2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 #include <linux/miscdevice.h>
79 #include <linux/falloc.h>
81 #include <asm/uaccess.h>
83 static DEFINE_IDR(loop_index_idr
);
84 static DEFINE_MUTEX(loop_index_mutex
);
87 static int part_shift
;
92 static int transfer_none(struct loop_device
*lo
, int cmd
,
93 struct page
*raw_page
, unsigned raw_off
,
94 struct page
*loop_page
, unsigned loop_off
,
95 int size
, sector_t real_block
)
97 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
98 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
101 memcpy(loop_buf
, raw_buf
, size
);
103 memcpy(raw_buf
, loop_buf
, size
);
105 kunmap_atomic(loop_buf
, KM_USER1
);
106 kunmap_atomic(raw_buf
, KM_USER0
);
111 static int transfer_xor(struct loop_device
*lo
, int cmd
,
112 struct page
*raw_page
, unsigned raw_off
,
113 struct page
*loop_page
, unsigned loop_off
,
114 int size
, sector_t real_block
)
116 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
117 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
118 char *in
, *out
, *key
;
129 key
= lo
->lo_encrypt_key
;
130 keysize
= lo
->lo_encrypt_key_size
;
131 for (i
= 0; i
< size
; i
++)
132 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
134 kunmap_atomic(loop_buf
, KM_USER1
);
135 kunmap_atomic(raw_buf
, KM_USER0
);
140 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
142 if (unlikely(info
->lo_encrypt_key_size
<= 0))
147 static struct loop_func_table none_funcs
= {
148 .number
= LO_CRYPT_NONE
,
149 .transfer
= transfer_none
,
152 static struct loop_func_table xor_funcs
= {
153 .number
= LO_CRYPT_XOR
,
154 .transfer
= transfer_xor
,
158 /* xfer_funcs[0] is special - its release function is never called */
159 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
164 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
166 loff_t size
, offset
, loopsize
;
168 /* Compute loopsize in bytes */
169 size
= i_size_read(file
->f_mapping
->host
);
170 offset
= lo
->lo_offset
;
171 loopsize
= size
- offset
;
172 if (lo
->lo_sizelimit
> 0 && lo
->lo_sizelimit
< loopsize
)
173 loopsize
= lo
->lo_sizelimit
;
176 * Unfortunately, if we want to do I/O on the device,
177 * the number of 512-byte sectors has to fit into a sector_t.
179 return loopsize
>> 9;
183 figure_loop_size(struct loop_device
*lo
)
185 loff_t size
= get_loop_size(lo
, lo
->lo_backing_file
);
186 sector_t x
= (sector_t
)size
;
188 if (unlikely((loff_t
)x
!= size
))
191 set_capacity(lo
->lo_disk
, x
);
196 lo_do_transfer(struct loop_device
*lo
, int cmd
,
197 struct page
*rpage
, unsigned roffs
,
198 struct page
*lpage
, unsigned loffs
,
199 int size
, sector_t rblock
)
201 if (unlikely(!lo
->transfer
))
204 return lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
208 * do_lo_send_aops - helper for writing data to a loop device
210 * This is the fast version for backing filesystems which implement the address
211 * space operations write_begin and write_end.
213 static int do_lo_send_aops(struct loop_device
*lo
, struct bio_vec
*bvec
,
214 loff_t pos
, struct page
*unused
)
216 struct file
*file
= lo
->lo_backing_file
; /* kudos to NFsckingS */
217 struct address_space
*mapping
= file
->f_mapping
;
219 unsigned offset
, bv_offs
;
222 mutex_lock(&mapping
->host
->i_mutex
);
223 index
= pos
>> PAGE_CACHE_SHIFT
;
224 offset
= pos
& ((pgoff_t
)PAGE_CACHE_SIZE
- 1);
225 bv_offs
= bvec
->bv_offset
;
229 unsigned size
, copied
;
234 IV
= ((sector_t
)index
<< (PAGE_CACHE_SHIFT
- 9))+(offset
>> 9);
235 size
= PAGE_CACHE_SIZE
- offset
;
239 ret
= pagecache_write_begin(file
, mapping
, pos
, size
, 0,
244 file_update_time(file
);
246 transfer_result
= lo_do_transfer(lo
, WRITE
, page
, offset
,
247 bvec
->bv_page
, bv_offs
, size
, IV
);
249 if (unlikely(transfer_result
))
252 ret
= pagecache_write_end(file
, mapping
, pos
, size
, copied
,
254 if (ret
< 0 || ret
!= copied
)
257 if (unlikely(transfer_result
))
268 mutex_unlock(&mapping
->host
->i_mutex
);
276 * __do_lo_send_write - helper for writing data to a loop device
278 * This helper just factors out common code between do_lo_send_direct_write()
279 * and do_lo_send_write().
281 static int __do_lo_send_write(struct file
*file
,
282 u8
*buf
, const int len
, loff_t pos
)
285 mm_segment_t old_fs
= get_fs();
288 bw
= file
->f_op
->write(file
, buf
, len
, &pos
);
290 if (likely(bw
== len
))
292 printk(KERN_ERR
"loop: Write error at byte offset %llu, length %i.\n",
293 (unsigned long long)pos
, len
);
300 * do_lo_send_direct_write - helper for writing data to a loop device
302 * This is the fast, non-transforming version for backing filesystems which do
303 * not implement the address space operations write_begin and write_end.
