2 * linux/mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of num_possible_cpus() units and the first chunk
12 * is used for static percpu variables in the kernel image (special
13 * boot time alloc/init handling necessary as these areas need to be
14 * brought up before allocation services are running). Unit grows as
15 * necessary and all units grow or shrink in unison. When a chunk is
16 * filled up, another chunk is allocated. ie. in vmalloc area
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
26 * percpu base registers UNIT_SIZE apart.
28 * There are usually many small percpu allocations many of them as
29 * small as 4 bytes. The allocator organizes chunks into lists
30 * according to free size and tries to allocate from the fullest one.
31 * Each chunk keeps the maximum contiguous area size hint which is
32 * guaranteed to be eqaul to or larger than the maximum contiguous
33 * area in the chunk. This helps the allocator not to iterate the
34 * chunk maps unnecessarily.
36 * Allocation state in each chunk is kept using an array of integers
37 * on chunk->map. A positive value in the map represents a free
38 * region and negative allocated. Allocation inside a chunk is done
39 * by scanning this map sequentially and serving the first matching
40 * entry. This is mostly copied from the percpu_modalloc() allocator.
41 * Chunks are also linked into a rb tree to ease address to chunk
42 * mapping during free.
44 * To use this allocator, arch code should do the followings.
46 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back
51 * - use pcpu_setup_first_chunk() during percpu area initialization to
52 * setup the first chunk containing the kernel static percpu area
55 #include <linux/bitmap.h>
56 #include <linux/bootmem.h>
57 #include <linux/list.h>
59 #include <linux/module.h>
60 #include <linux/mutex.h>
61 #include <linux/percpu.h>
62 #include <linux/pfn.h>
63 #include <linux/rbtree.h>
64 #include <linux/slab.h>
65 #include <linux/spinlock.h>
66 #include <linux/vmalloc.h>
67 #include <linux/workqueue.h>
69 #include <asm/cacheflush.h>
70 #include <asm/tlbflush.h>
72 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
73 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
76 struct list_head list
; /* linked to pcpu_slot lists */
77 struct rb_node rb_node
; /* key is chunk->vm->addr */
78 int free_size
; /* free bytes in the chunk */
79 int contig_hint
; /* max contiguous size hint */
80 struct vm_struct
*vm
; /* mapped vmalloc region */
81 int map_used
; /* # of map entries used */
82 int map_alloc
; /* # of map entries allocated */
83 int *map
; /* allocation map */
84 bool immutable
; /* no [de]population allowed */
85 struct page
**page
; /* points to page array */
86 struct page
*page_ar
[]; /* #cpus * UNIT_PAGES */
89 static int pcpu_unit_pages __read_mostly
;
90 static int pcpu_unit_size __read_mostly
;
91 static int pcpu_chunk_size __read_mostly
;
92 static int pcpu_nr_slots __read_mostly
;
93 static size_t pcpu_chunk_struct_size __read_mostly
;
95 /* the address of the first chunk which starts with the kernel static area */
96 void *pcpu_base_addr __read_mostly
;
97 EXPORT_SYMBOL_GPL(pcpu_base_addr
);
99 /* optional reserved chunk, only accessible for reserved allocations */
100 static struct pcpu_chunk
*pcpu_reserved_chunk
;
101 /* offset limit of the reserved chunk */
102 static int pcpu_reserved_chunk_limit
;
105 * Synchronization rules.
107 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
108 * protects allocation/reclaim paths, chunks and chunk->page arrays.
109 * The latter is a spinlock and protects the index data structures -
110 * chunk slots, rbtree, chunks and area maps in chunks.
112 * During allocation, pcpu_alloc_mutex is kept locked all the time and
113 * pcpu_lock is grabbed and released as necessary. All actual memory
114 * allocations are done using GFP_KERNEL with pcpu_lock released.
116 * Free path accesses and alters only the index data structures, so it
117 * can be safely called from atomic context. When memory needs to be
118 * returned to the system, free path schedules reclaim_work which
119 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
120 * reclaimed, release both locks and frees the chunks. Note that it's
121 * necessary to grab both locks to remove a chunk from circulation as
122 * allocation path might be referencing the chunk with only
123 * pcpu_alloc_mutex locked.
