2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
26 #include <asm/highmem.h>
27 #include <asm/traps.h>
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
35 * empty_zero_page is a special page that is used for
36 * zero-initialized data and COW.
38 struct page
*empty_zero_page
;
39 EXPORT_SYMBOL(empty_zero_page
);
42 * The pmd table for the upper-most set of pages.
46 #define CPOLICY_UNCACHED 0
47 #define CPOLICY_BUFFERED 1
48 #define CPOLICY_WRITETHROUGH 2
49 #define CPOLICY_WRITEBACK 3
50 #define CPOLICY_WRITEALLOC 4
52 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
53 static unsigned int ecc_mask __initdata
= 0;
55 pgprot_t pgprot_kernel
;
57 EXPORT_SYMBOL(pgprot_user
);
58 EXPORT_SYMBOL(pgprot_kernel
);
61 const char policy
[16];
67 static struct cachepolicy cache_policies
[] __initdata
= {
71 .pmd
= PMD_SECT_UNCACHED
,
72 .pte
= L_PTE_MT_UNCACHED
,
76 .pmd
= PMD_SECT_BUFFERED
,
77 .pte
= L_PTE_MT_BUFFERABLE
,
79 .policy
= "writethrough",
82 .pte
= L_PTE_MT_WRITETHROUGH
,
84 .policy
= "writeback",
87 .pte
= L_PTE_MT_WRITEBACK
,
89 .policy
= "writealloc",
92 .pte
= L_PTE_MT_WRITEALLOC
,
97 * These are useful for identifying cache coherency
98 * problems by allowing the cache or the cache and
99 * writebuffer to be turned off. (Note: the write
100 * buffer should not be on and the cache off).
102 static int __init
early_cachepolicy(char *p
)
106 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
107 int len
= strlen(cache_policies
[i
].policy
);
109 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
111 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
112 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
116 if (i
== ARRAY_SIZE(cache_policies
))
117 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
119 * This restriction is partly to do with the way we boot; it is
120 * unpredictable to have memory mapped using two different sets of
121 * memory attributes (shared, type, and cache attribs). We can not
122 * change these attributes once the initial assembly has setup the
125 if (cpu_architecture() >= CPU_ARCH_ARMv6
) {
126 printk(KERN_WARNING
"Only cachepolicy=writeback supported on ARMv6 and later\n");
127 cachepolicy
= CPOLICY_WRITEBACK
;
130 set_cr(cr_alignment
);
133 early_param("cachepolicy", early_cachepolicy
);
135 static int __init
early_nocache(char *__unused
)
137 char *p
= "buffered";
138 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
139 early_cachepolicy(p
);
142 early_param("nocache", early_nocache
);
144 static int __init
early_nowrite(char *__unused
)
146 char *p
= "uncached";
147 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
148 early_cachepolicy(p
);
151 early_param("nowb", early_nowrite
);
153 #ifndef CONFIG_ARM_LPAE
154 static int __init
early_ecc(char *p
)
156 if (memcmp(p
, "on", 2) == 0)
157 ecc_mask
= PMD_PROTECTION
;
158 else if (memcmp(p
, "off", 3) == 0)
162 early_param("ecc", early_ecc
);
165 static int __init
noalign_setup(char *__unused
)
167 cr_alignment
&= ~CR_A
;
168 cr_no_alignment
&= ~CR_A
;
169 set_cr(cr_alignment
);
172 __setup("noalign", noalign_setup
);
175 void adjust_cr(unsigned long mask
, unsigned long set
)
183 local_irq_save(flags
);
185 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
186 cr_alignment
= (cr_alignment
& ~mask
) | set
;
188 set_cr((get_cr() & ~mask
) | set
);
190 local_irq_restore(flags
);
194 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
195 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
197 static struct mem_type mem_types
[] = {
198 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
199 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
201 .prot_l1
= PMD_TYPE_TABLE
,
202 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
205 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
206 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
207 .prot_l1
= PMD_TYPE_TABLE
,
208 .prot_sect
= PROT_SECT_DEVICE
,
211 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
212 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
213 .prot_l1
= PMD_TYPE_TABLE
,
214 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
217 [MT_DEVICE_WC
] = { /* ioremap_wc */
218 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
219 .prot_l1
= PMD_TYPE_TABLE
,
220 .prot_sect
= PROT_SECT_DEVICE
,
224 .prot_pte
= PROT_PTE_DEVICE
,
225 .prot_l1
= PMD_TYPE_TABLE
,
226 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
230 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
231 .domain
= DOMAIN_KERNEL
,
233 #ifndef CONFIG_ARM_LPAE
235 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
236 .domain
= DOMAIN_KERNEL
,
