1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2 * Static functions needed during the initialization.
3 * This file is "included" in bnx2x_main.c.
5 * Copyright (c) 2007-2010 Broadcom Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12 * Written by: Vladislav Zolotarov <vladz@broadcom.com>
15 #ifndef BNX2X_INIT_OPS_H
16 #define BNX2X_INIT_OPS_H
18 static int bnx2x_gunzip(struct bnx2x
*bp
, const u8
*zbuf
, int len
);
19 static void bnx2x_reg_wr_ind(struct bnx2x
*bp
, u32 addr
, u32 val
);
20 static void bnx2x_write_dmae_phys_len(struct bnx2x
*bp
, dma_addr_t phys_addr
,
23 static void bnx2x_init_str_wr(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
28 for (i
= 0; i
< len
; i
++)
29 REG_WR(bp
, addr
+ i
*4, data
[i
]);
32 static void bnx2x_init_ind_wr(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
37 for (i
= 0; i
< len
; i
++)
38 REG_WR_IND(bp
, addr
+ i
*4, data
[i
]);
41 static void bnx2x_write_big_buf(struct bnx2x
*bp
, u32 addr
, u32 len
)
44 bnx2x_write_dmae_phys_len(bp
, GUNZIP_PHYS(bp
), addr
, len
);
46 bnx2x_init_str_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
49 static void bnx2x_init_fill(struct bnx2x
*bp
, u32 addr
, int fill
, u32 len
)
51 u32 buf_len
= (((len
*4) > FW_BUF_SIZE
) ? FW_BUF_SIZE
: (len
*4));
52 u32 buf_len32
= buf_len
/4;
55 memset(GUNZIP_BUF(bp
), (u8
)fill
, buf_len
);
57 for (i
= 0; i
< len
; i
+= buf_len32
) {
58 u32 cur_len
= min(buf_len32
, len
- i
);
60 bnx2x_write_big_buf(bp
, addr
+ i
*4, cur_len
);
64 static void bnx2x_init_wr_64(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
67 u32 buf_len32
= FW_BUF_SIZE
/4;
72 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
73 data64
= HILO_U64((*(data
+ 1)), (*data
));
75 len64
= min((u32
)(FW_BUF_SIZE
/8), len64
);
76 for (i
= 0; i
< len64
; i
++) {
77 u64
*pdata
= ((u64
*)(GUNZIP_BUF(bp
))) + i
;
82 for (i
= 0; i
< len
; i
+= buf_len32
) {
83 u32 cur_len
= min(buf_len32
, len
- i
);
85 bnx2x_write_big_buf(bp
, addr
+ i
*4, cur_len
);
89 /*********************************************************
90 There are different blobs for each PRAM section.
91 In addition, each blob write operation is divided into a few operations
92 in order to decrease the amount of phys. contiguous buffer needed.
93 Thus, when we select a blob the address may be with some offset
94 from the beginning of PRAM section.
