1 #ifndef _ASM_IA64_PGTABLE_H
2 #define _ASM_IA64_PGTABLE_H
5 * This file contains the functions and defines necessary to modify and use
6 * the IA-64 page table tree.
8 * This hopefully works with any (fixed) IA-64 page-size, as defined
11 * Copyright (C) 1998-2005 Hewlett-Packard Co
12 * David Mosberger-Tang <davidm@hpl.hp.com>
18 #include <asm/processor.h>
19 #include <asm/system.h>
20 #include <asm/types.h>
22 #define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */
25 * First, define the various bits in a PTE. Note that the PTE format
26 * matches the VHPT short format, the firt doubleword of the VHPD long
27 * format, and the first doubleword of the TLB insertion format.
33 #define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */
34 #define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */
35 #define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */
36 #define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */
37 #define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */
38 #define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */
39 #define _PAGE_MA_MASK (0x7 << 2)
40 #define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */
41 #define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */
42 #define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */
43 #define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */
44 #define _PAGE_PL_MASK (3 << 7)
45 #define _PAGE_AR_R (0 << 9) /* read only */
46 #define _PAGE_AR_RX (1 << 9) /* read & execute */
47 #define _PAGE_AR_RW (2 << 9) /* read & write */
48 #define _PAGE_AR_RWX (3 << 9) /* read, write & execute */
49 #define _PAGE_AR_R_RW (4 << 9) /* read / read & write */
50 #define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */
51 #define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */
52 #define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */
53 #define _PAGE_AR_MASK (7 << 9)
54 #define _PAGE_AR_SHIFT 9
55 #define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */
56 #define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */
57 #define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)
58 #define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */
59 #define _PAGE_PROTNONE (__IA64_UL(1) << 63)
61 /* Valid only for a PTE with the present bit cleared: */
62 #define _PAGE_FILE (1 << 1) /* see swap & file pte remarks below */
64 #define _PFN_MASK _PAGE_PPN_MASK
65 /* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */
66 #define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED)
68 #define _PAGE_SIZE_4K 12
69 #define _PAGE_SIZE_8K 13
70 #define _PAGE_SIZE_16K 14
71 #define _PAGE_SIZE_64K 16
72 #define _PAGE_SIZE_256K 18
73 #define _PAGE_SIZE_1M 20
74 #define _PAGE_SIZE_4M 22
75 #define _PAGE_SIZE_16M 24
76 #define _PAGE_SIZE_64M 26
77 #define _PAGE_SIZE_256M 28
78 #define _PAGE_SIZE_1G 30
79 #define _PAGE_SIZE_4G 32
81 #define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
82 #define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
83 #define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED
86 * How many pointers will a page table level hold expressed in shift
88 #define PTRS_PER_PTD_SHIFT (PAGE_SHIFT-3)
91 * Definitions for fourth level:
93 #define PTRS_PER_PTE (__IA64_UL(1) << (PTRS_PER_PTD_SHIFT))
96 * Definitions for third level:
98 * PMD_SHIFT determines the size of the area a third-level page table
101 #define PMD_SHIFT (PAGE_SHIFT + (PTRS_PER_PTD_SHIFT))
102 #define PMD_SIZE (1UL << PMD_SHIFT)
103 #define PMD_MASK (~(PMD_SIZE-1))
104 #define PTRS_PER_PMD (1UL << (PTRS_PER_PTD_SHIFT))
106 #ifdef CONFIG_PGTABLE_4
108 * Definitions for second level:
110 * PUD_SHIFT determines the size of the area a second-level page table
113 #define PUD_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
114 #define PUD_SIZE (1UL << PUD_SHIFT)
115 #define PUD_MASK (~(PUD_SIZE-1))
116 #define PTRS_PER_PUD (1UL << (PTRS_PER_PTD_SHIFT))
120 * Definitions for first level:
122 * PGDIR_SHIFT determines what a first-level page table entry can map.
124 #ifdef CONFIG_PGTABLE_4
125 #define PGDIR_SHIFT (PUD_SHIFT + (PTRS_PER_PTD_SHIFT))
127 #define PGDIR_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
129 #define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT)
130 #define PGDIR_MASK (~(PGDIR_SIZE-1))
131 #define PTRS_PER_PGD_SHIFT PTRS_PER_PTD_SHIFT
132 #define PTRS_PER_PGD (1UL << PTRS_PER_PGD_SHIFT)
133 #define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */
134 #define FIRST_USER_ADDRESS 0
137 * All the normal masks have the "page accessed" bits on, as any time
138 * they are used, the page is accessed. They are cleared only by the
141 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A)
142 #define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
143 #define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
144 #define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
145 #define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
146 #define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
147 #define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX)
148 #define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)
149 #define PAGE_KERNEL_UC __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX | \
152 # ifndef __ASSEMBLY__
154 #include <linux/sched.h> /* for mm_struct */
155 #include <linux/bitops.h>
156 #include <asm/cacheflush.h>
157 #include <asm/mmu_context.h>
160 * Next come the mappings that determine how mmap() protection bits
161 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The
162 * _P version gets used for a private shared memory segment, the _S
163 * version gets used for a shared memory segment with MAP_SHARED on.