304 * It uses the write file operation which should be present on all writeable
307 static int do_lo_send_direct_write(struct loop_device
*lo
,
308 struct bio_vec
*bvec
, loff_t pos
, struct page
*page
)
310 ssize_t bw
= __do_lo_send_write(lo
->lo_backing_file
,
311 kmap(bvec
->bv_page
) + bvec
->bv_offset
,
313 kunmap(bvec
->bv_page
);
319 * do_lo_send_write - helper for writing data to a loop device
321 * This is the slow, transforming version for filesystems which do not
322 * implement the address space operations write_begin and write_end. It
323 * uses the write file operation which should be present on all writeable
326 * Using fops->write is slower than using aops->{prepare,commit}_write in the
327 * transforming case because we need to double buffer the data as we cannot do
328 * the transformations in place as we do not have direct access to the
329 * destination pages of the backing file.
331 static int do_lo_send_write(struct loop_device
*lo
, struct bio_vec
*bvec
,
332 loff_t pos
, struct page
*page
)
334 int ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
->bv_page
,
335 bvec
->bv_offset
, bvec
->bv_len
, pos
>> 9);
337 return __do_lo_send_write(lo
->lo_backing_file
,
338 page_address(page
), bvec
->bv_len
,
340 printk(KERN_ERR
"loop: Transfer error at byte offset %llu, "
341 "length %i.\n", (unsigned long long)pos
, bvec
->bv_len
);
347 static int lo_send(struct loop_device
*lo
, struct bio
*bio
, loff_t pos
)
349 int (*do_lo_send
)(struct loop_device
*, struct bio_vec
*, loff_t
,
351 struct bio_vec
*bvec
;
352 struct page
*page
= NULL
;
355 do_lo_send
= do_lo_send_aops
;
356 if (!(lo
->lo_flags
& LO_FLAGS_USE_AOPS
)) {
357 do_lo_send
= do_lo_send_direct_write
;
358 if (lo
->transfer
!= transfer_none
) {
359 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
);
363 do_lo_send
= do_lo_send_write
;
366 bio_for_each_segment(bvec
, bio
, i
) {
367 ret
= do_lo_send(lo
, bvec
, pos
, page
);
379 printk(KERN_ERR
"loop: Failed to allocate temporary page for write.\n");
384 struct lo_read_data
{
385 struct loop_device
*lo
;
392 lo_splice_actor(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
393 struct splice_desc
*sd
)
395 struct lo_read_data
*p
= sd
->u
.data
;
396 struct loop_device
*lo
= p
->lo
;
397 struct page
*page
= buf
->page
;
401 IV
= ((sector_t
) page
->index
<< (PAGE_CACHE_SHIFT
- 9)) +
407 if (lo_do_transfer(lo
, READ
, page
, buf
->offset
, p
->page
, p
->offset
, size
, IV
)) {
408 printk(KERN_ERR
"loop: transfer error block %ld\n",
413 flush_dcache_page(p
->page
);
422 lo_direct_splice_actor(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
424 return __splice_from_pipe(pipe
, sd
, lo_splice_actor
);
428 do_lo_receive(struct loop_device
*lo
,
429 struct bio_vec
*bvec
, int bsize
, loff_t pos
)
431 struct lo_read_data cookie
;
432 struct splice_desc sd
;
437 cookie
.page
= bvec
->bv_page
;
438 cookie
.offset
= bvec
->bv_offset
;
439 cookie
.bsize
= bsize
;
442 sd
.total_len
= bvec
->bv_len
;
447 file
= lo
->lo_backing_file
;
448 retval
= splice_direct_to_actor(file
, &sd
, lo_direct_splice_actor
);
457 lo_receive(struct loop_device
*lo
, struct bio
*bio
, int bsize
, loff_t pos
)
459 struct bio_vec
*bvec
;
462 bio_for_each_segment(bvec
, bio
, i
) {
463 ret
= do_lo_receive(lo
, bvec
, bsize
, pos
);
471 static int do_bio_filebacked(struct loop_device
*lo
, struct bio
*bio
)
476 pos
= ((loff_t
) bio
->bi_sector
<< 9) + lo
->lo_offset
;
478 if (bio_rw(bio
) == WRITE
) {
479 struct file
*file
= lo
->lo_backing_file
;
481 if (bio
->bi_rw
& REQ_FLUSH
) {
482 ret
= vfs_fsync(file
, 0);
483 if (unlikely(ret
&& ret
!= -EINVAL
)) {
490 * We use punch hole to reclaim the free space used by the
491 * image a.k.a. discard. However we do support discard if
492 * encryption is enabled, because it may give an attacker
493 * useful information.
495 if (bio
->bi_rw
& REQ_DISCARD
) {
496 struct file
*file
= lo
->lo_backing_file
;
497 int mode
= FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
;
499 if ((!file
->f_op
->fallocate
) ||
500 lo
->lo_encrypt_key_size
) {
504 ret
= file
->f_op
->fallocate(file
, mode
, pos
,
506 if (unlikely(ret
&& ret
!= -EINVAL
&&
512 ret
= lo_send(lo
, bio
, pos
);
514 if ((bio
->bi_rw
& REQ_FUA
) && !ret
) {
515 ret
= vfs_fsync(file
, 0);
516 if (unlikely(ret
&& ret
!= -EINVAL
))
520 ret
= lo_receive(lo
, bio
, lo
->lo_blocksize
, pos
);
527 * Add bio to back of pending list
529 static void loop_add_bio(struct loop_device
*lo
, struct bio
*bio
)
531 bio_list_add(&lo
->lo_bio_list
, bio
);
535 * Grab first pending buffer
537 static struct bio
*loop_get_bio(struct loop_device
*lo
)
539 return bio_list_pop(&lo
->lo_bio_list
);
542 static int loop_make_request(struct request_queue
*q
, struct bio
*old_bio
)
544 struct loop_device
*lo
= q
->queuedata
;
545 int rw
= bio_rw(old_bio
);
550 BUG_ON(!lo
|| (rw
!= READ
&& rw
!= WRITE
));
552 spin_lock_irq(&lo
->lo_lock
);
553 if (lo
->lo_state
!= Lo_bound
)
555 if (unlikely(rw
== WRITE
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)))
557 loop_add_bio(lo
, old_bio
);
558 wake_up(&lo
->lo_event
);
559 spin_unlock_irq(&lo
->lo_lock
);
563 spin_unlock_irq(&lo
->lo_lock
);
564 bio_io_error(old_bio
);
568 struct switch_request
{
570 struct completion wait
;
573 static void do_loop_switch(struct loop_device
*, struct switch_request
*);
575 static inline void loop_handle_bio(struct loop_device
*lo
, struct bio
*bio
)
577 if (unlikely(!bio
->bi_bdev
)) {
578 do_loop_switch(lo
, bio
->bi_private
);
581 int ret
= do_bio_filebacked(lo
, bio
);
587 * worker thread that handles reads/writes to file backed loop devices,
588 * to avoid blocking in our make_request_fn. it also does loop decrypting
589 * on reads for block backed loop, as that is too heavy to do from
590 * b_end_io context where irqs may be disabled.
