2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1998-2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Stephane Eranian <eranian@hpl.hp.com>
9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10 * Copyright (C) 1999 VA Linux Systems
11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
20 #include <linux/nmi.h>
21 #include <linux/swap.h>
23 #include <asm/meminit.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pgtable.h>
26 #include <asm/sections.h>
29 #ifdef CONFIG_VIRTUAL_MEM_MAP
30 static unsigned long max_gap
;
34 * show_mem - give short summary of memory stats
36 * Shows a simple page count of reserved and used pages in the system.
37 * For discontig machines, it does this on a per-pgdat basis.
39 void show_mem(unsigned int filter
)
41 int i
, total_reserved
= 0;
42 int total_shared
= 0, total_cached
= 0;
43 unsigned long total_present
= 0;
46 printk(KERN_INFO
"Mem-info:\n");
47 show_free_areas(filter
);
48 printk(KERN_INFO
"Node memory in pages:\n");
49 for_each_online_pgdat(pgdat
) {
50 unsigned long present
;
52 int shared
= 0, cached
= 0, reserved
= 0;
53 int nid
= pgdat
->node_id
;
55 if (skip_free_areas_node(filter
, nid
))
57 pgdat_resize_lock(pgdat
, &flags
);
58 present
= pgdat
->node_present_pages
;
59 for(i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
61 if (unlikely(i
% MAX_ORDER_NR_PAGES
== 0))
63 if (pfn_valid(pgdat
->node_start_pfn
+ i
))
64 page
= pfn_to_page(pgdat
->node_start_pfn
+ i
);
66 #ifdef CONFIG_VIRTUAL_MEM_MAP
67 if (max_gap
< LARGE_GAP
)
70 i
= vmemmap_find_next_valid_pfn(nid
, i
) - 1;
73 if (PageReserved(page
))
75 else if (PageSwapCache(page
))
77 else if (page_count(page
))
78 shared
+= page_count(page
)-1;
80 pgdat_resize_unlock(pgdat
, &flags
);
81 total_present
+= present
;
82 total_reserved
+= reserved
;
83 total_cached
+= cached
;
84 total_shared
+= shared
;
85 printk(KERN_INFO
"Node %4d: RAM: %11ld, rsvd: %8d, "
86 "shrd: %10d, swpd: %10d\n", nid
,
87 present
, reserved
, shared
, cached
);
89 printk(KERN_INFO
"%ld pages of RAM\n", total_present
);
90 printk(KERN_INFO
"%d reserved pages\n", total_reserved
);
91 printk(KERN_INFO
"%d pages shared\n", total_shared
);
92 printk(KERN_INFO
"%d pages swap cached\n", total_cached
);
93 printk(KERN_INFO
"Total of %ld pages in page table cache\n",
94 quicklist_total_size());
95 printk(KERN_INFO
"%d free buffer pages\n", nr_free_buffer_pages());
99 /* physical address where the bootmem map is located */
100 unsigned long bootmap_start
;
103 * find_bootmap_location - callback to find a memory area for the bootmap
104 * @start: start of region
105 * @end: end of region
106 * @arg: unused callback data
108 * Find a place to put the bootmap and return its starting address in
109 * bootmap_start. This address must be page-aligned.
112 find_bootmap_location (u64 start
, u64 end
, void *arg
)
114 u64 needed
= *(unsigned long *)arg
;
115 u64 range_start
, range_end
, free_start
;
119 if (start
== PAGE_OFFSET
) {
126 free_start
= PAGE_OFFSET
;
128 for (i
= 0; i
< num_rsvd_regions
; i
++) {
129 range_start
= max(start
, free_start
);
130 range_end
= min(end
, rsvd_region
[i
].start
& PAGE_MASK
);
132 free_start
= PAGE_ALIGN(rsvd_region
[i
].end
);
134 if (range_end
<= range_start
)
135 continue; /* skip over empty range */
137 if (range_end
- range_start
>= needed
) {
138 bootmap_start
= __pa(range_start
);
139 return -1; /* done */
142 /* nothing more available in this segment */
143 if (range_end
== end
)
150 static void *cpu_data
;
152 * per_cpu_init - setup per-cpu variables
154 * Allocate and setup per-cpu data areas.
159 static bool first_time
= true;
160 void *cpu0_data
= __cpu0_per_cpu
;
168 * get_free_pages() cannot be used before cpu_init() done.
169 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
170 * to avoid that AP calls get_zeroed_page().
172 for_each_possible_cpu(cpu
) {
173 void *src
= cpu
== 0 ? cpu0_data
: __phys_per_cpu_start
;
175 memcpy(cpu_data
, src
, __per_cpu_end
- __per_cpu_start
);
176 __per_cpu_offset
[cpu
] = (char *)cpu_data
- __per_cpu_start
;
177 per_cpu(local_per_cpu_offset
, cpu
) = __per_cpu_offset
[cpu
];
180 * percpu area for cpu0 is moved from the __init area
181 * which is setup by head.S and used till this point.
