Add linux-next specific files for 20110831
[linux-2.6/next.git] / drivers / block / loop.c
blobd800d005c6ebd8a3685bb379f81334b1f55a9975
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 #include <linux/miscdevice.h>
79 #include <linux/falloc.h>
81 #include <asm/uaccess.h>
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
86 static int max_part;
87 static int part_shift;
90 * Transfer functions
92 static int transfer_none(struct loop_device *lo, int cmd,
93 struct page *raw_page, unsigned raw_off,
94 struct page *loop_page, unsigned loop_off,
95 int size, sector_t real_block)
97 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
98 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
100 if (cmd == READ)
101 memcpy(loop_buf, raw_buf, size);
102 else
103 memcpy(raw_buf, loop_buf, size);
105 kunmap_atomic(loop_buf, KM_USER1);
106 kunmap_atomic(raw_buf, KM_USER0);
107 cond_resched();
108 return 0;
111 static int transfer_xor(struct loop_device *lo, int cmd,
112 struct page *raw_page, unsigned raw_off,
113 struct page *loop_page, unsigned loop_off,
114 int size, sector_t real_block)
116 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
117 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
118 char *in, *out, *key;
119 int i, keysize;
121 if (cmd == READ) {
122 in = raw_buf;
123 out = loop_buf;
124 } else {
125 in = loop_buf;
126 out = raw_buf;
129 key = lo->lo_encrypt_key;
130 keysize = lo->lo_encrypt_key_size;
131 for (i = 0; i < size; i++)
132 *out++ = *in++ ^ key[(i & 511) % keysize];
134 kunmap_atomic(loop_buf, KM_USER1);
135 kunmap_atomic(raw_buf, KM_USER0);
136 cond_resched();
137 return 0;
140 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
142 if (unlikely(info->lo_encrypt_key_size <= 0))
143 return -EINVAL;
144 return 0;
147 static struct loop_func_table none_funcs = {
148 .number = LO_CRYPT_NONE,
149 .transfer = transfer_none,
152 static struct loop_func_table xor_funcs = {
153 .number = LO_CRYPT_XOR,
154 .transfer = transfer_xor,
155 .init = xor_init
158 /* xfer_funcs[0] is special - its release function is never called */
159 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
160 &none_funcs,
161 &xor_funcs
164 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 loff_t size, offset, loopsize;
168 /* Compute loopsize in bytes */
169 size = i_size_read(file->f_mapping->host);
170 offset = lo->lo_offset;
171 loopsize = size - offset;
172 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
173 loopsize = lo->lo_sizelimit;
176 * Unfortunately, if we want to do I/O on the device,
177 * the number of 512-byte sectors has to fit into a sector_t.
179 return loopsize >> 9;
182 static int
183 figure_loop_size(struct loop_device *lo)
185 loff_t size = get_loop_size(lo, lo->lo_backing_file);
186 sector_t x = (sector_t)size;
188 if (unlikely((loff_t)x != size))
189 return -EFBIG;
191 set_capacity(lo->lo_disk, x);
192 return 0;
195 static inline int
196 lo_do_transfer(struct loop_device *lo, int cmd,
197 struct page *rpage, unsigned roffs,
198 struct page *lpage, unsigned loffs,
199 int size, sector_t rblock)
201 if (unlikely(!lo->transfer))
202 return 0;
204 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
208 * do_lo_send_aops - helper for writing data to a loop device
210 * This is the fast version for backing filesystems which implement the address
211 * space operations write_begin and write_end.
213 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
214 loff_t pos, struct page *unused)
216 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
217 struct address_space *mapping = file->f_mapping;
218 pgoff_t index;
219 unsigned offset, bv_offs;
220 int len, ret;
222 mutex_lock(&mapping->host->i_mutex);
223 index = pos >> PAGE_CACHE_SHIFT;
224 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
225 bv_offs = bvec->bv_offset;
226 len = bvec->bv_len;
227 while (len > 0) {
228 sector_t IV;
229 unsigned size, copied;
230 int transfer_result;
231 struct page *page;
232 void *fsdata;
234 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
235 size = PAGE_CACHE_SIZE - offset;
236 if (size > len)
237 size = len;
239 ret = pagecache_write_begin(file, mapping, pos, size, 0,
240 &page, &fsdata);
241 if (ret)
242 goto fail;
244 file_update_time(file);
246 transfer_result = lo_do_transfer(lo, WRITE, page, offset,
247 bvec->bv_page, bv_offs, size, IV);
248 copied = size;
249 if (unlikely(transfer_result))
250 copied = 0;
252 ret = pagecache_write_end(file, mapping, pos, size, copied,
253 page, fsdata);
254 if (ret < 0 || ret != copied)
255 goto fail;
257 if (unlikely(transfer_result))
258 goto fail;
260 bv_offs += copied;
261 len -= copied;
262 offset = 0;
263 index++;
264 pos += copied;
266 ret = 0;
267 out:
268 mutex_unlock(&mapping->host->i_mutex);
269 return ret;
270 fail:
271 ret = -1;
272 goto out;
276 * __do_lo_send_write - helper for writing data to a loop device
278 * This helper just factors out common code between do_lo_send_direct_write()
279 * and do_lo_send_write().
281 static int __do_lo_send_write(struct file *file,
282 u8 *buf, const int len, loff_t pos)
284 ssize_t bw;
285 mm_segment_t old_fs = get_fs();
287 set_fs(get_ds());
288 bw = file->f_op->write(file, buf, len, &pos);
289 set_fs(old_fs);
290 if (likely(bw == len))
291 return 0;
292 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
293 (unsigned long long)pos, len);
294 if (bw >= 0)
295 bw = -EIO;
296 return bw;
300 * do_lo_send_direct_write - helper for writing data to a loop device
302 * This is the fast, non-transforming version for backing filesystems which do
303 * not implement the address space operations write_begin and write_end.
304 * It uses the write file operation which should be present on all writeable
305 * filesystems.
307 static int do_lo_send_direct_write(struct loop_device *lo,
308 struct bio_vec *bvec, loff_t pos, struct page *page)
310 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
311 kmap(bvec->bv_page) + bvec->bv_offset,
312 bvec->bv_len, pos);
313 kunmap(bvec->bv_page);
314 cond_resched();
315 return bw;
319 * do_lo_send_write - helper for writing data to a loop device
321 * This is the slow, transforming version for filesystems which do not
322 * implement the address space operations write_begin and write_end. It
323 * uses the write file operation which should be present on all writeable
324 * filesystems.
