4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/buffer_head.h>
30 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
33 * We don't actually have pdflush, but this one is exported though /proc...
35 int nr_pdflush_threads
;
38 * Passed into wb_writeback(), essentially a subset of writeback_control
40 struct wb_writeback_args
{
42 struct super_block
*sb
;
43 enum writeback_sync_modes sync_mode
;
50 * Work items for the bdi_writeback threads
53 struct list_head list
; /* pending work list */
54 struct rcu_head rcu_head
; /* for RCU free/clear of work */
56 unsigned long seen
; /* threads that have seen this work */
57 atomic_t pending
; /* number of threads still to do work */
59 struct wb_writeback_args args
; /* writeback arguments */
61 unsigned long state
; /* flag bits, see WS_* */
69 #define WS_USED (1 << WS_USED_B)
70 #define WS_ONSTACK (1 << WS_ONSTACK_B)
72 static inline bool bdi_work_on_stack(struct bdi_work
*work
)
74 return test_bit(WS_ONSTACK_B
, &work
->state
);
77 static inline void bdi_work_init(struct bdi_work
*work
,
78 struct wb_writeback_args
*args
)
80 INIT_RCU_HEAD(&work
->rcu_head
);
82 work
->state
= WS_USED
;
86 * writeback_in_progress - determine whether there is writeback in progress
87 * @bdi: the device's backing_dev_info structure.
89 * Determine whether there is writeback waiting to be handled against a
92 int writeback_in_progress(struct backing_dev_info
*bdi
)
94 return !list_empty(&bdi
->work_list
);
97 static void bdi_work_clear(struct bdi_work
*work
)
99 clear_bit(WS_USED_B
, &work
->state
);
100 smp_mb__after_clear_bit();
102 * work can have disappeared at this point. bit waitq functions
103 * should be able to tolerate this, provided bdi_sched_wait does
104 * not dereference it's pointer argument.
106 wake_up_bit(&work
->state
, WS_USED_B
);
109 static void bdi_work_free(struct rcu_head
*head
)
111 struct bdi_work
*work
= container_of(head
, struct bdi_work
, rcu_head
);
113 if (!bdi_work_on_stack(work
))
116 bdi_work_clear(work
);
119 static void wb_work_complete(struct bdi_work
*work
)
121 const enum writeback_sync_modes sync_mode
= work
->args
.sync_mode
;
122 int onstack
= bdi_work_on_stack(work
);
125 * For allocated work, we can clear the done/seen bit right here.
126 * For on-stack work, we need to postpone both the clear and free
127 * to after the RCU grace period, since the stack could be invalidated
128 * as soon as bdi_work_clear() has done the wakeup.
131 bdi_work_clear(work
);
132 if (sync_mode
== WB_SYNC_NONE
|| onstack
)
133 call_rcu(&work
->rcu_head
, bdi_work_free
);
136 static void wb_clear_pending(struct bdi_writeback
*wb
, struct bdi_work
*work
)
139 * The caller has retrieved the work arguments from this work,
140 * drop our reference. If this is the last ref, delete and free it
142 if (atomic_dec_and_test(&work
->pending
)) {
143 struct backing_dev_info
*bdi
= wb
->bdi
;
145 spin_lock(&bdi
->wb_lock
);
146 list_del_rcu(&work
->list
);
147 spin_unlock(&bdi
->wb_lock
);
149 wb_work_complete(work
);
153 static void bdi_queue_work(struct backing_dev_info
*bdi
, struct bdi_work
*work
)
155 work
->seen
= bdi
->wb_mask
;
157 atomic_set(&work
->pending
, bdi
->wb_cnt
);
158 BUG_ON(!bdi
->wb_cnt
);
161 * list_add_tail_rcu() contains the necessary barriers to
162 * make sure the above stores are seen before the item is
163 * noticed on the list
165 spin_lock(&bdi
->wb_lock
);
166 list_add_tail_rcu(&work
->list
, &bdi
->work_list
);
167 spin_unlock(&bdi
->wb_lock
);
170 * If the default thread isn't there, make sure we add it. When
171 * it gets created and wakes up, we'll run this work.
