proc: use seq_puts()/seq_putc() where possible
[linux-2.6/next.git] / drivers / net / via-rhine.c
blob5e7f069eab533e75cf950294648a7967da104bb0
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
32 #define DRV_NAME "via-rhine"
33 #define DRV_VERSION "1.5.0"
34 #define DRV_RELDATE "2010-10-09"
37 /* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
40 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
46 defined(CONFIG_SPARC) || defined(__ia64__) || \
47 defined(__sh__) || defined(__mips__)
48 static int rx_copybreak = 1518;
49 #else
50 static int rx_copybreak;
51 #endif
53 /* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55 static int avoid_D3;
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
62 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64 static const int multicast_filter_limit = 32;
67 /* Operational parameters that are set at compile time. */
69 /* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74 #define TX_RING_SIZE 16
75 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
76 #define RX_RING_SIZE 64
78 /* Operational parameters that usually are not changed. */
80 /* Time in jiffies before concluding the transmitter is hung. */
81 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
85 #include <linux/module.h>
86 #include <linux/moduleparam.h>
87 #include <linux/kernel.h>
88 #include <linux/string.h>
89 #include <linux/timer.h>
90 #include <linux/errno.h>
91 #include <linux/ioport.h>
92 #include <linux/interrupt.h>
93 #include <linux/pci.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/netdevice.h>
96 #include <linux/etherdevice.h>
97 #include <linux/skbuff.h>
98 #include <linux/init.h>
99 #include <linux/delay.h>
100 #include <linux/mii.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/if_vlan.h>
104 #include <linux/bitops.h>
105 #include <linux/workqueue.h>
106 #include <asm/processor.h> /* Processor type for cache alignment. */
107 #include <asm/io.h>
108 #include <asm/irq.h>
109 #include <asm/uaccess.h>
110 #include <linux/dmi.h>
112 /* These identify the driver base version and may not be removed. */
113 static const char version[] __devinitconst =
114 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE
115 " Written by Donald Becker\n";
117 /* This driver was written to use PCI memory space. Some early versions
118 of the Rhine may only work correctly with I/O space accesses. */
119 #ifdef CONFIG_VIA_RHINE_MMIO
120 #define USE_MMIO
121 #else
122 #endif
124 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
125 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
126 MODULE_LICENSE("GPL");
128 module_param(max_interrupt_work, int, 0);
129 module_param(debug, int, 0);
130 module_param(rx_copybreak, int, 0);
131 module_param(avoid_D3, bool, 0);
132 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
133 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
134 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
135 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
137 #define MCAM_SIZE 32
138 #define VCAM_SIZE 32
141 Theory of Operation
143 I. Board Compatibility
145 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146 controller.
148 II. Board-specific settings
150 Boards with this chip are functional only in a bus-master PCI slot.
152 Many operational settings are loaded from the EEPROM to the Config word at
153 offset 0x78. For most of these settings, this driver assumes that they are
154 correct.
155 If this driver is compiled to use PCI memory space operations the EEPROM
156 must be configured to enable memory ops.
158 III. Driver operation
160 IIIa. Ring buffers
162 This driver uses two statically allocated fixed-size descriptor lists
163 formed into rings by a branch from the final descriptor to the beginning of
164 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
166 IIIb/c. Transmit/Receive Structure
168 This driver attempts to use a zero-copy receive and transmit scheme.
170 Alas, all data buffers are required to start on a 32 bit boundary, so
171 the driver must often copy transmit packets into bounce buffers.
173 The driver allocates full frame size skbuffs for the Rx ring buffers at
174 open() time and passes the skb->data field to the chip as receive data
175 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176 a fresh skbuff is allocated and the frame is copied to the new skbuff.
177 When the incoming frame is larger, the skbuff is passed directly up the
178 protocol stack. Buffers consumed this way are replaced by newly allocated
179 skbuffs in the last phase of rhine_rx().
181 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182 using a full-sized skbuff for small frames vs. the copying costs of larger
183 frames. New boards are typically used in generously configured machines
184 and the underfilled buffers have negligible impact compared to the benefit of
185 a single allocation size, so the default value of zero results in never
186 copying packets. When copying is done, the cost is usually mitigated by using
187 a combined copy/checksum routine. Copying also preloads the cache, which is
188 most useful with small frames.
190 Since the VIA chips are only able to transfer data to buffers on 32 bit
191 boundaries, the IP header at offset 14 in an ethernet frame isn't
192 longword aligned for further processing. Copying these unaligned buffers
193 has the beneficial effect of 16-byte aligning the IP header.
195 IIId. Synchronization
197 The driver runs as two independent, single-threaded flows of control. One
198 is the send-packet routine, which enforces single-threaded use by the
199 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200 which is single threaded by the hardware and interrupt handling software.
202 The send packet thread has partial control over the Tx ring. It locks the
203 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204 the ring is not available it stops the transmit queue by
205 calling netif_stop_queue.
207 The interrupt handler has exclusive control over the Rx ring and records stats
208 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209 empty by incrementing the dirty_tx mark. If at least half of the entries in
210 the Rx ring are available the transmit queue is woken up if it was stopped.
212 IV. Notes
214 IVb. References
216 Preliminary VT86C100A manual from http://www.via.com.tw/
217 http://www.scyld.com/expert/100mbps.html
218 http://www.scyld.com/expert/NWay.html
219 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
223 IVc. Errata
225 The VT86C100A manual is not reliable information.
226 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227 in significant performance degradation for bounce buffer copies on transmit
228 and unaligned IP headers on receive.
229 The chip does not pad to minimum transmit length.
234 /* This table drives the PCI probe routines. It's mostly boilerplate in all
235 of the drivers, and will likely be provided by some future kernel.
236 Note the matching code -- the first table entry matchs all 56** cards but
237 second only the 1234 card.
240 enum rhine_revs {
241 VT86C100A = 0x00,
242 VTunknown0 = 0x20,
243 VT6102 = 0x40,
244 VT8231 = 0x50, /* Integrated MAC */
245 VT8233 = 0x60, /* Integrated MAC */
246 VT8235 = 0x74, /* Integrated MAC */
247 VT8237 = 0x78, /* Integrated MAC */
248 VTunknown1 = 0x7C,
249 VT6105 = 0x80,
250 VT6105_B0 = 0x83,
251 VT6105L = 0x8A,
252 VT6107 = 0x8C,
253 VTunknown2 = 0x8E,
254 VT6105M = 0x90, /* Management adapter */
257 enum rhine_quirks {
258 rqWOL = 0x0001, /* Wake-On-LAN support */
259 rqForceReset = 0x0002,
260 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
261 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
262 rqRhineI = 0x0100, /* See comment below */
265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266 * MMIO as well as for the collision counter and the Tx FIFO underflow
267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
270 /* Beware of PCI posted writes */
271 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
273 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
274 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
275 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
276 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
277 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
278 { } /* terminate list */
280 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
283 /* Offsets to the device registers. */
284 enum register_offsets {
285 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
286 ChipCmd1=0x09, TQWake=0x0A,
287 IntrStatus=0x0C, IntrEnable=0x0E,
288 MulticastFilter0=0x10, MulticastFilter1=0x14,
289 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
290 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
291 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 StickyHW=0x83, IntrStatus2=0x84,
295 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
296 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
301 /* Bits in ConfigD */
302 enum backoff_bits {
303 BackOptional=0x01, BackModify=0x02,
304 BackCaptureEffect=0x04, BackRandom=0x08
307 /* Bits in the TxConfig (TCR) register */
308 enum tcr_bits {
309 TCR_PQEN=0x01,
310 TCR_LB0=0x02, /* loopback[0] */
311 TCR_LB1=0x04, /* loopback[1] */
312 TCR_OFSET=0x08,
313 TCR_RTGOPT=0x10,
314 TCR_RTFT0=0x20,
315 TCR_RTFT1=0x40,
316 TCR_RTSF=0x80,
319 /* Bits in the CamCon (CAMC) register */
320 enum camcon_bits {
321 CAMC_CAMEN=0x01,
322 CAMC_VCAMSL=0x02,
323 CAMC_CAMWR=0x04,