125 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* protects whole alloc and reclaim */
126 static DEFINE_SPINLOCK(pcpu_lock
); /* protects index data structures */
128 static struct list_head
*pcpu_slot __read_mostly
; /* chunk list slots */
129 static struct rb_root pcpu_addr_root
= RB_ROOT
; /* chunks by address */
131 /* reclaim work to release fully free chunks, scheduled from free path */
132 static void pcpu_reclaim(struct work_struct
*work
);
133 static DECLARE_WORK(pcpu_reclaim_work
, pcpu_reclaim
);
135 static int __pcpu_size_to_slot(int size
)
137 int highbit
= fls(size
); /* size is in bytes */
138 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
141 static int pcpu_size_to_slot(int size
)
143 if (size
== pcpu_unit_size
)
144 return pcpu_nr_slots
- 1;
145 return __pcpu_size_to_slot(size
);
148 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
150 if (chunk
->free_size
< sizeof(int) || chunk
->contig_hint
< sizeof(int))
153 return pcpu_size_to_slot(chunk
->free_size
);
156 static int pcpu_page_idx(unsigned int cpu
, int page_idx
)
158 return cpu
* pcpu_unit_pages
+ page_idx
;
161 static struct page
**pcpu_chunk_pagep(struct pcpu_chunk
*chunk
,
162 unsigned int cpu
, int page_idx
)
164 return &chunk
->page
[pcpu_page_idx(cpu
, page_idx
)];
167 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
168 unsigned int cpu
, int page_idx
)
170 return (unsigned long)chunk
->vm
->addr
+
171 (pcpu_page_idx(cpu
, page_idx
) << PAGE_SHIFT
);
174 static bool pcpu_chunk_page_occupied(struct pcpu_chunk
*chunk
,
177 return *pcpu_chunk_pagep(chunk
, 0, page_idx
) != NULL
;
181 * pcpu_mem_alloc - allocate memory
182 * @size: bytes to allocate
184 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
185 * kzalloc() is used; otherwise, vmalloc() is used. The returned
186 * memory is always zeroed.
189 * Does GFP_KERNEL allocation.
192 * Pointer to the allocated area on success, NULL on failure.
194 static void *pcpu_mem_alloc(size_t size
)
196 if (size
<= PAGE_SIZE
)
197 return kzalloc(size
, GFP_KERNEL
);
199 void *ptr
= vmalloc(size
);
201 memset(ptr
, 0, size
);
207 * pcpu_mem_free - free memory
208 * @ptr: memory to free
209 * @size: size of the area
211 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
213 static void pcpu_mem_free(void *ptr
, size_t size
)
215 if (size
<= PAGE_SIZE
)
222 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
223 * @chunk: chunk of interest
224 * @oslot: the previous slot it was on
226 * This function is called after an allocation or free changed @chunk.
227 * New slot according to the changed state is determined and @chunk is
228 * moved to the slot. Note that the reserved chunk is never put on
234 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
236 int nslot
= pcpu_chunk_slot(chunk
);
238 if (chunk
!= pcpu_reserved_chunk
&& oslot
!= nslot
) {
240 list_move(&chunk
->list
, &pcpu_slot
[nslot
]);
242 list_move_tail(&chunk
->list
, &pcpu_slot
[nslot
]);
246 static struct rb_node
**pcpu_chunk_rb_search(void *addr
,
247 struct rb_node
**parentp
)
249 struct rb_node
**p
= &pcpu_addr_root
.rb_node
;
250 struct rb_node
*parent
= NULL
;
251 struct pcpu_chunk
*chunk
;
255 chunk
= rb_entry(parent
, struct pcpu_chunk
, rb_node
);
257 if (addr
< chunk
->vm
->addr
)
259 else if (addr
> chunk
->vm
->addr
)
271 * pcpu_chunk_addr_search - search for chunk containing specified address
272 * @addr: address to search for
274 * Look for chunk which might contain @addr. More specifically, it
275 * searchs for the chunk with the highest start address which isn't
282 * The address of the found chunk.
284 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
286 struct rb_node
*n
, *parent
;
287 struct pcpu_chunk
*chunk
;
289 /* is it in the reserved chunk? */
290 if (pcpu_reserved_chunk
) {
291 void *start
= pcpu_reserved_chunk
->vm
->addr
;
293 if (addr
>= start
&& addr
< start
+ pcpu_reserved_chunk_limit
)
294 return pcpu_reserved_chunk
;
297 /* nah... search the regular ones */
298 n
= *pcpu_chunk_rb_search(addr
, &parent
);
300 /* no exactly matching chunk, the parent is the closest */
304 chunk
= rb_entry(n
, struct pcpu_chunk
, rb_node
);
306 if (addr
< chunk
->vm
->addr
) {
307 /* the parent was the next one, look for the previous one */
310 chunk
= rb_entry(n
, struct pcpu_chunk
, rb_node
);
317 * pcpu_chunk_addr_insert - insert chunk into address rb tree
318 * @new: chunk to insert
320 * Insert @new into address rb tree.