173 if (unlikely(list_empty_careful(&bdi
->wb_list
)))
174 wake_up_process(default_backing_dev_info
.wb
.task
);
176 struct bdi_writeback
*wb
= &bdi
->wb
;
179 wake_up_process(wb
->task
);
184 * Used for on-stack allocated work items. The caller needs to wait until
185 * the wb threads have acked the work before it's safe to continue.
187 static void bdi_wait_on_work_clear(struct bdi_work
*work
)
189 wait_on_bit(&work
->state
, WS_USED_B
, bdi_sched_wait
,
190 TASK_UNINTERRUPTIBLE
);
193 static void bdi_alloc_queue_work(struct backing_dev_info
*bdi
,
194 struct wb_writeback_args
*args
)
196 struct bdi_work
*work
;
199 * This is WB_SYNC_NONE writeback, so if allocation fails just
200 * wakeup the thread for old dirty data writeback
202 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
204 bdi_work_init(work
, args
);
205 bdi_queue_work(bdi
, work
);
207 struct bdi_writeback
*wb
= &bdi
->wb
;
210 wake_up_process(wb
->task
);
215 * bdi_sync_writeback - start and wait for writeback
216 * @bdi: the backing device to write from
217 * @sb: write inodes from this super_block
220 * This does WB_SYNC_ALL data integrity writeback and waits for the
221 * IO to complete. Callers must hold the sb s_umount semaphore for
222 * reading, to avoid having the super disappear before we are done.
224 static void bdi_sync_writeback(struct backing_dev_info
*bdi
,
225 struct super_block
*sb
)
227 struct wb_writeback_args args
= {
229 .sync_mode
= WB_SYNC_ALL
,
230 .nr_pages
= LONG_MAX
,
233 struct bdi_work work
;
235 bdi_work_init(&work
, &args
);
236 work
.state
|= WS_ONSTACK
;
238 bdi_queue_work(bdi
, &work
);
239 bdi_wait_on_work_clear(&work
);
243 * bdi_start_writeback - start writeback
244 * @bdi: the backing device to write from
245 * @nr_pages: the number of pages to write
248 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
249 * started when this function returns, we make no guarentees on
250 * completion. Caller need not hold sb s_umount semaphore.
253 void bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
)
255 struct wb_writeback_args args
= {
256 .sync_mode
= WB_SYNC_NONE
,
257 .nr_pages
= nr_pages
,
262 * We treat @nr_pages=0 as the special case to do background writeback,
263 * ie. to sync pages until the background dirty threshold is reached.
266 args
.nr_pages
= LONG_MAX
;
267 args
.for_background
= 1;
270 bdi_alloc_queue_work(bdi
, &args
);
274 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
275 * furthest end of its superblock's dirty-inode list.
277 * Before stamping the inode's ->dirtied_when, we check to see whether it is
278 * already the most-recently-dirtied inode on the b_dirty list. If that is
279 * the case then the inode must have been redirtied while it was being written
280 * out and we don't reset its dirtied_when.
282 static void redirty_tail(struct inode
*inode
)
284 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
286 if (!list_empty(&wb
->b_dirty
)) {
289 tail
= list_entry(wb
->b_dirty
.next
, struct inode
, i_list
);
290 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
291 inode
->dirtied_when
= jiffies
;
293 list_move(&inode
->i_list
, &wb
->b_dirty
);
297 * requeue inode for re-scanning after bdi->b_io list is exhausted.
299 static void requeue_io(struct inode
*inode
)
301 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
303 list_move(&inode
->i_list
, &wb
->b_more_io
);
306 static void inode_sync_complete(struct inode
*inode
)
309 * Prevent speculative execution through spin_unlock(&inode_lock);
312 wake_up_bit(&inode
->i_state
, __I_SYNC
);
315 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
317 bool ret
= time_after(inode
->dirtied_when
, t
);
320 * For inodes being constantly redirtied, dirtied_when can get stuck.
321 * It _appears_ to be in the future, but is actually in distant past.