95 The same holds for the INT_TABLE sections.
96 **********************************************************/
97 #define IF_IS_INT_TABLE_ADDR(base, addr) \
98 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
100 #define IF_IS_PRAM_ADDR(base, addr) \
101 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
103 static const u8
*bnx2x_sel_blob(struct bnx2x
*bp
, u32 addr
, const u8
*data
)
105 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE
, addr
)
106 data
= INIT_TSEM_INT_TABLE_DATA(bp
);
108 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE
, addr
)
109 data
= INIT_CSEM_INT_TABLE_DATA(bp
);
111 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE
, addr
)
112 data
= INIT_USEM_INT_TABLE_DATA(bp
);
114 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE
, addr
)
115 data
= INIT_XSEM_INT_TABLE_DATA(bp
);
117 IF_IS_PRAM_ADDR(TSEM_REG_PRAM
, addr
)
118 data
= INIT_TSEM_PRAM_DATA(bp
);
120 IF_IS_PRAM_ADDR(CSEM_REG_PRAM
, addr
)
121 data
= INIT_CSEM_PRAM_DATA(bp
);
123 IF_IS_PRAM_ADDR(USEM_REG_PRAM
, addr
)
124 data
= INIT_USEM_PRAM_DATA(bp
);
126 IF_IS_PRAM_ADDR(XSEM_REG_PRAM
, addr
)
127 data
= INIT_XSEM_PRAM_DATA(bp
);
132 static void bnx2x_write_big_buf_wb(struct bnx2x
*bp
, u32 addr
, u32 len
)
135 bnx2x_write_dmae_phys_len(bp
, GUNZIP_PHYS(bp
), addr
, len
);
137 bnx2x_init_ind_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
140 static void bnx2x_init_wr_wb(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
143 const u32
*old_data
= data
;
145 data
= (const u32
*)bnx2x_sel_blob(bp
, addr
, (const u8
*)data
);
147 if (bp
->dmae_ready
) {
148 if (old_data
!= data
)
149 VIRT_WR_DMAE_LEN(bp
, data
, addr
, len
, 1);
151 VIRT_WR_DMAE_LEN(bp
, data
, addr
, len
, 0);
153 bnx2x_init_ind_wr(bp
, addr
, data
, len
);
156 static void bnx2x_wr_64(struct bnx2x
*bp
, u32 reg
, u32 val_lo
, u32 val_hi
)
160 wb_write
[0] = val_lo
;
161 wb_write
[1] = val_hi
;
162 REG_WR_DMAE_LEN(bp
, reg
, wb_write
, 2);
165 static void bnx2x_init_wr_zp(struct bnx2x
*bp
, u32 addr
, u32 len
, u32 blob_off
)
167 const u8
*data
= NULL
;
171 data
= bnx2x_sel_blob(bp
, addr
, data
) + blob_off
*4;
173 rc
= bnx2x_gunzip(bp
, data
, len
);
177 /* gunzip_outlen is in dwords */
178 len
= GUNZIP_OUTLEN(bp
);
179 for (i
= 0; i
< len
; i
++)
180 ((u32
*)GUNZIP_BUF(bp
))[i
] =
181 cpu_to_le32(((u32
*)GUNZIP_BUF(bp
))[i
]);
183 bnx2x_write_big_buf_wb(bp
, addr
, len
);
186 static void bnx2x_init_block(struct bnx2x
*bp
, u32 block
, u32 stage
)
189 INIT_OPS_OFFSETS(bp
)[BLOCK_OPS_IDX(block
, stage
, STAGE_START
)];
191 INIT_OPS_OFFSETS(bp
)[BLOCK_OPS_IDX(block
, stage
, STAGE_END
)];
194 u32 i
, op_type
, addr
, len
;
195 const u32
*data
, *data_base
;
198 if (op_start
== op_end
)
201 if (CHIP_REV_IS_FPGA(bp
))
203 else if (CHIP_REV_IS_EMUL(bp
))
208 data_base
= INIT_DATA(bp
);
210 for (i
= op_start
; i
< op_end
; i
++) {
212 op
= (union init_op
*)&(INIT_OPS(bp
)[i
]);
214 op_type
= op
->str_wr
.op
;
215 addr
= op
->str_wr
.offset
;
216 len
= op
->str_wr
.data_len
;
217 data
= data_base
+ op
->str_wr
.data_off
;
219 /* HW/EMUL specific */
220 if ((op_type
> OP_WB
) && (op_type
== hw_wr
))
228 REG_WR(bp
, addr
, op
->write
.val
);
231 bnx2x_init_str_wr(bp
, addr
, data
, len
);
234 bnx2x_init_wr_wb(bp
, addr
, data
, len
);
237 bnx2x_init_ind_wr(bp
, addr
, data
, len
);
240 bnx2x_init_fill(bp
, addr
, 0, op
->zero
.len
);
243 bnx2x_init_wr_zp(bp
, addr
, len
,
244 op
->str_wr
.data_off
);
247 bnx2x_init_wr_64(bp
, addr
, data
, len
);
250 /* happens whenever an op is of a diff HW */
257 /****************************************************************************
259 ****************************************************************************/
261 * This code configures the PCI read/write arbiter
262 * which implements a weighted round robin
263 * between the virtual queues in the chip.