324 CAMC_CAMRD=0x08,
327 /* Bits in the PCIBusConfig1 (BCR1) register */
328 enum bcr1_bits {
329 BCR1_POT0=0x01,
330 BCR1_POT1=0x02,
331 BCR1_POT2=0x04,
332 BCR1_CTFT0=0x08,
333 BCR1_CTFT1=0x10,
334 BCR1_CTSF=0x20,
335 BCR1_TXQNOBK=0x40, /* for VT6105 */
336 BCR1_VIDFR=0x80, /* for VT6105 */
337 BCR1_MED0=0x40, /* for VT6102 */
338 BCR1_MED1=0x80, /* for VT6102 */
341 #ifdef USE_MMIO
342 /* Registers we check that mmio and reg are the same. */
343 static const int mmio_verify_registers[] = {
344 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
347 #endif
349 /* Bits in the interrupt status/mask registers. */
350 enum intr_status_bits {
351 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
352 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
353 IntrPCIErr=0x0040,
354 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
355 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
356 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
357 IntrRxWakeUp=0x8000,
358 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
359 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
360 IntrTxErrSummary=0x082218,
363 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
364 enum wol_bits {
365 WOLucast = 0x10,
366 WOLmagic = 0x20,
367 WOLbmcast = 0x30,
368 WOLlnkon = 0x40,
369 WOLlnkoff = 0x80,
372 /* The Rx and Tx buffer descriptors. */
373 struct rx_desc {
374 __le32 rx_status;
375 __le32 desc_length; /* Chain flag, Buffer/frame length */
376 __le32 addr;
377 __le32 next_desc;
379 struct tx_desc {
380 __le32 tx_status;
381 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
382 __le32 addr;
383 __le32 next_desc;
386 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
387 #define TXDESC 0x00e08000
389 enum rx_status_bits {
390 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
393 /* Bits in *_desc.*_status */
394 enum desc_status_bits {
395 DescOwn=0x80000000
398 /* Bits in *_desc.*_length */
399 enum desc_length_bits {
400 DescTag=0x00010000
403 /* Bits in ChipCmd. */
404 enum chip_cmd_bits {
405 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
406 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
407 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
408 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
411 struct rhine_private {
412 /* Bit mask for configured VLAN ids */
413 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
415 /* Descriptor rings */
416 struct rx_desc *rx_ring;
417 struct tx_desc *tx_ring;
418 dma_addr_t rx_ring_dma;
419 dma_addr_t tx_ring_dma;
421 /* The addresses of receive-in-place skbuffs. */
422 struct sk_buff *rx_skbuff[RX_RING_SIZE];
423 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
425 /* The saved address of a sent-in-place packet/buffer, for later free(). */
426 struct sk_buff *tx_skbuff[TX_RING_SIZE];
427 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
429 /* Tx bounce buffers (Rhine-I only) */
430 unsigned char *tx_buf[TX_RING_SIZE];
431 unsigned char *tx_bufs;
432 dma_addr_t tx_bufs_dma;
434 struct pci_dev *pdev;
435 long pioaddr;
436 struct net_device *dev;
437 struct napi_struct napi;
438 spinlock_t lock;
439 struct work_struct reset_task;
441 /* Frequently used values: keep some adjacent for cache effect. */
442 u32 quirks;
443 struct rx_desc *rx_head_desc;
444 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
445 unsigned int cur_tx, dirty_tx;
446 unsigned int rx_buf_sz; /* Based on MTU+slack. */
447 u8 wolopts;
449 u8 tx_thresh, rx_thresh;
451 struct mii_if_info mii_if;
452 void __iomem *base;
455 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
456 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
457 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
459 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
460 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
461 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
463 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
464 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
465 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
467 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
468 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
469 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
472 static int mdio_read(struct net_device *dev, int phy_id, int location);
473 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
474 static int rhine_open(struct net_device *dev);
475 static void rhine_reset_task(struct work_struct *work);
476 static void rhine_tx_timeout(struct net_device *dev);
477 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
478 struct net_device *dev);
479 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
480 static void rhine_tx(struct net_device *dev);
481 static int rhine_rx(struct net_device *dev, int limit);
482 static void rhine_error(struct net_device *dev, int intr_status);
483 static void rhine_set_rx_mode(struct net_device *dev);
484 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
485 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
486 static const struct ethtool_ops netdev_ethtool_ops;
487 static int rhine_close(struct net_device *dev);
488 static void rhine_shutdown (struct pci_dev *pdev);
489 static void rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid);
490 static void rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid);
491 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr);
492 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr);
493 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask);
494 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask);
495 static void rhine_init_cam_filter(struct net_device *dev);
496 static void rhine_update_vcam(struct net_device *dev);
498 #define RHINE_WAIT_FOR(condition) do { \
499 int i=1024; \
500 while (!(condition) && --i) \
502 if (debug > 1 && i < 512) \
503 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
504 DRV_NAME, 1024-i, __func__, __LINE__); \
505 } while(0)
507 static inline u32 get_intr_status(struct net_device *dev)
509 struct rhine_private *rp = netdev_priv(dev);
510 void __iomem *ioaddr = rp->base;
511 u32 intr_status;
513 intr_status = ioread16(ioaddr + IntrStatus);
514 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
515 if (rp->quirks & rqStatusWBRace)
516 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
517 return intr_status;
521 * Get power related registers into sane state.
522 * Notify user about past WOL event.
524 static void rhine_power_init(struct net_device *dev)
526 struct rhine_private *rp = netdev_priv(dev);
527 void __iomem *ioaddr = rp->base;
528 u16 wolstat;
530 if (rp->quirks & rqWOL) {
531 /* Make sure chip is in power state D0 */
532 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
534 /* Disable "force PME-enable" */
535 iowrite8(0x80, ioaddr + WOLcgClr);
537 /* Clear power-event config bits (WOL) */
538 iowrite8(0xFF, ioaddr + WOLcrClr);
539 /* More recent cards can manage two additional patterns */
540 if (rp->quirks & rq6patterns)
541 iowrite8(0x03, ioaddr + WOLcrClr1);
543 /* Save power-event status bits */
544 wolstat = ioread8(ioaddr + PwrcsrSet);
545 if (rp->quirks & rq6patterns)
546 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
548 /* Clear power-event status bits */
549 iowrite8(0xFF, ioaddr + PwrcsrClr);
550 if (rp->quirks & rq6patterns)
551 iowrite8(0x03, ioaddr + PwrcsrClr1);
553 if (wolstat) {
554 char *reason;
555 switch (wolstat) {
556 case WOLmagic:
557 reason = "Magic packet";
558 break;
559 case WOLlnkon:
560 reason = "Link went up";
561 break;
562 case WOLlnkoff:
563 reason = "Link went down";
564 break;
565 case WOLucast:
566 reason = "Unicast packet";
567 break;
568 case WOLbmcast:
569 reason = "Multicast/broadcast packet";
570 break;
571 default:
572 reason = "Unknown";
574 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
575 DRV_NAME, reason);
580 static void rhine_chip_reset(struct net_device *dev)
582 struct rhine_private *rp = netdev_priv(dev);
583 void __iomem *ioaddr = rp->base;
585 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
586 IOSYNC;
588 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
589 printk(KERN_INFO "%s: Reset not complete yet. "
590 "Trying harder.\n", DRV_NAME);
592 /* Force reset */
593 if (rp->quirks & rqForceReset)
594 iowrite8(0x40, ioaddr + MiscCmd);
596 /* Reset can take somewhat longer (rare) */
597 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
600 if (debug > 1)
601 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
602 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
603 "failed" : "succeeded");
606 #ifdef USE_MMIO
607 static void enable_mmio(long pioaddr, u32 quirks)
609 int n;
610 if (quirks & rqRhineI) {
611 /* More recent docs say that this bit is reserved ... */
612 n = inb(pioaddr + ConfigA) | 0x20;
613 outb(n, pioaddr + ConfigA);
614 } else {
615 n = inb(pioaddr + ConfigD) | 0x80;
616 outb(n, pioaddr + ConfigD);
619 #endif
622 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
623 * (plus 0x6C for Rhine-I/II)
625 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
627 struct rhine_private *rp = netdev_priv(dev);
628 void __iomem *ioaddr = rp->base;
630 outb(0x20, pioaddr + MACRegEEcsr);
631 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
633 #ifdef USE_MMIO
635 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
636 * MMIO. If reloading EEPROM was done first this could be avoided, but
637 * it is not known if that still works with the "win98-reboot" problem.