322 * This test is necessary to prevent such wrapped-around relative times
323 * from permanently stopping the whole bdi writeback.
325 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
331 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
333 static void move_expired_inodes(struct list_head
*delaying_queue
,
334 struct list_head
*dispatch_queue
,
335 unsigned long *older_than_this
)
338 struct list_head
*pos
, *node
;
339 struct super_block
*sb
= NULL
;
343 while (!list_empty(delaying_queue
)) {
344 inode
= list_entry(delaying_queue
->prev
, struct inode
, i_list
);
345 if (older_than_this
&&
346 inode_dirtied_after(inode
, *older_than_this
))
348 if (sb
&& sb
!= inode
->i_sb
)
351 list_move(&inode
->i_list
, &tmp
);
354 /* just one sb in list, splice to dispatch_queue and we're done */
356 list_splice(&tmp
, dispatch_queue
);
360 /* Move inodes from one superblock together */
361 while (!list_empty(&tmp
)) {
362 inode
= list_entry(tmp
.prev
, struct inode
, i_list
);
364 list_for_each_prev_safe(pos
, node
, &tmp
) {
365 inode
= list_entry(pos
, struct inode
, i_list
);
366 if (inode
->i_sb
== sb
)
367 list_move(&inode
->i_list
, dispatch_queue
);
373 * Queue all expired dirty inodes for io, eldest first.
375 static void queue_io(struct bdi_writeback
*wb
, unsigned long *older_than_this
)
377 list_splice_init(&wb
->b_more_io
, wb
->b_io
.prev
);
378 move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, older_than_this
);
381 static int write_inode(struct inode
*inode
, int sync
)
383 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
))
384 return inode
->i_sb
->s_op
->write_inode(inode
, sync
);
389 * Wait for writeback on an inode to complete.
391 static void inode_wait_for_writeback(struct inode
*inode
)
393 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
394 wait_queue_head_t
*wqh
;
396 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
398 spin_unlock(&inode_lock
);
399 __wait_on_bit(wqh
, &wq
, inode_wait
, TASK_UNINTERRUPTIBLE
);
400 spin_lock(&inode_lock
);
401 } while (inode
->i_state
& I_SYNC
);
405 * Write out an inode's dirty pages. Called under inode_lock. Either the
406 * caller has ref on the inode (either via __iget or via syscall against an fd)
407 * or the inode has I_WILL_FREE set (via generic_forget_inode)
409 * If `wait' is set, wait on the writeout.
411 * The whole writeout design is quite complex and fragile. We want to avoid
412 * starvation of particular inodes when others are being redirtied, prevent
415 * Called under inode_lock.
418 writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
420 struct address_space
*mapping
= inode
->i_mapping
;
421 int wait
= wbc
->sync_mode
== WB_SYNC_ALL
;
425 if (!atomic_read(&inode
->i_count
))
426 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
428 WARN_ON(inode
->i_state
& I_WILL_FREE
);
430 if (inode
->i_state
& I_SYNC
) {
432 * If this inode is locked for writeback and we are not doing
433 * writeback-for-data-integrity, move it to b_more_io so that
434 * writeback can proceed with the other inodes on s_io.
436 * We'll have another go at writing back this inode when we
437 * completed a full scan of b_io.
445 * It's a data-integrity sync. We must wait.
447 inode_wait_for_writeback(inode
);
450 BUG_ON(inode
->i_state
& I_SYNC
);
452 /* Set I_SYNC, reset I_DIRTY */
453 dirty
= inode
->i_state
& I_DIRTY
;
454 inode
->i_state
|= I_SYNC
;
455 inode
->i_state
&= ~I_DIRTY
;
457 spin_unlock(&inode_lock
);
459 ret
= do_writepages(mapping
, wbc
);
461 /* Don't write the inode if only I_DIRTY_PAGES was set */
462 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
463 int err
= write_inode(inode
, wait
);
469 int err
= filemap_fdatawait(mapping
);
474 spin_lock(&inode_lock
);
475 inode
->i_state
&= ~I_SYNC
;
476 if (!(inode
->i_state
& (I_FREEING
| I_CLEAR
))) {
477 if (inode
->i_state
& I_DIRTY
) {
479 * Someone redirtied the inode while were writing back
483 } else if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
485 * We didn't write back all the pages. nfs_writepages()
486 * sometimes bales out without doing anything. Redirty
487 * the inode; Move it from b_io onto b_more_io/b_dirty.