240 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
242 .prot_l1
= PMD_TYPE_TABLE
,
243 .domain
= DOMAIN_USER
,
245 [MT_HIGH_VECTORS
] = {
246 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
247 L_PTE_USER
| L_PTE_RDONLY
,
248 .prot_l1
= PMD_TYPE_TABLE
,
249 .domain
= DOMAIN_USER
,
252 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
253 .prot_l1
= PMD_TYPE_TABLE
,
254 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
255 .domain
= DOMAIN_KERNEL
,
258 .prot_sect
= PMD_TYPE_SECT
,
259 .domain
= DOMAIN_KERNEL
,
261 [MT_MEMORY_NONCACHED
] = {
262 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
264 .prot_l1
= PMD_TYPE_TABLE
,
265 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
266 .domain
= DOMAIN_KERNEL
,
269 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
271 .prot_l1
= PMD_TYPE_TABLE
,
272 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
273 .domain
= DOMAIN_KERNEL
,
276 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
277 .prot_l1
= PMD_TYPE_TABLE
,
278 .domain
= DOMAIN_KERNEL
,
282 const struct mem_type
*get_mem_type(unsigned int type
)
284 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
286 EXPORT_SYMBOL(get_mem_type
);
289 * Adjust the PMD section entries according to the CPU in use.
291 static void __init
build_mem_type_table(void)
293 struct cachepolicy
*cp
;
294 unsigned int cr
= get_cr();
295 pteval_t user_pgprot
, kern_pgprot
, vecs_pgprot
;
296 int cpu_arch
= cpu_architecture();
299 if (cpu_arch
< CPU_ARCH_ARMv6
) {
300 #if defined(CONFIG_CPU_DCACHE_DISABLE)
301 if (cachepolicy
> CPOLICY_BUFFERED
)
302 cachepolicy
= CPOLICY_BUFFERED
;
303 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
304 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
305 cachepolicy
= CPOLICY_WRITETHROUGH
;
308 if (cpu_arch
< CPU_ARCH_ARMv5
) {
309 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
310 cachepolicy
= CPOLICY_WRITEBACK
;
314 cachepolicy
= CPOLICY_WRITEALLOC
;
317 * Strip out features not present on earlier architectures.
318 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
319 * without extended page tables don't have the 'Shared' bit.
321 if (cpu_arch
< CPU_ARCH_ARMv5
)
322 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
323 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
324 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
325 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
326 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
329 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
330 * "update-able on write" bit on ARM610). However, Xscale and
331 * Xscale3 require this bit to be cleared.
333 if (cpu_is_xscale() || cpu_is_xsc3()) {
334 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
335 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
336 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
338 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
339 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
340 if (mem_types
[i
].prot_l1
)
341 mem_types
[i
].prot_l1
|= PMD_BIT4
;
342 if (mem_types
[i
].prot_sect
)
343 mem_types
[i
].prot_sect
|= PMD_BIT4
;
348 * Mark the device areas according to the CPU/architecture.
350 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
351 if (!cpu_is_xsc3()) {
353 * Mark device regions on ARMv6+ as execute-never
354 * to prevent speculative instruction fetches.
356 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
357 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
358 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
359 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
361 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
363 * For ARMv7 with TEX remapping,
364 * - shared device is SXCB=1100
365 * - nonshared device is SXCB=0100
366 * - write combine device mem is SXCB=0001
367 * (Uncached Normal memory)
369 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
370 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
371 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
372 } else if (cpu_is_xsc3()) {
375 * - shared device is TEXCB=00101
376 * - nonshared device is TEXCB=01000
377 * - write combine device mem is TEXCB=00100
378 * (Inner/Outer Uncacheable in xsc3 parlance)
380 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
381 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
382 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
385 * For ARMv6 and ARMv7 without TEX remapping,
386 * - shared device is TEXCB=00001
387 * - nonshared device is TEXCB=01000
388 * - write combine device mem is TEXCB=00100
389 * (Uncached Normal in ARMv6 parlance).