326 * Using fops->write is slower than using aops->{prepare,commit}_write in the
327 * transforming case because we need to double buffer the data as we cannot do
328 * the transformations in place as we do not have direct access to the
329 * destination pages of the backing file.
331 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
332 loff_t pos, struct page *page)
334 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
335 bvec->bv_offset, bvec->bv_len, pos >> 9);
336 if (likely(!ret))
337 return __do_lo_send_write(lo->lo_backing_file,
338 page_address(page), bvec->bv_len,
339 pos);
340 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
341 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
342 if (ret > 0)
343 ret = -EIO;
344 return ret;
347 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
349 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
350 struct page *page);
351 struct bio_vec *bvec;
352 struct page *page = NULL;
353 int i, ret = 0;
355 do_lo_send = do_lo_send_aops;
356 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
357 do_lo_send = do_lo_send_direct_write;
358 if (lo->transfer != transfer_none) {
359 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
360 if (unlikely(!page))
361 goto fail;
362 kmap(page);
363 do_lo_send = do_lo_send_write;
366 bio_for_each_segment(bvec, bio, i) {
367 ret = do_lo_send(lo, bvec, pos, page);
368 if (ret < 0)
369 break;
370 pos += bvec->bv_len;
372 if (page) {
373 kunmap(page);
374 __free_page(page);
376 out:
377 return ret;
378 fail:
379 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
380 ret = -ENOMEM;
381 goto out;
384 struct lo_read_data {
385 struct loop_device *lo;
386 struct page *page;
387 unsigned offset;
388 int bsize;
391 static int
392 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
393 struct splice_desc *sd)
395 struct lo_read_data *p = sd->u.data;
396 struct loop_device *lo = p->lo;
397 struct page *page = buf->page;
398 sector_t IV;
399 int size;
401 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
402 (buf->offset >> 9);
403 size = sd->len;
404 if (size > p->bsize)
405 size = p->bsize;
407 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
408 printk(KERN_ERR "loop: transfer error block %ld\n",
409 page->index);
410 size = -EINVAL;
413 flush_dcache_page(p->page);
415 if (size > 0)
416 p->offset += size;
418 return size;
421 static int
422 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
424 return __splice_from_pipe(pipe, sd, lo_splice_actor);
427 static int
428 do_lo_receive(struct loop_device *lo,
429 struct bio_vec *bvec, int bsize, loff_t pos)
431 struct lo_read_data cookie;
432 struct splice_desc sd;
433 struct file *file;
434 long retval;
436 cookie.lo = lo;
437 cookie.page = bvec->bv_page;
438 cookie.offset = bvec->bv_offset;
439 cookie.bsize = bsize;
441 sd.len = 0;
442 sd.total_len = bvec->bv_len;
443 sd.flags = 0;
444 sd.pos = pos;
445 sd.u.data = &cookie;
447 file = lo->lo_backing_file;
448 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
450 if (retval < 0)
451 return retval;
453 return 0;
456 static int
457 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
459 struct bio_vec *bvec;
460 int i, ret = 0;
462 bio_for_each_segment(bvec, bio, i) {
463 ret = do_lo_receive(lo, bvec, bsize, pos);
464 if (ret < 0)
465 break;
466 pos += bvec->bv_len;
468 return ret;
471 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
473 loff_t pos;
474 int ret;
476 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
478 if (bio_rw(bio) == WRITE) {
479 struct file *file = lo->lo_backing_file;
481 if (bio->bi_rw & REQ_FLUSH) {
482 ret = vfs_fsync(file, 0);
483 if (unlikely(ret && ret != -EINVAL)) {
484 ret = -EIO;
485 goto out;
490 * We use punch hole to reclaim the free space used by the
491 * image a.k.a. discard. However we do support discard if
492 * encryption is enabled, because it may give an attacker
493 * useful information.
495 if (bio->bi_rw & REQ_DISCARD) {
496 struct file *file = lo->lo_backing_file;
497 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
499 if ((!file->f_op->fallocate) ||
500 lo->lo_encrypt_key_size) {
501 ret = -EOPNOTSUPP;
502 goto out;
504 ret = file->f_op->fallocate(file, mode, pos,
505 bio->bi_size);
506 if (unlikely(ret && ret != -EINVAL &&
507 ret != -EOPNOTSUPP))
508 ret = -EIO;
509 goto out;
512 ret = lo_send(lo, bio, pos);
514 if ((bio->bi_rw & REQ_FUA) && !ret) {
515 ret = vfs_fsync(file, 0);
516 if (unlikely(ret && ret != -EINVAL))
517 ret = -EIO;
519 } else
520 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
522 out:
523 return ret;
527 * Add bio to back of pending list
529 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
531 bio_list_add(&lo->lo_bio_list, bio);
535 * Grab first pending buffer
537 static struct bio *loop_get_bio(struct loop_device *lo)
539 return bio_list_pop(&lo->lo_bio_list);
542 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
544 struct loop_device *lo = q->queuedata;
545 int rw = bio_rw(old_bio);
547 if (rw == READA)
548 rw = READ;
550 BUG_ON(!lo || (rw != READ && rw != WRITE));
552 spin_lock_irq(&lo->lo_lock);
553 if (lo->lo_state != Lo_bound)
554 goto out;
555 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
556 goto out;
557 loop_add_bio(lo, old_bio);
558 wake_up(&lo->lo_event);
559 spin_unlock_irq(&lo->lo_lock);
560 return 0;
562 out:
563 spin_unlock_irq(&lo->lo_lock);
564 bio_io_error(old_bio);
565 return 0;
568 struct switch_request {
569 struct file *file;
570 struct completion wait;
573 static void do_loop_switch(struct loop_device *, struct switch_request *);
575 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
577 if (unlikely(!bio->bi_bdev)) {
578 do_loop_switch(lo, bio->bi_private);
579 bio_put(bio);
580 } else {
581 int ret = do_bio_filebacked(lo, bio);
582 bio_endio(bio, ret);
587 * worker thread that handles reads/writes to file backed loop devices,
588 * to avoid blocking in our make_request_fn. it also does loop decrypting
589 * on reads for block backed loop, as that is too heavy to do from
590 * b_end_io context where irqs may be disabled.