639 enable_mmio(pioaddr, rp->quirks);
640 #endif
642 /* Turn off EEPROM-controlled wake-up (magic packet) */
643 if (rp->quirks & rqWOL)
644 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
648 #ifdef CONFIG_NET_POLL_CONTROLLER
649 static void rhine_poll(struct net_device *dev)
651 disable_irq(dev->irq);
652 rhine_interrupt(dev->irq, (void *)dev);
653 enable_irq(dev->irq);
655 #endif
657 static int rhine_napipoll(struct napi_struct *napi, int budget)
659 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
660 struct net_device *dev = rp->dev;
661 void __iomem *ioaddr = rp->base;
662 int work_done;
664 work_done = rhine_rx(dev, budget);
666 if (work_done < budget) {
667 napi_complete(napi);
669 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
670 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
671 IntrTxDone | IntrTxError | IntrTxUnderrun |
672 IntrPCIErr | IntrStatsMax | IntrLinkChange,
673 ioaddr + IntrEnable);
675 return work_done;
678 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
680 struct rhine_private *rp = netdev_priv(dev);
682 /* Reset the chip to erase previous misconfiguration. */
683 rhine_chip_reset(dev);
685 /* Rhine-I needs extra time to recuperate before EEPROM reload */
686 if (rp->quirks & rqRhineI)
687 msleep(5);
689 /* Reload EEPROM controlled bytes cleared by soft reset */
690 rhine_reload_eeprom(pioaddr, dev);
693 static const struct net_device_ops rhine_netdev_ops = {
694 .ndo_open = rhine_open,
695 .ndo_stop = rhine_close,
696 .ndo_start_xmit = rhine_start_tx,
697 .ndo_get_stats = rhine_get_stats,
698 .ndo_set_multicast_list = rhine_set_rx_mode,
699 .ndo_change_mtu = eth_change_mtu,
700 .ndo_validate_addr = eth_validate_addr,
701 .ndo_set_mac_address = eth_mac_addr,
702 .ndo_do_ioctl = netdev_ioctl,
703 .ndo_tx_timeout = rhine_tx_timeout,
704 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
705 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
706 #ifdef CONFIG_NET_POLL_CONTROLLER
707 .ndo_poll_controller = rhine_poll,
708 #endif
711 static int __devinit rhine_init_one(struct pci_dev *pdev,
712 const struct pci_device_id *ent)
714 struct net_device *dev;
715 struct rhine_private *rp;
716 int i, rc;
717 u32 quirks;
718 long pioaddr;
719 long memaddr;
720 void __iomem *ioaddr;
721 int io_size, phy_id;
722 const char *name;
723 #ifdef USE_MMIO
724 int bar = 1;
725 #else
726 int bar = 0;
727 #endif
729 /* when built into the kernel, we only print version if device is found */
730 #ifndef MODULE
731 static int printed_version;
732 if (!printed_version++)
733 printk(version);
734 #endif
736 io_size = 256;
737 phy_id = 0;
738 quirks = 0;
739 name = "Rhine";
740 if (pdev->revision < VTunknown0) {
741 quirks = rqRhineI;
742 io_size = 128;
744 else if (pdev->revision >= VT6102) {
745 quirks = rqWOL | rqForceReset;
746 if (pdev->revision < VT6105) {
747 name = "Rhine II";
748 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
750 else {
751 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
752 if (pdev->revision >= VT6105_B0)
753 quirks |= rq6patterns;
754 if (pdev->revision < VT6105M)
755 name = "Rhine III";
756 else
757 name = "Rhine III (Management Adapter)";
761 rc = pci_enable_device(pdev);
762 if (rc)
763 goto err_out;
765 /* this should always be supported */
766 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
767 if (rc) {
768 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
769 "the card!?\n");
770 goto err_out;
773 /* sanity check */
774 if ((pci_resource_len(pdev, 0) < io_size) ||
775 (pci_resource_len(pdev, 1) < io_size)) {
776 rc = -EIO;
777 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
778 goto err_out;
781 pioaddr = pci_resource_start(pdev, 0);
782 memaddr = pci_resource_start(pdev, 1);
784 pci_set_master(pdev);
786 dev = alloc_etherdev(sizeof(struct rhine_private));
787 if (!dev) {
788 rc = -ENOMEM;
789 printk(KERN_ERR "alloc_etherdev failed\n");
790 goto err_out;
792 SET_NETDEV_DEV(dev, &pdev->dev);
794 rp = netdev_priv(dev);
795 rp->dev = dev;
796 rp->quirks = quirks;
797 rp->pioaddr = pioaddr;
798 rp->pdev = pdev;
800 rc = pci_request_regions(pdev, DRV_NAME);
801 if (rc)
802 goto err_out_free_netdev;
804 ioaddr = pci_iomap(pdev, bar, io_size);
805 if (!ioaddr) {
806 rc = -EIO;
807 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
808 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
809 goto err_out_free_res;
812 #ifdef USE_MMIO
813 enable_mmio(pioaddr, quirks);
815 /* Check that selected MMIO registers match the PIO ones */
816 i = 0;
817 while (mmio_verify_registers[i]) {
818 int reg = mmio_verify_registers[i++];
819 unsigned char a = inb(pioaddr+reg);
820 unsigned char b = readb(ioaddr+reg);
821 if (a != b) {
822 rc = -EIO;
823 printk(KERN_ERR "MMIO do not match PIO [%02x] "
824 "(%02x != %02x)\n", reg, a, b);
825 goto err_out_unmap;
828 #endif /* USE_MMIO */
830 dev->base_addr = (unsigned long)ioaddr;
831 rp->base = ioaddr;
833 /* Get chip registers into a sane state */
834 rhine_power_init(dev);
835 rhine_hw_init(dev, pioaddr);
837 for (i = 0; i < 6; i++)
838 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
839 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
841 if (!is_valid_ether_addr(dev->perm_addr)) {
842 rc = -EIO;
843 printk(KERN_ERR "Invalid MAC address\n");
844 goto err_out_unmap;
847 /* For Rhine-I/II, phy_id is loaded from EEPROM */
848 if (!phy_id)
849 phy_id = ioread8(ioaddr + 0x6C);
851 dev->irq = pdev->irq;
853 spin_lock_init(&rp->lock);
854 INIT_WORK(&rp->reset_task, rhine_reset_task);
856 rp->mii_if.dev = dev;
857 rp->mii_if.mdio_read = mdio_read;
858 rp->mii_if.mdio_write = mdio_write;
859 rp->mii_if.phy_id_mask = 0x1f;
860 rp->mii_if.reg_num_mask = 0x1f;
862 /* The chip-specific entries in the device structure. */
863 dev->netdev_ops = &rhine_netdev_ops;
864 dev->ethtool_ops = &netdev_ethtool_ops,
865 dev->watchdog_timeo = TX_TIMEOUT;
867 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
869 if (rp->quirks & rqRhineI)
870 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
872 if (pdev->revision >= VT6105M)
873 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
874 NETIF_F_HW_VLAN_FILTER;
876 /* dev->name not defined before register_netdev()! */
877 rc = register_netdev(dev);
878 if (rc)
879 goto err_out_unmap;
881 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
882 dev->name, name,
883 #ifdef USE_MMIO
884 memaddr,
885 #else
886 (long)ioaddr,
887 #endif
888 dev->dev_addr, pdev->irq);
890 pci_set_drvdata(pdev, dev);
893 u16 mii_cmd;
894 int mii_status = mdio_read(dev, phy_id, 1);
895 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
896 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
897 if (mii_status != 0xffff && mii_status != 0x0000) {
898 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
899 printk(KERN_INFO "%s: MII PHY found at address "
900 "%d, status 0x%4.4x advertising %4.4x "
901 "Link %4.4x.\n", dev->name, phy_id,
902 mii_status, rp->mii_if.advertising,
903 mdio_read(dev, phy_id, 5));
905 /* set IFF_RUNNING */
906 if (mii_status & BMSR_LSTATUS)
907 netif_carrier_on(dev);
908 else
909 netif_carrier_off(dev);
913 rp->mii_if.phy_id = phy_id;
914 if (debug > 1 && avoid_D3)
915 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
916 dev->name);
918 return 0;
920 err_out_unmap:
921 pci_iounmap(pdev, ioaddr);
922 err_out_free_res:
923 pci_release_regions(pdev);
924 err_out_free_netdev:
925 free_netdev(dev);
926 err_out:
927 return rc;
930 static int alloc_ring(struct net_device* dev)
932 struct rhine_private *rp = netdev_priv(dev);
933 void *ring;
934 dma_addr_t ring_dma;
936 ring = pci_alloc_consistent(rp->pdev,