265 * The values were derived for each PCI max payload and max request size.
266 * since max payload and max request size are only known at run time,
267 * this is done as a separate init stage.
275 /* configuration for one arbiter queue */
282 /* derived configuration for each read queue for each max request size */
283 static const struct arb_line read_arb_data
[NUM_RD_Q
][MAX_RD_ORD
+ 1] = {
284 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
285 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
286 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
287 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
288 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
289 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
290 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
291 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
292 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
293 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
294 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
295 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
296 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
297 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
298 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
299 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
300 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
301 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
302 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
303 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
304 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
305 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
306 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
307 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
308 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
309 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
310 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
311 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
312 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
315 /* derived configuration for each write queue for each max request size */
316 static const struct arb_line write_arb_data
[NUM_WR_Q
][MAX_WR_ORD
+ 1] = {
317 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
318 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
319 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
320 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
321 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
322 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
323 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
324 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
325 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
326 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
327 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
328 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
329 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
332 /* register addresses for read queues */
333 static const struct arb_line read_arb_addr
[NUM_RD_Q
-1] = {
334 /* 1 */ {PXP2_REG_RQ_BW_RD_L0
, PXP2_REG_RQ_BW_RD_ADD0
,
335 PXP2_REG_RQ_BW_RD_UBOUND0
},
336 {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
337 PXP2_REG_PSWRQ_BW_UB1
},
338 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
339 PXP2_REG_PSWRQ_BW_UB2
},
340 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
341 PXP2_REG_PSWRQ_BW_UB3
},
342 {PXP2_REG_RQ_BW_RD_L4
, PXP2_REG_RQ_BW_RD_ADD4
,
343 PXP2_REG_RQ_BW_RD_UBOUND4
},
344 {PXP2_REG_RQ_BW_RD_L5
, PXP2_REG_RQ_BW_RD_ADD5
,
345 PXP2_REG_RQ_BW_RD_UBOUND5
},
346 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
347 PXP2_REG_PSWRQ_BW_UB6
},
348 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
349 PXP2_REG_PSWRQ_BW_UB7
},
350 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
351 PXP2_REG_PSWRQ_BW_UB8
},
352 /* 10 */{PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
353 PXP2_REG_PSWRQ_BW_UB9
},
354 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
355 PXP2_REG_PSWRQ_BW_UB10
},
356 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
357 PXP2_REG_PSWRQ_BW_UB11
},
358 {PXP2_REG_RQ_BW_RD_L12
, PXP2_REG_RQ_BW_RD_ADD12
,
359 PXP2_REG_RQ_BW_RD_UBOUND12
},
360 {PXP2_REG_RQ_BW_RD_L13
, PXP2_REG_RQ_BW_RD_ADD13
,
361 PXP2_REG_RQ_BW_RD_UBOUND13
},
362 {PXP2_REG_RQ_BW_RD_L14
, PXP2_REG_RQ_BW_RD_ADD14
,
363 PXP2_REG_RQ_BW_RD_UBOUND14
},
364 {PXP2_REG_RQ_BW_RD_L15
, PXP2_REG_RQ_BW_RD_ADD15
,
365 PXP2_REG_RQ_BW_RD_UBOUND15
},
366 {PXP2_REG_RQ_BW_RD_L16
, PXP2_REG_RQ_BW_RD_ADD16
,
367 PXP2_REG_RQ_BW_RD_UBOUND16
},
368 {PXP2_REG_RQ_BW_RD_L17
, PXP2_REG_RQ_BW_RD_ADD17
,
369 PXP2_REG_RQ_BW_RD_UBOUND17
},
370 {PXP2_REG_RQ_BW_RD_L18
, PXP2_REG_RQ_BW_RD_ADD18
,
371 PXP2_REG_RQ_BW_RD_UBOUND18
},
372 /* 20 */{PXP2_REG_RQ_BW_RD_L19
, PXP2_REG_RQ_BW_RD_ADD19
,
373 PXP2_REG_RQ_BW_RD_UBOUND19
},
374 {PXP2_REG_RQ_BW_RD_L20
, PXP2_REG_RQ_BW_RD_ADD20
,
375 PXP2_REG_RQ_BW_RD_UBOUND20
},
376 {PXP2_REG_RQ_BW_RD_L22
, PXP2_REG_RQ_BW_RD_ADD22
,
377 PXP2_REG_RQ_BW_RD_UBOUND22
},
378 {PXP2_REG_RQ_BW_RD_L23
, PXP2_REG_RQ_BW_RD_ADD23
,
379 PXP2_REG_RQ_BW_RD_UBOUND23
},
380 {PXP2_REG_RQ_BW_RD_L24
, PXP2_REG_RQ_BW_RD_ADD24
,
381 PXP2_REG_RQ_BW_RD_UBOUND24
},
382 {PXP2_REG_RQ_BW_RD_L25
, PXP2_REG_RQ_BW_RD_ADD25
,
383 PXP2_REG_RQ_BW_RD_UBOUND25
},
384 {PXP2_REG_RQ_BW_RD_L26
, PXP2_REG_RQ_BW_RD_ADD26
,
385 PXP2_REG_RQ_BW_RD_UBOUND26
},
386 {PXP2_REG_RQ_BW_RD_L27
, PXP2_REG_RQ_BW_RD_ADD27
,
387 PXP2_REG_RQ_BW_RD_UBOUND27
},
388 {PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
389 PXP2_REG_PSWRQ_BW_UB28
}
392 /* register addresses for write queues */
393 static const struct arb_line write_arb_addr
[NUM_WR_Q
-1] = {
394 /* 1 */ {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
395 PXP2_REG_PSWRQ_BW_UB1
},
396 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
397 PXP2_REG_PSWRQ_BW_UB2
},
398 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
399 PXP2_REG_PSWRQ_BW_UB3
},
400 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
401 PXP2_REG_PSWRQ_BW_UB6
},
402 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
403 PXP2_REG_PSWRQ_BW_UB7
},
404 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