592 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
593 * calling kthread_stop(). Therefore once kthread_should_stop() is
594 * true, make_request will not place any more requests. Therefore
595 * once kthread_should_stop() is true and lo_bio is NULL, we are
596 * done with the loop.
598 static int loop_thread(void *data)
600 struct loop_device *lo = data;
601 struct bio *bio;
603 set_user_nice(current, -20);
605 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
607 wait_event_interruptible(lo->lo_event,
608 !bio_list_empty(&lo->lo_bio_list) ||
609 kthread_should_stop());
611 if (bio_list_empty(&lo->lo_bio_list))
612 continue;
613 spin_lock_irq(&lo->lo_lock);
614 bio = loop_get_bio(lo);
615 spin_unlock_irq(&lo->lo_lock);
617 BUG_ON(!bio);
618 loop_handle_bio(lo, bio);
621 return 0;
625 * loop_switch performs the hard work of switching a backing store.
626 * First it needs to flush existing IO, it does this by sending a magic
627 * BIO down the pipe. The completion of this BIO does the actual switch.
629 static int loop_switch(struct loop_device *lo, struct file *file)
631 struct switch_request w;
632 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
633 if (!bio)
634 return -ENOMEM;
635 init_completion(&w.wait);
636 w.file = file;
637 bio->bi_private = &w;
638 bio->bi_bdev = NULL;
639 loop_make_request(lo->lo_queue, bio);
640 wait_for_completion(&w.wait);
641 return 0;
645 * Helper to flush the IOs in loop, but keeping loop thread running
647 static int loop_flush(struct loop_device *lo)
649 /* loop not yet configured, no running thread, nothing to flush */
650 if (!lo->lo_thread)
651 return 0;
653 return loop_switch(lo, NULL);
657 * Do the actual switch; called from the BIO completion routine
659 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
661 struct file *file = p->file;
662 struct file *old_file = lo->lo_backing_file;
663 struct address_space *mapping;
665 /* if no new file, only flush of queued bios requested */
666 if (!file)
667 goto out;
669 mapping = file->f_mapping;
670 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
671 lo->lo_backing_file = file;
672 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
673 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
674 lo->old_gfp_mask = mapping_gfp_mask(mapping);
675 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
676 out:
677 complete(&p->wait);
682 * loop_change_fd switched the backing store of a loopback device to
683 * a new file. This is useful for operating system installers to free up
684 * the original file and in High Availability environments to switch to
685 * an alternative location for the content in case of server meltdown.
686 * This can only work if the loop device is used read-only, and if the
687 * new backing store is the same size and type as the old backing store.
689 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
690 unsigned int arg)
692 struct file *file, *old_file;
693 struct inode *inode;
694 int error;
696 error = -ENXIO;
697 if (lo->lo_state != Lo_bound)
698 goto out;
700 /* the loop device has to be read-only */
701 error = -EINVAL;
702 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
703 goto out;
705 error = -EBADF;
706 file = fget(arg);
707 if (!file)
708 goto out;
710 inode = file->f_mapping->host;
711 old_file = lo->lo_backing_file;
713 error = -EINVAL;
715 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
716 goto out_putf;
718 /* size of the new backing store needs to be the same */
719 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
720 goto out_putf;
722 /* and ... switch */
723 error = loop_switch(lo, file);
724 if (error)
725 goto out_putf;
727 fput(old_file);
728 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
729 ioctl_by_bdev(bdev, BLKRRPART, 0);
730 return 0;
732 out_putf:
733 fput(file);
734 out:
735 return error;
738 static inline int is_loop_device(struct file *file)
740 struct inode *i = file->f_mapping->host;
742 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
745 /* loop sysfs attributes */
747 static ssize_t loop_attr_show(struct device *dev, char *page,
748 ssize_t (*callback)(struct loop_device *, char *))
750 struct gendisk *disk = dev_to_disk(dev);
751 struct loop_device *lo = disk->private_data;
753 return callback(lo, page);
756 #define LOOP_ATTR_RO(_name) \
757 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
758 static ssize_t loop_attr_do_show_##_name(struct device *d, \
759 struct device_attribute *attr, char *b) \
761 return loop_attr_show(d, b, loop_attr_##_name##_show); \
763 static struct device_attribute loop_attr_##_name = \
764 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
766 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
768 ssize_t ret;
769 char *p = NULL;
771 spin_lock_irq(&lo->lo_lock);
772 if (lo->lo_backing_file)
773 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
774 spin_unlock_irq(&lo->lo_lock);
776 if (IS_ERR_OR_NULL(p))
777 ret = PTR_ERR(p);
778 else {
779 ret = strlen(p);
780 memmove(buf, p, ret);
781 buf[ret++] = '\n';
782 buf[ret] = 0;
785 return ret;
788 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
790 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
793 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
795 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
798 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
800 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
802 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
805 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
807 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
809 return sprintf(buf, "%s\n", partscan ? "1" : "0");
812 LOOP_ATTR_RO(backing_file);
813 LOOP_ATTR_RO(offset);
814 LOOP_ATTR_RO(sizelimit);
815 LOOP_ATTR_RO(autoclear);
816 LOOP_ATTR_RO(partscan);
818 static struct attribute *loop_attrs[] = {
819 &loop_attr_backing_file.attr,
820 &loop_attr_offset.attr,
821 &loop_attr_sizelimit.attr,
822 &loop_attr_autoclear.attr,
823 &loop_attr_partscan.attr,
824 NULL,
827 static struct attribute_group loop_attribute_group = {
828 .name = "loop",
829 .attrs= loop_attrs,
832 static int loop_sysfs_init(struct loop_device *lo)
834 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
835 &loop_attribute_group);
838 static void loop_sysfs_exit(struct loop_device *lo)
840 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
841 &loop_attribute_group);
844 static void loop_config_discard(struct loop_device *lo)
846 struct file *file = lo->lo_backing_file;
847 struct inode *inode = file->f_mapping->host;
848 struct request_queue *q = lo->lo_queue;
851 * We use punch hole to reclaim the free space used by the
852 * image a.k.a. discard. However we do support discard if
853 * encryption is enabled, because it may give an attacker
854 * useful information.
