Add linux-next specific files for 20110831
[linux-2.6/next.git] / arch / arm / mm / mmu.c
blob85aa25e2727a4e75f46da7d2b05922f6b141f4a8
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 #include <asm/traps.h>
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
32 #include "mm.h"
35 * empty_zero_page is a special page that is used for
36 * zero-initialized data and COW.
38 struct page *empty_zero_page;
39 EXPORT_SYMBOL(empty_zero_page);
42 * The pmd table for the upper-most set of pages.
44 pmd_t *top_pmd;
46 #define CPOLICY_UNCACHED 0
47 #define CPOLICY_BUFFERED 1
48 #define CPOLICY_WRITETHROUGH 2
49 #define CPOLICY_WRITEBACK 3
50 #define CPOLICY_WRITEALLOC 4
52 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
53 static unsigned int ecc_mask __initdata = 0;
54 pgprot_t pgprot_user;
55 pgprot_t pgprot_kernel;
57 EXPORT_SYMBOL(pgprot_user);
58 EXPORT_SYMBOL(pgprot_kernel);
60 struct cachepolicy {
61 const char policy[16];
62 unsigned int cr_mask;
63 pmdval_t pmd;
64 pteval_t pte;
67 static struct cachepolicy cache_policies[] __initdata = {
69 .policy = "uncached",
70 .cr_mask = CR_W|CR_C,
71 .pmd = PMD_SECT_UNCACHED,
72 .pte = L_PTE_MT_UNCACHED,
73 }, {
74 .policy = "buffered",
75 .cr_mask = CR_C,
76 .pmd = PMD_SECT_BUFFERED,
77 .pte = L_PTE_MT_BUFFERABLE,
78 }, {
79 .policy = "writethrough",
80 .cr_mask = 0,
81 .pmd = PMD_SECT_WT,
82 .pte = L_PTE_MT_WRITETHROUGH,
83 }, {
84 .policy = "writeback",
85 .cr_mask = 0,
86 .pmd = PMD_SECT_WB,
87 .pte = L_PTE_MT_WRITEBACK,
88 }, {
89 .policy = "writealloc",
90 .cr_mask = 0,
91 .pmd = PMD_SECT_WBWA,
92 .pte = L_PTE_MT_WRITEALLOC,
97 * These are useful for identifying cache coherency
98 * problems by allowing the cache or the cache and
99 * writebuffer to be turned off. (Note: the write
100 * buffer should not be on and the cache off).
102 static int __init early_cachepolicy(char *p)
104 int i;
106 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
107 int len = strlen(cache_policies[i].policy);
109 if (memcmp(p, cache_policies[i].policy, len) == 0) {
110 cachepolicy = i;
111 cr_alignment &= ~cache_policies[i].cr_mask;
112 cr_no_alignment &= ~cache_policies[i].cr_mask;
113 break;
116 if (i == ARRAY_SIZE(cache_policies))
117 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119 * This restriction is partly to do with the way we boot; it is
120 * unpredictable to have memory mapped using two different sets of
121 * memory attributes (shared, type, and cache attribs). We can not
122 * change these attributes once the initial assembly has setup the
123 * page tables.