164 * In a private shared memory segment, we do a copy-on-write if a task
165 * attempts to write to the page.
168 #define __P000 PAGE_NONE
169 #define __P001 PAGE_READONLY
170 #define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */
171 #define __P011 PAGE_READONLY /* ditto */
172 #define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
173 #define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
174 #define __P110 PAGE_COPY_EXEC
175 #define __P111 PAGE_COPY_EXEC
177 #define __S000 PAGE_NONE
178 #define __S001 PAGE_READONLY
179 #define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */
180 #define __S011 PAGE_SHARED
181 #define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
182 #define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
183 #define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
184 #define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
186 #define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
187 #ifdef CONFIG_PGTABLE_4
188 #define pud_ERROR(e) printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
190 #define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
191 #define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
195 * Some definitions to translate between mem_map, PTEs, and page addresses:
199 /* Quick test to see if ADDR is a (potentially) valid physical address. */
201 ia64_phys_addr_valid (unsigned long addr
)
203 return (addr
& (local_cpu_data
->unimpl_pa_mask
)) == 0;
207 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
208 * memory. For the return value to be meaningful, ADDR must be >=
209 * PAGE_OFFSET. This operation can be relatively expensive (e.g.,
210 * require a hash-, or multi-level tree-lookup or something of that
211 * sort) but it guarantees to return TRUE only if accessing the page
212 * at that address does not cause an error. Note that there may be
213 * addresses for which kern_addr_valid() returns FALSE even though an
214 * access would not cause an error (e.g., this is typically true for
215 * memory mapped I/O regions.
217 * XXX Need to implement this for IA-64.
219 #define kern_addr_valid(addr) (1)
223 * Now come the defines and routines to manage and access the three-level
228 #define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL)
229 #ifdef CONFIG_VIRTUAL_MEM_MAP
230 # define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
231 extern unsigned long VMALLOC_END
;
233 #if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP)
234 /* SPARSEMEM_VMEMMAP uses half of vmalloc... */
235 # define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 10)))
236 # define vmemmap ((struct page *)VMALLOC_END)
238 # define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
242 /* fs/proc/kcore.c */
243 #define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE))
244 #define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE))
246 #define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3)
247 #define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */
250 * Conversion functions: convert page frame number (pfn) and a protection value to a page
253 #define pfn_pte(pfn, pgprot) \
254 ({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; })
256 /* Extract pfn from pte. */
257 #define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT)
259 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
261 /* This takes a physical page address that is used by the remapping functions */
262 #define mk_pte_phys(physpage, pgprot) \
263 ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
265 #define pte_modify(_pte, newprot) \
266 (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK)))
268 #define pte_none(pte) (!pte_val(pte))
269 #define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
270 #define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL)
271 /* pte_page() returns the "struct page *" corresponding to the PTE: */
272 #define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET))
274 #define pmd_none(pmd) (!pmd_val(pmd))
275 #define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd)))
276 #define pmd_present(pmd) (pmd_val(pmd) != 0UL)
277 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL)
278 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
279 #define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET))
281 #define pud_none(pud) (!pud_val(pud))
282 #define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud)))
283 #define pud_present(pud) (pud_val(pud) != 0UL)
284 #define pud_clear(pudp) (pud_val(*(pudp)) = 0UL)
285 #define pud_page_vaddr(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK))
286 #define pud_page(pud) virt_to_page((pud_val(pud) + PAGE_OFFSET))
288 #ifdef CONFIG_PGTABLE_4
289 #define pgd_none(pgd) (!pgd_val(pgd))
290 #define pgd_bad(pgd) (!ia64_phys_addr_valid(pgd_val(pgd)))
291 #define pgd_present(pgd) (pgd_val(pgd) != 0UL)
292 #define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL)
293 #define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK))
294 #define pgd_page(pgd) virt_to_page((pgd_val(pgd) + PAGE_OFFSET))
298 * The following have defined behavior only work if pte_present() is true.