937 RX_RING_SIZE * sizeof(struct rx_desc) +
938 TX_RING_SIZE * sizeof(struct tx_desc),
939 &ring_dma);
940 if (!ring) {
941 printk(KERN_ERR "Could not allocate DMA memory.\n");
942 return -ENOMEM;
944 if (rp->quirks & rqRhineI) {
945 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
946 PKT_BUF_SZ * TX_RING_SIZE,
947 &rp->tx_bufs_dma);
948 if (rp->tx_bufs == NULL) {
949 pci_free_consistent(rp->pdev,
950 RX_RING_SIZE * sizeof(struct rx_desc) +
951 TX_RING_SIZE * sizeof(struct tx_desc),
952 ring, ring_dma);
953 return -ENOMEM;
957 rp->rx_ring = ring;
958 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
959 rp->rx_ring_dma = ring_dma;
960 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
962 return 0;
965 static void free_ring(struct net_device* dev)
967 struct rhine_private *rp = netdev_priv(dev);
969 pci_free_consistent(rp->pdev,
970 RX_RING_SIZE * sizeof(struct rx_desc) +
971 TX_RING_SIZE * sizeof(struct tx_desc),
972 rp->rx_ring, rp->rx_ring_dma);
973 rp->tx_ring = NULL;
975 if (rp->tx_bufs)
976 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
977 rp->tx_bufs, rp->tx_bufs_dma);
979 rp->tx_bufs = NULL;
983 static void alloc_rbufs(struct net_device *dev)
985 struct rhine_private *rp = netdev_priv(dev);
986 dma_addr_t next;
987 int i;
989 rp->dirty_rx = rp->cur_rx = 0;
991 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
992 rp->rx_head_desc = &rp->rx_ring[0];
993 next = rp->rx_ring_dma;
995 /* Init the ring entries */
996 for (i = 0; i < RX_RING_SIZE; i++) {
997 rp->rx_ring[i].rx_status = 0;
998 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
999 next += sizeof(struct rx_desc);
1000 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1001 rp->rx_skbuff[i] = NULL;
1003 /* Mark the last entry as wrapping the ring. */
1004 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1006 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1007 for (i = 0; i < RX_RING_SIZE; i++) {
1008 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1009 rp->rx_skbuff[i] = skb;
1010 if (skb == NULL)
1011 break;
1012 skb->dev = dev; /* Mark as being used by this device. */
1014 rp->rx_skbuff_dma[i] =
1015 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1016 PCI_DMA_FROMDEVICE);
1018 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1019 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1021 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1024 static void free_rbufs(struct net_device* dev)
1026 struct rhine_private *rp = netdev_priv(dev);
1027 int i;
1029 /* Free all the skbuffs in the Rx queue. */
1030 for (i = 0; i < RX_RING_SIZE; i++) {
1031 rp->rx_ring[i].rx_status = 0;
1032 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1033 if (rp->rx_skbuff[i]) {
1034 pci_unmap_single(rp->pdev,
1035 rp->rx_skbuff_dma[i],
1036 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1037 dev_kfree_skb(rp->rx_skbuff[i]);
1039 rp->rx_skbuff[i] = NULL;
1043 static void alloc_tbufs(struct net_device* dev)
1045 struct rhine_private *rp = netdev_priv(dev);
1046 dma_addr_t next;
1047 int i;
1049 rp->dirty_tx = rp->cur_tx = 0;
1050 next = rp->tx_ring_dma;
1051 for (i = 0; i < TX_RING_SIZE; i++) {
1052 rp->tx_skbuff[i] = NULL;
1053 rp->tx_ring[i].tx_status = 0;
1054 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1055 next += sizeof(struct tx_desc);
1056 rp->tx_ring[i].next_desc = cpu_to_le32(next);
1057 if (rp->quirks & rqRhineI)
1058 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1060 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1064 static void free_tbufs(struct net_device* dev)
1066 struct rhine_private *rp = netdev_priv(dev);
1067 int i;
1069 for (i = 0; i < TX_RING_SIZE; i++) {
1070 rp->tx_ring[i].tx_status = 0;
1071 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1072 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1073 if (rp->tx_skbuff[i]) {
1074 if (rp->tx_skbuff_dma[i]) {
1075 pci_unmap_single(rp->pdev,
1076 rp->tx_skbuff_dma[i],
1077 rp->tx_skbuff[i]->len,
1078 PCI_DMA_TODEVICE);
1080 dev_kfree_skb(rp->tx_skbuff[i]);
1082 rp->tx_skbuff[i] = NULL;
1083 rp->tx_buf[i] = NULL;
1087 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1089 struct rhine_private *rp = netdev_priv(dev);
1090 void __iomem *ioaddr = rp->base;
1092 mii_check_media(&rp->mii_if, debug, init_media);
1094 if (rp->mii_if.full_duplex)
1095 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1096 ioaddr + ChipCmd1);
1097 else
1098 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1099 ioaddr + ChipCmd1);
1100 if (debug > 1)
1101 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1102 rp->mii_if.force_media, netif_carrier_ok(dev));
1105 /* Called after status of force_media possibly changed */
1106 static void rhine_set_carrier(struct mii_if_info *mii)
1108 if (mii->force_media) {
1109 /* autoneg is off: Link is always assumed to be up */
1110 if (!netif_carrier_ok(mii->dev))
1111 netif_carrier_on(mii->dev);
1113 else /* Let MMI library update carrier status */
1114 rhine_check_media(mii->dev, 0);
1115 if (debug > 1)
1116 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1117 mii->dev->name, mii->force_media,
1118 netif_carrier_ok(mii->dev));
1122 * rhine_set_cam - set CAM multicast filters
1123 * @ioaddr: register block of this Rhine
1124 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1125 * @addr: multicast address (6 bytes)
1127 * Load addresses into multicast filters.
1129 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1131 int i;
1133 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1134 wmb();
1136 /* Paranoid -- idx out of range should never happen */
1137 idx &= (MCAM_SIZE - 1);
1139 iowrite8((u8) idx, ioaddr + CamAddr);
1141 for (i = 0; i < 6; i++, addr++)
1142 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1143 udelay(10);
1144 wmb();
1146 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1147 udelay(10);
1149 iowrite8(0, ioaddr + CamCon);
1153 * rhine_set_vlan_cam - set CAM VLAN filters
1154 * @ioaddr: register block of this Rhine
1155 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1156 * @addr: VLAN ID (2 bytes)
1158 * Load addresses into VLAN filters.
1160 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1162 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1163 wmb();
1165 /* Paranoid -- idx out of range should never happen */
1166 idx &= (VCAM_SIZE - 1);
1168 iowrite8((u8) idx, ioaddr + CamAddr);
1170 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1171 udelay(10);
1172 wmb();
1174 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1175 udelay(10);
1177 iowrite8(0, ioaddr + CamCon);
1181 * rhine_set_cam_mask - set multicast CAM mask
1182 * @ioaddr: register block of this Rhine
1183 * @mask: multicast CAM mask
1185 * Mask sets multicast filters active/inactive.
1187 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1189 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1190 wmb();
1192 /* write mask */
1193 iowrite32(mask, ioaddr + CamMask);
1195 /* disable CAMEN */
1196 iowrite8(0, ioaddr + CamCon);
1200 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1201 * @ioaddr: register block of this Rhine
1202 * @mask: VLAN CAM mask
1204 * Mask sets VLAN filters active/inactive.
1206 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1208 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1209 wmb();
1211 /* write mask */
1212 iowrite32(mask, ioaddr + CamMask);
1214 /* disable CAMEN */
1215 iowrite8(0, ioaddr + CamCon);
1219 * rhine_init_cam_filter - initialize CAM filters
1220 * @dev: network device
1222 * Initialize (disable) hardware VLAN and multicast support on this
1223 * Rhine.