592 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
593 * calling kthread_stop(). Therefore once kthread_should_stop() is
594 * true, make_request will not place any more requests. Therefore
595 * once kthread_should_stop() is true and lo_bio is NULL, we are
596 * done with the loop.
598 static int loop_thread(void *data
)
600 struct loop_device
*lo
= data
;
603 set_user_nice(current
, -20);
605 while (!kthread_should_stop() || !bio_list_empty(&lo
->lo_bio_list
)) {
607 wait_event_interruptible(lo
->lo_event
,
608 !bio_list_empty(&lo
->lo_bio_list
) ||
609 kthread_should_stop());
611 if (bio_list_empty(&lo
->lo_bio_list
))
613 spin_lock_irq(&lo
->lo_lock
);
614 bio
= loop_get_bio(lo
);
615 spin_unlock_irq(&lo
->lo_lock
);
618 loop_handle_bio(lo
, bio
);
625 * loop_switch performs the hard work of switching a backing store.
626 * First it needs to flush existing IO, it does this by sending a magic
627 * BIO down the pipe. The completion of this BIO does the actual switch.
629 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
631 struct switch_request w
;
632 struct bio
*bio
= bio_alloc(GFP_KERNEL
, 0);
635 init_completion(&w
.wait
);
637 bio
->bi_private
= &w
;
639 loop_make_request(lo
->lo_queue
, bio
);
640 wait_for_completion(&w
.wait
);
645 * Helper to flush the IOs in loop, but keeping loop thread running
647 static int loop_flush(struct loop_device
*lo
)
649 /* loop not yet configured, no running thread, nothing to flush */
653 return loop_switch(lo
, NULL
);
657 * Do the actual switch; called from the BIO completion routine
659 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
661 struct file
*file
= p
->file
;
662 struct file
*old_file
= lo
->lo_backing_file
;
663 struct address_space
*mapping
;
665 /* if no new file, only flush of queued bios requested */
669 mapping
= file
->f_mapping
;
670 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
671 lo
->lo_backing_file
= file
;
672 lo
->lo_blocksize
= S_ISBLK(mapping
->host
->i_mode
) ?
673 mapping
->host
->i_bdev
->bd_block_size
: PAGE_SIZE
;
674 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
675 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
682 * loop_change_fd switched the backing store of a loopback device to
683 * a new file. This is useful for operating system installers to free up
684 * the original file and in High Availability environments to switch to
685 * an alternative location for the content in case of server meltdown.
686 * This can only work if the loop device is used read-only, and if the
687 * new backing store is the same size and type as the old backing store.
689 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
692 struct file
*file
, *old_file
;
697 if (lo
->lo_state
!= Lo_bound
)
700 /* the loop device has to be read-only */
702 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
710 inode
= file
->f_mapping
->host
;
711 old_file
= lo
->lo_backing_file
;
715 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
718 /* size of the new backing store needs to be the same */
719 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
723 error
= loop_switch(lo
, file
);
728 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
729 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
738 static inline int is_loop_device(struct file
*file
)
740 struct inode
*i
= file
->f_mapping
->host
;
742 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
745 /* loop sysfs attributes */
747 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
748 ssize_t (*callback
)(struct loop_device
*, char *))
750 struct gendisk
*disk
= dev_to_disk(dev
);
751 struct loop_device
*lo
= disk
->private_data
;
753 return callback(lo
, page
);
756 #define LOOP_ATTR_RO(_name) \
757 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
758 static ssize_t loop_attr_do_show_##_name(struct device *d, \
759 struct device_attribute *attr, char *b) \
761 return loop_attr_show(d, b, loop_attr_##_name##_show); \
763 static struct device_attribute loop_attr_##_name = \
764 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
766 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
771 spin_lock_irq(&lo
->lo_lock
);
772 if (lo
->lo_backing_file
)
773 p
= d_path(&lo
->lo_backing_file
->f_path
, buf
, PAGE_SIZE
- 1);
774 spin_unlock_irq(&lo
->lo_lock
);
776 if (IS_ERR_OR_NULL(p
))
780 memmove(buf
, p
, ret
);
788 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
790 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
793 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
795 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
798 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
800 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
802 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
805 static ssize_t
loop_attr_partscan_show(struct loop_device
*lo
, char *buf
)
807 int partscan
= (lo
->lo_flags
& LO_FLAGS_PARTSCAN
);
809 return sprintf(buf
, "%s\n", partscan
? "1" : "0");
812 LOOP_ATTR_RO(backing_file
);
813 LOOP_ATTR_RO(offset
);
814 LOOP_ATTR_RO(sizelimit
);
815 LOOP_ATTR_RO(autoclear
);
816 LOOP_ATTR_RO(partscan
);
818 static struct attribute
*loop_attrs
[] = {
819 &loop_attr_backing_file
.attr
,
820 &loop_attr_offset
.attr
,
821 &loop_attr_sizelimit
.attr
,
822 &loop_attr_autoclear
.attr
,
823 &loop_attr_partscan
.attr
,
827 static struct attribute_group loop_attribute_group
= {
832 static int loop_sysfs_init(struct loop_device
*lo
)
834 return sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
835 &loop_attribute_group
);
838 static void loop_sysfs_exit(struct loop_device
*lo
)
840 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
841 &loop_attribute_group
);
844 static void loop_config_discard(struct loop_device
*lo
)
846 struct file
*file
= lo
->lo_backing_file
;
847 struct inode
*inode
= file
->f_mapping
->host
;
848 struct request_queue
*q
= lo
->lo_queue
;
851 * We use punch hole to reclaim the free space used by the
852 * image a.k.a. discard. However we do support discard if
853 * encryption is enabled, because it may give an attacker
854 * useful information.
