, so
73 * if we cache the leftmost node we don't have to walk down the tree
74 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
75 * move this into the elevator for the rq sorting as well.
82 struct rb_node
*active
;
83 unsigned total_weight
;
85 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88 * Per process-grouping structure
93 /* various state flags, see below */
96 struct cfq_data
*cfqd
;
97 /* service_tree member */
98 struct rb_node rb_node
;
99 /* service_tree key */
100 unsigned long rb_key
;
101 /* prio tree member */
102 struct rb_node p_node
;
103 /* prio tree root we belong to, if any */
104 struct rb_root
*p_root
;
105 /* sorted list of pending requests */
106 struct rb_root sort_list
;
107 /* if fifo isn't expired, next request to serve */
108 struct request
*next_rq
;
109 /* requests queued in sort_list */
111 /* currently allocated requests */
113 /* fifo list of requests in sort_list */
114 struct list_head fifo
;
116 /* time when queue got scheduled in to dispatch first request. */
117 unsigned long dispatch_start
;
118 unsigned int allocated_slice
;
119 unsigned int slice_dispatch
;
120 /* time when first request from queue completed and slice started. */
121 unsigned long slice_start
;
122 unsigned long slice_end
;
125 /* pending metadata requests */
127 /* number of requests that are on the dispatch list or inside driver */
130 /* io prio of this group */
131 unsigned short ioprio
, org_ioprio
;
132 unsigned short ioprio_class
, org_ioprio_class
;
137 sector_t last_request_pos
;
139 struct cfq_rb_root
*service_tree
;
140 struct cfq_queue
*new_cfqq
;
141 struct cfq_group
*cfqg
;
142 struct cfq_group
*orig_cfqg
;
143 /* Sectors dispatched in current dispatch round */
144 unsigned long nr_sectors
;
148 * First index in the service_trees.
149 * IDLE is handled separately, so it has negative index
158 * Second index in the service_trees.
162 SYNC_NOIDLE_WORKLOAD
= 1,
166 /* This is per cgroup per device grouping structure */
168 /* group service_tree member */
169 struct rb_node rb_node
;
171 /* group service_tree key */
176 /* number of cfqq currently on this group */
179 /* Per group busy queus average. Useful for workload slice calc. */
180 unsigned int busy_queues_avg
[2];
182 * rr lists of queues with requests, onle rr for each priority class.
183 * Counts are embedded in the cfq_rb_root
185 struct cfq_rb_root service_trees
[2][3];
186 struct cfq_rb_root service_tree_idle
;
188 unsigned long saved_workload_slice
;
189 enum wl_type_t saved_workload
;
190 enum wl_prio_t saved_serving_prio
;
191 struct blkio_group blkg
;
192 #ifdef CONFIG_CFQ_GROUP_IOSCHED
193 struct hlist_node cfqd_node
;
199 * Per block device queue structure
202 struct request_queue
*queue
;
203 /* Root service tree for cfq_groups */
204 struct cfq_rb_root grp_service_tree
;
205 struct cfq_group root_group
;
208 * The priority currently being served
210 enum wl_prio_t serving_prio
;
211 enum wl_type_t serving_type
;
212 unsigned long workload_expires
;
213 struct cfq_group
*serving_group
;
214 bool noidle_tree_requires_idle
;
217 * Each priority tree is sorted by next_request position. These
218 * trees are used when determining if two or more queues are
219 * interleaving requests (see cfq_close_cooperator).
221 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
223 unsigned int busy_queues
;
229 * queue-depth detection
235 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
236 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
239 int hw_tag_est_depth
;
240 unsigned int hw_tag_samples
;
243 * idle window management
245 struct timer_list idle_slice_timer
;
246 struct work_struct unplug_work
;
248 struct cfq_queue
*active_queue
;
249 struct cfq_io_context
*active_cic
;
252 * async queue for each priority case
254 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
255 struct cfq_queue
*async_idle_cfqq
;
257 sector_t last_position
;
260 * tunables, see top of file
262 unsigned int cfq_quantum
;
263 unsigned int cfq_fifo_expire
[2];
264 unsigned int cfq_back_penalty
;
265 unsigned int cfq_back_max
;
266 unsigned int cfq_slice
[2];
267 unsigned int cfq_slice_async_rq
;
268 unsigned int cfq_slice_idle
;
269 unsigned int cfq_latency
;
270 unsigned int cfq_group_isolation
;
272 struct list_head cic_list
;
275 * Fallback dummy cfqq for extreme OOM conditions
277 struct cfq_queue oom_cfqq
;
279 unsigned long last_delayed_sync
;
281 /* List of cfq groups being managed on this device*/
282 struct hlist_head cfqg_list
;
286 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
288 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
295 if (prio
== IDLE_WORKLOAD
)
296 return &cfqg
->service_tree_idle
;
298 return &cfqg
->service_trees
[prio
][type
];
301 enum cfqq_state_flags
{
302 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
303 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
304 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
305 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
306 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
307 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
308 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
309 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
310 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
311 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
312 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
313 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
314 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
317 #define CFQ_CFQQ_FNS(name) \
318 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
320 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
322 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
324 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
326 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
328 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
332 CFQ_CFQQ_FNS(wait_request
);
333 CFQ_CFQQ_FNS(must_dispatch
);
334 CFQ_CFQQ_FNS(must_alloc_slice
);
335 CFQ_CFQQ_FNS(fifo_expire
);
336 CFQ_CFQQ_FNS(idle_window
);
337 CFQ_CFQQ_FNS(prio_changed
);
338 CFQ_CFQQ_FNS(slice_new
);
341 CFQ_CFQQ_FNS(split_coop
);
343 CFQ_CFQQ_FNS(wait_busy
);
346 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
347 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
352 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
357 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
359 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
361 #define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
364 /* Traverses through cfq group service trees */
365 #define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
375 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
377 if (cfq_class_idle(cfqq
))
378 return IDLE_WORKLOAD
;
379 if (cfq_class_rt(cfqq
))
385 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
387 if (!cfq_cfqq_sync(cfqq
))
388 return ASYNC_WORKLOAD
;
389 if (!cfq_cfqq_idle_window(cfqq
))
390 return SYNC_NOIDLE_WORKLOAD
;
391 return SYNC_WORKLOAD
;
394 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
395 struct cfq_data
*cfqd
,
396 struct cfq_group
*cfqg
)
398 if (wl
== IDLE_WORKLOAD
)
399 return cfqg
->service_tree_idle
.count
;
401 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
402 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
403 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
406 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
407 struct cfq_group
*cfqg
)
409 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
410 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
413 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
414 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
415 struct io_context
*, gfp_t
);
416 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
417 struct io_context
*);
419 static inline int rq_in_driver(struct cfq_data
*cfqd
)
421 return cfqd
->rq_in_driver
[0] + cfqd
->rq_in_driver
[1];
424 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
427 return cic
->cfqq
[is_sync
];
430 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
431 struct cfq_queue
*cfqq
, bool is_sync
)
433 cic
->cfqq
[is_sync
] = cfqq
;
437 * We regard a request as SYNC, if it's either a read or has the SYNC bit
438 * set (in which case it could also be direct WRITE).
440 static inline bool cfq_bio_sync(struct bio
*bio
)
442 return bio_data_dir(bio
) == READ
|| bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
446 * scheduler run of queue, if there are requests pending and no one in the
447 * driver that will restart queueing
449 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
451 if (cfqd
->busy_queues
) {
452 cfq_log(cfqd
, "schedule dispatch");
453 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
457 static int cfq_queue_empty(struct request_queue
*q
)
459 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
461 return !cfqd
->rq_queued
;
465 * Scale schedule slice based on io priority. Use the sync time slice only
466 * if a queue is marked sync and has sync io queued. A sync queue with async
467 * io only, should not get full sync slice length.
469 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
472 const int base_slice
= cfqd
->cfq_slice
[sync
];
474 WARN_ON(prio
>= IOPRIO_BE_NR
);
476 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
480 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
482 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
485 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
487 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
489 d
= d
* BLKIO_WEIGHT_DEFAULT
;
490 do_div(d
, cfqg
->weight
);
494 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
496 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
498 min_vdisktime
= vdisktime
;
500 return min_vdisktime
;
503 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
505 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
507 min_vdisktime
= vdisktime
;
509 return min_vdisktime
;
512 static void update_min_vdisktime(struct cfq_rb_root
*st
)
514 u64 vdisktime
= st
->min_vdisktime
;
515 struct cfq_group
*cfqg
;
518 cfqg
= rb_entry_cfqg(st
->active
);
519 vdisktime
= cfqg
->vdisktime
;
523 cfqg
= rb_entry_cfqg(st
->left
);
524 vdisktime
= min_vdisktime(vdisktime
, cfqg
->vdisktime
);
527 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
, vdisktime
);
531 * get averaged number of queues of RT/BE priority.
532 * average is updated, with a formula that gives more weight to higher numbers,
533 * to quickly follows sudden increases and decrease slowly
536 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
537 struct cfq_group
*cfqg
, bool rt
)
539 unsigned min_q
, max_q
;
540 unsigned mult
= cfq_hist_divisor
- 1;
541 unsigned round
= cfq_hist_divisor
/ 2;
542 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
544 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
545 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
546 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
548 return cfqg
->busy_queues_avg
[rt
];
551 static inline unsigned
552 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
554 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
556 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
560 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
562 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
563 if (cfqd
->cfq_latency
) {
565 * interested queues (we consider only the ones with the same
566 * priority class in the cfq group)
568 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
570 unsigned sync_slice
= cfqd
->cfq_slice
[1];
571 unsigned expect_latency
= sync_slice
* iq
;
572 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
574 if (expect_latency
> group_slice
) {
575 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
576 /* scale low_slice according to IO priority
577 * and sync vs async */
579 min(slice
, base_low_slice
* slice
/ sync_slice
);
580 /* the adapted slice value is scaled to fit all iqs
581 * into the target latency */
582 slice
= max(slice
* group_slice
/ expect_latency
,
586 cfqq
->slice_start
= jiffies
;
587 cfqq
->slice_end
= jiffies
+ slice
;
588 cfqq
->allocated_slice
= slice
;
589 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
593 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
594 * isn't valid until the first request from the dispatch is activated
595 * and the slice time set.