856 if ((!file->f_op->fallocate) ||
857 lo->lo_encrypt_key_size) {
858 q->limits.discard_granularity = 0;
859 q->limits.discard_alignment = 0;
860 q->limits.max_discard_sectors = 0;
861 q->limits.discard_zeroes_data = 0;
862 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
863 return;
866 q->limits.discard_granularity = inode->i_sb->s_blocksize;
867 q->limits.discard_alignment = inode->i_sb->s_blocksize;
868 q->limits.max_discard_sectors = UINT_MAX >> 9;
869 q->limits.discard_zeroes_data = 1;
870 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
873 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
874 struct block_device *bdev, unsigned int arg)
876 struct file *file, *f;
877 struct inode *inode;
878 struct address_space *mapping;
879 unsigned lo_blocksize;
880 int lo_flags = 0;
881 int error;
882 loff_t size;
884 /* This is safe, since we have a reference from open(). */
885 __module_get(THIS_MODULE);
887 error = -EBADF;
888 file = fget(arg);
889 if (!file)
890 goto out;
892 error = -EBUSY;
893 if (lo->lo_state != Lo_unbound)
894 goto out_putf;
896 /* Avoid recursion */
897 f = file;
898 while (is_loop_device(f)) {
899 struct loop_device *l;
901 if (f->f_mapping->host->i_bdev == bdev)
902 goto out_putf;
904 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
905 if (l->lo_state == Lo_unbound) {
906 error = -EINVAL;
907 goto out_putf;
909 f = l->lo_backing_file;
912 mapping = file->f_mapping;
913 inode = mapping->host;
915 if (!(file->f_mode & FMODE_WRITE))
916 lo_flags |= LO_FLAGS_READ_ONLY;
918 error = -EINVAL;
919 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
920 const struct address_space_operations *aops = mapping->a_ops;
922 if (aops->write_begin)
923 lo_flags |= LO_FLAGS_USE_AOPS;
924 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
925 lo_flags |= LO_FLAGS_READ_ONLY;
927 lo_blocksize = S_ISBLK(inode->i_mode) ?
928 inode->i_bdev->bd_block_size : PAGE_SIZE;
930 error = 0;
931 } else {
932 goto out_putf;
935 size = get_loop_size(lo, file);
937 if ((loff_t)(sector_t)size != size) {
938 error = -EFBIG;
939 goto out_putf;
942 if (!(mode & FMODE_WRITE))
943 lo_flags |= LO_FLAGS_READ_ONLY;
945 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
947 lo->lo_blocksize = lo_blocksize;
948 lo->lo_device = bdev;
949 lo->lo_flags = lo_flags;
950 lo->lo_backing_file = file;
951 lo->transfer = transfer_none;
952 lo->ioctl = NULL;
953 lo->lo_sizelimit = 0;
954 lo->old_gfp_mask = mapping_gfp_mask(mapping);
955 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
957 bio_list_init(&lo->lo_bio_list);
960 * set queue make_request_fn, and add limits based on lower level
961 * device
963 blk_queue_make_request(lo->lo_queue, loop_make_request);
964 lo->lo_queue->queuedata = lo;
966 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
967 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
969 set_capacity(lo->lo_disk, size);
970 bd_set_size(bdev, size << 9);
971 loop_sysfs_init(lo);
972 /* let user-space know about the new size */
973 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
975 set_blocksize(bdev, lo_blocksize);
977 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
978 lo->lo_number);
979 if (IS_ERR(lo->lo_thread)) {
980 error = PTR_ERR(lo->lo_thread);
981 goto out_clr;
983 lo->lo_state = Lo_bound;
984 wake_up_process(lo->lo_thread);
985 if (part_shift)
986 lo->lo_flags |= LO_FLAGS_PARTSCAN;
987 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
988 ioctl_by_bdev(bdev, BLKRRPART, 0);
989 return 0;
991 out_clr:
992 loop_sysfs_exit(lo);
993 lo->lo_thread = NULL;
994 lo->lo_device = NULL;
995 lo->lo_backing_file = NULL;
996 lo->lo_flags = 0;
997 set_capacity(lo->lo_disk, 0);
998 invalidate_bdev(bdev);
999 bd_set_size(bdev, 0);
1000 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1001 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
1002 lo->lo_state = Lo_unbound;
1003 out_putf:
1004 fput(file);
1005 out:
1006 /* This is safe: open() is still holding a reference. */
1007 module_put(THIS_MODULE);
1008 return error;
1011 static int
1012 loop_release_xfer(struct loop_device *lo)
1014 int err = 0;
1015 struct loop_func_table *xfer = lo->lo_encryption;
1017 if (xfer) {
1018 if (xfer->release)
1019 err = xfer->release(lo);
1020 lo->transfer = NULL;
1021 lo->lo_encryption = NULL;
1022 module_put(xfer->owner);
1024 return err;
1027 static int
1028 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1029 const struct loop_info64 *i)
1031 int err = 0;
1033 if (xfer) {
1034 struct module *owner = xfer->owner;
1036 if (!try_module_get(owner))
1037 return -EINVAL;
1038 if (xfer->init)
1039 err = xfer->init(lo, i);
1040 if (err)
1041 module_put(owner);
1042 else
1043 lo->lo_encryption = xfer;
1045 return err;
1048 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
1050 struct file *filp = lo->lo_backing_file;
1051 gfp_t gfp = lo->old_gfp_mask;
1053 if (lo->lo_state != Lo_bound)
1054 return -ENXIO;
1056 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
1057 return -EBUSY;
1059 if (filp == NULL)
1060 return -EINVAL;
1062 spin_lock_irq(&lo->lo_lock);
1063 lo->lo_state = Lo_rundown;
1064 spin_unlock_irq(&lo->lo_lock);
1066 kthread_stop(lo->lo_thread);
1068 spin_lock_irq(&lo->lo_lock);
1069 lo->lo_backing_file = NULL;
1070 spin_unlock_irq(&lo->lo_lock);
1072 loop_release_xfer(lo);
1073 lo->transfer = NULL;
1074 lo->ioctl = NULL;
1075 lo->lo_device = NULL;
1076 lo->lo_encryption = NULL;
1077 lo->lo_offset = 0;
1078 lo->lo_sizelimit = 0;
1079 lo->lo_encrypt_key_size = 0;
1080 lo->lo_thread = NULL;
1081 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1082 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1083 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1084 if (bdev)
1085 invalidate_bdev(bdev);
1086 set_capacity(lo->lo_disk, 0);
1087 loop_sysfs_exit(lo);
1088 if (bdev) {
1089 bd_set_size(bdev, 0);
1090 /* let user-space know about this change */
1091 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1093 mapping_set_gfp_mask(filp->f_mapping, gfp);
1094 lo->lo_state = Lo_unbound;
1095 /* This is safe: open() is still holding a reference. */
1096 module_put(THIS_MODULE);
1097 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1098 ioctl_by_bdev(bdev, BLKRRPART, 0);
1099 lo->lo_flags = 0;
1100 if (!part_shift)
1101 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1102 mutex_unlock(&lo->lo_ctl_mutex);
1104 * Need not hold lo_ctl_mutex to fput backing file.