490 * akpm: if the caller was the kupdate function we put
491 * this inode at the head of b_dirty so it gets first
492 * consideration. Otherwise, move it to the tail, for
493 * the reasons described there. I'm not really sure
494 * how much sense this makes. Presumably I had a good
495 * reasons for doing it this way, and I'd rather not
496 * muck with it at present.
498 if (wbc
->for_kupdate
) {
500 * For the kupdate function we move the inode
501 * to b_more_io so it will get more writeout as
502 * soon as the queue becomes uncongested.
504 inode
->i_state
|= I_DIRTY_PAGES
;
505 if (wbc
->nr_to_write
<= 0) {
507 * slice used up: queue for next turn
512 * somehow blocked: retry later
518 * Otherwise fully redirty the inode so that
519 * other inodes on this superblock will get some
520 * writeout. Otherwise heavy writing to one
521 * file would indefinitely suspend writeout of
522 * all the other files.
524 inode
->i_state
|= I_DIRTY_PAGES
;
527 } else if (atomic_read(&inode
->i_count
)) {
529 * The inode is clean, inuse
531 list_move(&inode
->i_list
, &inode_in_use
);
534 * The inode is clean, unused
536 list_move(&inode
->i_list
, &inode_unused
);
539 inode_sync_complete(inode
);
543 static void unpin_sb_for_writeback(struct super_block
**psb
)
545 struct super_block
*sb
= *psb
;
548 up_read(&sb
->s_umount
);
555 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
556 * before calling writeback. So make sure that we do pin it, so it doesn't
557 * go away while we are writing inodes from it.
559 * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
562 static int pin_sb_for_writeback(struct writeback_control
*wbc
,
563 struct inode
*inode
, struct super_block
**psb
)
565 struct super_block
*sb
= inode
->i_sb
;
568 * If this sb is already pinned, nothing more to do. If not and
569 * *psb is non-NULL, unpin the old one first
574 unpin_sb_for_writeback(psb
);
577 * Caller must already hold the ref for this
579 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
580 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
586 if (down_read_trylock(&sb
->s_umount
)) {
588 spin_unlock(&sb_lock
);
592 * umounted, drop rwsem again and fall through to failure
594 up_read(&sb
->s_umount
);
598 spin_unlock(&sb_lock
);
605 static void writeback_inodes_wb(struct bdi_writeback
*wb
,
606 struct writeback_control
*wbc
)
608 struct super_block
*sb
= wbc
->sb
, *pin_sb
= NULL
;
609 const int is_blkdev_sb
= sb_is_blkdev_sb(sb
);
610 const unsigned long start
= jiffies
; /* livelock avoidance */
612 spin_lock(&inode_lock
);
614 if (!wbc
->for_kupdate
|| list_empty(&wb
->b_io
))
615 queue_io(wb
, wbc
->older_than_this
);
617 while (!list_empty(&wb
->b_io
)) {
618 struct inode
*inode
= list_entry(wb
->b_io
.prev
,
619 struct inode
, i_list
);
623 * super block given and doesn't match, skip this inode
625 if (sb
&& sb
!= inode
->i_sb
) {
630 if (!bdi_cap_writeback_dirty(wb
->bdi
)) {
634 * Dirty memory-backed blockdev: the ramdisk
635 * driver does this. Skip just this inode
640 * Dirty memory-backed inode against a filesystem other
641 * than the kernel-internal bdev filesystem. Skip the
647 if (inode
->i_state
& (I_NEW
| I_WILL_FREE
)) {
652 if (wbc
->nonblocking
&& bdi_write_congested(wb
->bdi
)) {
653 wbc
->encountered_congestion
= 1;
655 break; /* Skip a congested fs */
657 continue; /* Skip a congested blockdev */
661 * Was this inode dirtied after sync_sb_inodes was called?