597 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
599 if (cfq_cfqq_slice_new(cfqq
))
601 if (time_before(jiffies
, cfqq
->slice_end
))
608 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
609 * We choose the request that is closest to the head right now. Distance
610 * behind the head is penalized and only allowed to a certain extent.
612 static struct request
*
613 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
615 sector_t s1
, s2
, d1
= 0, d2
= 0;
616 unsigned long back_max
;
617 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
618 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
619 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
621 if (rq1
== NULL
|| rq1
== rq2
)
626 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
628 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
630 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
632 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
635 s1
= blk_rq_pos(rq1
);
636 s2
= blk_rq_pos(rq2
);
639 * by definition, 1KiB is 2 sectors
641 back_max
= cfqd
->cfq_back_max
* 2;
644 * Strict one way elevator _except_ in the case where we allow
645 * short backward seeks which are biased as twice the cost of a
646 * similar forward seek.
650 else if (s1
+ back_max
>= last
)
651 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
653 wrap
|= CFQ_RQ1_WRAP
;
657 else if (s2
+ back_max
>= last
)
658 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
660 wrap
|= CFQ_RQ2_WRAP
;
662 /* Found required data */
665 * By doing switch() on the bit mask "wrap" we avoid having to
666 * check two variables for all permutations: --> faster!
669 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
685 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
688 * Since both rqs are wrapped,
689 * start with the one that's further behind head
690 * (--> only *one* back seek required),
691 * since back seek takes more time than forward.
701 * The below is leftmost cache rbtree addon
703 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
705 /* Service tree is empty */
710 root
->left
= rb_first(&root
->rb
);
713 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
718 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
721 root
->left
= rb_first(&root
->rb
);
724 return rb_entry_cfqg(root
->left
);
729 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
735 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
739 rb_erase_init(n
, &root
->rb
);
744 * would be nice to take fifo expire time into account as well
746 static struct request
*
747 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
748 struct request
*last
)
750 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
751 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
752 struct request
*next
= NULL
, *prev
= NULL
;
754 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
757 prev
= rb_entry_rq(rbprev
);
760 next
= rb_entry_rq(rbnext
);
762 rbnext
= rb_first(&cfqq
->sort_list
);
763 if (rbnext
&& rbnext
!= &last
->rb_node
)
764 next
= rb_entry_rq(rbnext
);
767 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
770 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
771 struct cfq_queue
*cfqq
)
774 * just an approximation, should be ok.
776 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
777 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
781 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
783 return cfqg
->vdisktime
- st
->min_vdisktime
;
787 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
789 struct rb_node
**node
= &st
->rb
.rb_node
;
790 struct rb_node
*parent
= NULL
;
791 struct cfq_group
*__cfqg
;
792 s64 key
= cfqg_key(st
, cfqg
);
795 while (*node
!= NULL
) {
797 __cfqg
= rb_entry_cfqg(parent
);
799 if (key
< cfqg_key(st
, __cfqg
))
800 node
= &parent
->rb_left
;
802 node
= &parent
->rb_right
;
808 st
->left
= &cfqg
->rb_node
;
810 rb_link_node(&cfqg
->rb_node
, parent
, node
);
811 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
815 cfq_group_service_tree_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
817 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
818 struct cfq_group
*__cfqg
;
826 * Currently put the group at the end. Later implement something
827 * so that groups get lesser vtime based on their weights, so that
828 * if group does not loose all if it was not continously backlogged.
830 n
= rb_last(&st
->rb
);
832 __cfqg
= rb_entry_cfqg(n
);
833 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
835 cfqg
->vdisktime
= st
->min_vdisktime
;
837 __cfq_group_service_tree_add(st
, cfqg
);
839 st
->total_weight
+= cfqg
->weight
;
843 cfq_group_service_tree_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
845 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
847 if (st
->active
== &cfqg
->rb_node
)
850 BUG_ON(cfqg
->nr_cfqq
< 1);
853 /* If there are other cfq queues under this group, don't delete it */
857 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
859 st
->total_weight
-= cfqg
->weight
;
860 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
861 cfq_rb_erase(&cfqg
->rb_node
, st
);
862 cfqg
->saved_workload_slice
= 0;
863 blkiocg_update_blkio_group_dequeue_stats(&cfqg
->blkg
, 1);
866 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
)
868 unsigned int slice_used
;
871 * Queue got expired before even a single request completed or
872 * got expired immediately after first request completion.
874 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
876 * Also charge the seek time incurred to the group, otherwise
877 * if there are mutiple queues in the group, each can dispatch
878 * a single request on seeky media and cause lots of seek time
879 * and group will never know it.
881 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
884 slice_used
= jiffies
- cfqq
->slice_start
;
885 if (slice_used
> cfqq
->allocated_slice
)
886 slice_used
= cfqq
->allocated_slice
;
889 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u sect=%lu", slice_used
,
894 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
895 struct cfq_queue
*cfqq
)
897 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
898 unsigned int used_sl
, charge_sl
;
899 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
900 - cfqg
->service_tree_idle
.count
;
903 used_sl
= charge_sl
= cfq_cfqq_slice_usage(cfqq
);
905 if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
906 charge_sl
= cfqq
->allocated_slice
;
908 /* Can't update vdisktime while group is on service tree */
909 cfq_rb_erase(&cfqg
->rb_node
, st
);
910 cfqg
->vdisktime
+= cfq_scale_slice(charge_sl
, cfqg
);
911 __cfq_group_service_tree_add(st
, cfqg
);
913 /* This group is being expired. Save the context */
914 if (time_after(cfqd
->workload_expires
, jiffies
)) {
915 cfqg
->saved_workload_slice
= cfqd
->workload_expires
917 cfqg
->saved_workload
= cfqd
->serving_type
;
918 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
920 cfqg
->saved_workload_slice
= 0;
922 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
924 blkiocg_update_blkio_group_stats(&cfqg
->blkg
, used_sl
,
928 #ifdef CONFIG_CFQ_GROUP_IOSCHED
929 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
932 return container_of(blkg
, struct cfq_group
, blkg
);
937 cfq_update_blkio_group_weight(struct blkio_group
*blkg
, unsigned int weight
)
939 cfqg_of_blkg(blkg
)->weight
= weight
;
942 static struct cfq_group
*
943 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
945 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
946 struct cfq_group
*cfqg
= NULL
;
949 struct cfq_rb_root
*st
;
950 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
951 unsigned int major
, minor
;
953 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
957 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
961 cfqg
->weight
= blkcg
->weight
;
962 for_each_cfqg_st(cfqg
, i
, j
, st
)
964 RB_CLEAR_NODE(&cfqg
->rb_node
);
967 * Take the initial reference that will be released on destroy
968 * This can be thought of a joint reference by cgroup and
969 * elevator which will be dropped by either elevator exit
970 * or cgroup deletion path depending on who is exiting first.
972 atomic_set(&cfqg
->ref
, 1);
974 /* Add group onto cgroup list */
975 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
976 blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
977 MKDEV(major
, minor
));
979 /* Add group on cfqd list */
980 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
987 * Search for the cfq group current task belongs to. If create = 1, then also
988 * create the cfq group if it does not exist. request_queue lock must be held.
990 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
992 struct cgroup
*cgroup
;
993 struct cfq_group
*cfqg
= NULL
;
996 cgroup
= task_cgroup(current
, blkio_subsys_id
);
997 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
999 cfqg
= &cfqd
->root_group
;
1004 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1006 /* Currently, all async queues are mapped to root group */
1007 if (!cfq_cfqq_sync(cfqq
))
1008 cfqg
= &cfqq
->cfqd
->root_group
;
1011 /* cfqq reference on cfqg */
1012 atomic_inc(&cfqq
->cfqg
->ref
);
1015 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1017 struct cfq_rb_root
*st
;
1020 BUG_ON(atomic_read(&cfqg
->ref
) <= 0);
1021 if (!atomic_dec_and_test(&cfqg
->ref
))
1023 for_each_cfqg_st(cfqg
, i
, j
, st
)
1024 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
) || st
->active
!= NULL
);
1028 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1030 /* Something wrong if we are trying to remove same group twice */
1031 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1033 hlist_del_init(&cfqg
->cfqd_node
);
1036 * Put the reference taken at the time of creation so that when all
1037 * queues are gone, group can be destroyed.
1042 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1044 struct hlist_node
*pos
, *n
;
1045 struct cfq_group
*cfqg
;
1047 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1049 * If cgroup removal path got to blk_group first and removed
1050 * it from cgroup list, then it will take care of destroying
1053 if (!blkiocg_del_blkio_group(&cfqg
->blkg
))
1054 cfq_destroy_cfqg(cfqd
, cfqg
);
1059 * Blk cgroup controller notification saying that blkio_group object is being
1060 * delinked as associated cgroup object is going away. That also means that
1061 * no new IO will come in this group. So get rid of this group as soon as
1062 * any pending IO in the group is finished.
1064 * This function is called under rcu_read_lock(). key is the rcu protected
1065 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1068 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1069 * it should not be NULL as even if elevator was exiting, cgroup deltion
1070 * path got to it first.