1105 * Calling fput holding lo_ctl_mutex triggers a circular
1106 * lock dependency possibility warning as fput can take
1107 * bd_mutex which is usually taken before lo_ctl_mutex.
1109 fput(filp);
1110 return 0;
1113 static int
1114 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1116 int err;
1117 struct loop_func_table *xfer;
1118 uid_t uid = current_uid();
1120 if (lo->lo_encrypt_key_size &&
1121 lo->lo_key_owner != uid &&
1122 !capable(CAP_SYS_ADMIN))
1123 return -EPERM;
1124 if (lo->lo_state != Lo_bound)
1125 return -ENXIO;
1126 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1127 return -EINVAL;
1129 err = loop_release_xfer(lo);
1130 if (err)
1131 return err;
1133 if (info->lo_encrypt_type) {
1134 unsigned int type = info->lo_encrypt_type;
1136 if (type >= MAX_LO_CRYPT)
1137 return -EINVAL;
1138 xfer = xfer_funcs[type];
1139 if (xfer == NULL)
1140 return -EINVAL;
1141 } else
1142 xfer = NULL;
1144 err = loop_init_xfer(lo, xfer, info);
1145 if (err)
1146 return err;
1148 if (lo->lo_offset != info->lo_offset ||
1149 lo->lo_sizelimit != info->lo_sizelimit) {
1150 lo->lo_offset = info->lo_offset;
1151 lo->lo_sizelimit = info->lo_sizelimit;
1152 if (figure_loop_size(lo))
1153 return -EFBIG;
1155 loop_config_discard(lo);
1157 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1158 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1159 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1160 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1162 if (!xfer)
1163 xfer = &none_funcs;
1164 lo->transfer = xfer->transfer;
1165 lo->ioctl = xfer->ioctl;
1167 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1168 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1169 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1171 if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1172 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1173 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1174 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1175 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1178 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1179 lo->lo_init[0] = info->lo_init[0];
1180 lo->lo_init[1] = info->lo_init[1];
1181 if (info->lo_encrypt_key_size) {
1182 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1183 info->lo_encrypt_key_size);
1184 lo->lo_key_owner = uid;
1187 return 0;
1190 static int
1191 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1193 struct file *file = lo->lo_backing_file;
1194 struct kstat stat;
1195 int error;
1197 if (lo->lo_state != Lo_bound)
1198 return -ENXIO;
1199 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1200 if (error)
1201 return error;
1202 memset(info, 0, sizeof(*info));
1203 info->lo_number = lo->lo_number;
1204 info->lo_device = huge_encode_dev(stat.dev);
1205 info->lo_inode = stat.ino;
1206 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1207 info->lo_offset = lo->lo_offset;
1208 info->lo_sizelimit = lo->lo_sizelimit;
1209 info->lo_flags = lo->lo_flags;
1210 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1211 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1212 info->lo_encrypt_type =
1213 lo->lo_encryption ? lo->lo_encryption->number : 0;
1214 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1215 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1216 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1217 lo->lo_encrypt_key_size);
1219 return 0;
1222 static void
1223 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1225 memset(info64, 0, sizeof(*info64));
1226 info64->lo_number = info->lo_number;
1227 info64->lo_device = info->lo_device;
1228 info64->lo_inode = info->lo_inode;
1229 info64->lo_rdevice = info->lo_rdevice;
1230 info64->lo_offset = info->lo_offset;
1231 info64->lo_sizelimit = 0;
1232 info64->lo_encrypt_type = info->lo_encrypt_type;
1233 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1234 info64->lo_flags = info->lo_flags;
1235 info64->lo_init[0] = info->lo_init[0];
1236 info64->lo_init[1] = info->lo_init[1];
1237 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1238 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1239 else
1240 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1241 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1244 static int
1245 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1247 memset(info, 0, sizeof(*info));
1248 info->lo_number = info64->lo_number;
1249 info->lo_device = info64->lo_device;
1250 info->lo_inode = info64->lo_inode;
1251 info->lo_rdevice = info64->lo_rdevice;
1252 info->lo_offset = info64->lo_offset;
1253 info->lo_encrypt_type = info64->lo_encrypt_type;
1254 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1255 info->lo_flags = info64->lo_flags;
1256 info->lo_init[0] = info64->lo_init[0];
1257 info->lo_init[1] = info64->lo_init[1];
1258 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1259 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1260 else
1261 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1262 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1264 /* error in case values were truncated */
1265 if (info->lo_device != info64->lo_device ||
1266 info->lo_rdevice != info64->lo_rdevice ||
1267 info->lo_inode != info64->lo_inode ||
1268 info->lo_offset != info64->lo_offset)
1269 return -EOVERFLOW;
1271 return 0;
1274 static int
1275 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1277 struct loop_info info;
1278 struct loop_info64 info64;
1280 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1281 return -EFAULT;
1282 loop_info64_from_old(&info, &info64);
1283 return loop_set_status(lo, &info64);
1286 static int
1287 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1289 struct loop_info64 info64;
1291 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1292 return -EFAULT;
1293 return loop_set_status(lo, &info64);
1296 static int
1297 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1298 struct loop_info info;
1299 struct loop_info64 info64;
1300 int err = 0;
1302 if (!arg)
1303 err = -EINVAL;
1304 if (!err)
1305 err = loop_get_status(lo, &info64);
1306 if (!err)
1307 err = loop_info64_to_old(&info64, &info);
1308 if (!err && copy_to_user(arg, &info, sizeof(info)))
1309 err = -EFAULT;
1311 return err;
1314 static int
1315 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1316 struct loop_info64 info64;
1317 int err = 0;
1319 if (!arg)
1320 err = -EINVAL;
1321 if (!err)
1322 err = loop_get_status(lo, &info64);
1323 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1324 err = -EFAULT;
1326 return err;
1329 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1331 int err;
1332 sector_t sec;
1333 loff_t sz;
1335 err = -ENXIO;
1336 if (unlikely(lo->lo_state != Lo_bound))
1337 goto out;
1338 err = figure_loop_size(lo);
1339 if (unlikely(err))
1340 goto out;
1341 sec = get_capacity(lo->lo_disk);
1342 /* the width of sector_t may be narrow for bit-shift */
1343 sz = sec;