1225 static void rhine_init_cam_filter(struct net_device *dev)
1227 struct rhine_private *rp = netdev_priv(dev);
1228 void __iomem *ioaddr = rp->base;
1230 /* Disable all CAMs */
1231 rhine_set_vlan_cam_mask(ioaddr, 0);
1232 rhine_set_cam_mask(ioaddr, 0);
1234 /* disable hardware VLAN support */
1235 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1236 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1240 * rhine_update_vcam - update VLAN CAM filters
1241 * @rp: rhine_private data of this Rhine
1243 * Update VLAN CAM filters to match configuration change.
1245 static void rhine_update_vcam(struct net_device *dev)
1247 struct rhine_private *rp = netdev_priv(dev);
1248 void __iomem *ioaddr = rp->base;
1249 u16 vid;
1250 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1251 unsigned int i = 0;
1253 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1254 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1255 vCAMmask |= 1 << i;
1256 if (++i >= VCAM_SIZE)
1257 break;
1259 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1262 static void rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
1264 struct rhine_private *rp = netdev_priv(dev);
1266 spin_lock_irq(&rp->lock);
1267 set_bit(vid, rp->active_vlans);
1268 rhine_update_vcam(dev);
1269 spin_unlock_irq(&rp->lock);
1272 static void rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
1274 struct rhine_private *rp = netdev_priv(dev);
1276 spin_lock_irq(&rp->lock);
1277 clear_bit(vid, rp->active_vlans);
1278 rhine_update_vcam(dev);
1279 spin_unlock_irq(&rp->lock);
1282 static void init_registers(struct net_device *dev)
1284 struct rhine_private *rp = netdev_priv(dev);
1285 void __iomem *ioaddr = rp->base;
1286 int i;
1288 for (i = 0; i < 6; i++)
1289 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1291 /* Initialize other registers. */
1292 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1293 /* Configure initial FIFO thresholds. */
1294 iowrite8(0x20, ioaddr + TxConfig);
1295 rp->tx_thresh = 0x20;
1296 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1298 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1299 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1301 rhine_set_rx_mode(dev);
1303 if (rp->pdev->revision >= VT6105M)
1304 rhine_init_cam_filter(dev);
1306 napi_enable(&rp->napi);
1308 /* Enable interrupts by setting the interrupt mask. */
1309 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1310 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1311 IntrTxDone | IntrTxError | IntrTxUnderrun |
1312 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1313 ioaddr + IntrEnable);
1315 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1316 ioaddr + ChipCmd);
1317 rhine_check_media(dev, 1);
1320 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1321 static void rhine_enable_linkmon(void __iomem *ioaddr)
1323 iowrite8(0, ioaddr + MIICmd);
1324 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1325 iowrite8(0x80, ioaddr + MIICmd);
1327 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1329 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1332 /* Disable MII link status auto-polling (required for MDIO access) */
1333 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1335 iowrite8(0, ioaddr + MIICmd);
1337 if (quirks & rqRhineI) {
1338 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1340 /* Can be called from ISR. Evil. */
1341 mdelay(1);
1343 /* 0x80 must be set immediately before turning it off */
1344 iowrite8(0x80, ioaddr + MIICmd);
1346 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1348 /* Heh. Now clear 0x80 again. */
1349 iowrite8(0, ioaddr + MIICmd);
1351 else
1352 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1355 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1357 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1359 struct rhine_private *rp = netdev_priv(dev);
1360 void __iomem *ioaddr = rp->base;
1361 int result;
1363 rhine_disable_linkmon(ioaddr, rp->quirks);
1365 /* rhine_disable_linkmon already cleared MIICmd */
1366 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1367 iowrite8(regnum, ioaddr + MIIRegAddr);
1368 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1369 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1370 result = ioread16(ioaddr + MIIData);
1372 rhine_enable_linkmon(ioaddr);
1373 return result;
1376 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1378 struct rhine_private *rp = netdev_priv(dev);
1379 void __iomem *ioaddr = rp->base;
1381 rhine_disable_linkmon(ioaddr, rp->quirks);
1383 /* rhine_disable_linkmon already cleared MIICmd */
1384 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1385 iowrite8(regnum, ioaddr + MIIRegAddr);
1386 iowrite16(value, ioaddr + MIIData);
1387 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1388 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1390 rhine_enable_linkmon(ioaddr);
1393 static int rhine_open(struct net_device *dev)
1395 struct rhine_private *rp = netdev_priv(dev);
1396 void __iomem *ioaddr = rp->base;
1397 int rc;
1399 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1400 dev);
1401 if (rc)
1402 return rc;
1404 if (debug > 1)
1405 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1406 dev->name, rp->pdev->irq);
1408 rc = alloc_ring(dev);
1409 if (rc) {
1410 free_irq(rp->pdev->irq, dev);
1411 return rc;
1413 alloc_rbufs(dev);
1414 alloc_tbufs(dev);
1415 rhine_chip_reset(dev);
1416 init_registers(dev);
1417 if (debug > 2)
1418 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1419 "MII status: %4.4x.\n",
1420 dev->name, ioread16(ioaddr + ChipCmd),
1421 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1423 netif_start_queue(dev);
1425 return 0;
1428 static void rhine_reset_task(struct work_struct *work)
1430 struct rhine_private *rp = container_of(work, struct rhine_private,
1431 reset_task);
1432 struct net_device *dev = rp->dev;
1434 /* protect against concurrent rx interrupts */
1435 disable_irq(rp->pdev->irq);
1437 napi_disable(&rp->napi);
1439 spin_lock_bh(&rp->lock);
1441 /* clear all descriptors */
1442 free_tbufs(dev);
1443 free_rbufs(dev);
1444 alloc_tbufs(dev);
1445 alloc_rbufs(dev);
1447 /* Reinitialize the hardware. */
1448 rhine_chip_reset(dev);
1449 init_registers(dev);
1451 spin_unlock_bh(&rp->lock);
1452 enable_irq(rp->pdev->irq);
1454 dev->trans_start = jiffies; /* prevent tx timeout */
1455 dev->stats.tx_errors++;
1456 netif_wake_queue(dev);
1459 static void rhine_tx_timeout(struct net_device *dev)
1461 struct rhine_private *rp = netdev_priv(dev);
1462 void __iomem *ioaddr = rp->base;
1464 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1465 "%4.4x, resetting...\n",
1466 dev->name, ioread16(ioaddr + IntrStatus),
1467 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1469 schedule_work(&rp->reset_task);
1472 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1473 struct net_device *dev)
1475 struct rhine_private *rp = netdev_priv(dev);
1476 void __iomem *ioaddr = rp->base;
1477 unsigned entry;
1478 unsigned long flags;
1480 /* Caution: the write order is important here, set the field
1481 with the "ownership" bits last. */
1483 /* Calculate the next Tx descriptor entry. */
1484 entry = rp->cur_tx % TX_RING_SIZE;
1486 if (skb_padto(skb, ETH_ZLEN))
1487 return NETDEV_TX_OK;
1489 rp->tx_skbuff[entry] = skb;
1491 if ((rp->quirks & rqRhineI) &&
1492 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1493 /* Must use alignment buffer. */
1494 if (skb->len > PKT_BUF_SZ) {
1495 /* packet too long, drop it */
1496 dev_kfree_skb(skb);
1497 rp->tx_skbuff[entry] = NULL;
1498 dev->stats.tx_dropped++;
1499 return NETDEV_TX_OK;
1502 /* Padding is not copied and so must be redone. */
1503 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1504 if (skb->len < ETH_ZLEN)
1505 memset(rp->tx_buf[entry] + skb->len, 0,
1506 ETH_ZLEN - skb->len);
1507 rp->tx_skbuff_dma[entry] = 0;
1508 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1509 (rp->tx_buf[entry] -
1510 rp->tx_bufs));
1511 } else {
1512 rp->tx_skbuff_dma[entry] =
1513 pci_map_single(rp->pdev, skb->data, skb->len,
1514 PCI_DMA_TODEVICE);
1515 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1518 rp->tx_ring[entry].desc_length =
1519 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1521 if (unlikely(vlan_tx_tag_present(skb))) {
1522 rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16);
1523 /* request tagging */
1524 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1526 else
1527 rp->tx_ring[entry].tx_status = 0;
1529 /* lock eth irq */
1530 spin_lock_irqsave(&rp->lock, flags);
1531 wmb();
1532 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1533 wmb();
1535 rp->cur_tx++;
1537 /* Non-x86 Todo: explicitly flush cache lines here. */
1539 if (vlan_tx_tag_present(skb))
1540 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1541 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1543 /* Wake the potentially-idle transmit channel */
1544 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1545 ioaddr + ChipCmd1);