325 static void pcpu_chunk_addr_insert(struct pcpu_chunk
*new)
327 struct rb_node
**p
, *parent
;
329 p
= pcpu_chunk_rb_search(new->vm
->addr
, &parent
);
331 rb_link_node(&new->rb_node
, parent
, p
);
332 rb_insert_color(&new->rb_node
, &pcpu_addr_root
);
336 * pcpu_extend_area_map - extend area map for allocation
337 * @chunk: target chunk
339 * Extend area map of @chunk so that it can accomodate an allocation.
340 * A single allocation can split an area into three areas, so this
341 * function makes sure that @chunk->map has at least two extra slots.
344 * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
345 * if area map is extended.
348 * 0 if noop, 1 if successfully extended, -errno on failure.
350 static int pcpu_extend_area_map(struct pcpu_chunk
*chunk
)
357 if (chunk
->map_alloc
>= chunk
->map_used
+ 2)
360 spin_unlock_irq(&pcpu_lock
);
362 new_alloc
= PCPU_DFL_MAP_ALLOC
;
363 while (new_alloc
< chunk
->map_used
+ 2)
366 new = pcpu_mem_alloc(new_alloc
* sizeof(new[0]));
368 spin_lock_irq(&pcpu_lock
);
373 * Acquire pcpu_lock and switch to new area map. Only free
374 * could have happened inbetween, so map_used couldn't have
377 spin_lock_irq(&pcpu_lock
);
378 BUG_ON(new_alloc
< chunk
->map_used
+ 2);
380 size
= chunk
->map_alloc
* sizeof(chunk
->map
[0]);
381 memcpy(new, chunk
->map
, size
);
384 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
385 * one of the first chunks and still using static map.
387 if (chunk
->map_alloc
>= PCPU_DFL_MAP_ALLOC
)
388 pcpu_mem_free(chunk
->map
, size
);
390 chunk
->map_alloc
= new_alloc
;
396 * pcpu_split_block - split a map block
397 * @chunk: chunk of interest
398 * @i: index of map block to split
399 * @head: head size in bytes (can be 0)
400 * @tail: tail size in bytes (can be 0)
402 * Split the @i'th map block into two or three blocks. If @head is
403 * non-zero, @head bytes block is inserted before block @i moving it
404 * to @i+1 and reducing its size by @head bytes.
406 * If @tail is non-zero, the target block, which can be @i or @i+1
407 * depending on @head, is reduced by @tail bytes and @tail byte block
408 * is inserted after the target block.
410 * @chunk->map must have enough free slots to accomodate the split.
415 static void pcpu_split_block(struct pcpu_chunk
*chunk
, int i
,
418 int nr_extra
= !!head
+ !!tail
;
420 BUG_ON(chunk
->map_alloc
< chunk
->map_used
+ nr_extra
);
422 /* insert new subblocks */
423 memmove(&chunk
->map
[i
+ nr_extra
], &chunk
->map
[i
],
424 sizeof(chunk
->map
[0]) * (chunk
->map_used
- i
));
425 chunk
->map_used
+= nr_extra
;
428 chunk
->map
[i
+ 1] = chunk
->map
[i
] - head
;
429 chunk
->map
[i
++] = head
;
432 chunk
->map
[i
++] -= tail
;
433 chunk
->map
[i
] = tail
;
438 * pcpu_alloc_area - allocate area from a pcpu_chunk
439 * @chunk: chunk of interest
440 * @size: wanted size in bytes
441 * @align: wanted align
443 * Try to allocate @size bytes area aligned at @align from @chunk.
444 * Note that this function only allocates the offset. It doesn't
445 * populate or map the area.
447 * @chunk->map must have at least two free slots.
453 * Allocated offset in @chunk on success, -1 if no matching area is
456 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int size
, int align
)
458 int oslot
= pcpu_chunk_slot(chunk
);
462 for (i
= 0, off
= 0; i
< chunk
->map_used
; off
+= abs(chunk
->map
[i
++])) {
463 bool is_last
= i
+ 1 == chunk
->map_used
;
466 /* extra for alignment requirement */
467 head
= ALIGN(off
, align
) - off
;
468 BUG_ON(i
== 0 && head
!= 0);
470 if (chunk
->map
[i
] < 0)
472 if (chunk
->map
[i
] < head
+ size
) {
473 max_contig
= max(chunk
->map
[i
], max_contig
);
478 * If head is small or the previous block is free,
479 * merge'em. Note that 'small' is defined as smaller
480 * than sizeof(int), which is very small but isn't too
481 * uncommon for percpu allocations.