125 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
126 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
127 cachepolicy = CPOLICY_WRITEBACK;
129 flush_cache_all();
130 set_cr(cr_alignment);
131 return 0;
133 early_param("cachepolicy", early_cachepolicy);
135 static int __init early_nocache(char *__unused)
137 char *p = "buffered";
138 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
139 early_cachepolicy(p);
140 return 0;
142 early_param("nocache", early_nocache);
144 static int __init early_nowrite(char *__unused)
146 char *p = "uncached";
147 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
148 early_cachepolicy(p);
149 return 0;
151 early_param("nowb", early_nowrite);
153 #ifndef CONFIG_ARM_LPAE
154 static int __init early_ecc(char *p)
156 if (memcmp(p, "on", 2) == 0)
157 ecc_mask = PMD_PROTECTION;
158 else if (memcmp(p, "off", 3) == 0)
159 ecc_mask = 0;
160 return 0;
162 early_param("ecc", early_ecc);
163 #endif
165 static int __init noalign_setup(char *__unused)
167 cr_alignment &= ~CR_A;
168 cr_no_alignment &= ~CR_A;
169 set_cr(cr_alignment);
170 return 1;
172 __setup("noalign", noalign_setup);
174 #ifndef CONFIG_SMP
175 void adjust_cr(unsigned long mask, unsigned long set)
177 unsigned long flags;
179 mask &= ~CR_A;
181 set &= mask;
183 local_irq_save(flags);
185 cr_no_alignment = (cr_no_alignment & ~mask) | set;
186 cr_alignment = (cr_alignment & ~mask) | set;
188 set_cr((get_cr() & ~mask) | set);
190 local_irq_restore(flags);
192 #endif
194 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
195 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
197 static struct mem_type mem_types[] = {
198 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
199 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
200 L_PTE_SHARED,
201 .prot_l1 = PMD_TYPE_TABLE,
202 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
203 .domain = DOMAIN_IO,
205 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
206 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
207 .prot_l1 = PMD_TYPE_TABLE,
208 .prot_sect = PROT_SECT_DEVICE,
209 .domain = DOMAIN_IO,
211 [MT_DEVICE_CACHED] = { /* ioremap_cached */
212 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
213 .prot_l1 = PMD_TYPE_TABLE,
214 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
215 .domain = DOMAIN_IO,
217 [MT_DEVICE_WC] = { /* ioremap_wc */
218 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
219 .prot_l1 = PMD_TYPE_TABLE,
220 .prot_sect = PROT_SECT_DEVICE,
221 .domain = DOMAIN_IO,
223 [MT_UNCACHED] = {
224 .prot_pte = PROT_PTE_DEVICE,
225 .prot_l1 = PMD_TYPE_TABLE,
226 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
227 .domain = DOMAIN_IO,
229 [MT_CACHECLEAN] = {
230 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
231 .domain = DOMAIN_KERNEL,
233 #ifndef CONFIG_ARM_LPAE
234 [MT_MINICLEAN] = {
235 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
236 .domain = DOMAIN_KERNEL,
238 #endif
239 [MT_LOW_VECTORS] = {
240 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
241 L_PTE_RDONLY,
242 .prot_l1 = PMD_TYPE_TABLE,
243 .domain = DOMAIN_USER,
245 [MT_HIGH_VECTORS] = {
246 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
247 L_PTE_USER | L_PTE_RDONLY,
248 .prot_l1 = PMD_TYPE_TABLE,
249 .domain = DOMAIN_USER,
251 [MT_MEMORY] = {
252 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
253 .prot_l1 = PMD_TYPE_TABLE,
254 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
255 .domain = DOMAIN_KERNEL,
257 [MT_ROM] = {
258 .prot_sect = PMD_TYPE_SECT,
259 .domain = DOMAIN_KERNEL,
261 [MT_MEMORY_NONCACHED] = {
262 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
263 L_PTE_MT_BUFFERABLE,
264 .prot_l1 = PMD_TYPE_TABLE,
265 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
266 .domain = DOMAIN_KERNEL,
268 [MT_MEMORY_DTCM] = {
269 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
270 L_PTE_XN,
271 .prot_l1 = PMD_TYPE_TABLE,
272 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
273 .domain = DOMAIN_KERNEL,
275 [MT_MEMORY_ITCM] = {
276 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
277 .prot_l1 = PMD_TYPE_TABLE,
278 .domain = DOMAIN_KERNEL,
282 const struct mem_type *get_mem_type(unsigned int type)
284 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
286 EXPORT_SYMBOL(get_mem_type);
289 * Adjust the PMD section entries according to the CPU in use.