1546 IOSYNC;
1548 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1549 netif_stop_queue(dev);
1551 spin_unlock_irqrestore(&rp->lock, flags);
1553 if (debug > 4) {
1554 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1555 dev->name, rp->cur_tx-1, entry);
1557 return NETDEV_TX_OK;
1560 /* The interrupt handler does all of the Rx thread work and cleans up
1561 after the Tx thread. */
1562 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1564 struct net_device *dev = dev_instance;
1565 struct rhine_private *rp = netdev_priv(dev);
1566 void __iomem *ioaddr = rp->base;
1567 u32 intr_status;
1568 int boguscnt = max_interrupt_work;
1569 int handled = 0;
1571 while ((intr_status = get_intr_status(dev))) {
1572 handled = 1;
1574 /* Acknowledge all of the current interrupt sources ASAP. */
1575 if (intr_status & IntrTxDescRace)
1576 iowrite8(0x08, ioaddr + IntrStatus2);
1577 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1578 IOSYNC;
1580 if (debug > 4)
1581 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1582 dev->name, intr_status);
1584 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1585 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1586 iowrite16(IntrTxAborted |
1587 IntrTxDone | IntrTxError | IntrTxUnderrun |
1588 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1589 ioaddr + IntrEnable);
1591 napi_schedule(&rp->napi);
1594 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1595 if (intr_status & IntrTxErrSummary) {
1596 /* Avoid scavenging before Tx engine turned off */
1597 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1598 if (debug > 2 &&
1599 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1600 printk(KERN_WARNING "%s: "
1601 "rhine_interrupt() Tx engine "
1602 "still on.\n", dev->name);
1604 rhine_tx(dev);
1607 /* Abnormal error summary/uncommon events handlers. */
1608 if (intr_status & (IntrPCIErr | IntrLinkChange |
1609 IntrStatsMax | IntrTxError | IntrTxAborted |
1610 IntrTxUnderrun | IntrTxDescRace))
1611 rhine_error(dev, intr_status);
1613 if (--boguscnt < 0) {
1614 printk(KERN_WARNING "%s: Too much work at interrupt, "
1615 "status=%#8.8x.\n",
1616 dev->name, intr_status);
1617 break;
1621 if (debug > 3)
1622 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1623 dev->name, ioread16(ioaddr + IntrStatus));
1624 return IRQ_RETVAL(handled);
1627 /* This routine is logically part of the interrupt handler, but isolated
1628 for clarity. */
1629 static void rhine_tx(struct net_device *dev)
1631 struct rhine_private *rp = netdev_priv(dev);
1632 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1634 spin_lock(&rp->lock);
1636 /* find and cleanup dirty tx descriptors */
1637 while (rp->dirty_tx != rp->cur_tx) {
1638 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1639 if (debug > 6)
1640 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1641 entry, txstatus);
1642 if (txstatus & DescOwn)
1643 break;
1644 if (txstatus & 0x8000) {
1645 if (debug > 1)
1646 printk(KERN_DEBUG "%s: Transmit error, "
1647 "Tx status %8.8x.\n",
1648 dev->name, txstatus);
1649 dev->stats.tx_errors++;
1650 if (txstatus & 0x0400)
1651 dev->stats.tx_carrier_errors++;
1652 if (txstatus & 0x0200)
1653 dev->stats.tx_window_errors++;
1654 if (txstatus & 0x0100)
1655 dev->stats.tx_aborted_errors++;
1656 if (txstatus & 0x0080)
1657 dev->stats.tx_heartbeat_errors++;
1658 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1659 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1660 dev->stats.tx_fifo_errors++;
1661 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1662 break; /* Keep the skb - we try again */
1664 /* Transmitter restarted in 'abnormal' handler. */
1665 } else {
1666 if (rp->quirks & rqRhineI)
1667 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1668 else
1669 dev->stats.collisions += txstatus & 0x0F;
1670 if (debug > 6)
1671 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1672 (txstatus >> 3) & 0xF,
1673 txstatus & 0xF);
1674 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1675 dev->stats.tx_packets++;
1677 /* Free the original skb. */
1678 if (rp->tx_skbuff_dma[entry]) {
1679 pci_unmap_single(rp->pdev,
1680 rp->tx_skbuff_dma[entry],
1681 rp->tx_skbuff[entry]->len,
1682 PCI_DMA_TODEVICE);
1684 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1685 rp->tx_skbuff[entry] = NULL;
1686 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1688 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1689 netif_wake_queue(dev);
1691 spin_unlock(&rp->lock);
1695 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1696 * @skb: pointer to sk_buff
1697 * @data_size: used data area of the buffer including CRC
1699 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1700 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1701 * aligned following the CRC.
1703 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1705 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
1706 return ntohs(*(u16 *)trailer);
1709 /* Process up to limit frames from receive ring */
1710 static int rhine_rx(struct net_device *dev, int limit)
1712 struct rhine_private *rp = netdev_priv(dev);
1713 int count;
1714 int entry = rp->cur_rx % RX_RING_SIZE;
1716 if (debug > 4) {
1717 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1718 dev->name, entry,
1719 le32_to_cpu(rp->rx_head_desc->rx_status));
1722 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1723 for (count = 0; count < limit; ++count) {
1724 struct rx_desc *desc = rp->rx_head_desc;
1725 u32 desc_status = le32_to_cpu(desc->rx_status);
1726 u32 desc_length = le32_to_cpu(desc->desc_length);
1727 int data_size = desc_status >> 16;
1729 if (desc_status & DescOwn)
1730 break;
1732 if (debug > 4)
1733 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1734 desc_status);
1736 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1737 if ((desc_status & RxWholePkt) != RxWholePkt) {
1738 printk(KERN_WARNING "%s: Oversized Ethernet "
1739 "frame spanned multiple buffers, entry "
1740 "%#x length %d status %8.8x!\n",
1741 dev->name, entry, data_size,
1742 desc_status);
1743 printk(KERN_WARNING "%s: Oversized Ethernet "
1744 "frame %p vs %p.\n", dev->name,
1745 rp->rx_head_desc, &rp->rx_ring[entry]);
1746 dev->stats.rx_length_errors++;
1747 } else if (desc_status & RxErr) {
1748 /* There was a error. */
1749 if (debug > 2)
1750 printk(KERN_DEBUG "rhine_rx() Rx "
1751 "error was %8.8x.\n",
1752 desc_status);
1753 dev->stats.rx_errors++;
1754 if (desc_status & 0x0030)
1755 dev->stats.rx_length_errors++;
1756 if (desc_status & 0x0048)
1757 dev->stats.rx_fifo_errors++;
1758 if (desc_status & 0x0004)
1759 dev->stats.rx_frame_errors++;
1760 if (desc_status & 0x0002) {
1761 /* this can also be updated outside the interrupt handler */
1762 spin_lock(&rp->lock);
1763 dev->stats.rx_crc_errors++;
1764 spin_unlock(&rp->lock);
1767 } else {
1768 struct sk_buff *skb = NULL;
1769 /* Length should omit the CRC */
1770 int pkt_len = data_size - 4;
1771 u16 vlan_tci = 0;
1773 /* Check if the packet is long enough to accept without
1774 copying to a minimally-sized skbuff. */
1775 if (pkt_len < rx_copybreak)
1776 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1777 if (skb) {
1778 pci_dma_sync_single_for_cpu(rp->pdev,
1779 rp->rx_skbuff_dma[entry],
1780 rp->rx_buf_sz,
1781 PCI_DMA_FROMDEVICE);
1783 skb_copy_to_linear_data(skb,
1784 rp->rx_skbuff[entry]->data,
1785 pkt_len);
1786 skb_put(skb, pkt_len);
1787 pci_dma_sync_single_for_device(rp->pdev,
1788 rp->rx_skbuff_dma[entry],
1789 rp->rx_buf_sz,
1790 PCI_DMA_FROMDEVICE);
1791 } else {
1792 skb = rp->rx_skbuff[entry];
1793 if (skb == NULL) {
1794 printk(KERN_ERR "%s: Inconsistent Rx "
1795 "descriptor chain.\n",
1796 dev->name);
1797 break;
1799 rp->rx_skbuff[entry] = NULL;
1800 skb_put(skb, pkt_len);
1801 pci_unmap_single(rp->pdev,
1802 rp->rx_skbuff_dma[entry],
1803 rp->rx_buf_sz,
1804 PCI_DMA_FROMDEVICE);
1807 if (unlikely(desc_length & DescTag))
1808 vlan_tci = rhine_get_vlan_tci(skb, data_size);
1810 skb->protocol = eth_type_trans(skb, dev);
1812 if (unlikely(desc_length & DescTag))
1813 __vlan_hwaccel_put_tag(skb, vlan_tci);
1814 netif_receive_skb(skb);
1815 dev->stats.rx_bytes += pkt_len;
1816 dev->stats.rx_packets++;
1818 entry = (++rp->cur_rx) % RX_RING_SIZE;
1819 rp->rx_head_desc = &rp->rx_ring[entry];
1822 /* Refill the Rx ring buffers. */
1823 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1824 struct sk_buff *skb;
1825 entry = rp->dirty_rx % RX_RING_SIZE;
1826 if (rp->rx_skbuff[entry] == NULL) {
1827 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1828 rp->rx_skbuff[entry] = skb;
1829 if (skb == NULL)
1830 break; /* Better luck next round. */
1831 skb->dev = dev; /* Mark as being used by this device. */
1832 rp->rx_skbuff_dma[entry] =
1833 pci_map_single(rp->pdev, skb->data,
1834 rp->rx_buf_sz,
1835 PCI_DMA_FROMDEVICE);
1836 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1838 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1841 return count;
1845 * Clears the "tally counters" for CRC errors and missed frames(?).