856 if ((!file
->f_op
->fallocate
) ||
857 lo
->lo_encrypt_key_size
) {
858 q
->limits
.discard_granularity
= 0;
859 q
->limits
.discard_alignment
= 0;
860 q
->limits
.max_discard_sectors
= 0;
861 q
->limits
.discard_zeroes_data
= 0;
862 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
, q
);
866 q
->limits
.discard_granularity
= inode
->i_sb
->s_blocksize
;
867 q
->limits
.discard_alignment
= inode
->i_sb
->s_blocksize
;
868 q
->limits
.max_discard_sectors
= UINT_MAX
>> 9;
869 q
->limits
.discard_zeroes_data
= 1;
870 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, q
);
873 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
874 struct block_device
*bdev
, unsigned int arg
)
876 struct file
*file
, *f
;
878 struct address_space
*mapping
;
879 unsigned lo_blocksize
;
884 /* This is safe, since we have a reference from open(). */
885 __module_get(THIS_MODULE
);
893 if (lo
->lo_state
!= Lo_unbound
)
896 /* Avoid recursion */
898 while (is_loop_device(f
)) {
899 struct loop_device
*l
;
901 if (f
->f_mapping
->host
->i_bdev
== bdev
)
904 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
905 if (l
->lo_state
== Lo_unbound
) {
909 f
= l
->lo_backing_file
;
912 mapping
= file
->f_mapping
;
913 inode
= mapping
->host
;
915 if (!(file
->f_mode
& FMODE_WRITE
))
916 lo_flags
|= LO_FLAGS_READ_ONLY
;
919 if (S_ISREG(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
920 const struct address_space_operations
*aops
= mapping
->a_ops
;
922 if (aops
->write_begin
)
923 lo_flags
|= LO_FLAGS_USE_AOPS
;
924 if (!(lo_flags
& LO_FLAGS_USE_AOPS
) && !file
->f_op
->write
)
925 lo_flags
|= LO_FLAGS_READ_ONLY
;
927 lo_blocksize
= S_ISBLK(inode
->i_mode
) ?
928 inode
->i_bdev
->bd_block_size
: PAGE_SIZE
;
935 size
= get_loop_size(lo
, file
);
937 if ((loff_t
)(sector_t
)size
!= size
) {
942 if (!(mode
& FMODE_WRITE
))
943 lo_flags
|= LO_FLAGS_READ_ONLY
;
945 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
947 lo
->lo_blocksize
= lo_blocksize
;
948 lo
->lo_device
= bdev
;
949 lo
->lo_flags
= lo_flags
;
950 lo
->lo_backing_file
= file
;
951 lo
->transfer
= transfer_none
;
953 lo
->lo_sizelimit
= 0;
954 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
955 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
957 bio_list_init(&lo
->lo_bio_list
);
960 * set queue make_request_fn, and add limits based on lower level
963 blk_queue_make_request(lo
->lo_queue
, loop_make_request
);
964 lo
->lo_queue
->queuedata
= lo
;
966 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
967 blk_queue_flush(lo
->lo_queue
, REQ_FLUSH
);
969 set_capacity(lo
->lo_disk
, size
);
970 bd_set_size(bdev
, size
<< 9);
972 /* let user-space know about the new size */
973 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
975 set_blocksize(bdev
, lo_blocksize
);
977 lo
->lo_thread
= kthread_create(loop_thread
, lo
, "loop%d",
979 if (IS_ERR(lo
->lo_thread
)) {
980 error
= PTR_ERR(lo
->lo_thread
);
983 lo
->lo_state
= Lo_bound
;
984 wake_up_process(lo
->lo_thread
);
986 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
987 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
988 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
993 lo
->lo_thread
= NULL
;
994 lo
->lo_device
= NULL
;
995 lo
->lo_backing_file
= NULL
;
997 set_capacity(lo
->lo_disk
, 0);
998 invalidate_bdev(bdev
);
999 bd_set_size(bdev
, 0);
1000 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1001 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
);
1002 lo
->lo_state
= Lo_unbound
;
1006 /* This is safe: open() is still holding a reference. */
1007 module_put(THIS_MODULE
);
1012 loop_release_xfer(struct loop_device
*lo
)
1015 struct loop_func_table
*xfer
= lo
->lo_encryption
;
1019 err
= xfer
->release(lo
);
1020 lo
->transfer
= NULL
;
1021 lo
->lo_encryption
= NULL
;
1022 module_put(xfer
->owner
);
1028 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
1029 const struct loop_info64
*i
)
1034 struct module
*owner
= xfer
->owner
;
1036 if (!try_module_get(owner
))
1039 err
= xfer
->init(lo
, i
);
1043 lo
->lo_encryption
= xfer
;
1048 static int loop_clr_fd(struct loop_device
*lo
, struct block_device
*bdev
)
1050 struct file
*filp
= lo
->lo_backing_file
;
1051 gfp_t gfp
= lo
->old_gfp_mask
;
1053 if (lo
->lo_state
!= Lo_bound
)
1056 if (lo
->lo_refcnt
> 1) /* we needed one fd for the ioctl */
1062 spin_lock_irq(&lo
->lo_lock
);
1063 lo
->lo_state
= Lo_rundown
;
1064 spin_unlock_irq(&lo
->lo_lock
);
1066 kthread_stop(lo
->lo_thread
);
1068 spin_lock_irq(&lo
->lo_lock
);
1069 lo
->lo_backing_file
= NULL
;
1070 spin_unlock_irq(&lo
->lo_lock
);
1072 loop_release_xfer(lo
);
1073 lo
->transfer
= NULL
;
1075 lo
->lo_device
= NULL
;
1076 lo
->lo_encryption
= NULL
;
1078 lo
->lo_sizelimit
= 0;
1079 lo
->lo_encrypt_key_size
= 0;
1080 lo
->lo_thread
= NULL
;
1081 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1082 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1083 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1085 invalidate_bdev(bdev
);
1086 set_capacity(lo
->lo_disk
, 0);
1087 loop_sysfs_exit(lo
);
1089 bd_set_size(bdev
, 0);
1090 /* let user-space know about this change */
1091 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1093 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1094 lo
->lo_state
= Lo_unbound
;
1095 /* This is safe: open() is still holding a reference. */
1096 module_put(THIS_MODULE
);
1097 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
&& bdev
)
1098 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
1101 lo
->lo_disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1102 mutex_unlock(&lo
->lo_ctl_mutex
);
1104 * Need not hold lo_ctl_mutex to fput backing file.