291 static void __init build_mem_type_table(void)
293 struct cachepolicy *cp;
294 unsigned int cr = get_cr();
295 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
296 int cpu_arch = cpu_architecture();
297 int i;
299 if (cpu_arch < CPU_ARCH_ARMv6) {
300 #if defined(CONFIG_CPU_DCACHE_DISABLE)
301 if (cachepolicy > CPOLICY_BUFFERED)
302 cachepolicy = CPOLICY_BUFFERED;
303 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
304 if (cachepolicy > CPOLICY_WRITETHROUGH)
305 cachepolicy = CPOLICY_WRITETHROUGH;
306 #endif
308 if (cpu_arch < CPU_ARCH_ARMv5) {
309 if (cachepolicy >= CPOLICY_WRITEALLOC)
310 cachepolicy = CPOLICY_WRITEBACK;
311 ecc_mask = 0;
313 if (is_smp())
314 cachepolicy = CPOLICY_WRITEALLOC;
317 * Strip out features not present on earlier architectures.
318 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
319 * without extended page tables don't have the 'Shared' bit.
321 if (cpu_arch < CPU_ARCH_ARMv5)
322 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
323 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
324 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
325 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
326 mem_types[i].prot_sect &= ~PMD_SECT_S;
329 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
330 * "update-able on write" bit on ARM610). However, Xscale and
331 * Xscale3 require this bit to be cleared.
333 if (cpu_is_xscale() || cpu_is_xsc3()) {
334 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
335 mem_types[i].prot_sect &= ~PMD_BIT4;
336 mem_types[i].prot_l1 &= ~PMD_BIT4;
338 } else if (cpu_arch < CPU_ARCH_ARMv6) {
339 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
340 if (mem_types[i].prot_l1)
341 mem_types[i].prot_l1 |= PMD_BIT4;
342 if (mem_types[i].prot_sect)
343 mem_types[i].prot_sect |= PMD_BIT4;
348 * Mark the device areas according to the CPU/architecture.
350 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
351 if (!cpu_is_xsc3()) {
353 * Mark device regions on ARMv6+ as execute-never
354 * to prevent speculative instruction fetches.
356 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
357 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
358 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
359 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
361 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
363 * For ARMv7 with TEX remapping,
364 * - shared device is SXCB=1100
365 * - nonshared device is SXCB=0100
366 * - write combine device mem is SXCB=0001
367 * (Uncached Normal memory)
369 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
370 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
371 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
372 } else if (cpu_is_xsc3()) {
374 * For Xscale3,
375 * - shared device is TEXCB=00101
376 * - nonshared device is TEXCB=01000
377 * - write combine device mem is TEXCB=00100
378 * (Inner/Outer Uncacheable in xsc3 parlance)
380 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
381 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
382 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
383 } else {
385 * For ARMv6 and ARMv7 without TEX remapping,
386 * - shared device is TEXCB=00001
387 * - nonshared device is TEXCB=01000
388 * - write combine device mem is TEXCB=00100
389 * (Uncached Normal in ARMv6 parlance).
391 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
392 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
393 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
395 } else {
397 * On others, write combining is "Uncached/Buffered"
399 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
403 * Now deal with the memory-type mappings
405 cp = &cache_policies[cachepolicy];
406 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
409 * Only use write-through for non-SMP systems
411 if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
412 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
415 * Enable CPU-specific coherency if supported.
416 * (Only available on XSC3 at the moment.)
418 if (arch_is_coherent() && cpu_is_xsc3()) {
419 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
420 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
421 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
422 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
425 * ARMv6 and above have extended page tables.
427 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
428 #ifndef CONFIG_ARM_LPAE
430 * Mark cache clean areas and XIP ROM read only
431 * from SVC mode and no access from userspace.
433 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
434 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
435 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
436 #endif
438 if (is_smp()) {
440 * Mark memory with the "shared" attribute
441 * for SMP systems
443 user_pgprot |= L_PTE_SHARED;
444 kern_pgprot |= L_PTE_SHARED;
445 vecs_pgprot |= L_PTE_SHARED;
446 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
447 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
448 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
449 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
450 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
451 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
452 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
453 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
458 * Non-cacheable Normal - intended for memory areas that must
459 * not cause dirty cache line writebacks when used
461 if (cpu_arch >= CPU_ARCH_ARMv6) {
462 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
463 /* Non-cacheable Normal is XCB = 001 */
464 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
465 PMD_SECT_BUFFERED;
466 } else {
467 /* For both ARMv6 and non-TEX-remapping ARMv7 */
468 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
469 PMD_SECT_TEX(1);
471 } else {
472 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
475 #ifdef CONFIG_ARM_LPAE
477 * Do not generate access flag faults for the kernel mappings.