182 * Update ar.k3. This move is ensures that percpu
183 * area for cpu0 is on the correct node and its
184 * virtual address isn't insanely far from other
185 * percpu areas which is important for congruent
189 ia64_set_kr(IA64_KR_PER_CPU_DATA
, __pa(cpu_data
) -
190 (unsigned long)__per_cpu_start
);
192 cpu_data
+= PERCPU_PAGE_SIZE
;
195 return __per_cpu_start
+ __per_cpu_offset
[smp_processor_id()];
199 alloc_per_cpu_data(void)
201 cpu_data
= __alloc_bootmem(PERCPU_PAGE_SIZE
* num_possible_cpus(),
202 PERCPU_PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
));
206 * setup_per_cpu_areas - setup percpu areas
208 * Arch code has already allocated and initialized percpu areas. All
209 * this function has to do is to teach the determined layout to the
210 * dynamic percpu allocator, which happens to be more complex than
211 * creating whole new ones using helpers.
214 setup_per_cpu_areas(void)
216 struct pcpu_alloc_info
*ai
;
217 struct pcpu_group_info
*gi
;
219 ssize_t static_size
, reserved_size
, dyn_size
;
222 ai
= pcpu_alloc_alloc_info(1, num_possible_cpus());
224 panic("failed to allocate pcpu_alloc_info");
227 /* units are assigned consecutively to possible cpus */
228 for_each_possible_cpu(cpu
)
229 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
232 static_size
= __per_cpu_end
- __per_cpu_start
;
233 reserved_size
= PERCPU_MODULE_RESERVE
;
234 dyn_size
= PERCPU_PAGE_SIZE
- static_size
- reserved_size
;
236 panic("percpu area overflow static=%zd reserved=%zd\n",
237 static_size
, reserved_size
);
239 ai
->static_size
= static_size
;
240 ai
->reserved_size
= reserved_size
;
241 ai
->dyn_size
= dyn_size
;
242 ai
->unit_size
= PERCPU_PAGE_SIZE
;
243 ai
->atom_size
= PAGE_SIZE
;
244 ai
->alloc_size
= PERCPU_PAGE_SIZE
;
246 rc
= pcpu_setup_first_chunk(ai
, __per_cpu_start
+ __per_cpu_offset
[0]);
248 panic("failed to setup percpu area (err=%d)", rc
);
250 pcpu_free_alloc_info(ai
);
253 #define alloc_per_cpu_data() do { } while (0)
254 #endif /* CONFIG_SMP */
257 * find_memory - setup memory map
259 * Walk the EFI memory map and find usable memory for the system, taking
260 * into account reserved areas.
265 unsigned long bootmap_size
;
269 /* first find highest page frame number */
272 efi_memmap_walk(find_max_min_low_pfn
, NULL
);
273 max_pfn
= max_low_pfn
;
274 /* how many bytes to cover all the pages */
275 bootmap_size
= bootmem_bootmap_pages(max_pfn
) << PAGE_SHIFT
;
277 /* look for a location to hold the bootmap */
278 bootmap_start
= ~0UL;
279 efi_memmap_walk(find_bootmap_location
, &bootmap_size
);
280 if (bootmap_start
== ~0UL)
281 panic("Cannot find %ld bytes for bootmap\n", bootmap_size
);
283 bootmap_size
= init_bootmem_node(NODE_DATA(0),
284 (bootmap_start
>> PAGE_SHIFT
), 0, max_pfn
);
286 /* Free all available memory, then mark bootmem-map as being in use. */
287 efi_memmap_walk(filter_rsvd_memory
, free_bootmem
);
288 reserve_bootmem(bootmap_start
, bootmap_size
, BOOTMEM_DEFAULT
);
292 alloc_per_cpu_data();
295 static int count_pages(u64 start
, u64 end
, void *arg
)
297 unsigned long *count
= arg
;
299 *count
+= (end
- start
) >> PAGE_SHIFT
;
304 * Set up the page tables.
310 unsigned long max_dma
;
311 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
314 efi_memmap_walk(count_pages
, &num_physpages
);
316 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
317 #ifdef CONFIG_ZONE_DMA
318 max_dma
= virt_to_phys((void *) MAX_DMA_ADDRESS
) >> PAGE_SHIFT
;
319 max_zone_pfns
[ZONE_DMA
] = max_dma
;
321 max_zone_pfns
[ZONE_NORMAL
] = max_low_pfn
;
323 #ifdef CONFIG_VIRTUAL_MEM_MAP
324 efi_memmap_walk(filter_memory
, register_active_ranges
);
325 efi_memmap_walk(find_largest_hole
, (u64
*)&max_gap
);
326 if (max_gap
< LARGE_GAP
) {
327 vmem_map
= (struct page
*) 0;
328 free_area_init_nodes(max_zone_pfns
);
330 unsigned long map_size
;
332 /* allocate virtual_mem_map */
334 map_size
= PAGE_ALIGN(ALIGN(max_low_pfn
, MAX_ORDER_NR_PAGES
) *
335 sizeof(struct page
));
336 VMALLOC_END
-= map_size
;
337 vmem_map
= (struct page
*) VMALLOC_END
;
338 efi_memmap_walk(create_mem_map_page_table
, NULL
);
341 * alloc_node_mem_map makes an adjustment for mem_map
342 * which isn't compatible with vmem_map.
344 NODE_DATA(0)->node_mem_map
= vmem_map
+
345 find_min_pfn_with_active_regions();
346 free_area_init_nodes(max_zone_pfns
);
348 printk("Virtual mem_map starts at 0x%p\n", mem_map
);
350 #else /* !CONFIG_VIRTUAL_MEM_MAP */
351 add_active_range(0, 0, max_low_pfn
);
352 free_area_init_nodes(max_zone_pfns
);
353 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
354 zero_page_memmap_ptr
= virt_to_page(ia64_imva(empty_zero_page
));