483 if (head
&& (head
< sizeof(int) || chunk
->map
[i
- 1] > 0)) {
484 if (chunk
->map
[i
- 1] > 0)
485 chunk
->map
[i
- 1] += head
;
487 chunk
->map
[i
- 1] -= head
;
488 chunk
->free_size
-= head
;
490 chunk
->map
[i
] -= head
;
495 /* if tail is small, just keep it around */
496 tail
= chunk
->map
[i
] - head
- size
;
497 if (tail
< sizeof(int))
500 /* split if warranted */
502 pcpu_split_block(chunk
, i
, head
, tail
);
506 max_contig
= max(chunk
->map
[i
- 1], max_contig
);
509 max_contig
= max(chunk
->map
[i
+ 1], max_contig
);
512 /* update hint and mark allocated */
514 chunk
->contig_hint
= max_contig
; /* fully scanned */
516 chunk
->contig_hint
= max(chunk
->contig_hint
,
519 chunk
->free_size
-= chunk
->map
[i
];
520 chunk
->map
[i
] = -chunk
->map
[i
];
522 pcpu_chunk_relocate(chunk
, oslot
);
526 chunk
->contig_hint
= max_contig
; /* fully scanned */
527 pcpu_chunk_relocate(chunk
, oslot
);
529 /* tell the upper layer that this chunk has no matching area */
534 * pcpu_free_area - free area to a pcpu_chunk
535 * @chunk: chunk of interest
536 * @freeme: offset of area to free
538 * Free area starting from @freeme to @chunk. Note that this function
539 * only modifies the allocation map. It doesn't depopulate or unmap
545 static void pcpu_free_area(struct pcpu_chunk
*chunk
, int freeme
)
547 int oslot
= pcpu_chunk_slot(chunk
);
550 for (i
= 0, off
= 0; i
< chunk
->map_used
; off
+= abs(chunk
->map
[i
++]))
553 BUG_ON(off
!= freeme
);
554 BUG_ON(chunk
->map
[i
] > 0);
556 chunk
->map
[i
] = -chunk
->map
[i
];
557 chunk
->free_size
+= chunk
->map
[i
];
559 /* merge with previous? */
560 if (i
> 0 && chunk
->map
[i
- 1] >= 0) {
561 chunk
->map
[i
- 1] += chunk
->map
[i
];
563 memmove(&chunk
->map
[i
], &chunk
->map
[i
+ 1],
564 (chunk
->map_used
- i
) * sizeof(chunk
->map
[0]));
567 /* merge with next? */
568 if (i
+ 1 < chunk
->map_used
&& chunk
->map
[i
+ 1] >= 0) {
569 chunk
->map
[i
] += chunk
->map
[i
+ 1];
571 memmove(&chunk
->map
[i
+ 1], &chunk
->map
[i
+ 2],
572 (chunk
->map_used
- (i
+ 1)) * sizeof(chunk
->map
[0]));
575 chunk
->contig_hint
= max(chunk
->map
[i
], chunk
->contig_hint
);
576 pcpu_chunk_relocate(chunk
, oslot
);
580 * pcpu_unmap - unmap pages out of a pcpu_chunk
581 * @chunk: chunk of interest
582 * @page_start: page index of the first page to unmap
583 * @page_end: page index of the last page to unmap + 1
584 * @flush: whether to flush cache and tlb or not
586 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
587 * If @flush is true, vcache is flushed before unmapping and tlb
590 static void pcpu_unmap(struct pcpu_chunk
*chunk
, int page_start
, int page_end
,
593 unsigned int last
= num_possible_cpus() - 1;
596 /* unmap must not be done on immutable chunk */
597 WARN_ON(chunk
->immutable
);
600 * Each flushing trial can be very expensive, issue flush on
601 * the whole region at once rather than doing it for each cpu.
602 * This could be an overkill but is more scalable.
605 flush_cache_vunmap(pcpu_chunk_addr(chunk
, 0, page_start
),
606 pcpu_chunk_addr(chunk
, last
, page_end
));
608 for_each_possible_cpu(cpu
)
609 unmap_kernel_range_noflush(
610 pcpu_chunk_addr(chunk
, cpu
, page_start
),
611 (page_end
- page_start
) << PAGE_SHIFT
);
613 /* ditto as flush_cache_vunmap() */
615 flush_tlb_kernel_range(pcpu_chunk_addr(chunk
, 0, page_start
),
616 pcpu_chunk_addr(chunk
, last
, page_end
));
620 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
621 * @chunk: chunk to depopulate
622 * @off: offset to the area to depopulate
623 * @size: size of the area to depopulate in bytes
624 * @flush: whether to flush cache and tlb or not
626 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
627 * from @chunk. If @flush is true, vcache is flushed before unmapping
633 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
,
636 int page_start
= PFN_DOWN(off
);
637 int page_end
= PFN_UP(off
+ size
);
638 int unmap_start
= -1;
639 int uninitialized_var(unmap_end
);
643 for (i
= page_start
; i
< page_end
; i
++) {
644 for_each_possible_cpu(cpu
) {
645 struct page
**pagep
= pcpu_chunk_pagep(chunk
, cpu
, i
);
653 * If it's partial depopulation, it might get
654 * populated or depopulated again. Mark the
659 unmap_start
= unmap_start
< 0 ? i
: unmap_start
;
664 if (unmap_start
>= 0)
665 pcpu_unmap(chunk
, unmap_start
, unmap_end
, flush
);
669 * pcpu_map - map pages into a pcpu_chunk
670 * @chunk: chunk of interest
671 * @page_start: page index of the first page to map
672 * @page_end: page index of the last page to map + 1
674 * For each cpu, map pages [@page_start,@page_end) into @chunk.