1105 * Calling fput holding lo_ctl_mutex triggers a circular
1106 * lock dependency possibility warning as fput can take
1107 * bd_mutex which is usually taken before lo_ctl_mutex.
1114 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1117 struct loop_func_table
*xfer
;
1118 uid_t uid
= current_uid();
1120 if (lo
->lo_encrypt_key_size
&&
1121 lo
->lo_key_owner
!= uid
&&
1122 !capable(CAP_SYS_ADMIN
))
1124 if (lo
->lo_state
!= Lo_bound
)
1126 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
1129 err
= loop_release_xfer(lo
);
1133 if (info
->lo_encrypt_type
) {
1134 unsigned int type
= info
->lo_encrypt_type
;
1136 if (type
>= MAX_LO_CRYPT
)
1138 xfer
= xfer_funcs
[type
];
1144 err
= loop_init_xfer(lo
, xfer
, info
);
1148 if (lo
->lo_offset
!= info
->lo_offset
||
1149 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1150 lo
->lo_offset
= info
->lo_offset
;
1151 lo
->lo_sizelimit
= info
->lo_sizelimit
;
1152 if (figure_loop_size(lo
))
1155 loop_config_discard(lo
);
1157 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1158 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1159 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1160 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1164 lo
->transfer
= xfer
->transfer
;
1165 lo
->ioctl
= xfer
->ioctl
;
1167 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1168 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1169 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1171 if ((info
->lo_flags
& LO_FLAGS_PARTSCAN
) &&
1172 !(lo
->lo_flags
& LO_FLAGS_PARTSCAN
)) {
1173 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1174 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1175 ioctl_by_bdev(lo
->lo_device
, BLKRRPART
, 0);
1178 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1179 lo
->lo_init
[0] = info
->lo_init
[0];
1180 lo
->lo_init
[1] = info
->lo_init
[1];
1181 if (info
->lo_encrypt_key_size
) {
1182 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1183 info
->lo_encrypt_key_size
);
1184 lo
->lo_key_owner
= uid
;
1191 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1193 struct file
*file
= lo
->lo_backing_file
;
1197 if (lo
->lo_state
!= Lo_bound
)
1199 error
= vfs_getattr(file
->f_path
.mnt
, file
->f_path
.dentry
, &stat
);
1202 memset(info
, 0, sizeof(*info
));
1203 info
->lo_number
= lo
->lo_number
;
1204 info
->lo_device
= huge_encode_dev(stat
.dev
);
1205 info
->lo_inode
= stat
.ino
;
1206 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1207 info
->lo_offset
= lo
->lo_offset
;
1208 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1209 info
->lo_flags
= lo
->lo_flags
;
1210 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1211 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1212 info
->lo_encrypt_type
=
1213 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1214 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1215 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1216 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1217 lo
->lo_encrypt_key_size
);
1223 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1225 memset(info64
, 0, sizeof(*info64
));
1226 info64
->lo_number
= info
->lo_number
;
1227 info64
->lo_device
= info
->lo_device
;
1228 info64
->lo_inode
= info
->lo_inode
;
1229 info64
->lo_rdevice
= info
->lo_rdevice
;
1230 info64
->lo_offset
= info
->lo_offset
;
1231 info64
->lo_sizelimit
= 0;
1232 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1233 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1234 info64
->lo_flags
= info
->lo_flags
;
1235 info64
->lo_init
[0] = info
->lo_init
[0];
1236 info64
->lo_init
[1] = info
->lo_init
[1];
1237 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1238 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1240 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1241 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1245 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1247 memset(info
, 0, sizeof(*info
));
1248 info
->lo_number
= info64
->lo_number
;
1249 info
->lo_device
= info64
->lo_device
;
1250 info
->lo_inode
= info64
->lo_inode
;
1251 info
->lo_rdevice
= info64
->lo_rdevice
;
1252 info
->lo_offset
= info64
->lo_offset
;
1253 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1254 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1255 info
->lo_flags
= info64
->lo_flags
;
1256 info
->lo_init
[0] = info64
->lo_init
[0];
1257 info
->lo_init
[1] = info64
->lo_init
[1];
1258 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1259 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1261 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1262 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1264 /* error in case values were truncated */
1265 if (info
->lo_device
!= info64
->lo_device
||
1266 info
->lo_rdevice
!= info64
->lo_rdevice
||
1267 info
->lo_inode
!= info64
->lo_inode
||
1268 info
->lo_offset
!= info64
->lo_offset
)
1275 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1277 struct loop_info info
;
1278 struct loop_info64 info64
;
1280 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1282 loop_info64_from_old(&info