300 #define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4)
301 #define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0)
302 #define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0)
303 #define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0)
304 #define pte_file(pte) ((pte_val(pte) & _PAGE_FILE) != 0)
305 #define pte_special(pte) 0
308 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the
311 #define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW))
312 #define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW))
313 #define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A))
314 #define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A))
315 #define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D))
316 #define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D))
317 #define pte_mkhuge(pte) (__pte(pte_val(pte)))
318 #define pte_mkspecial(pte) (pte)
321 * Because ia64's Icache and Dcache is not coherent (on a cpu), we need to
322 * sync icache and dcache when we insert *new* executable page.
323 * __ia64_sync_icache_dcache() check Pg_arch_1 bit and flush icache
326 * set_pte() is also called by the kernel, but we can expect that the kernel
327 * flushes icache explicitly if necessary.
329 #define pte_present_exec_user(pte)\
330 ((pte_val(pte) & (_PAGE_P | _PAGE_PL_MASK | _PAGE_AR_RX)) == \
331 (_PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX))
333 extern void __ia64_sync_icache_dcache(pte_t pteval
);
334 static inline void set_pte(pte_t
*ptep
, pte_t pteval
)
336 /* page is present && page is user && page is executable
337 * && (page swapin or new page or page migraton
338 * || copy_on_write with page copying.)
340 if (pte_present_exec_user(pteval
) &&
341 (!pte_present(*ptep
) ||
342 pte_pfn(*ptep
) != pte_pfn(pteval
)))
343 /* load_module() calles flush_icache_range() explicitly*/
344 __ia64_sync_icache_dcache(pteval
);
348 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
351 * Make page protection values cacheable, uncacheable, or write-
352 * combining. Note that "protection" is really a misnomer here as the
353 * protection value contains the memory attribute bits, dirty bits, and
354 * various other bits as well.
356 #define pgprot_cacheable(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB)
357 #define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
358 #define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC)
361 extern pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
362 unsigned long size
, pgprot_t vma_prot
);
363 #define __HAVE_PHYS_MEM_ACCESS_PROT
365 static inline unsigned long
366 pgd_index (unsigned long address
)
368 unsigned long region
= address
>> 61;
369 unsigned long l1index
= (address
>> PGDIR_SHIFT
) & ((PTRS_PER_PGD
>> 3) - 1);
371 return (region
<< (PAGE_SHIFT
- 6)) | l1index
;
374 /* The offset in the 1-level directory is given by the 3 region bits
375 (61..63) and the level-1 bits. */
377 pgd_offset (const struct mm_struct
*mm
, unsigned long address
)
379 return mm
->pgd
+ pgd_index(address
);
382 /* In the kernel's mapped region we completely ignore the region number
383 (since we know it's in region number 5). */
384 #define pgd_offset_k(addr) \
385 (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
387 /* Look up a pgd entry in the gate area. On IA-64, the gate-area
388 resides in the kernel-mapped segment, hence we use pgd_offset_k()
390 #define pgd_offset_gate(mm, addr) pgd_offset_k(addr)
392 #ifdef CONFIG_PGTABLE_4
393 /* Find an entry in the second-level page table.. */
394 #define pud_offset(dir,addr) \
395 ((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)))
398 /* Find an entry in the third-level page table.. */
399 #define pmd_offset(dir,addr) \
400 ((pmd_t *) pud_page_vaddr(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
403 * Find an entry in the third-level page table. This looks more complicated than it
404 * should be because some platforms place page tables in high memory.
406 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
407 #define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
408 #define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
409 #define pte_unmap(pte) do { } while (0)
411 /* atomic versions of the some PTE manipulations: */
414 ptep_test_and_clear_young (struct vm_area_struct
*vma
, unsigned long addr
, pte_t
*ptep
)
417 if (!pte_young(*ptep
))
419 return test_and_clear_bit(_PAGE_A_BIT
, ptep
);
424 set_pte_at(vma
->vm_mm
, addr
, ptep
, pte_mkold(pte
));
430 ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
433 return __pte(xchg((long *) ptep
, 0));
436 pte_clear(mm
, addr
, ptep
);
442 ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
445 unsigned long new, old
;
448 old
= pte_val(*ptep
);
449 new = pte_val(pte_wrprotect(__pte (old
)));
450 } while (cmpxchg((unsigned long *) ptep
, old
, new) != old
);
452 pte_t old_pte
= *ptep
;
453 set_pte_at(mm
, addr
, ptep
, pte_wrprotect(old_pte
));
458 pte_same (pte_t a
, pte_t b
)
460 return pte_val(a
) == pte_val(b
);
463 #define update_mmu_cache(vma, address, ptep) do { } while (0)
465 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
466 extern void paging_init (void);
469 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of
470 * bits in the swap-type field of the swap pte. It would be nice to
471 * enforce that, but we can't easily include <linux/swap.h> here.