1846 * It has been reported that some chips need a write of 0 to clear
1847 * these, for others the counters are set to 1 when written to and
1848 * instead cleared when read. So we clear them both ways ...
1850 static inline void clear_tally_counters(void __iomem *ioaddr)
1852 iowrite32(0, ioaddr + RxMissed);
1853 ioread16(ioaddr + RxCRCErrs);
1854 ioread16(ioaddr + RxMissed);
1857 static void rhine_restart_tx(struct net_device *dev) {
1858 struct rhine_private *rp = netdev_priv(dev);
1859 void __iomem *ioaddr = rp->base;
1860 int entry = rp->dirty_tx % TX_RING_SIZE;
1861 u32 intr_status;
1864 * If new errors occured, we need to sort them out before doing Tx.
1865 * In that case the ISR will be back here RSN anyway.
1867 intr_status = get_intr_status(dev);
1869 if ((intr_status & IntrTxErrSummary) == 0) {
1871 /* We know better than the chip where it should continue. */
1872 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1873 ioaddr + TxRingPtr);
1875 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1876 ioaddr + ChipCmd);
1878 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
1879 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1880 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1882 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1883 ioaddr + ChipCmd1);
1884 IOSYNC;
1886 else {
1887 /* This should never happen */
1888 if (debug > 1)
1889 printk(KERN_WARNING "%s: rhine_restart_tx() "
1890 "Another error occured %8.8x.\n",
1891 dev->name, intr_status);
1896 static void rhine_error(struct net_device *dev, int intr_status)
1898 struct rhine_private *rp = netdev_priv(dev);
1899 void __iomem *ioaddr = rp->base;
1901 spin_lock(&rp->lock);
1903 if (intr_status & IntrLinkChange)
1904 rhine_check_media(dev, 0);
1905 if (intr_status & IntrStatsMax) {
1906 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1907 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1908 clear_tally_counters(ioaddr);
1910 if (intr_status & IntrTxAborted) {
1911 if (debug > 1)
1912 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1913 dev->name, intr_status);
1915 if (intr_status & IntrTxUnderrun) {
1916 if (rp->tx_thresh < 0xE0)
1917 BYTE_REG_BITS_SET((rp->tx_thresh += 0x20), 0x80, ioaddr + TxConfig);
1918 if (debug > 1)
1919 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1920 "threshold now %2.2x.\n",
1921 dev->name, rp->tx_thresh);
1923 if (intr_status & IntrTxDescRace) {
1924 if (debug > 2)
1925 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1926 dev->name);
1928 if ((intr_status & IntrTxError) &&
1929 (intr_status & (IntrTxAborted |
1930 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1931 if (rp->tx_thresh < 0xE0) {
1932 BYTE_REG_BITS_SET((rp->tx_thresh += 0x20), 0x80, ioaddr + TxConfig);
1934 if (debug > 1)
1935 printk(KERN_INFO "%s: Unspecified error. Tx "
1936 "threshold now %2.2x.\n",
1937 dev->name, rp->tx_thresh);
1939 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1940 IntrTxError))
1941 rhine_restart_tx(dev);
1943 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1944 IntrTxError | IntrTxAborted | IntrNormalSummary |
1945 IntrTxDescRace)) {
1946 if (debug > 1)
1947 printk(KERN_ERR "%s: Something Wicked happened! "
1948 "%8.8x.\n", dev->name, intr_status);
1951 spin_unlock(&rp->lock);
1954 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1956 struct rhine_private *rp = netdev_priv(dev);
1957 void __iomem *ioaddr = rp->base;
1958 unsigned long flags;
1960 spin_lock_irqsave(&rp->lock, flags);
1961 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1962 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1963 clear_tally_counters(ioaddr);
1964 spin_unlock_irqrestore(&rp->lock, flags);
1966 return &dev->stats;
1969 static void rhine_set_rx_mode(struct net_device *dev)
1971 struct rhine_private *rp = netdev_priv(dev);
1972 void __iomem *ioaddr = rp->base;
1973 u32 mc_filter[2]; /* Multicast hash filter */
1974 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
1975 struct netdev_hw_addr *ha;
1977 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1978 rx_mode = 0x1C;
1979 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1980 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1981 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1982 (dev->flags & IFF_ALLMULTI)) {
1983 /* Too many to match, or accept all multicasts. */
1984 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1985 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1986 } else if (rp->pdev->revision >= VT6105M) {
1987 int i = 0;
1988 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
1989 netdev_for_each_mc_addr(ha, dev) {
1990 if (i == MCAM_SIZE)
1991 break;
1992 rhine_set_cam(ioaddr, i, ha->addr);
1993 mCAMmask |= 1 << i;
1994 i++;
1996 rhine_set_cam_mask(ioaddr, mCAMmask);
1997 } else {
1998 memset(mc_filter, 0, sizeof(mc_filter));
1999 netdev_for_each_mc_addr(ha, dev) {
2000 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2002 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2004 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2005 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2007 /* enable/disable VLAN receive filtering */
2008 if (rp->pdev->revision >= VT6105M) {
2009 if (dev->flags & IFF_PROMISC)
2010 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2011 else
2012 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2014 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2017 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2019 struct rhine_private *rp = netdev_priv(dev);
2021 strcpy(info->driver, DRV_NAME);
2022 strcpy(info->version, DRV_VERSION);
2023 strcpy(info->bus_info, pci_name(rp->pdev));
2026 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2028 struct rhine_private *rp = netdev_priv(dev);
2029 int rc;
2031 spin_lock_irq(&rp->lock);
2032 rc = mii_ethtool_gset(&rp->mii_if, cmd);
2033 spin_unlock_irq(&rp->lock);
2035 return rc;
2038 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2040 struct rhine_private *rp = netdev_priv(dev);
2041 int rc;
2043 spin_lock_irq(&rp->lock);
2044 rc = mii_ethtool_sset(&rp->mii_if, cmd);
2045 spin_unlock_irq(&rp->lock);
2046 rhine_set_carrier(&rp->mii_if);
2048 return rc;
2051 static int netdev_nway_reset(struct net_device *dev)
2053 struct rhine_private *rp = netdev_priv(dev);
2055 return mii_nway_restart(&rp->mii_if);
2058 static u32 netdev_get_link(struct net_device *dev)
2060 struct rhine_private *rp = netdev_priv(dev);
2062 return mii_link_ok(&rp->mii_if);
2065 static u32 netdev_get_msglevel(struct net_device *dev)
2067 return debug;
2070 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2072 debug = value;
2075 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2077 struct rhine_private *rp = netdev_priv(dev);
2079 if (!(rp->quirks & rqWOL))