675 * vcache is flushed afterwards.
677 static int pcpu_map(struct pcpu_chunk
*chunk
, int page_start
, int page_end
)
679 unsigned int last
= num_possible_cpus() - 1;
683 /* map must not be done on immutable chunk */
684 WARN_ON(chunk
->immutable
);
686 for_each_possible_cpu(cpu
) {
687 err
= map_kernel_range_noflush(
688 pcpu_chunk_addr(chunk
, cpu
, page_start
),
689 (page_end
- page_start
) << PAGE_SHIFT
,
691 pcpu_chunk_pagep(chunk
, cpu
, page_start
));
696 /* flush at once, please read comments in pcpu_unmap() */
697 flush_cache_vmap(pcpu_chunk_addr(chunk
, 0, page_start
),
698 pcpu_chunk_addr(chunk
, last
, page_end
));
703 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
704 * @chunk: chunk of interest
705 * @off: offset to the area to populate
706 * @size: size of the area to populate in bytes
708 * For each cpu, populate and map pages [@page_start,@page_end) into
709 * @chunk. The area is cleared on return.
712 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
714 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
)
716 const gfp_t alloc_mask
= GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_COLD
;
717 int page_start
= PFN_DOWN(off
);
718 int page_end
= PFN_UP(off
+ size
);
720 int uninitialized_var(map_end
);
724 for (i
= page_start
; i
< page_end
; i
++) {
725 if (pcpu_chunk_page_occupied(chunk
, i
)) {
726 if (map_start
>= 0) {
727 if (pcpu_map(chunk
, map_start
, map_end
))
734 map_start
= map_start
< 0 ? i
: map_start
;
737 for_each_possible_cpu(cpu
) {
738 struct page
**pagep
= pcpu_chunk_pagep(chunk
, cpu
, i
);
740 *pagep
= alloc_pages_node(cpu_to_node(cpu
),
747 if (map_start
>= 0 && pcpu_map(chunk
, map_start
, map_end
))
750 for_each_possible_cpu(cpu
)
751 memset(chunk
->vm
->addr
+ cpu
* pcpu_unit_size
+ off
, 0,
756 /* likely under heavy memory pressure, give memory back */
757 pcpu_depopulate_chunk(chunk
, off
, size
, true);
761 static void free_pcpu_chunk(struct pcpu_chunk
*chunk
)
766 free_vm_area(chunk
->vm
);
767 pcpu_mem_free(chunk
->map
, chunk
->map_alloc
* sizeof(chunk
->map
[0]));
771 static struct pcpu_chunk
*alloc_pcpu_chunk(void)
773 struct pcpu_chunk
*chunk
;
775 chunk
= kzalloc(pcpu_chunk_struct_size
, GFP_KERNEL
);
779 chunk
->map
= pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC
* sizeof(chunk
->map
[0]));
780 chunk
->map_alloc
= PCPU_DFL_MAP_ALLOC
;
781 chunk
->map
[chunk
->map_used
++] = pcpu_unit_size
;
782 chunk
->page
= chunk
->page_ar
;
784 chunk
->vm
= get_vm_area(pcpu_chunk_size
, GFP_KERNEL
);
786 free_pcpu_chunk(chunk
);
790 INIT_LIST_HEAD(&chunk
->list
);
791 chunk
->free_size
= pcpu_unit_size
;
792 chunk
->contig_hint
= pcpu_unit_size
;
798 * pcpu_alloc - the percpu allocator
799 * @size: size of area to allocate in bytes
800 * @align: alignment of area (max PAGE_SIZE)
801 * @reserved: allocate from the reserved chunk if available
803 * Allocate percpu area of @size bytes aligned at @align.
806 * Does GFP_KERNEL allocation.