479 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
480 mem_types[i].prot_pte |= PTE_EXT_AF;
481 mem_types[i].prot_sect |= PMD_SECT_AF;
483 kern_pgprot |= PTE_EXT_AF;
484 vecs_pgprot |= PTE_EXT_AF;
485 #endif
487 for (i = 0; i < 16; i++) {
488 unsigned long v = pgprot_val(protection_map[i]);
489 protection_map[i] = __pgprot(v | user_pgprot);
492 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
493 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
495 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
496 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
497 L_PTE_DIRTY | kern_pgprot);
499 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
500 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
501 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
502 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
503 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
504 mem_types[MT_ROM].prot_sect |= cp->pmd;
506 switch (cp->pmd) {
507 case PMD_SECT_WT:
508 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
509 break;
510 case PMD_SECT_WB:
511 case PMD_SECT_WBWA:
512 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
513 break;
515 printk("Memory policy: ECC %sabled, Data cache %s\n",
516 ecc_mask ? "en" : "dis", cp->policy);
518 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
519 struct mem_type *t = &mem_types[i];
520 if (t->prot_l1)
521 t->prot_l1 |= PMD_DOMAIN(t->domain);
522 if (t->prot_sect)
523 t->prot_sect |= PMD_DOMAIN(t->domain);
527 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
528 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
529 unsigned long size, pgprot_t vma_prot)
531 if (!pfn_valid(pfn))
532 return pgprot_noncached(vma_prot);
533 else if (file->f_flags & O_SYNC)
534 return pgprot_writecombine(vma_prot);
535 return vma_prot;
537 EXPORT_SYMBOL(phys_mem_access_prot);
538 #endif
540 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
542 static void __init *early_alloc(unsigned long sz)
544 void *ptr = __va(memblock_alloc(sz, sz));
545 memset(ptr, 0, sz);
546 return ptr;
549 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
551 if (pmd_none(*pmd)) {
552 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
553 __pmd_populate(pmd, __pa(pte), prot);
555 BUG_ON(pmd_bad(*pmd));
556 return pte_offset_kernel(pmd, addr);
559 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
560 unsigned long end, unsigned long pfn,
561 const struct mem_type *type)
563 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
564 do {
565 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
566 pfn++;
567 } while (pte++, addr += PAGE_SIZE, addr != end);
570 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
571 unsigned long end, phys_addr_t phys,
572 const struct mem_type *type)
574 pmd_t *pmd = pmd_offset(pud, addr);
577 * Try a section mapping - end, addr and phys must all be aligned
578 * to a section boundary. Note that PMDs refer to the individual
579 * L1 entries, whereas PGDs refer to a group of L1 entries making
580 * up one logical pointer to an L2 table.
582 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
583 pmd_t *p = pmd;
585 #ifndef CONFIG_ARM_LPAE
586 if (addr & SECTION_SIZE)
587 pmd++;
588 #endif
590 do {
591 *pmd = __pmd(phys | type->prot_sect);
592 phys += SECTION_SIZE;
593 } while (pmd++, addr += SECTION_SIZE, addr != end);
595 flush_pmd_entry(p);
596 } else {
598 * No need to loop; pte's aren't interested in the
599 * individual L1 entries.
601 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
605 static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
606 unsigned long phys, const struct mem_type *type)
608 pud_t *pud = pud_offset(pgd, addr);
609 unsigned long next;
611 do {
612 next = pud_addr_end(addr, end);
613 alloc_init_section(pud, addr, next, phys, type);
614 phys += next - addr;
615 } while (pud++, addr = next, addr != end);
618 #ifndef CONFIG_ARM_LPAE
619 static void __init create_36bit_mapping(struct map_desc *md,
620 const struct mem_type *type)
622 unsigned long addr, length, end;
623 phys_addr_t phys;
624 pgd_t *pgd;
626 addr = md->virtual;
627 phys = __pfn_to_phys(md->pfn);
628 length = PAGE_ALIGN(md->length);
630 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
631 printk(KERN_ERR "MM: CPU does not support supersection "
632 "mapping for 0x%08llx at 0x%08lx\n",
633 (long long)__pfn_to_phys((u64)md->pfn), addr);
634 return;
637 /* N.B. ARMv6 supersections are only defined to work with domain 0.