405 PXP2_REG_PSWRQ_BW_UB8
},
406 {PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
407 PXP2_REG_PSWRQ_BW_UB9
},
408 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
409 PXP2_REG_PSWRQ_BW_UB10
},
410 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
411 PXP2_REG_PSWRQ_BW_UB11
},
412 /* 10 */{PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
413 PXP2_REG_PSWRQ_BW_UB28
},
414 {PXP2_REG_RQ_BW_WR_L29
, PXP2_REG_RQ_BW_WR_ADD29
,
415 PXP2_REG_RQ_BW_WR_UBOUND29
},
416 {PXP2_REG_RQ_BW_WR_L30
, PXP2_REG_RQ_BW_WR_ADD30
,
417 PXP2_REG_RQ_BW_WR_UBOUND30
}
420 static void bnx2x_init_pxp_arb(struct bnx2x
*bp
, int r_order
, int w_order
)
424 if (r_order
> MAX_RD_ORD
) {
425 DP(NETIF_MSG_HW
, "read order of %d order adjusted to %d\n",
426 r_order
, MAX_RD_ORD
);
427 r_order
= MAX_RD_ORD
;
429 if (w_order
> MAX_WR_ORD
) {
430 DP(NETIF_MSG_HW
, "write order of %d order adjusted to %d\n",
431 w_order
, MAX_WR_ORD
);
432 w_order
= MAX_WR_ORD
;
434 if (CHIP_REV_IS_FPGA(bp
)) {
435 DP(NETIF_MSG_HW
, "write order adjusted to 1 for FPGA\n");
438 DP(NETIF_MSG_HW
, "read order %d write order %d\n", r_order
, w_order
);
440 for (i
= 0; i
< NUM_RD_Q
-1; i
++) {
441 REG_WR(bp
, read_arb_addr
[i
].l
, read_arb_data
[i
][r_order
].l
);
442 REG_WR(bp
, read_arb_addr
[i
].add
,
443 read_arb_data
[i
][r_order
].add
);
444 REG_WR(bp
, read_arb_addr
[i
].ubound
,
445 read_arb_data
[i
][r_order
].ubound
);
448 for (i
= 0; i
< NUM_WR_Q
-1; i
++) {
449 if ((write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L29
) ||
450 (write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L30
)) {
452 REG_WR(bp
, write_arb_addr
[i
].l
,
453 write_arb_data
[i
][w_order
].l
);
455 REG_WR(bp
, write_arb_addr
[i
].add
,
456 write_arb_data
[i
][w_order
].add
);
458 REG_WR(bp
, write_arb_addr
[i
].ubound
,
459 write_arb_data
[i
][w_order
].ubound
);
462 val
= REG_RD(bp
, write_arb_addr
[i
].l
);
463 REG_WR(bp
, write_arb_addr
[i
].l
,
464 val
| (write_arb_data
[i
][w_order
].l
<< 10));
466 val
= REG_RD(bp
, write_arb_addr
[i
].add
);
467 REG_WR(bp
, write_arb_addr
[i
].add
,
468 val
| (write_arb_data
[i
][w_order
].add
<< 10));
470 val
= REG_RD(bp
, write_arb_addr
[i
].ubound
);
471 REG_WR(bp
, write_arb_addr
[i
].ubound
,
472 val
| (write_arb_data
[i
][w_order
].ubound
<< 7));
476 val
= write_arb_data
[NUM_WR_Q
-1][w_order
].add
;
477 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].ubound
<< 10;
478 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].l
<< 17;
479 REG_WR(bp
, PXP2_REG_PSWRQ_BW_RD
, val
);
481 val
= read_arb_data
[NUM_RD_Q
-1][r_order
].add
;
482 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].ubound
<< 10;
483 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].l
<< 17;
484 REG_WR(bp
, PXP2_REG_PSWRQ_BW_WR
, val
);
486 REG_WR(bp
, PXP2_REG_RQ_WR_MBS0
, w_order
);
487 REG_WR(bp
, PXP2_REG_RQ_WR_MBS1
, w_order
);
488 REG_WR(bp
, PXP2_REG_RQ_RD_MBS0
, r_order
);
489 REG_WR(bp
, PXP2_REG_RQ_RD_MBS1
, r_order
);
491 if ((CHIP_IS_E1(bp
) || CHIP_IS_E1H(bp
)) && (r_order
== MAX_RD_ORD
))
492 REG_WR(bp
, PXP2_REG_RQ_PDR_LIMIT
, 0xe00);