, &info64
);
1283 return loop_set_status(lo
, &info64
);
1287 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1289 struct loop_info64 info64
;
1291 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1293 return loop_set_status(lo
, &info64
);
1297 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1298 struct loop_info info
;
1299 struct loop_info64 info64
;
1305 err
= loop_get_status(lo
, &info64
);
1307 err
= loop_info64_to_old(&info64
, &info
);
1308 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1315 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1316 struct loop_info64 info64
;
1322 err
= loop_get_status(lo
, &info64
);
1323 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1329 static int loop_set_capacity(struct loop_device
*lo
, struct block_device
*bdev
)
1336 if (unlikely(lo
->lo_state
!= Lo_bound
))
1338 err
= figure_loop_size(lo
);
1341 sec
= get_capacity(lo
->lo_disk
);
1342 /* the width of sector_t may be narrow for bit-shift */
1345 mutex_lock(&bdev
->bd_mutex
);
1346 bd_set_size(bdev
, sz
);
1347 /* let user-space know about the new size */
1348 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1349 mutex_unlock(&bdev
->bd_mutex
);
1355 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1356 unsigned int cmd
, unsigned long arg
)
1358 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1361 mutex_lock_nested(&lo
->lo_ctl_mutex
, 1);
1364 err
= loop_set_fd(lo
, mode
, bdev
, arg
);
1366 case LOOP_CHANGE_FD
:
1367 err
= loop_change_fd(lo
, bdev
, arg
);
1370 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1371 err
= loop_clr_fd(lo
, bdev
);
1375 case LOOP_SET_STATUS
:
1376 err
= loop_set_status_old(lo
, (struct loop_info __user
*) arg
);
1378 case LOOP_GET_STATUS
:
1379 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1381 case LOOP_SET_STATUS64
:
1382 err
= loop_set_status64(lo
, (struct loop_info64 __user
*) arg
);
1384 case LOOP_GET_STATUS64
:
1385 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1387 case LOOP_SET_CAPACITY
:
1389 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1390 err
= loop_set_capacity(lo
, bdev
);
1393 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1395 mutex_unlock(&lo
->lo_ctl_mutex
);
1401 #ifdef CONFIG_COMPAT
1402 struct compat_loop_info
{
1403 compat_int_t lo_number
; /* ioctl r/o */
1404 compat_dev_t lo_device
; /* ioctl r/o */
1405 compat_ulong_t lo_inode
; /* ioctl r/o */
1406 compat_dev_t lo_rdevice
; /* ioctl r/o */
1407 compat_int_t lo_offset
;
1408 compat_int_t lo_encrypt_type
;
1409 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1410 compat_int_t lo_flags
; /* ioctl r/o */
1411 char lo_name
[LO_NAME_SIZE
];
1412 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1413 compat_ulong_t lo_init
[2];
1418 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1419 * - noinlined to reduce stack space usage in main part of driver
1422 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1423 struct loop_info64
*info64
)
1425 struct compat_loop_info info
;
1427 if (copy_from_user(&info
, arg
, sizeof(info
)))
1430 memset(info64
, 0, sizeof(*info64
));
1431 info64
->lo_number
= info
.lo_number
;
1432 info64
->lo_device
= info
.lo_device
;
1433 info64
->lo_inode
= info
.lo_inode
;
1434 info64
->lo_rdevice
= info
.lo_rdevice
;
1435 info64
->lo_offset
= info
.lo_offset
;
1436 info64
->lo_sizelimit
= 0;
1437 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1438 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1439 info64
->lo_flags
= info
.lo_flags
;
1440 info64
->lo_init
[0] = info
.lo_init
[0];
1441 info64
->lo_init
[1] = info
.lo_init
[1];
1442 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1443 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1445 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1446 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1451 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1452 * - noinlined to reduce stack space usage in main part of driver
1455 loop_info64_to_compat(const struct loop_info64
*info64
,
1456 struct compat_loop_info __user
*arg
)
1458 struct compat_loop_info info
;
1460 memset(&info
, 0, sizeof(info
));
1461 info
.lo_number
= info64
->lo_number
;
1462 info
.lo_device
= info64
->lo_device
;
1463 info
.lo_inode
= info64
->lo_inode
;
1464 info
.lo_rdevice
= info64
->lo_rdevice
;
1465 info
.lo_offset
= info64
->lo_offset
;
1466 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1467 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1468 info
.lo_flags
= info64
->lo_flags
;
1469 info
.lo_init
[0] = info64
->lo_init
[0];
1470 info
.lo_init
[1] = info64
->lo_init
[1];
1471 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1472 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1474 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1475 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1477 /* error in case values were truncated */
1478 if (info
.lo_device
!= info64
->lo_device
||
1479 info
.lo_rdevice
!= info64
->lo_rdevice
||
1480 info
.lo_inode
!= info64
->lo_inode
||
1481 info
.lo_offset
!= info64
->lo_offset