638 * Since domain assignments can in fact be arbitrary, the
639 * 'domain == 0' check below is required to insure that ARMv6
640 * supersections are only allocated for domain 0 regardless
641 * of the actual domain assignments in use.
643 if (type->domain) {
644 printk(KERN_ERR "MM: invalid domain in supersection "
645 "mapping for 0x%08llx at 0x%08lx\n",
646 (long long)__pfn_to_phys((u64)md->pfn), addr);
647 return;
650 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
651 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
652 " at 0x%08lx invalid alignment\n",
653 (long long)__pfn_to_phys((u64)md->pfn), addr);
654 return;
658 * Shift bits [35:32] of address into bits [23:20] of PMD
659 * (See ARMv6 spec).
661 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
663 pgd = pgd_offset_k(addr);
664 end = addr + length;
665 do {
666 pud_t *pud = pud_offset(pgd, addr);
667 pmd_t *pmd = pmd_offset(pud, addr);
668 int i;
670 for (i = 0; i < 16; i++)
671 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
673 addr += SUPERSECTION_SIZE;
674 phys += SUPERSECTION_SIZE;
675 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
676 } while (addr != end);
678 #endif /* !CONFIG_ARM_LPAE */
681 * Create the page directory entries and any necessary
682 * page tables for the mapping specified by `md'. We
683 * are able to cope here with varying sizes and address
684 * offsets, and we take full advantage of sections and
685 * supersections.
687 static void __init create_mapping(struct map_desc *md)
689 unsigned long addr, length, end;
690 phys_addr_t phys;
691 const struct mem_type *type;
692 pgd_t *pgd;
694 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
695 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
696 " at 0x%08lx in user region\n",
697 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
698 return;
701 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
702 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
703 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
704 " at 0x%08lx overlaps vmalloc space\n",
705 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
708 type = &mem_types[md->type];
710 #ifndef CONFIG_ARM_LPAE
712 * Catch 36-bit addresses
714 if (md->pfn >= 0x100000) {
715 create_36bit_mapping(md, type);
716 return;
718 #endif
720 addr = md->virtual & PAGE_MASK;
721 phys = __pfn_to_phys(md->pfn);
722 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
724 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
725 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
726 "be mapped using pages, ignoring.\n",
727 (long long)__pfn_to_phys(md->pfn), addr);
728 return;
731 pgd = pgd_offset_k(addr);
732 end = addr + length;
733 do {
734 unsigned long next = pgd_addr_end(addr, end);
736 alloc_init_pud(pgd, addr, next, phys, type);
738 phys += next - addr;
739 addr = next;
740 } while (pgd++, addr != end);
744 * Create the architecture specific mappings
746 void __init iotable_init(struct map_desc *io_desc, int nr)
748 int i;
750 for (i = 0; i < nr; i++)
751 create_mapping(io_desc + i);
754 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
757 * vmalloc=size forces the vmalloc area to be exactly 'size'
758 * bytes. This can be used to increase (or decrease) the vmalloc
759 * area - the default is 128m.
761 static int __init early_vmalloc(char *arg)
763 unsigned long vmalloc_reserve = memparse(arg, NULL);
765 if (vmalloc_reserve < SZ_16M) {
766 vmalloc_reserve = SZ_16M;
767 printk(KERN_WARNING
768 "vmalloc area too small, limiting to %luMB\n",
769 vmalloc_reserve >> 20);
772 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
773 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
774 printk(KERN_WARNING
775 "vmalloc area is too big, limiting to %luMB\n",
776 vmalloc_reserve >> 20);
779 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
780 return 0;
782 early_param("vmalloc", early_vmalloc);
784 static phys_addr_t lowmem_limit __initdata = 0;
786 void __init sanity_check_meminfo(void)
788 int i, j, highmem = 0;
790 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
791 struct membank *bank = &meminfo.bank[j];
792 *bank = meminfo.bank[i];
794 #ifdef CONFIG_HIGHMEM
795 if (bank->start > ULONG_MAX ||
796 __va(bank->start) >= vmalloc_min ||
797 __va(bank->start) < (void *)PAGE_OFFSET)
798 highmem = 1;
800 bank->highmem = highmem;
803 * Split those memory banks which are partially overlapping
804 * the vmalloc area greatly simplifying things later.