662 * This keeps sync from extra jobs and livelock.
664 if (inode_dirtied_after(inode
, start
))
667 if (pin_sb_for_writeback(wbc
, inode
, &pin_sb
)) {
672 BUG_ON(inode
->i_state
& (I_FREEING
| I_CLEAR
));
674 pages_skipped
= wbc
->pages_skipped
;
675 writeback_single_inode(inode
, wbc
);
676 if (wbc
->pages_skipped
!= pages_skipped
) {
678 * writeback is not making progress due to locked
679 * buffers. Skip this inode for now.
683 spin_unlock(&inode_lock
);
686 spin_lock(&inode_lock
);
687 if (wbc
->nr_to_write
<= 0) {
691 if (!list_empty(&wb
->b_more_io
))
695 unpin_sb_for_writeback(&pin_sb
);
697 spin_unlock(&inode_lock
);
698 /* Leave any unwritten inodes on b_io */
701 void writeback_inodes_wbc(struct writeback_control
*wbc
)
703 struct backing_dev_info
*bdi
= wbc
->bdi
;
705 writeback_inodes_wb(&bdi
->wb
, wbc
);
709 * The maximum number of pages to writeout in a single bdi flush/kupdate
710 * operation. We do this so we don't hold I_SYNC against an inode for
711 * enormous amounts of time, which would block a userspace task which has
712 * been forced to throttle against that inode. Also, the code reevaluates
713 * the dirty each time it has written this many pages.
715 #define MAX_WRITEBACK_PAGES 1024
717 static inline bool over_bground_thresh(void)
719 unsigned long background_thresh
, dirty_thresh
;
721 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
, NULL
);
723 return (global_page_state(NR_FILE_DIRTY
) +
724 global_page_state(NR_UNSTABLE_NFS
) >= background_thresh
);
728 * Explicit flushing or periodic writeback of "old" data.
730 * Define "old": the first time one of an inode's pages is dirtied, we mark the
731 * dirtying-time in the inode's address_space. So this periodic writeback code
732 * just walks the superblock inode list, writing back any inodes which are
733 * older than a specific point in time.
735 * Try to run once per dirty_writeback_interval. But if a writeback event
736 * takes longer than a dirty_writeback_interval interval, then leave a
739 * older_than_this takes precedence over nr_to_write. So we'll only write back
740 * all dirty pages if they are all attached to "old" mappings.
742 static long wb_writeback(struct bdi_writeback
*wb
,
743 struct wb_writeback_args
*args
)
745 struct writeback_control wbc
= {
748 .sync_mode
= args
->sync_mode
,
749 .older_than_this
= NULL
,
750 .for_kupdate
= args
->for_kupdate
,
751 .range_cyclic
= args
->range_cyclic
,
753 unsigned long oldest_jif
;
757 if (wbc
.for_kupdate
) {
758 wbc
.older_than_this
= &oldest_jif
;
759 oldest_jif
= jiffies
-
760 msecs_to_jiffies(dirty_expire_interval
* 10);
762 if (!wbc
.range_cyclic
) {
764 wbc
.range_end
= LLONG_MAX
;
769 * Stop writeback when nr_pages has been consumed
771 if (args
->nr_pages
<= 0)
775 * For background writeout, stop when we are below the
776 * background dirty threshold
778 if (args
->for_background
&& !over_bground_thresh())
782 wbc
.encountered_congestion
= 0;
783 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
784 wbc
.pages_skipped
= 0;
785 writeback_inodes_wb(wb
, &wbc
);
786 args
->nr_pages
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
787 wrote
+= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
790 * If we consumed everything, see if we have more
792 if (wbc
.nr_to_write
<= 0)
795 * Didn't write everything and we don't have more IO, bail
800 * Did we write something? Try for more
802 if (wbc
.nr_to_write
< MAX_WRITEBACK_PAGES
)
805 * Nothing written. Wait for some inode to
806 * become available for writeback. Otherwise
807 * we'll just busyloop.