391 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
392 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
393 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
397 * On others, write combining is "Uncached/Buffered"
399 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
403 * Now deal with the memory-type mappings
405 cp
= &cache_policies
[cachepolicy
];
406 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
409 * Only use write-through for non-SMP systems
411 if (!is_smp() && cpu_arch
>= CPU_ARCH_ARMv5
&& cachepolicy
> CPOLICY_WRITETHROUGH
)
412 vecs_pgprot
= cache_policies
[CPOLICY_WRITETHROUGH
].pte
;
415 * Enable CPU-specific coherency if supported.
416 * (Only available on XSC3 at the moment.)
418 if (arch_is_coherent() && cpu_is_xsc3()) {
419 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
420 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
421 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_S
;
422 mem_types
[MT_MEMORY_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
425 * ARMv6 and above have extended page tables.
427 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
428 #ifndef CONFIG_ARM_LPAE
430 * Mark cache clean areas and XIP ROM read only
431 * from SVC mode and no access from userspace.
433 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
434 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
435 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
440 * Mark memory with the "shared" attribute
443 user_pgprot
|= L_PTE_SHARED
;
444 kern_pgprot
|= L_PTE_SHARED
;
445 vecs_pgprot
|= L_PTE_SHARED
;
446 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
447 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
448 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
449 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
450 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
451 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
452 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_S
;
453 mem_types
[MT_MEMORY_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
458 * Non-cacheable Normal - intended for memory areas that must
459 * not cause dirty cache line writebacks when used
461 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
462 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
463 /* Non-cacheable Normal is XCB = 001 */
464 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
467 /* For both ARMv6 and non-TEX-remapping ARMv7 */
468 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
472 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
475 #ifdef CONFIG_ARM_LPAE
477 * Do not generate access flag faults for the kernel mappings.
479 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
480 mem_types
[i
].prot_pte
|= PTE_EXT_AF
;
481 mem_types
[i
].prot_sect
|= PMD_SECT_AF
;
483 kern_pgprot
|= PTE_EXT_AF
;
484 vecs_pgprot
|= PTE_EXT_AF
;
487 for (i
= 0; i
< 16; i
++) {
488 unsigned long v
= pgprot_val(protection_map
[i
]);
489 protection_map
[i
] = __pgprot(v
| user_pgprot
);
492 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
493 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
495 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
496 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
497 L_PTE_DIRTY
| kern_pgprot
);
499 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
500 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
501 mem_types
[MT_MEMORY
].prot_sect
|= ecc_mask
| cp
->pmd
;
502 mem_types
[MT_MEMORY
].prot_pte
|= kern_pgprot
;
503 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= ecc_mask
;
504 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
508 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
512 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
515 printk("Memory policy: ECC %sabled, Data cache %s\n",
516 ecc_mask
? "en" : "dis", cp
->policy
);
518 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
519 struct mem_type
*t
= &mem_types
[i
];
521 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
523 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
527 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
528 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
529 unsigned long size
, pgprot_t vma_prot
)
532 return pgprot_noncached(vma_prot
);
533 else if (file
->f_flags
& O_SYNC
)
534 return pgprot_writecombine(vma_prot
);
537 EXPORT_SYMBOL(phys_mem_access_prot
);
540 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
542 static void __init
*early_alloc(unsigned long sz
)
544 void *ptr
= __va(memblock_alloc(sz
, sz
));
549 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
, unsigned long prot
)
551 if (pmd_none(*pmd
)) {
552 pte_t
*pte
= early_alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
553 __pmd_populate(pmd
, __pa(pte
), prot
);
555 BUG_ON(pmd_bad(*pmd
));
556 return pte_offset_kernel(pmd
, addr
);
559 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
560 unsigned long end
, unsigned long pfn
,
561 const struct mem_type
*type
)
563 pte_t
*pte
= early_pte_alloc(pmd
, addr
, type
->prot_l1
);
565 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)), 0);
567 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
570 static void __init
alloc_init_section(pud_t
*pud
, unsigned long addr
,
571 unsigned long end
, phys_addr_t phys
,
572 const struct mem_type
*type
)
574 pmd_t
*pmd
= pmd_offset(pud
, addr
);
577 * Try a section mapping - end, addr and phys must all be aligned
578 * to a section boundary. Note that PMDs refer to the individual
579 * L1 entries, whereas PGDs refer to a group of L1 entries making
580 * up one logical pointer to an L2 table.
582 if (((addr
| end
| phys
) & ~SECTION_MASK
) == 0) {
585 #ifndef CONFIG_ARM_LPAE
586 if (addr
& SECTION_SIZE
)
591 *pmd
= __pmd(phys
| type
->prot_sect
);
592 phys
+= SECTION_SIZE
;
593 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
598 * No need to loop; pte's aren't interested in the
599 * individual L1 entries.