1344 sz <<= 9;
1345 mutex_lock(&bdev->bd_mutex);
1346 bd_set_size(bdev, sz);
1347 /* let user-space know about the new size */
1348 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1349 mutex_unlock(&bdev->bd_mutex);
1351 out:
1352 return err;
1355 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1356 unsigned int cmd, unsigned long arg)
1358 struct loop_device *lo = bdev->bd_disk->private_data;
1359 int err;
1361 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1362 switch (cmd) {
1363 case LOOP_SET_FD:
1364 err = loop_set_fd(lo, mode, bdev, arg);
1365 break;
1366 case LOOP_CHANGE_FD:
1367 err = loop_change_fd(lo, bdev, arg);
1368 break;
1369 case LOOP_CLR_FD:
1370 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1371 err = loop_clr_fd(lo, bdev);
1372 if (!err)
1373 goto out_unlocked;
1374 break;
1375 case LOOP_SET_STATUS:
1376 err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1377 break;
1378 case LOOP_GET_STATUS:
1379 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1380 break;
1381 case LOOP_SET_STATUS64:
1382 err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1383 break;
1384 case LOOP_GET_STATUS64:
1385 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1386 break;
1387 case LOOP_SET_CAPACITY:
1388 err = -EPERM;
1389 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1390 err = loop_set_capacity(lo, bdev);
1391 break;
1392 default:
1393 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1395 mutex_unlock(&lo->lo_ctl_mutex);
1397 out_unlocked:
1398 return err;
1401 #ifdef CONFIG_COMPAT
1402 struct compat_loop_info {
1403 compat_int_t lo_number; /* ioctl r/o */
1404 compat_dev_t lo_device; /* ioctl r/o */
1405 compat_ulong_t lo_inode; /* ioctl r/o */
1406 compat_dev_t lo_rdevice; /* ioctl r/o */
1407 compat_int_t lo_offset;
1408 compat_int_t lo_encrypt_type;
1409 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1410 compat_int_t lo_flags; /* ioctl r/o */
1411 char lo_name[LO_NAME_SIZE];
1412 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1413 compat_ulong_t lo_init[2];
1414 char reserved[4];
1418 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1419 * - noinlined to reduce stack space usage in main part of driver
1421 static noinline int
1422 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1423 struct loop_info64 *info64)
1425 struct compat_loop_info info;
1427 if (copy_from_user(&info, arg, sizeof(info)))
1428 return -EFAULT;
1430 memset(info64, 0, sizeof(*info64));
1431 info64->lo_number = info.lo_number;
1432 info64->lo_device = info.lo_device;
1433 info64->lo_inode = info.lo_inode;
1434 info64->lo_rdevice = info.lo_rdevice;
1435 info64->lo_offset = info.lo_offset;
1436 info64->lo_sizelimit = 0;
1437 info64->lo_encrypt_type = info.lo_encrypt_type;
1438 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1439 info64->lo_flags = info.lo_flags;
1440 info64->lo_init[0] = info.lo_init[0];
1441 info64->lo_init[1] = info.lo_init[1];
1442 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1443 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1444 else
1445 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1446 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1447 return 0;
1451 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1452 * - noinlined to reduce stack space usage in main part of driver
1454 static noinline int
1455 loop_info64_to_compat(const struct loop_info64 *info64,
1456 struct compat_loop_info __user *arg)
1458 struct compat_loop_info info;
1460 memset(&info, 0, sizeof(info));
1461 info.lo_number = info64->lo_number;
1462 info.lo_device = info64->lo_device;
1463 info.lo_inode = info64->lo_inode;
1464 info.lo_rdevice = info64->lo_rdevice;
1465 info.lo_offset = info64->lo_offset;
1466 info.lo_encrypt_type = info64->lo_encrypt_type;
1467 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1468 info.lo_flags = info64->lo_flags;
1469 info.lo_init[0] = info64->lo_init[0];
1470 info.lo_init[1] = info64->lo_init[1];
1471 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1472 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1473 else
1474 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1475 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1477 /* error in case values were truncated */
1478 if (info.lo_device != info64->lo_device ||
1479 info.lo_rdevice != info64->lo_rdevice ||
1480 info.lo_inode != info64->lo_inode ||
1481 info.lo_offset != info64->lo_offset ||
1482 info.lo_init[0] != info64->lo_init[0] ||
1483 info.lo_init[1] != info64->lo_init[1])
1484 return -EOVERFLOW;
1486 if (copy_to_user(arg, &info, sizeof(info)))
1487 return -EFAULT;
1488 return 0;
1491 static int
1492 loop_set_status_compat(struct loop_device *lo,
1493 const struct compat_loop_info __user *arg)
1495 struct loop_info64 info64;
1496 int ret;
1498 ret = loop_info64_from_compat(arg, &info64);
1499 if (ret < 0)
1500 return ret;
1501 return loop_set_status(lo, &info64);
1504 static int
1505 loop_get_status_compat(struct loop_device *lo,
1506 struct compat_loop_info __user *arg)
1508 struct loop_info64 info64;
1509 int err = 0;
1511 if (!arg)
1512 err = -EINVAL;
1513 if (!err)
1514 err = loop_get_status(lo, &info64);
1515 if (!err)
1516 err = loop_info64_to_compat(&info64, arg);
1517 return err;
1520 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1521 unsigned int cmd, unsigned long arg)
1523 struct loop_device *lo = bdev->bd_disk->private_data;
1524 int err;
1526 switch(cmd) {
1527 case LOOP_SET_STATUS:
1528 mutex_lock(&lo->lo_ctl_mutex);
1529 err = loop_set_status_compat(
1530 lo, (const struct compat_loop_info __user *) arg);
1531 mutex_unlock(&lo->lo_ctl_mutex);
1532 break;
1533 case LOOP_GET_STATUS:
1534 mutex_lock(&lo->lo_ctl_mutex);
1535 err = loop_get_status_compat(
1536 lo, (struct compat_loop_info __user *) arg);
1537 mutex_unlock(&lo->lo_ctl_mutex);
1538 break;
1539 case LOOP_SET_CAPACITY:
1540 case LOOP_CLR_FD:
1541 case LOOP_GET_STATUS64:
1542 case LOOP_SET_STATUS64:
1543 arg = (unsigned long) compat_ptr(arg);
1544 case LOOP_SET_FD:
1545 case LOOP_CHANGE_FD:
1546 err = lo_ioctl(bdev, mode, cmd, arg);
1547 break;
1548 default:
1549 err = -ENOIOCTLCMD;
1550 break;
1552 return err;
1554 #endif
1556 static int lo_open(struct block_device *bdev, fmode_t mode)
1558 struct loop_device *lo;
1559 int err = 0;
1561 mutex_lock(&loop_index_mutex);
1562 lo = bdev->bd_disk->private_data;
1563 if (!lo) {
1564 err = -ENXIO;
1565 goto out;
1568 mutex_lock(&lo->lo_ctl_mutex);
1569 lo->lo_refcnt++;
1570 mutex_unlock(&lo->lo_ctl_mutex);
1571 out:
1572 mutex_unlock(&loop_index_mutex);
1573 return err;
1576 static int lo_release(struct gendisk *disk, fmode_t mode)
1578 struct loop_device *lo = disk->private_data;
1579 int err;
1581 mutex_lock(&lo->lo_ctl_mutex);
1583 if (--lo->lo_refcnt)
1584 goto out;
1586 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1588 * In autoclear mode, stop the loop thread
1589 * and remove configuration after last close.