809 * Percpu pointer to the allocated area on success, NULL on failure.
811 static void *pcpu_alloc(size_t size
, size_t align
, bool reserved
)
813 struct pcpu_chunk
*chunk
;
816 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
)) {
817 WARN(true, "illegal size (%zu) or align (%zu) for "
818 "percpu allocation\n", size
, align
);
822 mutex_lock(&pcpu_alloc_mutex
);
823 spin_lock_irq(&pcpu_lock
);
825 /* serve reserved allocations from the reserved chunk if available */
826 if (reserved
&& pcpu_reserved_chunk
) {
827 chunk
= pcpu_reserved_chunk
;
828 if (size
> chunk
->contig_hint
||
829 pcpu_extend_area_map(chunk
) < 0)
831 off
= pcpu_alloc_area(chunk
, size
, align
);
838 /* search through normal chunks */
839 for (slot
= pcpu_size_to_slot(size
); slot
< pcpu_nr_slots
; slot
++) {
840 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
841 if (size
> chunk
->contig_hint
)
844 switch (pcpu_extend_area_map(chunk
)) {
848 goto restart
; /* pcpu_lock dropped, restart */
853 off
= pcpu_alloc_area(chunk
, size
, align
);
859 /* hmmm... no space left, create a new chunk */
860 spin_unlock_irq(&pcpu_lock
);
862 chunk
= alloc_pcpu_chunk();
864 goto fail_unlock_mutex
;
866 spin_lock_irq(&pcpu_lock
);
867 pcpu_chunk_relocate(chunk
, -1);
868 pcpu_chunk_addr_insert(chunk
);
872 spin_unlock_irq(&pcpu_lock
);
874 /* populate, map and clear the area */
875 if (pcpu_populate_chunk(chunk
, off
, size
)) {
876 spin_lock_irq(&pcpu_lock
);
877 pcpu_free_area(chunk
, off
);
881 mutex_unlock(&pcpu_alloc_mutex
);
883 return __addr_to_pcpu_ptr(chunk
->vm
->addr
+ off
);
886 spin_unlock_irq(&pcpu_lock
);
888 mutex_unlock(&pcpu_alloc_mutex
);
893 * __alloc_percpu - allocate dynamic percpu area
894 * @size: size of area to allocate in bytes
895 * @align: alignment of area (max PAGE_SIZE)
897 * Allocate percpu area of @size bytes aligned at @align. Might
898 * sleep. Might trigger writeouts.
901 * Does GFP_KERNEL allocation.
904 * Percpu pointer to the allocated area on success, NULL on failure.
906 void *__alloc_percpu(size_t size
, size_t align
)
908 return pcpu_alloc(size
, align
, false);
910 EXPORT_SYMBOL_GPL(__alloc_percpu
);
913 * __alloc_reserved_percpu - allocate reserved percpu area
914 * @size: size of area to allocate in bytes
915 * @align: alignment of area (max PAGE_SIZE)
917 * Allocate percpu area of @size bytes aligned at @align from reserved
918 * percpu area if arch has set it up; otherwise, allocation is served
919 * from the same dynamic area. Might sleep. Might trigger writeouts.
922 * Does GFP_KERNEL allocation.
925 * Percpu pointer to the allocated area on success, NULL on failure.
927 void *__alloc_reserved_percpu(size_t size
, size_t align
)
929 return pcpu_alloc(size
, align
, true);
933 * pcpu_reclaim - reclaim fully free chunks, workqueue function
936 * Reclaim all fully free chunks except for the first one.
941 static void pcpu_reclaim(struct work_struct
*work
)
944 struct list_head
*head
= &pcpu_slot
[pcpu_nr_slots
- 1];
945 struct pcpu_chunk
*chunk
, *next
;
947 mutex_lock(&pcpu_alloc_mutex
);
948 spin_lock_irq(&pcpu_lock
);
950 list_for_each_entry_safe(chunk
, next
, head
, list
) {
951 WARN_ON(chunk
->immutable
);
953 /* spare the first one */
954 if (chunk
== list_first_entry(head
, struct pcpu_chunk
, list
))
957 rb_erase(&chunk
->rb_node
, &pcpu_addr_root
);
958 list_move(&chunk
->list
, &todo
);
961 spin_unlock_irq(&pcpu_lock
);
962 mutex_unlock(&pcpu_alloc_mutex
);
964 list_for_each_entry_safe(chunk
, next
, &todo
, list
) {
965 pcpu_depopulate_chunk(chunk
, 0, pcpu_unit_size
, false);
966 free_pcpu_chunk(chunk
);
971 * free_percpu - free percpu area
972 * @ptr: pointer to area to free
974 * Free percpu area @ptr.