806 if (!highmem && __va(bank->start) < vmalloc_min &&
807 bank->size > vmalloc_min - __va(bank->start)) {
808 if (meminfo.nr_banks >= NR_BANKS) {
809 printk(KERN_CRIT "NR_BANKS too low, "
810 "ignoring high memory\n");
811 } else {
812 memmove(bank + 1, bank,
813 (meminfo.nr_banks - i) * sizeof(*bank));
814 meminfo.nr_banks++;
815 i++;
816 bank[1].size -= vmalloc_min - __va(bank->start);
817 bank[1].start = __pa(vmalloc_min - 1) + 1;
818 bank[1].highmem = highmem = 1;
819 j++;
821 bank->size = vmalloc_min - __va(bank->start);
823 #else
824 bank->highmem = highmem;
827 * Check whether this memory bank would entirely overlap
828 * the vmalloc area.
830 if (__va(bank->start) >= vmalloc_min ||
831 __va(bank->start) < (void *)PAGE_OFFSET) {
832 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
833 "(vmalloc region overlap).\n",
834 (unsigned long long)bank->start,
835 (unsigned long long)bank->start + bank->size - 1);
836 continue;
840 * Check whether this memory bank would partially overlap
841 * the vmalloc area.
843 if (__va(bank->start + bank->size) > vmalloc_min ||
844 __va(bank->start + bank->size) < __va(bank->start)) {
845 unsigned long newsize = vmalloc_min - __va(bank->start);
846 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
847 "to -%.8llx (vmalloc region overlap).\n",
848 (unsigned long long)bank->start,
849 (unsigned long long)bank->start + bank->size - 1,
850 (unsigned long long)bank->start + newsize - 1);
851 bank->size = newsize;
853 #endif
854 if (!bank->highmem && bank->start + bank->size > lowmem_limit)
855 lowmem_limit = bank->start + bank->size;
857 j++;
859 #ifdef CONFIG_HIGHMEM
860 if (highmem) {
861 const char *reason = NULL;
863 if (cache_is_vipt_aliasing()) {
865 * Interactions between kmap and other mappings
866 * make highmem support with aliasing VIPT caches
867 * rather difficult.
869 reason = "with VIPT aliasing cache";
871 if (reason) {
872 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
873 reason);
874 while (j > 0 && meminfo.bank[j - 1].highmem)
875 j--;
878 #endif
879 meminfo.nr_banks = j;
880 memblock_set_current_limit(lowmem_limit);
883 static inline void prepare_page_table(void)
885 unsigned long addr;
886 phys_addr_t end;
889 * Clear out all the mappings below the kernel image.
891 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
892 pmd_clear(pmd_off_k(addr));
894 #ifdef CONFIG_XIP_KERNEL
895 /* The XIP kernel is mapped in the module area -- skip over it */
896 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
897 #endif
898 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
899 pmd_clear(pmd_off_k(addr));
902 * Find the end of the first block of lowmem.
904 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
905 if (end >= lowmem_limit)
906 end = lowmem_limit;
909 * Clear out all the kernel space mappings, except for the first
910 * memory bank, up to the end of the vmalloc region.
912 for (addr = __phys_to_virt(end);
913 addr < VMALLOC_END; addr += PMD_SIZE)
914 pmd_clear(pmd_off_k(addr));
917 #ifdef CONFIG_ARM_LPAE
918 /* the first page is reserved for pgd */
919 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
920 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
921 #else
922 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
923 #endif
926 * Reserve the special regions of memory
928 void __init arm_mm_memblock_reserve(void)
931 * Reserve the page tables. These are already in use,
932 * and can only be in node 0.