1591 err = loop_clr_fd(lo, NULL);
1592 if (!err)
1593 goto out_unlocked;
1594 } else {
1596 * Otherwise keep thread (if running) and config,
1597 * but flush possible ongoing bios in thread.
1599 loop_flush(lo);
1602 out:
1603 mutex_unlock(&lo->lo_ctl_mutex);
1604 out_unlocked:
1605 return 0;
1608 static const struct block_device_operations lo_fops = {
1609 .owner = THIS_MODULE,
1610 .open = lo_open,
1611 .release = lo_release,
1612 .ioctl = lo_ioctl,
1613 #ifdef CONFIG_COMPAT
1614 .compat_ioctl = lo_compat_ioctl,
1615 #endif
1619 * And now the modules code and kernel interface.
1621 static int max_loop;
1622 module_param(max_loop, int, S_IRUGO);
1623 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1624 module_param(max_part, int, S_IRUGO);
1625 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1626 MODULE_LICENSE("GPL");
1627 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1629 int loop_register_transfer(struct loop_func_table *funcs)
1631 unsigned int n = funcs->number;
1633 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1634 return -EINVAL;
1635 xfer_funcs[n] = funcs;
1636 return 0;
1639 static int unregister_transfer_cb(int id, void *ptr, void *data)
1641 struct loop_device *lo = ptr;
1642 struct loop_func_table *xfer = data;
1644 mutex_lock(&lo->lo_ctl_mutex);
1645 if (lo->lo_encryption == xfer)
1646 loop_release_xfer(lo);
1647 mutex_unlock(&lo->lo_ctl_mutex);
1648 return 0;
1651 int loop_unregister_transfer(int number)
1653 unsigned int n = number;
1654 struct loop_func_table *xfer;
1656 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1657 return -EINVAL;
1659 xfer_funcs[n] = NULL;
1660 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1661 return 0;
1664 EXPORT_SYMBOL(loop_register_transfer);
1665 EXPORT_SYMBOL(loop_unregister_transfer);
1667 static int loop_add(struct loop_device **l, int i)
1669 struct loop_device *lo;
1670 struct gendisk *disk;
1671 int err;
1673 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1674 if (!lo) {
1675 err = -ENOMEM;
1676 goto out;
1679 err = idr_pre_get(&loop_index_idr, GFP_KERNEL);
1680 if (err < 0)
1681 goto out_free_dev;
1683 if (i >= 0) {
1684 int m;
1686 /* create specific i in the index */
1687 err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1688 if (err >= 0 && i != m) {
1689 idr_remove(&loop_index_idr, m);
1690 err = -EEXIST;
1692 } else if (i == -1) {
1693 int m;
1695 /* get next free nr */
1696 err = idr_get_new(&loop_index_idr, lo, &m);
1697 if (err >= 0)
1698 i = m;
1699 } else {
1700 err = -EINVAL;
1702 if (err < 0)
1703 goto out_free_dev;
1705 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1706 if (!lo->lo_queue)
1707 goto out_free_dev;
1709 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1710 if (!disk)
1711 goto out_free_queue;
1714 * Disable partition scanning by default. The in-kernel partition
1715 * scanning can be requested individually per-device during its
1716 * setup. Userspace can always add and remove partitions from all
1717 * devices. The needed partition minors are allocated from the
1718 * extended minor space, the main loop device numbers will continue
1719 * to match the loop minors, regardless of the number of partitions
1720 * used.
1722 * If max_part is given, partition scanning is globally enabled for
1723 * all loop devices. The minors for the main loop devices will be
1724 * multiples of max_part.
1726 * Note: Global-for-all-devices, set-only-at-init, read-only module
1727 * parameteters like 'max_loop' and 'max_part' make things needlessly
1728 * complicated, are too static, inflexible and may surprise
1729 * userspace tools. Parameters like this in general should be avoided.