977 * Can be called from atomic context.
979 void free_percpu(void *ptr
)
981 void *addr
= __pcpu_ptr_to_addr(ptr
);
982 struct pcpu_chunk
*chunk
;
989 spin_lock_irqsave(&pcpu_lock
, flags
);
991 chunk
= pcpu_chunk_addr_search(addr
);
992 off
= addr
- chunk
->vm
->addr
;
994 pcpu_free_area(chunk
, off
);
996 /* if there are more than one fully free chunks, wake up grim reaper */
997 if (chunk
->free_size
== pcpu_unit_size
) {
998 struct pcpu_chunk
*pos
;
1000 list_for_each_entry(pos
, &pcpu_slot
[pcpu_nr_slots
- 1], list
)
1002 schedule_work(&pcpu_reclaim_work
);
1007 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1009 EXPORT_SYMBOL_GPL(free_percpu
);
1012 * pcpu_setup_first_chunk - initialize the first percpu chunk
1013 * @get_page_fn: callback to fetch page pointer
1014 * @static_size: the size of static percpu area in bytes
1015 * @reserved_size: the size of reserved percpu area in bytes
1016 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
1017 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1018 * @base_addr: mapped address, NULL for auto
1019 * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
1021 * Initialize the first percpu chunk which contains the kernel static
1022 * perpcu area. This function is to be called from arch percpu area
1023 * setup path. The first two parameters are mandatory. The rest are
1026 * @get_page_fn() should return pointer to percpu page given cpu
1027 * number and page number. It should at least return enough pages to
1028 * cover the static area. The returned pages for static area should
1029 * have been initialized with valid data. If @unit_size is specified,
1030 * it can also return pages after the static area. NULL return
1031 * indicates end of pages for the cpu. Note that @get_page_fn() must
1032 * return the same number of pages for all cpus.
1034 * @reserved_size, if non-zero, specifies the amount of bytes to
1035 * reserve after the static area in the first chunk. This reserves
1036 * the first chunk such that it's available only through reserved
1037 * percpu allocation. This is primarily used to serve module percpu
1038 * static areas on architectures where the addressing model has
1039 * limited offset range for symbol relocations to guarantee module
1040 * percpu symbols fall inside the relocatable range.
1042 * @unit_size, if non-negative, specifies unit size and must be
1043 * aligned to PAGE_SIZE and equal to or larger than @static_size +
1044 * @reserved_size + @dyn_size.
1046 * @dyn_size, if non-negative, limits the number of bytes available
1047 * for dynamic allocation in the first chunk. Specifying non-negative
1048 * value make percpu leave alone the area beyond @static_size +
1049 * @reserved_size + @dyn_size.
1051 * Non-null @base_addr means that the caller already allocated virtual
1052 * region for the first chunk and mapped it. percpu must not mess
1053 * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL
1054 * @populate_pte_fn doesn't make any sense.
1056 * @populate_pte_fn is used to populate the pagetable. NULL means the
1057 * caller already populated the pagetable.
1059 * If the first chunk ends up with both reserved and dynamic areas, it
1060 * is served by two chunks - one to serve the core static and reserved
1061 * areas and the other for the dynamic area. They share the same vm
1062 * and page map but uses different area allocation map to stay away
1063 * from each other. The latter chunk is circulated in the chunk slots
1064 * and available for dynamic allocation like any other chunks.
1067 * The determined pcpu_unit_size which can be used to initialize
1070 size_t __init
pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn
,
1071 size_t static_size
, size_t reserved_size
,
1072 ssize_t unit_size
, ssize_t dyn_size
,
1074 pcpu_populate_pte_fn_t populate_pte_fn
)
1076 static struct vm_struct first_vm
;
1077 static int smap
[2], dmap
[2];
1078 struct pcpu_chunk
*schunk
, *dchunk
= NULL
;
1084 BUILD_BUG_ON(ARRAY_SIZE(smap
) >= PCPU_DFL_MAP_ALLOC
||
1085 ARRAY_SIZE(dmap
) >= PCPU_DFL_MAP_ALLOC
);
1086 BUG_ON(!static_size
);
1087 if (unit_size
>= 0) {
1088 BUG_ON(unit_size
< static_size
+ reserved_size
+
1089 (dyn_size
>= 0 ? dyn_size
: 0));
1090 BUG_ON(unit_size
& ~PAGE_MASK
);
1092 BUG_ON(dyn_size
>= 0);
1095 BUG_ON(base_addr
&& populate_pte_fn
);
1098 pcpu_unit_pages
= unit_size
>> PAGE_SHIFT
;
1100 pcpu_unit_pages
= max_t(int, PCPU_MIN_UNIT_SIZE
>> PAGE_SHIFT
,
1101 PFN_UP(static_size
+ reserved_size
));
1103 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
1104 pcpu_chunk_size
= num_possible_cpus() * pcpu_unit_size
;
1105 pcpu_chunk_struct_size
= sizeof(struct pcpu_chunk
)
1106 + num_possible_cpus() * pcpu_unit_pages
* sizeof(struct page
*);
1109 dyn_size
= pcpu_unit_size
- static_size
- reserved_size
;
1112 * Allocate chunk slots. The additional last slot is for
1115 pcpu_nr_slots
= __pcpu_size_to_slot(pcpu_unit_size
) + 2;
1116 pcpu_slot
= alloc_bootmem(pcpu_nr_slots
* sizeof(pcpu_slot
[0]));
1117 for (i
= 0; i
< pcpu_nr_slots
; i
++)
1118 INIT_LIST_HEAD(&pcpu_slot
[i
]);
1121 * Initialize static chunk. If reserved_size is zero, the
1122 * static chunk covers static area + dynamic allocation area
1123 * in the first chunk. If reserved_size is not zero, it
1124 * covers static area + reserved area (mostly used for module
1125 * static percpu allocation).