809 spin_lock(&inode_lock
);
810 if (!list_empty(&wb
->b_more_io
)) {
811 inode
= list_entry(wb
->b_more_io
.prev
,
812 struct inode
, i_list
);
813 inode_wait_for_writeback(inode
);
815 spin_unlock(&inode_lock
);
822 * Return the next bdi_work struct that hasn't been processed by this
823 * wb thread yet. ->seen is initially set for each thread that exists
824 * for this device, when a thread first notices a piece of work it
825 * clears its bit. Depending on writeback type, the thread will notify
826 * completion on either receiving the work (WB_SYNC_NONE) or after
827 * it is done (WB_SYNC_ALL).
829 static struct bdi_work
*get_next_work_item(struct backing_dev_info
*bdi
,
830 struct bdi_writeback
*wb
)
832 struct bdi_work
*work
, *ret
= NULL
;
836 list_for_each_entry_rcu(work
, &bdi
->work_list
, list
) {
837 if (!test_bit(wb
->nr
, &work
->seen
))
839 clear_bit(wb
->nr
, &work
->seen
);
849 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
851 unsigned long expired
;
854 expired
= wb
->last_old_flush
+
855 msecs_to_jiffies(dirty_writeback_interval
* 10);
856 if (time_before(jiffies
, expired
))
859 wb
->last_old_flush
= jiffies
;
860 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
861 global_page_state(NR_UNSTABLE_NFS
) +
862 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
865 struct wb_writeback_args args
= {
866 .nr_pages
= nr_pages
,
867 .sync_mode
= WB_SYNC_NONE
,
872 return wb_writeback(wb
, &args
);
879 * Retrieve work items and do the writeback they describe
881 long wb_do_writeback(struct bdi_writeback
*wb
, int force_wait
)
883 struct backing_dev_info
*bdi
= wb
->bdi
;
884 struct bdi_work
*work
;
887 while ((work
= get_next_work_item(bdi
, wb
)) != NULL
) {
888 struct wb_writeback_args args
= work
->args
;
891 * Override sync mode, in case we must wait for completion
894 work
->args
.sync_mode
= args
.sync_mode
= WB_SYNC_ALL
;
897 * If this isn't a data integrity operation, just notify
898 * that we have seen this work and we are now starting it.
900 if (args
.sync_mode
== WB_SYNC_NONE
)
901 wb_clear_pending(wb
, work
);
903 wrote
+= wb_writeback(wb
, &args
);
906 * This is a data integrity writeback, so only do the
907 * notification when we have completed the work.
909 if (args
.sync_mode
== WB_SYNC_ALL
)
910 wb_clear_pending(wb
, work
);
914 * Check for periodic writeback, kupdated() style
916 wrote
+= wb_check_old_data_flush(wb
);
922 * Handle writeback of dirty data for the device backed by this bdi. Also
923 * wakes up periodically and does kupdated style flushing.
925 int bdi_writeback_task(struct bdi_writeback
*wb
)
927 unsigned long last_active
= jiffies
;
928 unsigned long wait_jiffies
= -1UL;
931 while (!kthread_should_stop()) {
932 pages_written
= wb_do_writeback(wb
, 0);
935 last_active
= jiffies
;
936 else if (wait_jiffies
!= -1UL) {
937 unsigned long max_idle
;
940 * Longest period of inactivity that we tolerate. If we
941 * see dirty data again later, the task will get
942 * recreated automatically.
944 max_idle
= max(5UL * 60 * HZ
, wait_jiffies
);
945 if (time_after(jiffies
, max_idle
+ last_active
))
949 wait_jiffies
= msecs_to_jiffies(dirty_writeback_interval
* 10);
950 schedule_timeout_interruptible(wait_jiffies
);
958 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
959 * writeback, for integrity writeback see bdi_sync_writeback().