601 alloc_init_pte(pmd
, addr
, end
, __phys_to_pfn(phys
), type
);
605 static void alloc_init_pud(pgd_t
*pgd
, unsigned long addr
, unsigned long end
,
606 unsigned long phys
, const struct mem_type
*type
)
608 pud_t
*pud
= pud_offset(pgd
, addr
);
612 next
= pud_addr_end(addr
, end
);
613 alloc_init_section(pud
, addr
, next
, phys
, type
);
615 } while (pud
++, addr
= next
, addr
!= end
);
618 #ifndef CONFIG_ARM_LPAE
619 static void __init
create_36bit_mapping(struct map_desc
*md
,
620 const struct mem_type
*type
)
622 unsigned long addr
, length
, end
;
627 phys
= __pfn_to_phys(md
->pfn
);
628 length
= PAGE_ALIGN(md
->length
);
630 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
631 printk(KERN_ERR
"MM: CPU does not support supersection "
632 "mapping for 0x%08llx at 0x%08lx\n",
633 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
637 /* N.B. ARMv6 supersections are only defined to work with domain 0.
638 * Since domain assignments can in fact be arbitrary, the
639 * 'domain == 0' check below is required to insure that ARMv6
640 * supersections are only allocated for domain 0 regardless
641 * of the actual domain assignments in use.
644 printk(KERN_ERR
"MM: invalid domain in supersection "
645 "mapping for 0x%08llx at 0x%08lx\n",
646 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
650 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
651 printk(KERN_ERR
"MM: cannot create mapping for 0x%08llx"
652 " at 0x%08lx invalid alignment\n",
653 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
658 * Shift bits [35:32] of address into bits [23:20] of PMD
661 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
663 pgd
= pgd_offset_k(addr
);
666 pud_t
*pud
= pud_offset(pgd
, addr
);
667 pmd_t
*pmd
= pmd_offset(pud
, addr
);
670 for (i
= 0; i
< 16; i
++)
671 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
673 addr
+= SUPERSECTION_SIZE
;
674 phys
+= SUPERSECTION_SIZE
;
675 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
676 } while (addr
!= end
);
678 #endif /* !CONFIG_ARM_LPAE */
681 * Create the page directory entries and any necessary
682 * page tables for the mapping specified by `md'. We
683 * are able to cope here with varying sizes and address
684 * offsets, and we take full advantage of sections and
687 static void __init
create_mapping(struct map_desc
*md
)
689 unsigned long addr
, length
, end
;
691 const struct mem_type
*type
;
694 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
695 printk(KERN_WARNING
"BUG: not creating mapping for 0x%08llx"
696 " at 0x%08lx in user region\n",
697 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
701 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
702 md
->virtual >= PAGE_OFFSET
&& md
->virtual < VMALLOC_END
) {
703 printk(KERN_WARNING
"BUG: mapping for 0x%08llx"
704 " at 0x%08lx overlaps vmalloc space\n",
705 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
708 type
= &mem_types
[md
->type
];
710 #ifndef CONFIG_ARM_LPAE
712 * Catch 36-bit addresses
714 if (md
->pfn
>= 0x100000) {
715 create_36bit_mapping(md
, type
);
720 addr
= md
->virtual & PAGE_MASK
;
721 phys
= __pfn_to_phys(md
->pfn
);
722 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
724 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
725 printk(KERN_WARNING
"BUG: map for 0x%08llx at 0x%08lx can not "
726 "be mapped using pages, ignoring.\n",
727 (long long)__pfn_to_phys(md
->pfn
), addr
);
731 pgd
= pgd_offset_k(addr
);
734 unsigned long next
= pgd_addr_end(addr
, end
);
736 alloc_init_pud(pgd
, addr
, next
, phys
, type
);
740 } while (pgd
++, addr
!= end
);
744 * Create the architecture specific mappings
746 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
750 for (i
= 0; i
< nr
; i
++)
751 create_mapping(io_desc
+ i
);
754 static void * __initdata vmalloc_min
= (void *)(VMALLOC_END
- SZ_128M
);
757 * vmalloc=size forces the vmalloc area to be exactly 'size'
758 * bytes. This can be used to increase (or decrease) the vmalloc
759 * area - the default is 128m.