1072 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1074 unsigned long flags
;
1075 struct cfq_data
*cfqd
= key
;
1077 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1078 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1079 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1082 #else /* GROUP_IOSCHED */
1083 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1085 return &cfqd
->root_group
;
1088 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1092 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1093 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1095 #endif /* GROUP_IOSCHED */
1098 * The cfqd->service_trees holds all pending cfq_queue's that have
1099 * requests waiting to be processed. It is sorted in the order that
1100 * we will service the queues.
1102 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1105 struct rb_node
**p
, *parent
;
1106 struct cfq_queue
*__cfqq
;
1107 unsigned long rb_key
;
1108 struct cfq_rb_root
*service_tree
;
1111 int group_changed
= 0;
1113 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1114 if (!cfqd
->cfq_group_isolation
1115 && cfqq_type(cfqq
) == SYNC_NOIDLE_WORKLOAD
1116 && cfqq
->cfqg
&& cfqq
->cfqg
!= &cfqd
->root_group
) {
1117 /* Move this cfq to root group */
1118 cfq_log_cfqq(cfqd
, cfqq
, "moving to root group");
1119 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1120 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1121 cfqq
->orig_cfqg
= cfqq
->cfqg
;
1122 cfqq
->cfqg
= &cfqd
->root_group
;
1123 atomic_inc(&cfqd
->root_group
.ref
);
1125 } else if (!cfqd
->cfq_group_isolation
1126 && cfqq_type(cfqq
) == SYNC_WORKLOAD
&& cfqq
->orig_cfqg
) {
1127 /* cfqq is sequential now needs to go to its original group */
1128 BUG_ON(cfqq
->cfqg
!= &cfqd
->root_group
);
1129 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1130 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1131 cfq_put_cfqg(cfqq
->cfqg
);
1132 cfqq
->cfqg
= cfqq
->orig_cfqg
;
1133 cfqq
->orig_cfqg
= NULL
;
1135 cfq_log_cfqq(cfqd
, cfqq
, "moved to origin group");
1139 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1141 if (cfq_class_idle(cfqq
)) {
1142 rb_key
= CFQ_IDLE_DELAY
;
1143 parent
= rb_last(&service_tree
->rb
);
1144 if (parent
&& parent
!= &cfqq
->rb_node
) {
1145 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1146 rb_key
+= __cfqq
->rb_key
;
1149 } else if (!add_front
) {
1151 * Get our rb key offset. Subtract any residual slice
1152 * value carried from last service. A negative resid
1153 * count indicates slice overrun, and this should position
1154 * the next service time further away in the tree.
1156 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1157 rb_key
-= cfqq
->slice_resid
;
1158 cfqq
->slice_resid
= 0;
1161 __cfqq
= cfq_rb_first(service_tree
);
1162 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1165 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1168 * same position, nothing more to do
1170 if (rb_key
== cfqq
->rb_key
&&
1171 cfqq
->service_tree
== service_tree
)
1174 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1175 cfqq
->service_tree
= NULL
;
1180 cfqq
->service_tree
= service_tree
;
1181 p
= &service_tree
->rb
.rb_node
;
1186 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1189 * sort by key, that represents service time.
1191 if (time_before(rb_key
, __cfqq
->rb_key
))
1194 n
= &(*p
)->rb_right
;
1202 service_tree
->left
= &cfqq
->rb_node
;
1204 cfqq
->rb_key
= rb_key
;
1205 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1206 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1207 service_tree
->count
++;
1208 if ((add_front
|| !new_cfqq
) && !group_changed
)
1210 cfq_group_service_tree_add(cfqd
, cfqq
->cfqg
);
1213 static struct cfq_queue
*
1214 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1215 sector_t sector
, struct rb_node
**ret_parent
,
1216 struct rb_node
***rb_link
)
1218 struct rb_node
**p
, *parent
;
1219 struct cfq_queue
*cfqq
= NULL
;
1227 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1230 * Sort strictly based on sector. Smallest to the left,
1231 * largest to the right.
1233 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1234 n
= &(*p
)->rb_right
;
1235 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1243 *ret_parent
= parent
;
1249 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1251 struct rb_node
**p
, *parent
;
1252 struct cfq_queue
*__cfqq
;
1255 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1256 cfqq
->p_root
= NULL
;
1259 if (cfq_class_idle(cfqq
))
1264 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1265 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1266 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1268 rb_link_node(&cfqq
->p_node
, parent
, p
);
1269 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1271 cfqq
->p_root
= NULL
;
1275 * Update cfqq's position in the service tree.
1277 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1280 * Resorting requires the cfqq to be on the RR list already.
1282 if (cfq_cfqq_on_rr(cfqq
)) {
1283 cfq_service_tree_add(cfqd
, cfqq
, 0);
1284 cfq_prio_tree_add(cfqd
, cfqq
);
1289 * add to busy list of queues for service, trying to be fair in ordering
1290 * the pending list according to last request service
1292 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1294 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1295 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1296 cfq_mark_cfqq_on_rr(cfqq
);
1297 cfqd
->busy_queues
++;
1299 cfq_resort_rr_list(cfqd
, cfqq
);
1303 * Called when the cfqq no longer has requests pending, remove it from
1306 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1308 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1309 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1310 cfq_clear_cfqq_on_rr(cfqq
);
1312 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1313 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1314 cfqq
->service_tree
= NULL
;
1317 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1318 cfqq
->p_root
= NULL
;
1321 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1322 BUG_ON(!cfqd
->busy_queues
);
1323 cfqd
->busy_queues
--;
1327 * rb tree support functions
1329 static void cfq_del_rq_rb(struct request
*rq
)
1331 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1332 const int sync
= rq_is_sync(rq
);
1334 BUG_ON(!cfqq
->queued
[sync
]);
1335 cfqq
->queued
[sync
]--;
1337 elv_rb_del(&cfqq
->sort_list
, rq
);
1339 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1341 * Queue will be deleted from service tree when we actually
1342 * expire it later. Right now just remove it from prio tree
1346 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1347 cfqq
->p_root
= NULL
;
1352 static void cfq_add_rq_rb(struct request
*rq
)
1354 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1355 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1356 struct request
*__alias
, *prev
;
1358 cfqq
->queued
[rq_is_sync(rq
)]++;
1361 * looks a little odd, but the first insert might return an alias.
1362 * if that happens, put the alias on the dispatch list
1364 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1365 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1367 if (!cfq_cfqq_on_rr(cfqq
))
1368 cfq_add_cfqq_rr(cfqd
, cfqq
);
1371 * check if this request is a better next-serve candidate
1373 prev
= cfqq
->next_rq
;
1374 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1377 * adjust priority tree position, if ->next_rq changes
1379 if (prev
!= cfqq
->next_rq
)
1380 cfq_prio_tree_add(cfqd
, cfqq
);
1382 BUG_ON(!cfqq
->next_rq
);
1385 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1387 elv_rb_del(&cfqq
->sort_list
, rq
);
1388 cfqq
->queued
[rq_is_sync(rq
)]--;
1392 static struct request
*
1393 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1395 struct task_struct
*tsk
= current
;
1396 struct cfq_io_context
*cic
;
1397 struct cfq_queue
*cfqq
;
1399 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1403 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1405 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1407 return elv_rb_find(&cfqq
->sort_list
, sector
);
1413 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1415 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1417 cfqd
->rq_in_driver
[rq_is_sync(rq
)]++;
1418 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1419 rq_in_driver(cfqd
));
1421 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1424 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1426 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1427 const int sync
= rq_is_sync(rq
);
1429 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
1430 cfqd
->rq_in_driver
[sync
]--;
1431 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1432 rq_in_driver(cfqd
));
1435 static void cfq_remove_request(struct request
*rq
)
1437 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1439 if (cfqq
->next_rq
== rq
)
1440 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1442 list_del_init(&rq
->queuelist
);
1445 cfqq
->cfqd
->rq_queued
--;
1446 if (rq_is_meta(rq
)) {
1447 WARN_ON(!cfqq
->meta_pending
);
1448 cfqq
->meta_pending
--;
1452 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1455 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1456 struct request
*__rq
;
1458 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1459 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1461 return ELEVATOR_FRONT_MERGE
;
1464 return ELEVATOR_NO_MERGE
;
1467 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1470 if (type
== ELEVATOR_FRONT_MERGE
) {
1471 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1473 cfq_reposition_rq_rb(cfqq
, req
);
1478 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1479 struct request
*next
)
1481 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1483 * reposition in fifo if next is older than rq
1485 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1486 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1487 list_move(&rq
->queuelist
, &next
->queuelist
);
1488 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1491 if (cfqq
->next_rq
== next
)
1493 cfq_remove_request(next
);
1496 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1499 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1500 struct cfq_io_context
*cic
;
1501 struct cfq_queue
*cfqq
;
1504 * Disallow merge of a sync bio into an async request.
1506 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1510 * Lookup the cfqq that this bio will be queued with. Allow
1511 * merge only if rq is queued there.
1513 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1517 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1518 return cfqq
== RQ_CFQQ(rq
);
1521 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1522 struct cfq_queue
*cfqq
)
1525 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
1526 cfqq
->slice_start
= 0;
1527 cfqq
->dispatch_start
= jiffies
;
1528 cfqq
->allocated_slice
= 0;
1529 cfqq
->slice_end
= 0;
1530 cfqq
->slice_dispatch
= 0;
1531 cfqq
->nr_sectors
= 0;
1533 cfq_clear_cfqq_wait_request(cfqq
);
1534 cfq_clear_cfqq_must_dispatch(cfqq
);
1535 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1536 cfq_clear_cfqq_fifo_expire(cfqq
);
1537 cfq_mark_cfqq_slice_new(cfqq
);
1539 del_timer(&cfqd
->idle_slice_timer
);
1542 cfqd
->active_queue
= cfqq
;
1546 * current cfqq expired its slice (or was too idle), select new one
1549 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1552 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1554 if (cfq_cfqq_wait_request(cfqq
))
1555 del_timer(&cfqd
->idle_slice_timer
);
1557 cfq_clear_cfqq_wait_request(cfqq
);
1558 cfq_clear_cfqq_wait_busy(cfqq
);
1561 * If this cfqq is shared between multiple processes, check to
1562 * make sure that those processes are still issuing I/Os within
1563 * the mean seek distance. If not, it may be time to break the
1564 * queues apart again.