934 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
936 #ifdef CONFIG_SA1111
938 * Because of the SA1111 DMA bug, we want to preserve our
939 * precious DMA-able memory...
941 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
942 #endif
946 * Set up device the mappings. Since we clear out the page tables for all
947 * mappings above VMALLOC_END, we will remove any debug device mappings.
948 * This means you have to be careful how you debug this function, or any
949 * called function. This means you can't use any function or debugging
950 * method which may touch any device, otherwise the kernel _will_ crash.
952 static void __init devicemaps_init(struct machine_desc *mdesc)
954 struct map_desc map;
955 unsigned long addr;
958 * Allocate the vector page early.
960 vectors_page = early_alloc(PAGE_SIZE);
962 for (addr = VMALLOC_END; addr; addr += PMD_SIZE)
963 pmd_clear(pmd_off_k(addr));
966 * Map the kernel if it is XIP.
967 * It is always first in the modulearea.
969 #ifdef CONFIG_XIP_KERNEL
970 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
971 map.virtual = MODULES_VADDR;
972 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
973 map.type = MT_ROM;
974 create_mapping(&map);
975 #endif
978 * Map the cache flushing regions.
980 #ifdef FLUSH_BASE
981 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
982 map.virtual = FLUSH_BASE;
983 map.length = SZ_1M;
984 map.type = MT_CACHECLEAN;
985 create_mapping(&map);
986 #endif
987 #ifdef FLUSH_BASE_MINICACHE
988 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
989 map.virtual = FLUSH_BASE_MINICACHE;
990 map.length = SZ_1M;
991 map.type = MT_MINICLEAN;
992 create_mapping(&map);
993 #endif
996 * Create a mapping for the machine vectors at the high-vectors
997 * location (0xffff0000). If we aren't using high-vectors, also
998 * create a mapping at the low-vectors virtual address.
1000 map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
1001 map.virtual = 0xffff0000;
1002 map.length = PAGE_SIZE;
1003 map.type = MT_HIGH_VECTORS;
1004 create_mapping(&map);
1006 if (!vectors_high()) {
1007 map.virtual = 0;
1008 map.type = MT_LOW_VECTORS;
1009 create_mapping(&map);
1013 * Ask the machine support to map in the statically mapped devices.
1015 if (mdesc->map_io)
1016 mdesc->map_io();
1019 * Finally flush the caches and tlb to ensure that we're in a
1020 * consistent state wrt the writebuffer. This also ensures that
1021 * any write-allocated cache lines in the vector page are written
1022 * back. After this point, we can start to touch devices again.
1024 local_flush_tlb_all();
1025 flush_cache_all();
1028 static void __init kmap_init(void)
1030 #ifdef CONFIG_HIGHMEM
1031 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1032 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1033 #endif
1036 static void __init map_lowmem(void)
1038 struct memblock_region *reg;
1040 /* Map all the lowmem memory banks. */
1041 for_each_memblock(memory, reg) {
1042 phys_addr_t start = reg->base;
1043 phys_addr_t end = start + reg->size;
1044 struct map_desc map;
1046 if (end > lowmem_limit)
1047 end = lowmem_limit;
1048 if (start >= end)
1049 break;
1051 map.pfn = __phys_to_pfn(start);
1052 map.virtual = __phys_to_virt(start);
1053 map.length = end - start;
1054 map.type = MT_MEMORY;
1056 create_mapping(&map);
1061 * paging_init() sets up the page tables, initialises the zone memory
1062 * maps, and sets up the zero page, bad page and bad page tables.
1064 void __init paging_init(struct machine_desc *mdesc)
1066 void *zero_page;
1068 memblock_set_current_limit(lowmem_limit);
1070 build_mem_type_table();
1071 prepare_page_table();
1072 map_lowmem();
1073 devicemaps_init(mdesc);
1074 kmap_init();
1076 top_pmd = pmd_off_k(0xffff0000);
1078 /* allocate the zero page. */
1079 zero_page = early_alloc(PAGE_SIZE);
1081 bootmem_init();
1083 empty_zero_page = virt_to_page(zero_page);
1084 __flush_dcache_page(NULL, empty_zero_page);