495 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x8 << w_order
));
497 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x18 << w_order
));
499 if (CHIP_IS_E1H(bp
) || CHIP_IS_E2(bp
)) {
500 /* MPS w_order optimal TH presently TH
505 /* DMAE is special */
506 if (CHIP_IS_E2(bp
)) {
507 /* E2 can use optimal TH */
509 REG_WR(bp
, PXP2_REG_WR_DMAE_MPS
, val
);
511 val
= ((w_order
== 0) ? 2 : 3);
512 REG_WR(bp
, PXP2_REG_WR_DMAE_MPS
, 2);
515 REG_WR(bp
, PXP2_REG_WR_HC_MPS
, val
);
516 REG_WR(bp
, PXP2_REG_WR_USDM_MPS
, val
);
517 REG_WR(bp
, PXP2_REG_WR_CSDM_MPS
, val
);
518 REG_WR(bp
, PXP2_REG_WR_TSDM_MPS
, val
);
519 REG_WR(bp
, PXP2_REG_WR_XSDM_MPS
, val
);
520 REG_WR(bp
, PXP2_REG_WR_QM_MPS
, val
);
521 REG_WR(bp
, PXP2_REG_WR_TM_MPS
, val
);
522 REG_WR(bp
, PXP2_REG_WR_SRC_MPS
, val
);
523 REG_WR(bp
, PXP2_REG_WR_DBG_MPS
, val
);
524 REG_WR(bp
, PXP2_REG_WR_CDU_MPS
, val
);
527 /* Validate number of tags suppoted by device */
528 #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980
529 val
= REG_RD(bp
, PCIE_REG_PCIER_TL_HDR_FC_ST
);
532 REG_WR(bp
, PXP2_REG_PGL_TAGS_LIMIT
, 0x20);
535 /****************************************************************************
537 ****************************************************************************/
539 * This codes hides the low level HW interaction for ILT management and
540 * configuration. The API consists of a shadow ILT table which is set by the
541 * driver and a set of routines to use it to configure the HW.
545 /* ILT HW init operations */
547 /* ILT memory management operations */
548 #define ILT_MEMOP_ALLOC 0
549 #define ILT_MEMOP_FREE 1
551 /* the phys address is shifted right 12 bits and has an added
552 * 1=valid bit added to the 53rd bit
553 * then since this is a wide register(TM)
554 * we split it into two 32 bit writes
556 #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
557 #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
558 #define ILT_RANGE(f, l) (((l) << 10) | f)
560 static int bnx2x_ilt_line_mem_op(struct bnx2x
*bp
, struct ilt_line
*line
,
563 if (memop
== ILT_MEMOP_FREE
) {
564 BNX2X_ILT_FREE(line
->page
, line
->page_mapping
, line
->size
);
567 BNX2X_ILT_ZALLOC(line
->page
, &line
->page_mapping
, size
);
575 static int bnx2x_ilt_client_mem_op(struct bnx2x
*bp
, int cli_num
, u8 memop
)
578 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
579 struct ilt_client_info
*ilt_cli
= &ilt
->clients
[cli_num
];
581 if (!ilt
|| !ilt
->lines
)
584 if (ilt_cli
->flags
& (ILT_CLIENT_SKIP_INIT
| ILT_CLIENT_SKIP_MEM
))
587 for (rc
= 0, i
= ilt_cli
->start
; i
<= ilt_cli
->end
&& !rc
; i
++) {
588 rc
= bnx2x_ilt_line_mem_op(bp
, &ilt
->lines
[i
],
589 ilt_cli
->page_size
, memop
);
594 static int bnx2x_ilt_mem_op(struct bnx2x
*bp
, u8 memop
)
596 int rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_CDU
, memop
);
598 rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_QM
, memop
);
600 rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_SRC
, memop
);
602 rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_TM
, memop
);