1566 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1567 cfq_mark_cfqq_split_coop(cfqq
);
1570 * store what was left of this slice, if the queue idled/timed out
1572 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
1573 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1574 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1577 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1579 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1580 cfq_del_cfqq_rr(cfqd
, cfqq
);
1582 cfq_resort_rr_list(cfqd
, cfqq
);
1584 if (cfqq
== cfqd
->active_queue
)
1585 cfqd
->active_queue
= NULL
;
1587 if (&cfqq
->cfqg
->rb_node
== cfqd
->grp_service_tree
.active
)
1588 cfqd
->grp_service_tree
.active
= NULL
;
1590 if (cfqd
->active_cic
) {
1591 put_io_context(cfqd
->active_cic
->ioc
);
1592 cfqd
->active_cic
= NULL
;
1596 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1598 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1601 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1605 * Get next queue for service. Unless we have a queue preemption,
1606 * we'll simply select the first cfqq in the service tree.
1608 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1610 struct cfq_rb_root
*service_tree
=
1611 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1612 cfqd
->serving_type
);
1614 if (!cfqd
->rq_queued
)
1617 /* There is nothing to dispatch */
1620 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1622 return cfq_rb_first(service_tree
);
1625 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1627 struct cfq_group
*cfqg
;
1628 struct cfq_queue
*cfqq
;
1630 struct cfq_rb_root
*st
;
1632 if (!cfqd
->rq_queued
)
1635 cfqg
= cfq_get_next_cfqg(cfqd
);
1639 for_each_cfqg_st(cfqg
, i
, j
, st
)
1640 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1646 * Get and set a new active queue for service.
1648 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1649 struct cfq_queue
*cfqq
)
1652 cfqq
= cfq_get_next_queue(cfqd
);
1654 __cfq_set_active_queue(cfqd
, cfqq
);
1658 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1661 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1662 return blk_rq_pos(rq
) - cfqd
->last_position
;
1664 return cfqd
->last_position
- blk_rq_pos(rq
);
1667 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1668 struct request
*rq
, bool for_preempt
)
1670 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_SEEK_THR
;
1673 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1674 struct cfq_queue
*cur_cfqq
)
1676 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1677 struct rb_node
*parent
, *node
;
1678 struct cfq_queue
*__cfqq
;
1679 sector_t sector
= cfqd
->last_position
;
1681 if (RB_EMPTY_ROOT(root
))
1685 * First, if we find a request starting at the end of the last
1686 * request, choose it.
1688 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1693 * If the exact sector wasn't found, the parent of the NULL leaf
1694 * will contain the closest sector.
1696 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1697 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
, false))
1700 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1701 node
= rb_next(&__cfqq
->p_node
);
1703 node
= rb_prev(&__cfqq
->p_node
);
1707 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1708 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
, false))
1716 * cur_cfqq - passed in so that we don't decide that the current queue is
1717 * closely cooperating with itself.
1719 * So, basically we're assuming that that cur_cfqq has dispatched at least
1720 * one request, and that cfqd->last_position reflects a position on the disk
1721 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1724 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1725 struct cfq_queue
*cur_cfqq
)
1727 struct cfq_queue
*cfqq
;
1729 if (!cfq_cfqq_sync(cur_cfqq
))
1731 if (CFQQ_SEEKY(cur_cfqq
))
1735 * Don't search priority tree if it's the only queue in the group.
1737 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1741 * We should notice if some of the queues are cooperating, eg
1742 * working closely on the same area of the disk. In that case,
1743 * we can group them together and don't waste time idling.
1745 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1749 /* If new queue belongs to different cfq_group, don't choose it */
1750 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1754 * It only makes sense to merge sync queues.
1756 if (!cfq_cfqq_sync(cfqq
))
1758 if (CFQQ_SEEKY(cfqq
))
1762 * Do not merge queues of different priority classes
1764 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1771 * Determine whether we should enforce idle window for this queue.
1774 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1776 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1777 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1779 BUG_ON(!service_tree
);
1780 BUG_ON(!service_tree
->count
);
1782 /* We never do for idle class queues. */
1783 if (prio
== IDLE_WORKLOAD
)
1786 /* We do for queues that were marked with idle window flag. */
1787 if (cfq_cfqq_idle_window(cfqq
) &&
1788 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1792 * Otherwise, we do only if they are the last ones
1793 * in their service tree.
1795 return service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
);
1798 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1800 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1801 struct cfq_io_context
*cic
;
1805 * SSD device without seek penalty, disable idling. But only do so
1806 * for devices that support queuing, otherwise we still have a problem
1807 * with sync vs async workloads.
1809 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1812 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1813 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1816 * idle is disabled, either manually or by past process history
1818 if (!cfqd
->cfq_slice_idle
|| !cfq_should_idle(cfqd
, cfqq
))
1822 * still active requests from this queue, don't idle
1824 if (cfqq
->dispatched
)
1828 * task has exited, don't wait
1830 cic
= cfqd
->active_cic
;
1831 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1835 * If our average think time is larger than the remaining time
1836 * slice, then don't idle. This avoids overrunning the allotted
1839 if (sample_valid(cic
->ttime_samples
) &&
1840 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
1843 cfq_mark_cfqq_wait_request(cfqq
);
1845 sl
= cfqd
->cfq_slice_idle
;
1847 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1848 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1852 * Move request from internal lists to the request queue dispatch list.
1854 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1856 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1857 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1859 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1861 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1862 cfq_remove_request(rq
);
1864 elv_dispatch_sort(q
, rq
);
1866 if (cfq_cfqq_sync(cfqq
))
1867 cfqd
->sync_flight
++;
1868 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
1872 * return expired entry, or NULL to just start from scratch in rbtree
1874 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1876 struct request
*rq
= NULL
;
1878 if (cfq_cfqq_fifo_expire(cfqq
))
1881 cfq_mark_cfqq_fifo_expire(cfqq
);
1883 if (list_empty(&cfqq
->fifo
))
1886 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1887 if (time_before(jiffies
, rq_fifo_time(rq
)))
1890 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
1895 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1897 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1899 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1901 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1905 * Must be called with the queue_lock held.
1907 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
1909 int process_refs
, io_refs
;
1911 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
1912 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
1913 BUG_ON(process_refs
< 0);
1914 return process_refs
;
1917 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
1919 int process_refs
, new_process_refs
;
1920 struct cfq_queue
*__cfqq
;
1922 /* Avoid a circular list and skip interim queue merges */
1923 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
1929 process_refs
= cfqq_process_refs(cfqq
);
1931 * If the process for the cfqq has gone away, there is no
1932 * sense in merging the queues.
1934 if (process_refs
== 0)
1938 * Merge in the direction of the lesser amount of work.
1940 new_process_refs
= cfqq_process_refs(new_cfqq
);
1941 if (new_process_refs
>= process_refs
) {
1942 cfqq
->new_cfqq
= new_cfqq
;
1943 atomic_add(process_refs
, &new_cfqq
->ref
);
1945 new_cfqq
->new_cfqq
= cfqq
;
1946 atomic_add(new_process_refs
, &cfqq
->ref
);
1950 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
1951 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
1953 struct cfq_queue
*queue
;
1955 bool key_valid
= false;
1956 unsigned long lowest_key
= 0;
1957 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
1959 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
1960 /* select the one with lowest rb_key */
1961 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
1963 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
1964 lowest_key
= queue
->rb_key
;
1973 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1977 struct cfq_rb_root
*st
;
1978 unsigned group_slice
;
1981 cfqd
->serving_prio
= IDLE_WORKLOAD
;
1982 cfqd
->workload_expires
= jiffies
+ 1;
1986 /* Choose next priority. RT > BE > IDLE */
1987 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
1988 cfqd
->serving_prio
= RT_WORKLOAD
;
1989 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
1990 cfqd
->serving_prio
= BE_WORKLOAD
;
1992 cfqd
->serving_prio
= IDLE_WORKLOAD
;
1993 cfqd
->workload_expires
= jiffies
+ 1;
1998 * For RT and BE, we have to choose also the type
1999 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2002 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2006 * check workload expiration, and that we still have other queues ready
2008 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2011 /* otherwise select new workload type */
2012 cfqd
->serving_type
=
2013 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2014 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2018 * the workload slice is computed as a fraction of target latency
2019 * proportional to the number of queues in that workload, over
2020 * all the queues in the same priority class
2022 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2024 slice
= group_slice
* count
/
2025 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2026 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2028 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2032 * Async queues are currently system wide. Just taking
2033 * proportion of queues with-in same group will lead to higher
2034 * async ratio system wide as generally root group is going
2035 * to have higher weight. A more accurate thing would be to
2036 * calculate system wide asnc/sync ratio.