472 * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...).
474 * Format of swap pte:
475 * bit 0 : present bit (must be zero)
476 * bit 1 : _PAGE_FILE (must be zero)
477 * bits 2- 8: swap-type
478 * bits 9-62: swap offset
479 * bit 63 : _PAGE_PROTNONE bit
481 * Format of file pte:
482 * bit 0 : present bit (must be zero)
483 * bit 1 : _PAGE_FILE (must be one)
484 * bits 2-62: file_offset/PAGE_SIZE
485 * bit 63 : _PAGE_PROTNONE bit
487 #define __swp_type(entry) (((entry).val >> 2) & 0x7f)
488 #define __swp_offset(entry) (((entry).val << 1) >> 10)
489 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) })
490 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
491 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
493 #define PTE_FILE_MAX_BITS 61
494 #define pte_to_pgoff(pte) ((pte_val(pte) << 1) >> 3)
495 #define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE })
497 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
498 remap_pfn_range(vma, vaddr, pfn, size, prot)
501 * ZERO_PAGE is a global shared page that is always zero: used
502 * for zero-mapped memory areas etc..
504 extern unsigned long empty_zero_page
[PAGE_SIZE
/sizeof(unsigned long)];
505 extern struct page
*zero_page_memmap_ptr
;
506 #define ZERO_PAGE(vaddr) (zero_page_memmap_ptr)
508 /* We provide our own get_unmapped_area to cope with VA holes for userland */
509 #define HAVE_ARCH_UNMAPPED_AREA
511 #ifdef CONFIG_HUGETLB_PAGE
512 #define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3))
513 #define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT)
514 #define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1))
518 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
520 * Update PTEP with ENTRY, which is guaranteed to be a less
521 * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and
522 * WRITABLE bits turned on, when the value at PTEP did not. The
523 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE.
525 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without
526 * having to worry about races. On SMP machines, there are only two
527 * cases where this is true:
529 * (1) *PTEP has the PRESENT bit turned OFF
530 * (2) ENTRY has the DIRTY bit turned ON
532 * On ia64, we could implement this routine with a cmpxchg()-loop
533 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY.
534 * However, like on x86, we can get a more streamlined version by
535 * observing that it is OK to drop ACCESSED bit updates when
536 * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is
537 * result in an extra Access-bit fault, which would then turn on the
538 * ACCESSED bit in the low-level fault handler (iaccess_bit or
539 * daccess_bit in ivt.S).
542 # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
544 int __changed = !pte_same(*(__ptep), __entry); \
545 if (__changed && __safely_writable) { \
546 set_pte(__ptep, __entry); \
547 flush_tlb_page(__vma, __addr); \
552 # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
554 int __changed = !pte_same(*(__ptep), __entry); \
556 set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry); \
557 flush_tlb_page(__vma, __addr); \
563 # ifdef CONFIG_VIRTUAL_MEM_MAP
564 /* arch mem_map init routine is needed due to holes in a virtual mem_map */
565 # define __HAVE_ARCH_MEMMAP_INIT
566 extern void memmap_init (unsigned long size
, int nid
, unsigned long zone
,
567 unsigned long start_pfn
);
568 # endif /* CONFIG_VIRTUAL_MEM_MAP */
569 # endif /* !__ASSEMBLY__ */
572 * Identity-mapped regions use a large page size. We'll call such large pages
573 * "granules". If you can think of a better name that's unambiguous, let me
576 #if defined(CONFIG_IA64_GRANULE_64MB)
577 # define IA64_GRANULE_SHIFT _PAGE_SIZE_64M
578 #elif defined(CONFIG_IA64_GRANULE_16MB)
579 # define IA64_GRANULE_SHIFT _PAGE_SIZE_16M
581 #define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT)
583 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL):
585 #define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M
586 #define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT)
589 * No page table caches to initialise
591 #define pgtable_cache_init() do { } while (0)
593 /* These tell get_user_pages() that the first gate page is accessible from user-level. */
594 #define FIXADDR_USER_START GATE_ADDR
595 #ifdef HAVE_BUGGY_SEGREL
596 # define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE)
598 # define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE)
601 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
602 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
603 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
604 #define __HAVE_ARCH_PTE_SAME
605 #define __HAVE_ARCH_PGD_OFFSET_GATE
608 #ifndef CONFIG_PGTABLE_4
609 #include <asm-generic/pgtable-nopud.h>
611 #include <asm-generic/pgtable.h>
613 #endif /* _ASM_IA64_PGTABLE_H */