761 static int __init
early_vmalloc(char *arg
)
763 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
765 if (vmalloc_reserve
< SZ_16M
) {
766 vmalloc_reserve
= SZ_16M
;
768 "vmalloc area too small, limiting to %luMB\n",
769 vmalloc_reserve
>> 20);
772 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
773 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
775 "vmalloc area is too big, limiting to %luMB\n",
776 vmalloc_reserve
>> 20);
779 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
782 early_param("vmalloc", early_vmalloc
);
784 static phys_addr_t lowmem_limit __initdata
= 0;
786 void __init
sanity_check_meminfo(void)
788 int i
, j
, highmem
= 0;
790 for (i
= 0, j
= 0; i
< meminfo
.nr_banks
; i
++) {
791 struct membank
*bank
= &meminfo
.bank
[j
];
792 *bank
= meminfo
.bank
[i
];
794 #ifdef CONFIG_HIGHMEM
795 if (bank
->start
> ULONG_MAX
||
796 __va(bank
->start
) >= vmalloc_min
||
797 __va(bank
->start
) < (void *)PAGE_OFFSET
)
800 bank
->highmem
= highmem
;
803 * Split those memory banks which are partially overlapping
804 * the vmalloc area greatly simplifying things later.
806 if (!highmem
&& __va(bank
->start
) < vmalloc_min
&&
807 bank
->size
> vmalloc_min
- __va(bank
->start
)) {
808 if (meminfo
.nr_banks
>= NR_BANKS
) {
809 printk(KERN_CRIT
"NR_BANKS too low, "
810 "ignoring high memory\n");
812 memmove(bank
+ 1, bank
,
813 (meminfo
.nr_banks
- i
) * sizeof(*bank
));
816 bank
[1].size
-= vmalloc_min
- __va(bank
->start
);
817 bank
[1].start
= __pa(vmalloc_min
- 1) + 1;
818 bank
[1].highmem
= highmem
= 1;
821 bank
->size
= vmalloc_min
- __va(bank
->start
);
824 bank
->highmem
= highmem
;
827 * Check whether this memory bank would entirely overlap
830 if (__va(bank
->start
) >= vmalloc_min
||
831 __va(bank
->start
) < (void *)PAGE_OFFSET
) {
832 printk(KERN_NOTICE
"Ignoring RAM at %.8llx-%.8llx "
833 "(vmalloc region overlap).\n",
834 (unsigned long long)bank
->start
,
835 (unsigned long long)bank
->start
+ bank
->size
- 1);
840 * Check whether this memory bank would partially overlap
843 if (__va(bank
->start
+ bank
->size
) > vmalloc_min
||
844 __va(bank
->start
+ bank
->size
) < __va(bank
->start
)) {
845 unsigned long newsize
= vmalloc_min
- __va(bank
->start
);
846 printk(KERN_NOTICE
"Truncating RAM at %.8llx-%.8llx "
847 "to -%.8llx (vmalloc region overlap).\n",
848 (unsigned long long)bank
->start
,
849 (unsigned long long)bank
->start
+ bank
->size
- 1,
850 (unsigned long long)bank
->start
+ newsize
- 1);
851 bank
->size
= newsize
;
854 if (!bank
->highmem
&& bank
->start
+ bank
->size
> lowmem_limit
)
855 lowmem_limit
= bank
->start
+ bank
->size
;
859 #ifdef CONFIG_HIGHMEM
861 const char *reason
= NULL
;
863 if (cache_is_vipt_aliasing()) {
865 * Interactions between kmap and other mappings
866 * make highmem support with aliasing VIPT caches
869 reason
= "with VIPT aliasing cache";
872 printk(KERN_CRIT
"HIGHMEM is not supported %s, ignoring high memory\n",
874 while (j
> 0 && meminfo
.bank
[j
- 1].highmem
)
879 meminfo
.nr_banks
= j
;
880 memblock_set_current_limit(lowmem_limit
);
883 static inline void prepare_page_table(void)
889 * Clear out all the mappings below the kernel image.
891 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PMD_SIZE
)
892 pmd_clear(pmd_off_k(addr
));
894 #ifdef CONFIG_XIP_KERNEL
895 /* The XIP kernel is mapped in the module area -- skip over it */
896 addr
= ((unsigned long)_etext
+ PMD_SIZE
- 1) & PMD_MASK
;
898 for ( ; addr
< PAGE_OFFSET
; addr
+= PMD_SIZE
)
899 pmd_clear(pmd_off_k(addr
));
902 * Find the end of the first block of lowmem.