2038 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2039 tmp
= tmp
/cfqd
->busy_queues
;
2040 slice
= min_t(unsigned, slice
, tmp
);
2042 /* async workload slice is scaled down according to
2043 * the sync/async slice ratio. */
2044 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2046 /* sync workload slice is at least 2 * cfq_slice_idle */
2047 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2049 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2050 cfqd
->workload_expires
= jiffies
+ slice
;
2051 cfqd
->noidle_tree_requires_idle
= false;
2054 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2056 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2057 struct cfq_group
*cfqg
;
2059 if (RB_EMPTY_ROOT(&st
->rb
))
2061 cfqg
= cfq_rb_first_group(st
);
2062 st
->active
= &cfqg
->rb_node
;
2063 update_min_vdisktime(st
);
2067 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2069 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2071 cfqd
->serving_group
= cfqg
;
2073 /* Restore the workload type data */
2074 if (cfqg
->saved_workload_slice
) {
2075 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2076 cfqd
->serving_type
= cfqg
->saved_workload
;
2077 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2079 cfqd
->workload_expires
= jiffies
- 1;
2081 choose_service_tree(cfqd
, cfqg
);
2085 * Select a queue for service. If we have a current active queue,
2086 * check whether to continue servicing it, or retrieve and set a new one.
2088 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2090 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2092 cfqq
= cfqd
->active_queue
;
2096 if (!cfqd
->rq_queued
)
2100 * We were waiting for group to get backlogged. Expire the queue
2102 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2106 * The active queue has run out of time, expire it and select new.
2108 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2110 * If slice had not expired at the completion of last request
2111 * we might not have turned on wait_busy flag. Don't expire
2112 * the queue yet. Allow the group to get backlogged.
2114 * The very fact that we have used the slice, that means we
2115 * have been idling all along on this queue and it should be
2116 * ok to wait for this request to complete.
2118 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2119 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2127 * The active queue has requests and isn't expired, allow it to
2130 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2134 * If another queue has a request waiting within our mean seek
2135 * distance, let it run. The expire code will check for close
2136 * cooperators and put the close queue at the front of the service
2137 * tree. If possible, merge the expiring queue with the new cfqq.
2139 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2141 if (!cfqq
->new_cfqq
)
2142 cfq_setup_merge(cfqq
, new_cfqq
);
2147 * No requests pending. If the active queue still has requests in
2148 * flight or is idling for a new request, allow either of these
2149 * conditions to happen (or time out) before selecting a new queue.
2151 if (timer_pending(&cfqd
->idle_slice_timer
) ||
2152 (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
))) {
2158 cfq_slice_expired(cfqd
, 0);
2161 * Current queue expired. Check if we have to switch to a new
2165 cfq_choose_cfqg(cfqd
);
2167 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2172 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2176 while (cfqq
->next_rq
) {
2177 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2181 BUG_ON(!list_empty(&cfqq
->fifo
));
2183 /* By default cfqq is not expired if it is empty. Do it explicitly */
2184 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2189 * Drain our current requests. Used for barriers and when switching
2190 * io schedulers on-the-fly.
2192 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2194 struct cfq_queue
*cfqq
;
2197 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
)
2198 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2200 cfq_slice_expired(cfqd
, 0);
2201 BUG_ON(cfqd
->busy_queues
);
2203 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2207 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2209 unsigned int max_dispatch
;
2212 * Drain async requests before we start sync IO
2214 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_driver
[BLK_RW_ASYNC
])
2218 * If this is an async queue and we have sync IO in flight, let it wait
2220 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
2223 max_dispatch
= cfqd
->cfq_quantum
;
2224 if (cfq_class_idle(cfqq
))
2228 * Does this cfqq already have too much IO in flight?
2230 if (cfqq
->dispatched
>= max_dispatch
) {
2232 * idle queue must always only have a single IO in flight
2234 if (cfq_class_idle(cfqq
))
2238 * We have other queues, don't allow more IO from this one
2240 if (cfqd
->busy_queues
> 1)
2244 * Sole queue user, no limit
2250 * Async queues must wait a bit before being allowed dispatch.
2251 * We also ramp up the dispatch depth gradually for async IO,
2252 * based on the last sync IO we serviced
2254 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2255 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2258 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2259 if (!depth
&& !cfqq
->dispatched
)
2261 if (depth
< max_dispatch
)
2262 max_dispatch
= depth
;
2266 * If we're below the current max, allow a dispatch
2268 return cfqq
->dispatched
< max_dispatch
;
2272 * Dispatch a request from cfqq, moving them to the request queue
2275 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2279 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2281 if (!cfq_may_dispatch(cfqd
, cfqq
))
2285 * follow expired path, else get first next available
2287 rq
= cfq_check_fifo(cfqq
);
2292 * insert request into driver dispatch list
2294 cfq_dispatch_insert(cfqd
->queue
, rq
);
2296 if (!cfqd
->active_cic
) {
2297 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2299 atomic_long_inc(&cic
->ioc
->refcount
);
2300 cfqd
->active_cic
= cic
;
2307 * Find the cfqq that we need to service and move a request from that to the
2310 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2312 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2313 struct cfq_queue
*cfqq
;
2315 if (!cfqd
->busy_queues
)
2318 if (unlikely(force
))
2319 return cfq_forced_dispatch(cfqd
);
2321 cfqq
= cfq_select_queue(cfqd
);
2326 * Dispatch a request from this cfqq, if it is allowed
2328 if (!cfq_dispatch_request(cfqd
, cfqq
))
2331 cfqq
->slice_dispatch
++;
2332 cfq_clear_cfqq_must_dispatch(cfqq
);
2335 * expire an async queue immediately if it has used up its slice. idle
2336 * queue always expire after 1 dispatch round.
2338 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2339 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2340 cfq_class_idle(cfqq
))) {
2341 cfqq
->slice_end
= jiffies
+ 1;
2342 cfq_slice_expired(cfqd
, 0);
2345 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2350 * task holds one reference to the queue, dropped when task exits. each rq
2351 * in-flight on this queue also holds a reference, dropped when rq is freed.
2353 * Each cfq queue took a reference on the parent group. Drop it now.
2354 * queue lock must be held here.
2356 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2358 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2359 struct cfq_group
*cfqg
, *orig_cfqg
;
2361 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
2363 if (!atomic_dec_and_test(&cfqq
->ref
))
2366 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2367 BUG_ON(rb_first(&cfqq
->sort_list
));
2368 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2370 orig_cfqg
= cfqq
->orig_cfqg
;
2372 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2373 __cfq_slice_expired(cfqd
, cfqq
, 0);
2374 cfq_schedule_dispatch(cfqd
);
2377 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2378 kmem_cache_free(cfq_pool
, cfqq
);
2381 cfq_put_cfqg(orig_cfqg
);
2385 * Must always be called with the rcu_read_lock() held
2388 __call_for_each_cic(struct io_context
*ioc
,
2389 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2391 struct cfq_io_context
*cic
;
2392 struct hlist_node
*n
;
2394 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2399 * Call func for each cic attached to this ioc.
2402 call_for_each_cic(struct io_context
*ioc
,
2403 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2406 __call_for_each_cic(ioc
, func
);
2410 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2412 struct cfq_io_context
*cic
;
2414 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2416 kmem_cache_free(cfq_ioc_pool
, cic
);
2417 elv_ioc_count_dec(cfq_ioc_count
);
2421 * CFQ scheduler is exiting, grab exit lock and check
2422 * the pending io context count. If it hits zero,
2423 * complete ioc_gone and set it back to NULL
2425 spin_lock(&ioc_gone_lock
);
2426 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2430 spin_unlock(&ioc_gone_lock
);
2434 static void cfq_cic_free(struct cfq_io_context
*cic
)
2436 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2439 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2441 unsigned long flags
;
2443 BUG_ON(!cic
->dead_key
);
2445 spin_lock_irqsave(&ioc
->lock
, flags
);
2446 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
2447 hlist_del_rcu(&cic
->cic_list
);
2448 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2454 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2455 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2456 * and ->trim() which is called with the task lock held
2458 static void cfq_free_io_context(struct io_context
*ioc
)
2461 * ioc->refcount is zero here, or we are called from elv_unregister(),
2462 * so no more cic's are allowed to be linked into this ioc. So it
2463 * should be ok to iterate over the known list, we will see all cic's
2464 * since no new ones are added.
2466 __call_for_each_cic(ioc
, cic_free_func
);
2469 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2471 struct cfq_queue
*__cfqq
, *next
;
2473 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2474 __cfq_slice_expired(cfqd
, cfqq
, 0);
2475 cfq_schedule_dispatch(cfqd
);
2479 * If this queue was scheduled to merge with another queue, be
2480 * sure to drop the reference taken on that queue (and others in
2481 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2483 __cfqq
= cfqq
->new_cfqq
;
2485 if (__cfqq
== cfqq
) {
2486 WARN(1, "cfqq->new_cfqq loop detected\n");
2489 next
= __cfqq
->new_cfqq
;
2490 cfq_put_queue(__cfqq
);
2494 cfq_put_queue(cfqq
);
2497 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2498 struct cfq_io_context
*cic
)
2500 struct io_context
*ioc
= cic
->ioc
;
2502 list_del_init(&cic
->queue_list
);
2505 * Make sure key == NULL is seen for dead queues
2508 cic
->dead_key
= (unsigned long) cic
->key
;
2511 if (ioc
->ioc_data
== cic
)
2512 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2514 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2515 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2516 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2519 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2520 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2521 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2525 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2526 struct cfq_io_context
*cic
)
2528 struct cfq_data
*cfqd
= cic
->key
;
2531 struct request_queue
*q
= cfqd
->queue
;
2532 unsigned long flags
;
2534 spin_lock_irqsave(q
->queue_lock
, flags
);
2537 * Ensure we get a fresh copy of the ->key to prevent
2538 * race between exiting task and queue
2540 smp_read_barrier_depends();
2542 __cfq_exit_single_io_context(cfqd
, cic
);
2544 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2549 * The process that ioc belongs to has exited, we need to clean up
2550 * and put the internal structures we have that belongs to that process.