607 static void bnx2x_ilt_line_wr(struct bnx2x
*bp
, int abs_idx
,
608 dma_addr_t page_mapping
)
613 reg
= PXP2_REG_RQ_ONCHIP_AT
+ abs_idx
*8;
615 reg
= PXP2_REG_RQ_ONCHIP_AT_B0
+ abs_idx
*8;
617 bnx2x_wr_64(bp
, reg
, ILT_ADDR1(page_mapping
), ILT_ADDR2(page_mapping
));
620 static void bnx2x_ilt_line_init_op(struct bnx2x
*bp
, struct bnx2x_ilt
*ilt
,
623 dma_addr_t null_mapping
;
624 int abs_idx
= ilt
->start_line
+ idx
;
629 /* set in the init-value array */
631 bnx2x_ilt_line_wr(bp
, abs_idx
, ilt
->lines
[idx
].page_mapping
);
635 bnx2x_ilt_line_wr(bp
, abs_idx
, null_mapping
);
640 static void bnx2x_ilt_boundry_init_op(struct bnx2x
*bp
,
641 struct ilt_client_info
*ilt_cli
,
642 u32 ilt_start
, u8 initop
)
647 /* The boundary is either SET or INIT,
648 CLEAR => SET and for now SET ~~ INIT */
650 /* find the appropriate regs */
651 if (CHIP_IS_E1(bp
)) {
652 switch (ilt_cli
->client_num
) {
654 start_reg
= PXP2_REG_PSWRQ_CDU0_L2P
;
657 start_reg
= PXP2_REG_PSWRQ_QM0_L2P
;
660 start_reg
= PXP2_REG_PSWRQ_SRC0_L2P
;
663 start_reg
= PXP2_REG_PSWRQ_TM0_L2P
;
666 REG_WR(bp
, start_reg
+ BP_FUNC(bp
)*4,
667 ILT_RANGE((ilt_start
+ ilt_cli
->start
),
668 (ilt_start
+ ilt_cli
->end
)));
670 switch (ilt_cli
->client_num
) {
672 start_reg
= PXP2_REG_RQ_CDU_FIRST_ILT
;
673 end_reg
= PXP2_REG_RQ_CDU_LAST_ILT
;
676 start_reg
= PXP2_REG_RQ_QM_FIRST_ILT
;
677 end_reg
= PXP2_REG_RQ_QM_LAST_ILT
;
680 start_reg
= PXP2_REG_RQ_SRC_FIRST_ILT
;
681 end_reg
= PXP2_REG_RQ_SRC_LAST_ILT
;
684 start_reg
= PXP2_REG_RQ_TM_FIRST_ILT
;
685 end_reg
= PXP2_REG_RQ_TM_LAST_ILT
;
688 REG_WR(bp
, start_reg
, (ilt_start
+ ilt_cli
->start
));
689 REG_WR(bp
, end_reg
, (ilt_start
+ ilt_cli
->end
));
693 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x
*bp
,
694 struct bnx2x_ilt
*ilt
,
695 struct ilt_client_info
*ilt_cli
,
700 if (ilt_cli
->flags
& ILT_CLIENT_SKIP_INIT
)
703 for (i
= ilt_cli
->start
; i
<= ilt_cli
->end
; i
++)
704 bnx2x_ilt_line_init_op(bp
, ilt
, i
, initop
);
706 /* init/clear the ILT boundries */
707 bnx2x_ilt_boundry_init_op(bp
, ilt_cli
, ilt
->start_line
, initop
);
710 static void bnx2x_ilt_client_init_op(struct bnx2x
*bp
,
711 struct ilt_client_info
*ilt_cli
, u8 initop
)
713 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
715 bnx2x_ilt_client_init_op_ilt(bp
, ilt
, ilt_cli
, initop
);
718 static void bnx2x_ilt_client_id_init_op(struct bnx2x
*bp
,
719 int cli_num
, u8 initop
)
721 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
722 struct ilt_client_info
*ilt_cli
= &ilt
->clients
[cli_num
];
724 bnx2x_ilt_client_init_op(bp
, ilt_cli
, initop
);
727 static void bnx2x_ilt_init_op(struct bnx2x
*bp
, u8 initop
)
729 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_CDU
, initop
);
730 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_QM
, initop
);
731 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_SRC
, initop
);
732 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_TM
, initop
);
735 static void bnx2x_ilt_init_client_psz(struct bnx2x
*bp
, int cli_num
,
736 u32 psz_reg
, u8 initop
)
738 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