904 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
905 if (end
>= lowmem_limit
)
909 * Clear out all the kernel space mappings, except for the first
910 * memory bank, up to the end of the vmalloc region.
912 for (addr
= __phys_to_virt(end
);
913 addr
< VMALLOC_END
; addr
+= PMD_SIZE
)
914 pmd_clear(pmd_off_k(addr
));
917 #ifdef CONFIG_ARM_LPAE
918 /* the first page is reserved for pgd */
919 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
920 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
922 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
926 * Reserve the special regions of memory
928 void __init
arm_mm_memblock_reserve(void)
931 * Reserve the page tables. These are already in use,
932 * and can only be in node 0.
934 memblock_reserve(__pa(swapper_pg_dir
), SWAPPER_PG_DIR_SIZE
);
938 * Because of the SA1111 DMA bug, we want to preserve our
939 * precious DMA-able memory...
941 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
946 * Set up device the mappings. Since we clear out the page tables for all
947 * mappings above VMALLOC_END, we will remove any debug device mappings.
948 * This means you have to be careful how you debug this function, or any
949 * called function. This means you can't use any function or debugging
950 * method which may touch any device, otherwise the kernel _will_ crash.
952 static void __init
devicemaps_init(struct machine_desc
*mdesc
)
958 * Allocate the vector page early.
960 vectors_page
= early_alloc(PAGE_SIZE
);
962 for (addr
= VMALLOC_END
; addr
; addr
+= PMD_SIZE
)
963 pmd_clear(pmd_off_k(addr
));
966 * Map the kernel if it is XIP.
967 * It is always first in the modulearea.
969 #ifdef CONFIG_XIP_KERNEL
970 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
971 map
.virtual = MODULES_VADDR
;
972 map
.length
= ((unsigned long)_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
974 create_mapping(&map
);
978 * Map the cache flushing regions.
981 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
982 map
.virtual = FLUSH_BASE
;
984 map
.type
= MT_CACHECLEAN
;
985 create_mapping(&map
);
987 #ifdef FLUSH_BASE_MINICACHE
988 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
989 map
.virtual = FLUSH_BASE_MINICACHE
;
991 map
.type
= MT_MINICLEAN
;
992 create_mapping(&map
);
996 * Create a mapping for the machine vectors at the high-vectors
997 * location (0xffff0000). If we aren't using high-vectors, also
998 * create a mapping at the low-vectors virtual address.
1000 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors_page
));
1001 map
.virtual = 0xffff0000;
1002 map
.length
= PAGE_SIZE
;
1003 map
.type
= MT_HIGH_VECTORS
;
1004 create_mapping(&map
);
1006 if (!vectors_high()) {
1008 map
.type
= MT_LOW_VECTORS
;
1009 create_mapping(&map
);
1013 * Ask the machine support to map in the statically mapped devices.
1019 * Finally flush the caches and tlb to ensure that we're in a
1020 * consistent state wrt the writebuffer. This also ensures that
1021 * any write-allocated cache lines in the vector page are written
1022 * back. After this point, we can start to touch devices again.
1024 local_flush_tlb_all();
1028 static void __init
kmap_init(void)
1030 #ifdef CONFIG_HIGHMEM
1031 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
1032 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1036 static void __init
map_lowmem(void)
1038 struct memblock_region
*reg
;
1040 /* Map all the lowmem memory banks. */
1041 for_each_memblock(memory
, reg
) {
1042 phys_addr_t start
= reg
->base
;
1043 phys_addr_t end
= start
+ reg
->size
;
1044 struct map_desc map
;
1046 if (end
> lowmem_limit
)
1051 map
.pfn
= __phys_to_pfn(start
);
1052 map
.virtual = __phys_to_virt(start
);
1053 map
.length
= end
- start
;
1054 map
.type
= MT_MEMORY
;
1056 create_mapping(&map
);
1061 * paging_init() sets up the page tables, initialises the zone memory
1062 * maps, and sets up the zero page, bad page and bad page tables.
1064 void __init
paging_init(struct machine_desc
*mdesc
)
1068 memblock_set_current_limit(lowmem_limit
);
1070 build_mem_type_table();
1071 prepare_page_table();
1073 devicemaps_init(mdesc
);
1076 top_pmd
= pmd_off_k(0xffff0000);
1078 /* allocate the zero page. */
1079 zero_page
= early_alloc(PAGE_SIZE
);
1083 empty_zero_page
= virt_to_page(zero_page
);
1084 __flush_dcache_page(NULL
, empty_zero_page
);