2552 static void cfq_exit_io_context(struct io_context
*ioc
)
2554 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2557 static struct cfq_io_context
*
2558 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2560 struct cfq_io_context
*cic
;
2562 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2565 cic
->last_end_request
= jiffies
;
2566 INIT_LIST_HEAD(&cic
->queue_list
);
2567 INIT_HLIST_NODE(&cic
->cic_list
);
2568 cic
->dtor
= cfq_free_io_context
;
2569 cic
->exit
= cfq_exit_io_context
;
2570 elv_ioc_count_inc(cfq_ioc_count
);
2576 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2578 struct task_struct
*tsk
= current
;
2581 if (!cfq_cfqq_prio_changed(cfqq
))
2584 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2585 switch (ioprio_class
) {
2587 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2588 case IOPRIO_CLASS_NONE
:
2590 * no prio set, inherit CPU scheduling settings
2592 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2593 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2595 case IOPRIO_CLASS_RT
:
2596 cfqq
->ioprio
= task_ioprio(ioc
);
2597 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2599 case IOPRIO_CLASS_BE
:
2600 cfqq
->ioprio
= task_ioprio(ioc
);
2601 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2603 case IOPRIO_CLASS_IDLE
:
2604 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2606 cfq_clear_cfqq_idle_window(cfqq
);
2611 * keep track of original prio settings in case we have to temporarily
2612 * elevate the priority of this queue
2614 cfqq
->org_ioprio
= cfqq
->ioprio
;
2615 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2616 cfq_clear_cfqq_prio_changed(cfqq
);
2619 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2621 struct cfq_data
*cfqd
= cic
->key
;
2622 struct cfq_queue
*cfqq
;
2623 unsigned long flags
;
2625 if (unlikely(!cfqd
))
2628 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2630 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2632 struct cfq_queue
*new_cfqq
;
2633 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2636 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2637 cfq_put_queue(cfqq
);
2641 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2643 cfq_mark_cfqq_prio_changed(cfqq
);
2645 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2648 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2650 call_for_each_cic(ioc
, changed_ioprio
);
2651 ioc
->ioprio_changed
= 0;
2654 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2655 pid_t pid
, bool is_sync
)
2657 RB_CLEAR_NODE(&cfqq
->rb_node
);
2658 RB_CLEAR_NODE(&cfqq
->p_node
);
2659 INIT_LIST_HEAD(&cfqq
->fifo
);
2661 atomic_set(&cfqq
->ref
, 0);
2664 cfq_mark_cfqq_prio_changed(cfqq
);
2667 if (!cfq_class_idle(cfqq
))
2668 cfq_mark_cfqq_idle_window(cfqq
);
2669 cfq_mark_cfqq_sync(cfqq
);
2674 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2675 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2677 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2678 struct cfq_data
*cfqd
= cic
->key
;
2679 unsigned long flags
;
2680 struct request_queue
*q
;
2682 if (unlikely(!cfqd
))
2687 spin_lock_irqsave(q
->queue_lock
, flags
);
2691 * Drop reference to sync queue. A new sync queue will be
2692 * assigned in new group upon arrival of a fresh request.
2694 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2695 cic_set_cfqq(cic
, NULL
, 1);
2696 cfq_put_queue(sync_cfqq
);
2699 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2702 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2704 call_for_each_cic(ioc
, changed_cgroup
);
2705 ioc
->cgroup_changed
= 0;
2707 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2709 static struct cfq_queue
*
2710 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2711 struct io_context
*ioc
, gfp_t gfp_mask
)
2713 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2714 struct cfq_io_context
*cic
;
2715 struct cfq_group
*cfqg
;
2718 cfqg
= cfq_get_cfqg(cfqd
, 1);
2719 cic
= cfq_cic_lookup(cfqd
, ioc
);
2720 /* cic always exists here */
2721 cfqq
= cic_to_cfqq(cic
, is_sync
);
2724 * Always try a new alloc if we fell back to the OOM cfqq
2725 * originally, since it should just be a temporary situation.
2727 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2732 } else if (gfp_mask
& __GFP_WAIT
) {
2733 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2734 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2735 gfp_mask
| __GFP_ZERO
,
2737 spin_lock_irq(cfqd
->queue
->queue_lock
);
2741 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2742 gfp_mask
| __GFP_ZERO
,
2747 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2748 cfq_init_prio_data(cfqq
, ioc
);
2749 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2750 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2752 cfqq
= &cfqd
->oom_cfqq
;
2756 kmem_cache_free(cfq_pool
, new_cfqq
);
2761 static struct cfq_queue
**
2762 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2764 switch (ioprio_class
) {
2765 case IOPRIO_CLASS_RT
:
2766 return &cfqd
->async_cfqq
[0][ioprio
];
2767 case IOPRIO_CLASS_BE
:
2768 return &cfqd
->async_cfqq
[1][ioprio
];
2769 case IOPRIO_CLASS_IDLE
:
2770 return &cfqd
->async_idle_cfqq
;
2776 static struct cfq_queue
*
2777 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2780 const int ioprio
= task_ioprio(ioc
);
2781 const int ioprio_class
= task_ioprio_class(ioc
);
2782 struct cfq_queue
**async_cfqq
= NULL
;
2783 struct cfq_queue
*cfqq
= NULL
;
2786 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2791 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2794 * pin the queue now that it's allocated, scheduler exit will prune it
2796 if (!is_sync
&& !(*async_cfqq
)) {
2797 atomic_inc(&cfqq
->ref
);
2801 atomic_inc(&cfqq
->ref
);
2806 * We drop cfq io contexts lazily, so we may find a dead one.
2809 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2810 struct cfq_io_context
*cic
)
2812 unsigned long flags
;
2814 WARN_ON(!list_empty(&cic
->queue_list
));
2816 spin_lock_irqsave(&ioc
->lock
, flags
);
2818 BUG_ON(ioc
->ioc_data
== cic
);
2820 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
2821 hlist_del_rcu(&cic
->cic_list
);
2822 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2827 static struct cfq_io_context
*
2828 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
2830 struct cfq_io_context
*cic
;
2831 unsigned long flags
;
2840 * we maintain a last-hit cache, to avoid browsing over the tree
2842 cic
= rcu_dereference(ioc
->ioc_data
);
2843 if (cic
&& cic
->key
== cfqd
) {
2849 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
2853 /* ->key must be copied to avoid race with cfq_exit_queue() */
2856 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
2861 spin_lock_irqsave(&ioc
->lock
, flags
);
2862 rcu_assign_pointer(ioc
->ioc_data
, cic
);
2863 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2871 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2872 * the process specific cfq io context when entered from the block layer.
2873 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2875 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2876 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
2878 unsigned long flags
;
2881 ret
= radix_tree_preload(gfp_mask
);
2886 spin_lock_irqsave(&ioc
->lock
, flags
);
2887 ret
= radix_tree_insert(&ioc
->radix_root
,
2888 (unsigned long) cfqd
, cic
);
2890 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
2891 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2893 radix_tree_preload_end();
2896 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2897 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
2898 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2903 printk(KERN_ERR
"cfq: cic link failed!\n");
2909 * Setup general io context and cfq io context. There can be several cfq
2910 * io contexts per general io context, if this process is doing io to more
2911 * than one device managed by cfq.
2913 static struct cfq_io_context
*
2914 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2916 struct io_context
*ioc
= NULL
;
2917 struct cfq_io_context
*cic
;
2919 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2921 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
2925 cic
= cfq_cic_lookup(cfqd
, ioc
);
2929 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
2933 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
2937 smp_read_barrier_depends();
2938 if (unlikely(ioc
->ioprio_changed
))
2939 cfq_ioc_set_ioprio(ioc
);
2941 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2942 if (unlikely(ioc
->cgroup_changed
))
2943 cfq_ioc_set_cgroup(ioc
);
2949 put_io_context(ioc
);
2954 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
2956 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
2957 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
2959 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
2960 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
2961 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
2965 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2969 sector_t n_sec
= blk_rq_sectors(rq
);
2970 if (cfqq
->last_request_pos
) {
2971 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
2972 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
2974 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
2977 cfqq
->seek_history
<<= 1;
2978 if (blk_queue_nonrot(cfqd
->queue
))
2979 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
2981 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
2985 * Disable idle window if the process thinks too long or seeks so much that
2989 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2990 struct cfq_io_context
*cic
)
2992 int old_idle
, enable_idle
;
2995 * Don't idle for async or idle io prio class
2997 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3000 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3002 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3003 cfq_mark_cfqq_deep(cfqq
);
3005 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3006 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3008 else if (sample_valid(cic
->ttime_samples
)) {
3009 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3015 if (old_idle
!= enable_idle
) {
3016 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3018 cfq_mark_cfqq_idle_window(cfqq
);
3020 cfq_clear_cfqq_idle_window(cfqq
);
3025 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3026 * no or if we aren't sure, a 1 will cause a preempt.
3029 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3032 struct cfq_queue
*cfqq
;
3034 cfqq
= cfqd
->active_queue
;
3038 if (cfq_class_idle(new_cfqq
))
3041 if (cfq_class_idle(cfqq
))
3045 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3047 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3051 * if the new request is sync, but the currently running queue is
3052 * not, let the sync request have priority.
3054 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3057 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3060 if (cfq_slice_used(cfqq
))
3063 /* Allow preemption only if we are idling on sync-noidle tree */
3064 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3065 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3066 new_cfqq
->service_tree
->count
== 2 &&
3067 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3071 * So both queues are sync. Let the new request get disk time if
3072 * it's a metadata request and the current queue is doing regular IO.