961 static void bdi_writeback_all(struct super_block
*sb
, long nr_pages
)
963 struct wb_writeback_args args
= {
965 .nr_pages
= nr_pages
,
966 .sync_mode
= WB_SYNC_NONE
,
968 struct backing_dev_info
*bdi
;
972 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
973 if (!bdi_has_dirty_io(bdi
))
976 bdi_alloc_queue_work(bdi
, &args
);
983 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
986 void wakeup_flusher_threads(long nr_pages
)
989 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
990 global_page_state(NR_UNSTABLE_NFS
);
991 bdi_writeback_all(NULL
, nr_pages
);
994 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
996 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
997 struct dentry
*dentry
;
998 const char *name
= "?";
1000 dentry
= d_find_alias(inode
);
1002 spin_lock(&dentry
->d_lock
);
1003 name
= (const char *) dentry
->d_name
.name
;
1006 "%s(%d): dirtied inode %lu (%s) on %s\n",
1007 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
1008 name
, inode
->i_sb
->s_id
);
1010 spin_unlock(&dentry
->d_lock
);
1017 * __mark_inode_dirty - internal function
1018 * @inode: inode to mark
1019 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1020 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1021 * mark_inode_dirty_sync.
1023 * Put the inode on the super block's dirty list.
1025 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1026 * dirty list only if it is hashed or if it refers to a blockdev.
1027 * If it was not hashed, it will never be added to the dirty list
1028 * even if it is later hashed, as it will have been marked dirty already.
1030 * In short, make sure you hash any inodes _before_ you start marking
1033 * This function *must* be atomic for the I_DIRTY_PAGES case -
1034 * set_page_dirty() is called under spinlock in several places.
1036 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1037 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1038 * the kernel-internal blockdev inode represents the dirtying time of the
1039 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1040 * page->mapping->host, so the page-dirtying time is recorded in the internal
1043 void __mark_inode_dirty(struct inode
*inode
, int flags
)
1045 struct super_block
*sb
= inode
->i_sb
;
1048 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1049 * dirty the inode itself
1051 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
1052 if (sb
->s_op
->dirty_inode
)
1053 sb
->s_op
->dirty_inode(inode
);
1057 * make sure that changes are seen by all cpus before we test i_state
1062 /* avoid the locking if we can */
1063 if ((inode
->i_state
& flags
) == flags
)
1066 if (unlikely(block_dump
))
1067 block_dump___mark_inode_dirty(inode
);
1069 spin_lock(&inode_lock
);
1070 if ((inode
->i_state
& flags
) != flags
) {
1071 const int was_dirty
= inode
->i_state
& I_DIRTY
;
1073 inode
->i_state
|= flags
;
1076 * If the inode is being synced, just update its dirty state.
1077 * The unlocker will place the inode on the appropriate
1078 * superblock list, based upon its state.
1080 if (inode
->i_state
& I_SYNC
)
1084 * Only add valid (hashed) inodes to the superblock's
1085 * dirty list. Add blockdev inodes as well.
1087 if (!S_ISBLK(inode
->i_mode
)) {
1088 if (hlist_unhashed(&inode
->i_hash
))
1091 if (inode
->i_state
& (I_FREEING
|I_CLEAR
))
1095 * If the inode was already on b_dirty/b_io/b_more_io, don't
1096 * reposition it (that would break b_dirty time-ordering).
1099 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
1100 struct backing_dev_info
*bdi
= wb
->bdi
;
1102 if (bdi_cap_writeback_dirty(bdi
) &&
1103 !test_bit(BDI_registered
, &bdi
->state
)) {
1105 printk(KERN_ERR
"bdi-%s not registered\n",
1109 inode
->dirtied_when
= jiffies
;
1110 list_move(&inode
->i_list
, &wb
->b_dirty
);
1114 spin_unlock(&inode_lock
);
1116 EXPORT_SYMBOL(__mark_inode_dirty
);
1119 * Write out a superblock's list of dirty inodes. A wait will be performed
1120 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1122 * If older_than_this is non-NULL, then only write out inodes which
1123 * had their first dirtying at a time earlier than *older_than_this.
1125 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1126 * This function assumes that the blockdev superblock's inodes are backed by
1127 * a variety of queues, so all inodes are searched. For other superblocks,
1128 * assume that all inodes are backed by the same queue.