1127 schunk
= alloc_bootmem(pcpu_chunk_struct_size
);
1128 INIT_LIST_HEAD(&schunk
->list
);
1129 schunk
->vm
= &first_vm
;
1131 schunk
->map_alloc
= ARRAY_SIZE(smap
);
1132 schunk
->page
= schunk
->page_ar
;
1134 if (reserved_size
) {
1135 schunk
->free_size
= reserved_size
;
1136 pcpu_reserved_chunk
= schunk
; /* not for dynamic alloc */
1138 schunk
->free_size
= dyn_size
;
1139 dyn_size
= 0; /* dynamic area covered */
1141 schunk
->contig_hint
= schunk
->free_size
;
1143 schunk
->map
[schunk
->map_used
++] = -static_size
;
1144 if (schunk
->free_size
)
1145 schunk
->map
[schunk
->map_used
++] = schunk
->free_size
;
1147 pcpu_reserved_chunk_limit
= static_size
+ schunk
->free_size
;
1149 /* init dynamic chunk if necessary */
1151 dchunk
= alloc_bootmem(sizeof(struct pcpu_chunk
));
1152 INIT_LIST_HEAD(&dchunk
->list
);
1153 dchunk
->vm
= &first_vm
;
1155 dchunk
->map_alloc
= ARRAY_SIZE(dmap
);
1156 dchunk
->page
= schunk
->page_ar
; /* share page map with schunk */
1158 dchunk
->contig_hint
= dchunk
->free_size
= dyn_size
;
1159 dchunk
->map
[dchunk
->map_used
++] = -pcpu_reserved_chunk_limit
;
1160 dchunk
->map
[dchunk
->map_used
++] = dchunk
->free_size
;
1163 /* allocate vm address */
1164 first_vm
.flags
= VM_ALLOC
;
1165 first_vm
.size
= pcpu_chunk_size
;
1168 vm_area_register_early(&first_vm
, PAGE_SIZE
);
1171 * Pages already mapped. No need to remap into
1172 * vmalloc area. In this case the first chunks can't
1173 * be mapped or unmapped by percpu and are marked
1176 first_vm
.addr
= base_addr
;
1177 schunk
->immutable
= true;
1179 dchunk
->immutable
= true;
1184 for_each_possible_cpu(cpu
) {
1185 for (i
= 0; i
< pcpu_unit_pages
; i
++) {
1186 struct page
*page
= get_page_fn(cpu
, i
);
1190 *pcpu_chunk_pagep(schunk
, cpu
, i
) = page
;
1193 BUG_ON(i
< PFN_UP(static_size
));
1198 BUG_ON(nr_pages
!= i
);
1202 if (populate_pte_fn
) {
1203 for_each_possible_cpu(cpu
)
1204 for (i
= 0; i
< nr_pages
; i
++)
1205 populate_pte_fn(pcpu_chunk_addr(schunk
,
1208 err
= pcpu_map(schunk
, 0, nr_pages
);
1210 panic("failed to setup static percpu area, err=%d\n",
1214 /* link the first chunk in */
1216 pcpu_chunk_relocate(schunk
, -1);
1217 pcpu_chunk_addr_insert(schunk
);
1219 pcpu_chunk_relocate(dchunk
, -1);
1220 pcpu_chunk_addr_insert(dchunk
);
1224 pcpu_base_addr
= (void *)pcpu_chunk_addr(schunk
, 0, 0);
1225 return pcpu_unit_size
;