3074 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
3078 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3080 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3083 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3087 * if this request is as-good as one we would expect from the
3088 * current cfqq, let it preempt
3090 if (cfq_rq_close(cfqd
, cfqq
, rq
, true))
3097 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3098 * let it have half of its nominal slice.
3100 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3102 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3103 cfq_slice_expired(cfqd
, 1);
3106 * Put the new queue at the front of the of the current list,
3107 * so we know that it will be selected next.
3109 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3111 cfq_service_tree_add(cfqd
, cfqq
, 1);
3113 cfqq
->slice_end
= 0;
3114 cfq_mark_cfqq_slice_new(cfqq
);
3118 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3119 * something we should do about it
3122 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3125 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3129 cfqq
->meta_pending
++;
3131 cfq_update_io_thinktime(cfqd
, cic
);
3132 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3133 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3135 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3137 if (cfqq
== cfqd
->active_queue
) {
3139 * Remember that we saw a request from this process, but
3140 * don't start queuing just yet. Otherwise we risk seeing lots
3141 * of tiny requests, because we disrupt the normal plugging
3142 * and merging. If the request is already larger than a single
3143 * page, let it rip immediately. For that case we assume that
3144 * merging is already done. Ditto for a busy system that
3145 * has other work pending, don't risk delaying until the
3146 * idle timer unplug to continue working.
3148 if (cfq_cfqq_wait_request(cfqq
)) {
3149 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3150 cfqd
->busy_queues
> 1) {
3151 del_timer(&cfqd
->idle_slice_timer
);
3152 cfq_clear_cfqq_wait_request(cfqq
);
3153 __blk_run_queue(cfqd
->queue
);
3155 cfq_mark_cfqq_must_dispatch(cfqq
);
3157 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3159 * not the active queue - expire current slice if it is
3160 * idle and has expired it's mean thinktime or this new queue
3161 * has some old slice time left and is of higher priority or
3162 * this new queue is RT and the current one is BE
3164 cfq_preempt_queue(cfqd
, cfqq
);
3165 __blk_run_queue(cfqd
->queue
);
3169 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3171 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3172 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3174 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3175 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3177 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3178 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3181 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3185 * Update hw_tag based on peak queue depth over 50 samples under
3188 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3190 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3192 if (rq_in_driver(cfqd
) > cfqd
->hw_tag_est_depth
)
3193 cfqd
->hw_tag_est_depth
= rq_in_driver(cfqd
);
3195 if (cfqd
->hw_tag
== 1)
3198 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3199 rq_in_driver(cfqd
) <= CFQ_HW_QUEUE_MIN
)
3203 * If active queue hasn't enough requests and can idle, cfq might not
3204 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3207 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3208 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3209 CFQ_HW_QUEUE_MIN
&& rq_in_driver(cfqd
) < CFQ_HW_QUEUE_MIN
)
3212 if (cfqd
->hw_tag_samples
++ < 50)
3215 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3221 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3223 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3225 /* If there are other queues in the group, don't wait */
3226 if (cfqq
->cfqg
->nr_cfqq
> 1)
3229 if (cfq_slice_used(cfqq
))
3232 /* if slice left is less than think time, wait busy */
3233 if (cic
&& sample_valid(cic
->ttime_samples
)
3234 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3238 * If think times is less than a jiffy than ttime_mean=0 and above
3239 * will not be true. It might happen that slice has not expired yet
3240 * but will expire soon (4-5 ns) during select_queue(). To cover the
3241 * case where think time is less than a jiffy, mark the queue wait
3242 * busy if only 1 jiffy is left in the slice.
3244 if (cfqq
->slice_end
- jiffies
== 1)
3250 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3252 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3253 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3254 const int sync
= rq_is_sync(rq
);
3258 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d", !!rq_noidle(rq
));
3260 cfq_update_hw_tag(cfqd
);
3262 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
3263 WARN_ON(!cfqq
->dispatched
);
3264 cfqd
->rq_in_driver
[sync
]--;
3267 if (cfq_cfqq_sync(cfqq
))
3268 cfqd
->sync_flight
--;
3271 RQ_CIC(rq
)->last_end_request
= now
;
3272 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3273 cfqd
->last_delayed_sync
= now
;
3277 * If this is the active queue, check if it needs to be expired,
3278 * or if we want to idle in case it has no pending requests.
3280 if (cfqd
->active_queue
== cfqq
) {
3281 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3283 if (cfq_cfqq_slice_new(cfqq
)) {
3284 cfq_set_prio_slice(cfqd
, cfqq
);
3285 cfq_clear_cfqq_slice_new(cfqq
);
3289 * Should we wait for next request to come in before we expire
3292 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3293 cfqq
->slice_end
= jiffies
+ cfqd
->cfq_slice_idle
;
3294 cfq_mark_cfqq_wait_busy(cfqq
);
3298 * Idling is not enabled on:
3300 * - idle-priority queues
3302 * - queues with still some requests queued
3303 * - when there is a close cooperator
3305 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3306 cfq_slice_expired(cfqd
, 1);
3307 else if (sync
&& cfqq_empty
&&
3308 !cfq_close_cooperator(cfqd
, cfqq
)) {
3309 cfqd
->noidle_tree_requires_idle
|= !rq_noidle(rq
);
3311 * Idling is enabled for SYNC_WORKLOAD.
3312 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3313 * only if we processed at least one !rq_noidle request
3315 if (cfqd
->serving_type
== SYNC_WORKLOAD
3316 || cfqd
->noidle_tree_requires_idle
3317 || cfqq
->cfqg
->nr_cfqq
== 1)
3318 cfq_arm_slice_timer(cfqd
);
3322 if (!rq_in_driver(cfqd
))
3323 cfq_schedule_dispatch(cfqd
);
3327 * we temporarily boost lower priority queues if they are holding fs exclusive
3328 * resources. they are boosted to normal prio (CLASS_BE/4)
3330 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3332 if (has_fs_excl()) {
3334 * boost idle prio on transactions that would lock out other
3335 * users of the filesystem
3337 if (cfq_class_idle(cfqq
))
3338 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3339 if (cfqq
->ioprio
> IOPRIO_NORM
)
3340 cfqq
->ioprio
= IOPRIO_NORM
;
3343 * unboost the queue (if needed)
3345 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3346 cfqq
->ioprio
= cfqq
->org_ioprio
;
3350 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3352 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3353 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3354 return ELV_MQUEUE_MUST
;
3357 return ELV_MQUEUE_MAY
;
3360 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3362 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3363 struct task_struct
*tsk
= current
;
3364 struct cfq_io_context
*cic
;
3365 struct cfq_queue
*cfqq
;
3368 * don't force setup of a queue from here, as a call to may_queue
3369 * does not necessarily imply that a request actually will be queued.
3370 * so just lookup a possibly existing queue, or return 'may queue'
3373 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3375 return ELV_MQUEUE_MAY
;
3377 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3379 cfq_init_prio_data(cfqq
, cic
->ioc
);
3380 cfq_prio_boost(cfqq
);
3382 return __cfq_may_queue(cfqq
);
3385 return ELV_MQUEUE_MAY
;
3389 * queue lock held here
3391 static void cfq_put_request(struct request
*rq
)
3393 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3396 const int rw
= rq_data_dir(rq
);
3398 BUG_ON(!cfqq
->allocated
[rw
]);
3399 cfqq
->allocated
[rw
]--;
3401 put_io_context(RQ_CIC(rq
)->ioc
);
3403 rq
->elevator_private
= NULL
;
3404 rq
->elevator_private2
= NULL
;
3406 cfq_put_queue(cfqq
);
3410 static struct cfq_queue
*
3411 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3412 struct cfq_queue
*cfqq
)
3414 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3415 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3416 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3417 cfq_put_queue(cfqq
);
3418 return cic_to_cfqq(cic
, 1);
3422 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3423 * was the last process referring to said cfqq.
3425 static struct cfq_queue
*
3426 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3428 if (cfqq_process_refs(cfqq
) == 1) {
3429 cfqq
->pid
= current
->pid
;
3430 cfq_clear_cfqq_coop(cfqq
);
3431 cfq_clear_cfqq_split_coop(cfqq
);
3435 cic_set_cfqq(cic
, NULL
, 1);
3436 cfq_put_queue(cfqq
);
3440 * Allocate cfq data structures associated with this request.
3443 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3445 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3446 struct cfq_io_context
*cic
;
3447 const int rw
= rq_data_dir(rq
);
3448 const bool is_sync
= rq_is_sync(rq
);
3449 struct cfq_queue
*cfqq
;
3450 unsigned long flags
;
3452 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3454 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3456 spin_lock_irqsave(q
->queue_lock
, flags
);
3462 cfqq
= cic_to_cfqq(cic
, is_sync
);
3463 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3464 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3465 cic_set_cfqq(cic
, cfqq
, is_sync
);
3468 * If the queue was seeky for too long, break it apart.
3470 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3471 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3472 cfqq
= split_cfqq(cic
, cfqq
);
3478 * Check to see if this queue is scheduled to merge with
3479 * another, closely cooperating queue. The merging of
3480 * queues happens here as it must be done in process context.
3481 * The reference on new_cfqq was taken in merge_cfqqs.