1130 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1131 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1132 * on the writer throttling path, and we get decent balancing between many
1133 * throttled threads: we don't want them all piling up on inode_sync_wait.
1135 static void wait_sb_inodes(struct super_block
*sb
)
1137 struct inode
*inode
, *old_inode
= NULL
;
1140 * We need to be protected against the filesystem going from
1141 * r/o to r/w or vice versa.
1143 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1145 spin_lock(&inode_lock
);
1148 * Data integrity sync. Must wait for all pages under writeback,
1149 * because there may have been pages dirtied before our sync
1150 * call, but which had writeout started before we write it out.
1151 * In which case, the inode may not be on the dirty list, but
1152 * we still have to wait for that writeout.
1154 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
1155 struct address_space
*mapping
;
1157 if (inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
|I_NEW
))
1159 mapping
= inode
->i_mapping
;
1160 if (mapping
->nrpages
== 0)
1163 spin_unlock(&inode_lock
);
1165 * We hold a reference to 'inode' so it couldn't have
1166 * been removed from s_inodes list while we dropped the
1167 * inode_lock. We cannot iput the inode now as we can
1168 * be holding the last reference and we cannot iput it
1169 * under inode_lock. So we keep the reference and iput
1175 filemap_fdatawait(mapping
);
1179 spin_lock(&inode_lock
);
1181 spin_unlock(&inode_lock
);
1186 * writeback_inodes_sb - writeback dirty inodes from given super_block
1187 * @sb: the superblock
1189 * Start writeback on some inodes on this super_block. No guarantees are made
1190 * on how many (if any) will be written, and this function does not wait
1191 * for IO completion of submitted IO. The number of pages submitted is
1194 void writeback_inodes_sb(struct super_block
*sb
)
1196 unsigned long nr_dirty
= global_page_state(NR_FILE_DIRTY
);
1197 unsigned long nr_unstable
= global_page_state(NR_UNSTABLE_NFS
);
1200 nr_to_write
= nr_dirty
+ nr_unstable
+
1201 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
1203 bdi_writeback_all(sb
, nr_to_write
);
1205 EXPORT_SYMBOL(writeback_inodes_sb
);
1208 * sync_inodes_sb - sync sb inode pages
1209 * @sb: the superblock
1211 * This function writes and waits on any dirty inode belonging to this
1212 * super_block. The number of pages synced is returned.
1214 void sync_inodes_sb(struct super_block
*sb
)
1216 bdi_sync_writeback(sb
->s_bdi
, sb
);
1219 EXPORT_SYMBOL(sync_inodes_sb
);
1222 * write_inode_now - write an inode to disk
1223 * @inode: inode to write to disk
1224 * @sync: whether the write should be synchronous or not
1226 * This function commits an inode to disk immediately if it is dirty. This is
1227 * primarily needed by knfsd.
1229 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1231 int write_inode_now(struct inode
*inode
, int sync
)
1234 struct writeback_control wbc
= {
1235 .nr_to_write
= LONG_MAX
,
1236 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1238 .range_end
= LLONG_MAX
,
1241 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
1242 wbc
.nr_to_write
= 0;
1245 spin_lock(&inode_lock
);
1246 ret
= writeback_single_inode(inode
, &wbc
);
1247 spin_unlock(&inode_lock
);
1249 inode_sync_wait(inode
);
1252 EXPORT_SYMBOL(write_inode_now
);
1255 * sync_inode - write an inode and its pages to disk.
1256 * @inode: the inode to sync
1257 * @wbc: controls the writeback mode
1259 * sync_inode() will write an inode and its pages to disk. It will also
1260 * correctly update the inode on its superblock's dirty inode lists and will
1261 * update inode->i_state.
1263 * The caller must have a ref on the inode.
1265 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1269 spin_lock(&inode_lock
);
1270 ret
= writeback_single_inode(inode
, wbc
);
1271 spin_unlock(&inode_lock
);
1274 EXPORT_SYMBOL(sync_inode
);