||
1482 info
.lo_init
[0] != info64
->lo_init
[0] ||
1483 info
.lo_init
[1] != info64
->lo_init
[1])
1486 if (copy_to_user(arg
, &info
, sizeof(info
)))
1492 loop_set_status_compat(struct loop_device
*lo
,
1493 const struct compat_loop_info __user
*arg
)
1495 struct loop_info64 info64
;
1498 ret
= loop_info64_from_compat(arg
, &info64
);
1501 return loop_set_status(lo
, &info64
);
1505 loop_get_status_compat(struct loop_device
*lo
,
1506 struct compat_loop_info __user
*arg
)
1508 struct loop_info64 info64
;
1514 err
= loop_get_status(lo
, &info64
);
1516 err
= loop_info64_to_compat(&info64
, arg
);
1520 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1521 unsigned int cmd
, unsigned long arg
)
1523 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1527 case LOOP_SET_STATUS
:
1528 mutex_lock(&lo
->lo_ctl_mutex
);
1529 err
= loop_set_status_compat(
1530 lo
, (const struct compat_loop_info __user
*) arg
);
1531 mutex_unlock(&lo
->lo_ctl_mutex
);
1533 case LOOP_GET_STATUS
:
1534 mutex_lock(&lo
->lo_ctl_mutex
);
1535 err
= loop_get_status_compat(
1536 lo
, (struct compat_loop_info __user
*) arg
);
1537 mutex_unlock(&lo
->lo_ctl_mutex
);
1539 case LOOP_SET_CAPACITY
:
1541 case LOOP_GET_STATUS64
:
1542 case LOOP_SET_STATUS64
:
1543 arg
= (unsigned long) compat_ptr(arg
);
1545 case LOOP_CHANGE_FD
:
1546 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1556 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1558 struct loop_device
*lo
;
1561 mutex_lock(&loop_index_mutex
);
1562 lo
= bdev
->bd_disk
->private_data
;
1568 mutex_lock(&lo
->lo_ctl_mutex
);
1570 mutex_unlock(&lo
->lo_ctl_mutex
);
1572 mutex_unlock(&loop_index_mutex
);
1576 static int lo_release(struct gendisk
*disk
, fmode_t mode
)
1578 struct loop_device
*lo
= disk
->private_data
;
1581 mutex_lock(&lo
->lo_ctl_mutex
);
1583 if (--lo
->lo_refcnt
)
1586 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1588 * In autoclear mode, stop the loop thread
1589 * and remove configuration after last close.
1591 err
= loop_clr_fd(lo
, NULL
);
1596 * Otherwise keep thread (if running) and config,
1597 * but flush possible ongoing bios in thread.
1603 mutex_unlock(&lo
->lo_ctl_mutex
);
1608 static const struct block_device_operations lo_fops
= {
1609 .owner
= THIS_MODULE
,
1611 .release
= lo_release
,
1613 #ifdef CONFIG_COMPAT
1614 .compat_ioctl
= lo_compat_ioctl
,
1619 * And now the modules code and kernel interface.
1621 static int max_loop
;
1622 module_param(max_loop
, int, S_IRUGO
);
1623 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1624 module_param(max_part
, int, S_IRUGO
);
1625 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1626 MODULE_LICENSE("GPL");
1627 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1629 int loop_register_transfer(struct loop_func_table
*funcs
)
1631 unsigned int n
= funcs
->number
;
1633 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1635 xfer_funcs
[n
] = funcs
;
1639 static int unregister_transfer_cb(int id
, void *ptr
, void *data
)
1641 struct loop_device
*lo
= ptr
;
1642 struct loop_func_table
*xfer
= data
;
1644 mutex_lock(&lo
->lo_ctl_mutex
);
1645 if (lo
->lo_encryption
== xfer
)
1646 loop_release_xfer(lo
);
1647 mutex_unlock(&lo
->lo_ctl_mutex
);
1651 int loop_unregister_transfer(int number
)
1653 unsigned int n
= number
;
1654 struct loop_func_table
*xfer
;
1656 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1659 xfer_funcs
[n
] = NULL
;
1660 idr_for_each(&loop_index_idr
, &unregister_transfer_cb
, xfer
);
1664 EXPORT_SYMBOL(loop_register_transfer
);
1665 EXPORT_SYMBOL(loop_unregister_transfer
);
1667 static int loop_add(struct loop_device
**l
, int i
)
1669 struct loop_device
*lo
;
1670 struct gendisk
*disk
;
1673 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1679 err
= idr_pre_get(&loop_index_idr
, GFP_KERNEL
);
1686 /* create specific i in the index */
1687 err
= idr_get_new_above(&loop_index_idr
, lo
, i
, &m
);
1688 if (err
>= 0 && i
!= m
) {
1689 idr_remove(&loop_index_idr
, m
);
1692 } else if (i
== -1) {
1695 /* get next free nr */
1696 err
= idr_get_new(&loop_index_idr
, lo
, &m
);
1705 lo
->lo_queue
= blk_alloc_queue(GFP_KERNEL
);
1709 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
1711 goto out_free_queue
;
1714 * Disable partition scanning by default. The in-kernel partition
1715 * scanning can be requested individually per-device during its
1716 * setup. Userspace can always add and remove partitions from all
1717 * devices. The needed partition minors are allocated from the
1718 * extended minor space, the main loop device numbers will continue
1719 * to match the loop minors, regardless of the number of partitions
1722 * If max_part is given, partition scanning is globally enabled for
1723 * all loop devices. The minors for the main loop devices will be
1724 * multiples of max_part.
1726 * Note: Global-for-all-devices, set-only-at-init, read-only module
1727 * parameteters like 'max_loop' and 'max_part' make things needlessly
1728 * complicated, are too static, inflexible and may surprise
1729 * userspace tools. Parameters like this in general should be avoided.