1731 if (!part_shift)
1732 disk->flags |= GENHD_FL_NO_PART_SCAN;
1733 disk->flags |= GENHD_FL_EXT_DEVT;
1734 mutex_init(&lo->lo_ctl_mutex);
1735 lo->lo_number = i;
1736 lo->lo_thread = NULL;
1737 init_waitqueue_head(&lo->lo_event);
1738 spin_lock_init(&lo->lo_lock);
1739 disk->major = LOOP_MAJOR;
1740 disk->first_minor = i << part_shift;
1741 disk->fops = &lo_fops;
1742 disk->private_data = lo;
1743 disk->queue = lo->lo_queue;
1744 sprintf(disk->disk_name, "loop%d", i);
1745 add_disk(disk);
1746 *l = lo;
1747 return lo->lo_number;
1749 out_free_queue:
1750 blk_cleanup_queue(lo->lo_queue);
1751 out_free_dev:
1752 kfree(lo);
1753 out:
1754 return err;
1757 static void loop_remove(struct loop_device *lo)
1759 del_gendisk(lo->lo_disk);
1760 blk_cleanup_queue(lo->lo_queue);
1761 put_disk(lo->lo_disk);
1762 kfree(lo);
1765 static int find_free_cb(int id, void *ptr, void *data)
1767 struct loop_device *lo = ptr;
1768 struct loop_device **l = data;
1770 if (lo->lo_state == Lo_unbound) {
1771 *l = lo;
1772 return 1;
1774 return 0;
1777 static int loop_lookup(struct loop_device **l, int i)
1779 struct loop_device *lo;
1780 int ret = -ENODEV;
1782 if (i < 0) {
1783 int err;
1785 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1786 if (err == 1) {
1787 *l = lo;
1788 ret = lo->lo_number;
1790 goto out;
1793 /* lookup and return a specific i */
1794 lo = idr_find(&loop_index_idr, i);
1795 if (lo) {
1796 *l = lo;
1797 ret = lo->lo_number;
1799 out:
1800 return ret;
1803 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1805 struct loop_device *lo;
1806 struct kobject *kobj;
1807 int err;
1809 mutex_lock(&loop_index_mutex);
1810 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1811 if (err < 0)
1812 err = loop_add(&lo, MINOR(dev) >> part_shift);
1813 if (err < 0)
1814 kobj = ERR_PTR(err);
1815 else
1816 kobj = get_disk(lo->lo_disk);
1817 mutex_unlock(&loop_index_mutex);
1819 *part = 0;
1820 return kobj;
1823 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1824 unsigned long parm)
1826 struct loop_device *lo;
1827 int ret = -ENOSYS;
1829 mutex_lock(&loop_index_mutex);
1830 switch (cmd) {
1831 case LOOP_CTL_ADD:
1832 ret = loop_lookup(&lo, parm);
1833 if (ret >= 0) {
1834 ret = -EEXIST;
1835 break;
1837 ret = loop_add(&lo, parm);
1838 break;
1839 case LOOP_CTL_REMOVE:
1840 ret = loop_lookup(&lo, parm);
1841 if (ret < 0)
1842 break;
1843 mutex_lock(&lo->lo_ctl_mutex);
1844 if (lo->lo_state != Lo_unbound) {
1845 ret = -EBUSY;
1846 mutex_unlock(&lo->lo_ctl_mutex);
1847 break;
1849 if (lo->lo_refcnt > 0) {
1850 ret = -EBUSY;
1851 mutex_unlock(&lo->lo_ctl_mutex);
1852 break;
1854 lo->lo_disk->private_data = NULL;
1855 mutex_unlock(&lo->lo_ctl_mutex);
1856 idr_remove(&loop_index_idr, lo->lo_number);
1857 loop_remove(lo);
1858 break;
1859 case LOOP_CTL_GET_FREE:
1860 ret = loop_lookup(&lo, -1);
1861 if (ret >= 0)
1862 break;
1863 ret = loop_add(&lo, -1);
1865 mutex_unlock(&loop_index_mutex);
1867 return ret;
1870 static const struct file_operations loop_ctl_fops = {
1871 .open = nonseekable_open,
1872 .unlocked_ioctl = loop_control_ioctl,
1873 .compat_ioctl = loop_control_ioctl,
1874 .owner = THIS_MODULE,
1875 .llseek = noop_llseek,
1878 static struct miscdevice loop_misc = {
1879 .minor = LOOP_CTRL_MINOR,
1880 .name = "loop-control",
1881 .fops = &loop_ctl_fops,
1884 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1885 MODULE_ALIAS("devname:loop-control");
1887 static int __init loop_init(void)
1889 int i, nr;
1890 unsigned long range;
1891 struct loop_device *lo;
1892 int err;
1894 err = misc_register(&loop_misc);
1895 if (err < 0)
1896 return err;
1898 part_shift = 0;
1899 if (max_part > 0) {
1900 part_shift = fls(max_part);
1903 * Adjust max_part according to part_shift as it is exported
1904 * to user space so that user can decide correct minor number
1905 * if [s]he want to create more devices.
1907 * Note that -1 is required because partition 0 is reserved
1908 * for the whole disk.
1910 max_part = (1UL << part_shift) - 1;
1913 if ((1UL << part_shift) > DISK_MAX_PARTS)
1914 return -EINVAL;
1916 if (max_loop > 1UL << (MINORBITS - part_shift))
1917 return -EINVAL;
1920 * If max_loop is specified, create that many devices upfront.
1921 * This also becomes a hard limit. If max_loop is not specified,
1922 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1923 * init time. Loop devices can be requested on-demand with the
1924 * /dev/loop-control interface, or be instantiated by accessing
1925 * a 'dead' device node.
1927 if (max_loop) {
1928 nr = max_loop;
1929 range = max_loop << part_shift;
1930 } else {
1931 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1932 range = 1UL << MINORBITS;
1935 if (register_blkdev(LOOP_MAJOR, "loop"))
1936 return -EIO;
1938 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1939 THIS_MODULE, loop_probe, NULL, NULL);
1941 /* pre-create number of devices given by config or max_loop */
1942 mutex_lock(&loop_index_mutex);
1943 for (i = 0; i < nr; i++)
1944 loop_add(&lo, i);
1945 mutex_unlock(&loop_index_mutex);
1947 printk(KERN_INFO "loop: module loaded\n");
1948 return 0;
1951 static int loop_exit_cb(int id, void *ptr, void *data)
1953 struct loop_device *lo = ptr;
1955 loop_remove(lo);
1956 return 0;
1959 static void __exit loop_exit(void)
1961 unsigned long range;
1963 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1965 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1966 idr_remove_all(&loop_index_idr);
1967 idr_destroy(&loop_index_idr);
1969 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1970 unregister_blkdev(LOOP_MAJOR, "loop");
1972 misc_deregister(&loop_misc);
1975 module_init(loop_init);
1976 module_exit(loop_exit);
1978 #ifndef MODULE
1979 static int __init max_loop_setup(char *str)
1981 max_loop = simple_strtol(str, NULL, 0);
1982 return 1;
1985 __setup("max_loop=", max_loop_setup);
1986 #endif