739 struct ilt_client_info
*ilt_cli
= &ilt
->clients
[cli_num
];
741 if (ilt_cli
->flags
& ILT_CLIENT_SKIP_INIT
)
746 /* set in the init-value array */
748 REG_WR(bp
, psz_reg
, ILOG2(ilt_cli
->page_size
>> 12));
756 * called during init common stage, ilt clients should be initialized
757 * prioir to calling this function
759 static void bnx2x_ilt_init_page_size(struct bnx2x
*bp
, u8 initop
)
761 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_CDU
,
762 PXP2_REG_RQ_CDU_P_SIZE
, initop
);
763 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_QM
,
764 PXP2_REG_RQ_QM_P_SIZE
, initop
);
765 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_SRC
,
766 PXP2_REG_RQ_SRC_P_SIZE
, initop
);
767 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_TM
,
768 PXP2_REG_RQ_TM_P_SIZE
, initop
);
771 /****************************************************************************
773 ****************************************************************************/
774 #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */
775 #define QM_INIT_MIN_CID_COUNT 31
776 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
778 /* called during init port stage */
779 static void bnx2x_qm_init_cid_count(struct bnx2x
*bp
, int qm_cid_count
,
782 int port
= BP_PORT(bp
);
784 if (QM_INIT(qm_cid_count
)) {
787 /* set in the init-value array */
789 REG_WR(bp
, QM_REG_CONNNUM_0
+ port
*4,
790 qm_cid_count
/16 - 1);
798 static void bnx2x_qm_set_ptr_table(struct bnx2x
*bp
, int qm_cid_count
)
803 wb_data
[0] = wb_data
[1] = 0;
805 for (i
= 0; i
< 4 * QM_QUEUES_PER_FUNC
; i
++) {
806 REG_WR(bp
, QM_REG_BASEADDR
+ i
*4,
807 qm_cid_count
* 4 * (i
% QM_QUEUES_PER_FUNC
));
808 bnx2x_init_ind_wr(bp
, QM_REG_PTRTBL
+ i
*8,
811 if (CHIP_IS_E1H(bp
)) {
812 REG_WR(bp
, QM_REG_BASEADDR_EXT_A
+ i
*4,
813 qm_cid_count
* 4 * (i
% QM_QUEUES_PER_FUNC
));
814 bnx2x_init_ind_wr(bp
, QM_REG_PTRTBL_EXT_A
+ i
*8,
820 /* called during init common stage */
821 static void bnx2x_qm_init_ptr_table(struct bnx2x
*bp
, int qm_cid_count
,
824 if (!QM_INIT(qm_cid_count
))
829 /* set in the init-value array */
831 bnx2x_qm_set_ptr_table(bp
, qm_cid_count
);
838 /****************************************************************************
839 * SRC initializations
840 ****************************************************************************/
842 /* called during init func stage */
843 static void bnx2x_src_init_t2(struct bnx2x
*bp
, struct src_ent
*t2
,
844 dma_addr_t t2_mapping
, int src_cid_count
)
847 int port
= BP_PORT(bp
);
850 for (i
= 0; i
< src_cid_count
-1; i
++)
851 t2
[i
].next
= (u64
)(t2_mapping
+ (i
+1)*sizeof(struct src_ent
));
853 /* tell the searcher where the T2 table is */
854 REG_WR(bp
, SRC_REG_COUNTFREE0
+ port
*4, src_cid_count
);
856 bnx2x_wr_64(bp
, SRC_REG_FIRSTFREE0
+ port
*16,
857 U64_LO(t2_mapping
), U64_HI(t2_mapping
));
859 bnx2x_wr_64(bp
, SRC_REG_LASTFREE0
+ port
*16,
860 U64_LO((u64
)t2_mapping
+
861 (src_cid_count
-1) * sizeof(struct src_ent
)),
862 U64_HI((u64
)t2_mapping
+
863 (src_cid_count
-1) * sizeof(struct src_ent
)));
866 #endif /* BNX2X_INIT_OPS_H */