1732 disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1733 disk
->flags
|= GENHD_FL_EXT_DEVT
;
1734 mutex_init(&lo
->lo_ctl_mutex
);
1736 lo
->lo_thread
= NULL
;
1737 init_waitqueue_head(&lo
->lo_event
);
1738 spin_lock_init(&lo
->lo_lock
);
1739 disk
->major
= LOOP_MAJOR
;
1740 disk
->first_minor
= i
<< part_shift
;
1741 disk
->fops
= &lo_fops
;
1742 disk
->private_data
= lo
;
1743 disk
->queue
= lo
->lo_queue
;
1744 sprintf(disk
->disk_name
, "loop%d", i
);
1747 return lo
->lo_number
;
1750 blk_cleanup_queue(lo
->lo_queue
);
1757 static void loop_remove(struct loop_device
*lo
)
1759 del_gendisk(lo
->lo_disk
);
1760 blk_cleanup_queue(lo
->lo_queue
);
1761 put_disk(lo
->lo_disk
);
1765 static int find_free_cb(int id
, void *ptr
, void *data
)
1767 struct loop_device
*lo
= ptr
;
1768 struct loop_device
**l
= data
;
1770 if (lo
->lo_state
== Lo_unbound
) {
1777 static int loop_lookup(struct loop_device
**l
, int i
)
1779 struct loop_device
*lo
;
1785 err
= idr_for_each(&loop_index_idr
, &find_free_cb
, &lo
);
1788 ret
= lo
->lo_number
;
1793 /* lookup and return a specific i */
1794 lo
= idr_find(&loop_index_idr
, i
);
1797 ret
= lo
->lo_number
;
1803 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1805 struct loop_device
*lo
;
1806 struct kobject
*kobj
;
1809 mutex_lock(&loop_index_mutex
);
1810 err
= loop_lookup(&lo
, MINOR(dev
) >> part_shift
);
1812 err
= loop_add(&lo
, MINOR(dev
) >> part_shift
);
1814 kobj
= ERR_PTR(err
);
1816 kobj
= get_disk(lo
->lo_disk
);
1817 mutex_unlock(&loop_index_mutex
);
1823 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
1826 struct loop_device
*lo
;
1829 mutex_lock(&loop_index_mutex
);
1832 ret
= loop_lookup(&lo
, parm
);
1837 ret
= loop_add(&lo
, parm
);
1839 case LOOP_CTL_REMOVE
:
1840 ret
= loop_lookup(&lo
, parm
);
1843 mutex_lock(&lo
->lo_ctl_mutex
);
1844 if (lo
->lo_state
!= Lo_unbound
) {
1846 mutex_unlock(&lo
->lo_ctl_mutex
);
1849 if (lo
->lo_refcnt
> 0) {
1851 mutex_unlock(&lo
->lo_ctl_mutex
);
1854 lo
->lo_disk
->private_data
= NULL
;
1855 mutex_unlock(&lo
->lo_ctl_mutex
);
1856 idr_remove(&loop_index_idr
, lo
->lo_number
);
1859 case LOOP_CTL_GET_FREE
:
1860 ret
= loop_lookup(&lo
, -1);
1863 ret
= loop_add(&lo
, -1);
1865 mutex_unlock(&loop_index_mutex
);
1870 static const struct file_operations loop_ctl_fops
= {
1871 .open
= nonseekable_open
,
1872 .unlocked_ioctl
= loop_control_ioctl
,
1873 .compat_ioctl
= loop_control_ioctl
,
1874 .owner
= THIS_MODULE
,
1875 .llseek
= noop_llseek
,
1878 static struct miscdevice loop_misc
= {
1879 .minor
= LOOP_CTRL_MINOR
,
1880 .name
= "loop-control",
1881 .fops
= &loop_ctl_fops
,
1884 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
1885 MODULE_ALIAS("devname:loop-control");
1887 static int __init
loop_init(void)
1890 unsigned long range
;
1891 struct loop_device
*lo
;
1894 err
= misc_register(&loop_misc
);
1900 part_shift
= fls(max_part
);
1903 * Adjust max_part according to part_shift as it is exported
1904 * to user space so that user can decide correct minor number
1905 * if [s]he want to create more devices.
1907 * Note that -1 is required because partition 0 is reserved
1908 * for the whole disk.
1910 max_part
= (1UL << part_shift
) - 1;
1913 if ((1UL << part_shift
) > DISK_MAX_PARTS
)
1916 if (max_loop
> 1UL << (MINORBITS
- part_shift
))
1920 * If max_loop is specified, create that many devices upfront.
1921 * This also becomes a hard limit. If max_loop is not specified,
1922 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1923 * init time. Loop devices can be requested on-demand with the
1924 * /dev/loop-control interface, or be instantiated by accessing
1925 * a 'dead' device node.
1929 range
= max_loop
<< part_shift
;
1931 nr
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
1932 range
= 1UL << MINORBITS
;
1935 if (register_blkdev(LOOP_MAJOR
, "loop"))
1938 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
1939 THIS_MODULE
, loop_probe
, NULL
, NULL
);
1941 /* pre-create number of devices given by config or max_loop */
1942 mutex_lock(&loop_index_mutex
);
1943 for (i
= 0; i
< nr
; i
++)
1945 mutex_unlock(&loop_index_mutex
);
1947 printk(KERN_INFO
"loop: module loaded\n");
1951 static int loop_exit_cb(int id
, void *ptr
, void *data
)
1953 struct loop_device
*lo
= ptr
;
1959 static void __exit
loop_exit(void)
1961 unsigned long range
;
1963 range
= max_loop
? max_loop
<< part_shift
: 1UL << MINORBITS
;
1965 idr_for_each(&loop_index_idr
, &loop_exit_cb
, NULL
);
1966 idr_remove_all(&loop_index_idr
);
1967 idr_destroy(&loop_index_idr
);
1969 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
1970 unregister_blkdev(LOOP_MAJOR
, "loop");
1972 misc_deregister(&loop_misc
);
1975 module_init(loop_init
);
1976 module_exit(loop_exit
);
1979 static int __init
max_loop_setup(char *str
)
1981 max_loop
= simple_strtol(str
, NULL
, 0);
1985 __setup("max_loop=", max_loop_setup
);