3484 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3487 cfqq
->allocated
[rw
]++;
3488 atomic_inc(&cfqq
->ref
);
3490 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3492 rq
->elevator_private
= cic
;
3493 rq
->elevator_private2
= cfqq
;
3498 put_io_context(cic
->ioc
);
3500 cfq_schedule_dispatch(cfqd
);
3501 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3502 cfq_log(cfqd
, "set_request fail");
3506 static void cfq_kick_queue(struct work_struct
*work
)
3508 struct cfq_data
*cfqd
=
3509 container_of(work
, struct cfq_data
, unplug_work
);
3510 struct request_queue
*q
= cfqd
->queue
;
3512 spin_lock_irq(q
->queue_lock
);
3513 __blk_run_queue(cfqd
->queue
);
3514 spin_unlock_irq(q
->queue_lock
);
3518 * Timer running if the active_queue is currently idling inside its time slice
3520 static void cfq_idle_slice_timer(unsigned long data
)
3522 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3523 struct cfq_queue
*cfqq
;
3524 unsigned long flags
;
3527 cfq_log(cfqd
, "idle timer fired");
3529 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3531 cfqq
= cfqd
->active_queue
;
3536 * We saw a request before the queue expired, let it through
3538 if (cfq_cfqq_must_dispatch(cfqq
))
3544 if (cfq_slice_used(cfqq
))
3548 * only expire and reinvoke request handler, if there are
3549 * other queues with pending requests
3551 if (!cfqd
->busy_queues
)
3555 * not expired and it has a request pending, let it dispatch
3557 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3561 * Queue depth flag is reset only when the idle didn't succeed
3563 cfq_clear_cfqq_deep(cfqq
);
3566 cfq_slice_expired(cfqd
, timed_out
);
3568 cfq_schedule_dispatch(cfqd
);
3570 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3573 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3575 del_timer_sync(&cfqd
->idle_slice_timer
);
3576 cancel_work_sync(&cfqd
->unplug_work
);
3579 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3583 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3584 if (cfqd
->async_cfqq
[0][i
])
3585 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3586 if (cfqd
->async_cfqq
[1][i
])
3587 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3590 if (cfqd
->async_idle_cfqq
)
3591 cfq_put_queue(cfqd
->async_idle_cfqq
);
3594 static void cfq_cfqd_free(struct rcu_head
*head
)
3596 kfree(container_of(head
, struct cfq_data
, rcu
));
3599 static void cfq_exit_queue(struct elevator_queue
*e
)
3601 struct cfq_data
*cfqd
= e
->elevator_data
;
3602 struct request_queue
*q
= cfqd
->queue
;
3604 cfq_shutdown_timer_wq(cfqd
);
3606 spin_lock_irq(q
->queue_lock
);
3608 if (cfqd
->active_queue
)
3609 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3611 while (!list_empty(&cfqd
->cic_list
)) {
3612 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3613 struct cfq_io_context
,
3616 __cfq_exit_single_io_context(cfqd
, cic
);
3619 cfq_put_async_queues(cfqd
);
3620 cfq_release_cfq_groups(cfqd
);
3621 blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3623 spin_unlock_irq(q
->queue_lock
);
3625 cfq_shutdown_timer_wq(cfqd
);
3627 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3628 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3631 static void *cfq_init_queue(struct request_queue
*q
)
3633 struct cfq_data
*cfqd
;
3635 struct cfq_group
*cfqg
;
3636 struct cfq_rb_root
*st
;
3638 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3642 /* Init root service tree */
3643 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3645 /* Init root group */
3646 cfqg
= &cfqd
->root_group
;
3647 for_each_cfqg_st(cfqg
, i
, j
, st
)
3649 RB_CLEAR_NODE(&cfqg
->rb_node
);
3651 /* Give preference to root group over other groups */
3652 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3654 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3656 * Take a reference to root group which we never drop. This is just
3657 * to make sure that cfq_put_cfqg() does not try to kfree root group
3659 atomic_set(&cfqg
->ref
, 1);
3660 blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
, (void *)cfqd
,
3664 * Not strictly needed (since RB_ROOT just clears the node and we
3665 * zeroed cfqd on alloc), but better be safe in case someone decides
3666 * to add magic to the rb code
3668 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3669 cfqd
->prio_trees
[i
] = RB_ROOT
;
3672 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3673 * Grab a permanent reference to it, so that the normal code flow
3674 * will not attempt to free it.
3676 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3677 atomic_inc(&cfqd
->oom_cfqq
.ref
);
3678 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3680 INIT_LIST_HEAD(&cfqd
->cic_list
);
3684 init_timer(&cfqd
->idle_slice_timer
);
3685 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3686 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3688 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3690 cfqd
->cfq_quantum
= cfq_quantum
;
3691 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3692 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3693 cfqd
->cfq_back_max
= cfq_back_max
;
3694 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3695 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3696 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3697 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3698 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3699 cfqd
->cfq_latency
= 1;
3700 cfqd
->cfq_group_isolation
= 0;
3703 * we optimistically start assuming sync ops weren't delayed in last
3704 * second, in order to have larger depth for async operations.
3706 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3707 INIT_RCU_HEAD(&cfqd
->rcu
);
3711 static void cfq_slab_kill(void)
3714 * Caller already ensured that pending RCU callbacks are completed,
3715 * so we should have no busy allocations at this point.
3718 kmem_cache_destroy(cfq_pool
);
3720 kmem_cache_destroy(cfq_ioc_pool
);
3723 static int __init
cfq_slab_setup(void)
3725 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3729 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3740 * sysfs parts below -->
3743 cfq_var_show(unsigned int var
, char *page
)
3745 return sprintf(page
, "%d\n", var
);
3749 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3751 char *p
= (char *) page
;
3753 *var
= simple_strtoul(p
, &p
, 10);
3757 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3758 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3760 struct cfq_data *cfqd = e->elevator_data; \
3761 unsigned int __data = __VAR; \
3763 __data = jiffies_to_msecs(__data); \
3764 return cfq_var_show(__data, (page)); \
3766 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3767 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3768 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3769 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3770 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3771 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3772 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
3773 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
3774 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
3775 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
3776 SHOW_FUNCTION(cfq_group_isolation_show
, cfqd
->cfq_group_isolation
, 0);
3777 #undef SHOW_FUNCTION
3779 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3780 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3782 struct cfq_data *cfqd = e->elevator_data; \
3783 unsigned int __data; \
3784 int ret = cfq_var_store(&__data, (page), count); \
3785 if (__data < (MIN)) \
3787 else if (__data > (MAX)) \
3790 *(__PTR) = msecs_to_jiffies(__data); \
3792 *(__PTR) = __data; \
3795 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
3796 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
3798 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
3800 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
3801 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
3803 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
3804 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
3805 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
3806 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
3808 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
3809 STORE_FUNCTION(cfq_group_isolation_store
, &cfqd
->cfq_group_isolation
, 0, 1, 0);
3810 #undef STORE_FUNCTION
3812 #define CFQ_ATTR(name) \
3813 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3815 static struct elv_fs_entry cfq_attrs
[] = {
3817 CFQ_ATTR(fifo_expire_sync
),
3818 CFQ_ATTR(fifo_expire_async
),
3819 CFQ_ATTR(back_seek_max
),
3820 CFQ_ATTR(back_seek_penalty
),
3821 CFQ_ATTR(slice_sync
),
3822 CFQ_ATTR(slice_async
),
3823 CFQ_ATTR(slice_async_rq
),
3824 CFQ_ATTR(slice_idle
),
3825 CFQ_ATTR(low_latency
),
3826 CFQ_ATTR(group_isolation
),
3830 static struct elevator_type iosched_cfq
= {
3832 .elevator_merge_fn
= cfq_merge
,
3833 .elevator_merged_fn
= cfq_merged_request
,
3834 .elevator_merge_req_fn
= cfq_merged_requests
,
3835 .elevator_allow_merge_fn
= cfq_allow_merge
,
3836 .elevator_dispatch_fn
= cfq_dispatch_requests
,
3837 .elevator_add_req_fn
= cfq_insert_request
,
3838 .elevator_activate_req_fn
= cfq_activate_request
,
3839 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
3840 .elevator_queue_empty_fn
= cfq_queue_empty
,
3841 .elevator_completed_req_fn
= cfq_completed_request
,
3842 .elevator_former_req_fn
= elv_rb_former_request
,
3843 .elevator_latter_req_fn
= elv_rb_latter_request
,
3844 .elevator_set_req_fn
= cfq_set_request
,
3845 .elevator_put_req_fn
= cfq_put_request
,
3846 .elevator_may_queue_fn
= cfq_may_queue
,
3847 .elevator_init_fn
= cfq_init_queue
,
3848 .elevator_exit_fn
= cfq_exit_queue
,
3849 .trim
= cfq_free_io_context
,
3851 .elevator_attrs
= cfq_attrs
,
3852 .elevator_name
= "cfq",
3853 .elevator_owner
= THIS_MODULE
,
3856 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3857 static struct blkio_policy_type blkio_policy_cfq
= {
3859 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
3860 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
3864 static struct blkio_policy_type blkio_policy_cfq
;
3867 static int __init
cfq_init(void)
3870 * could be 0 on HZ < 1000 setups
3872 if (!cfq_slice_async
)
3873 cfq_slice_async
= 1;
3874 if (!cfq_slice_idle
)
3877 if (cfq_slab_setup())
3880 elv_register(&iosched_cfq
);
3881 blkio_policy_register(&blkio_policy_cfq
);
3886 static void __exit
cfq_exit(void)
3888 DECLARE_COMPLETION_ONSTACK(all_gone
);
3889 blkio_policy_unregister(&blkio_policy_cfq
);
3890 elv_unregister(&iosched_cfq
);
3891 ioc_gone
= &all_gone
;
3892 /* ioc_gone's update must be visible before reading ioc_count */
3896 * this also protects us from entering cfq_slab_kill() with
3897 * pending RCU callbacks
3899 if (elv_ioc_count_read(cfq_ioc_count
))
3900 wait_for_completion(&all_gone
);
3904 module_init(cfq_init
);
3905 module_exit(cfq_exit
);
3907 MODULE_AUTHOR("Jens Axboe");
3908 MODULE_LICENSE("GPL");
3909 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");