2080 return;
2082 spin_lock_irq(&rp->lock);
2083 wol->supported = WAKE_PHY | WAKE_MAGIC |
2084 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2085 wol->wolopts = rp->wolopts;
2086 spin_unlock_irq(&rp->lock);
2089 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2091 struct rhine_private *rp = netdev_priv(dev);
2092 u32 support = WAKE_PHY | WAKE_MAGIC |
2093 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2095 if (!(rp->quirks & rqWOL))
2096 return -EINVAL;
2098 if (wol->wolopts & ~support)
2099 return -EINVAL;
2101 spin_lock_irq(&rp->lock);
2102 rp->wolopts = wol->wolopts;
2103 spin_unlock_irq(&rp->lock);
2105 return 0;
2108 static const struct ethtool_ops netdev_ethtool_ops = {
2109 .get_drvinfo = netdev_get_drvinfo,
2110 .get_settings = netdev_get_settings,
2111 .set_settings = netdev_set_settings,
2112 .nway_reset = netdev_nway_reset,
2113 .get_link = netdev_get_link,
2114 .get_msglevel = netdev_get_msglevel,
2115 .set_msglevel = netdev_set_msglevel,
2116 .get_wol = rhine_get_wol,
2117 .set_wol = rhine_set_wol,
2120 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2122 struct rhine_private *rp = netdev_priv(dev);
2123 int rc;
2125 if (!netif_running(dev))
2126 return -EINVAL;
2128 spin_lock_irq(&rp->lock);
2129 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2130 spin_unlock_irq(&rp->lock);
2131 rhine_set_carrier(&rp->mii_if);
2133 return rc;
2136 static int rhine_close(struct net_device *dev)
2138 struct rhine_private *rp = netdev_priv(dev);
2139 void __iomem *ioaddr = rp->base;
2141 napi_disable(&rp->napi);
2142 cancel_work_sync(&rp->reset_task);
2143 netif_stop_queue(dev);
2145 spin_lock_irq(&rp->lock);
2147 if (debug > 1)
2148 printk(KERN_DEBUG "%s: Shutting down ethercard, "
2149 "status was %4.4x.\n",
2150 dev->name, ioread16(ioaddr + ChipCmd));
2152 /* Switch to loopback mode to avoid hardware races. */
2153 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2155 /* Disable interrupts by clearing the interrupt mask. */
2156 iowrite16(0x0000, ioaddr + IntrEnable);
2158 /* Stop the chip's Tx and Rx processes. */
2159 iowrite16(CmdStop, ioaddr + ChipCmd);
2161 spin_unlock_irq(&rp->lock);
2163 free_irq(rp->pdev->irq, dev);
2164 free_rbufs(dev);
2165 free_tbufs(dev);
2166 free_ring(dev);
2168 return 0;
2172 static void __devexit rhine_remove_one(struct pci_dev *pdev)
2174 struct net_device *dev = pci_get_drvdata(pdev);
2175 struct rhine_private *rp = netdev_priv(dev);
2177 unregister_netdev(dev);
2179 pci_iounmap(pdev, rp->base);
2180 pci_release_regions(pdev);
2182 free_netdev(dev);
2183 pci_disable_device(pdev);
2184 pci_set_drvdata(pdev, NULL);
2187 static void rhine_shutdown (struct pci_dev *pdev)
2189 struct net_device *dev = pci_get_drvdata(pdev);
2190 struct rhine_private *rp = netdev_priv(dev);
2191 void __iomem *ioaddr = rp->base;
2193 if (!(rp->quirks & rqWOL))
2194 return; /* Nothing to do for non-WOL adapters */
2196 rhine_power_init(dev);
2198 /* Make sure we use pattern 0, 1 and not 4, 5 */
2199 if (rp->quirks & rq6patterns)
2200 iowrite8(0x04, ioaddr + WOLcgClr);
2202 if (rp->wolopts & WAKE_MAGIC) {
2203 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2205 * Turn EEPROM-controlled wake-up back on -- some hardware may
2206 * not cooperate otherwise.
2208 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2211 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2212 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2214 if (rp->wolopts & WAKE_PHY)
2215 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2217 if (rp->wolopts & WAKE_UCAST)
2218 iowrite8(WOLucast, ioaddr + WOLcrSet);
2220 if (rp->wolopts) {
2221 /* Enable legacy WOL (for old motherboards) */
2222 iowrite8(0x01, ioaddr + PwcfgSet);
2223 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2226 /* Hit power state D3 (sleep) */
2227 if (!avoid_D3)
2228 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2230 /* TODO: Check use of pci_enable_wake() */
2234 #ifdef CONFIG_PM
2235 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
2237 struct net_device *dev = pci_get_drvdata(pdev);
2238 struct rhine_private *rp = netdev_priv(dev);
2239 unsigned long flags;
2241 if (!netif_running(dev))
2242 return 0;
2244 napi_disable(&rp->napi);
2246 netif_device_detach(dev);
2247 pci_save_state(pdev);
2249 spin_lock_irqsave(&rp->lock, flags);
2250 rhine_shutdown(pdev);
2251 spin_unlock_irqrestore(&rp->lock, flags);
2253 free_irq(dev->irq, dev);
2254 return 0;
2257 static int rhine_resume(struct pci_dev *pdev)
2259 struct net_device *dev = pci_get_drvdata(pdev);
2260 struct rhine_private *rp = netdev_priv(dev);
2261 unsigned long flags;
2262 int ret;
2264 if (!netif_running(dev))
2265 return 0;
2267 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
2268 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
2270 ret = pci_set_power_state(pdev, PCI_D0);
2271 if (debug > 1)
2272 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
2273 dev->name, ret ? "failed" : "succeeded", ret);
2275 pci_restore_state(pdev);
2277 spin_lock_irqsave(&rp->lock, flags);
2278 #ifdef USE_MMIO
2279 enable_mmio(rp->pioaddr, rp->quirks);
2280 #endif
2281 rhine_power_init(dev);
2282 free_tbufs(dev);
2283 free_rbufs(dev);
2284 alloc_tbufs(dev);
2285 alloc_rbufs(dev);
2286 init_registers(dev);
2287 spin_unlock_irqrestore(&rp->lock, flags);
2289 netif_device_attach(dev);
2291 return 0;
2293 #endif /* CONFIG_PM */
2295 static struct pci_driver rhine_driver = {
2296 .name = DRV_NAME,
2297 .id_table = rhine_pci_tbl,
2298 .probe = rhine_init_one,
2299 .remove = __devexit_p(rhine_remove_one),
2300 #ifdef CONFIG_PM
2301 .suspend = rhine_suspend,
2302 .resume = rhine_resume,
2303 #endif /* CONFIG_PM */
2304 .shutdown = rhine_shutdown,
2307 static struct dmi_system_id __initdata rhine_dmi_table[] = {
2309 .ident = "EPIA-M",
2310 .matches = {
2311 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2312 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2316 .ident = "KV7",
2317 .matches = {
2318 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2319 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2322 { NULL }
2325 static int __init rhine_init(void)
2327 /* when a module, this is printed whether or not devices are found in probe */
2328 #ifdef MODULE
2329 printk(version);
2330 #endif
2331 if (dmi_check_system(rhine_dmi_table)) {
2332 /* these BIOSes fail at PXE boot if chip is in D3 */
2333 avoid_D3 = 1;
2334 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2335 "enabled.\n",
2336 DRV_NAME);
2338 else if (avoid_D3)
2339 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2341 return pci_register_driver(&rhine_driver);
2345 static void __exit rhine_cleanup(void)
2347 pci_unregister_driver(&rhine_driver);
2351 module_init(rhine_init);
2352 module_exit(rhine_cleanup);