Add linux-next specific files for 20110831
[linux-2.6/next.git] / drivers / char / ipmi / ipmi_si_intf.c
blob9397ab49b72e8b20f3984a55e31819fea26e20d7
1 /*
2 * ipmi_si.c
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/seq_file.h>
47 #include <linux/timer.h>
48 #include <linux/errno.h>
49 #include <linux/spinlock.h>
50 #include <linux/slab.h>
51 #include <linux/delay.h>
52 #include <linux/list.h>
53 #include <linux/pci.h>
54 #include <linux/ioport.h>
55 #include <linux/notifier.h>
56 #include <linux/mutex.h>
57 #include <linux/kthread.h>
58 #include <asm/irq.h>
59 #include <linux/interrupt.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ipmi.h>
62 #include <linux/ipmi_smi.h>
63 #include <asm/io.h>
64 #include "ipmi_si_sm.h"
65 #include <linux/init.h>
66 #include <linux/dmi.h>
67 #include <linux/string.h>
68 #include <linux/ctype.h>
69 #include <linux/pnp.h>
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #include <linux/of_address.h>
73 #include <linux/of_irq.h>
75 #define PFX "ipmi_si: "
77 /* Measure times between events in the driver. */
78 #undef DEBUG_TIMING
80 /* Call every 10 ms. */
81 #define SI_TIMEOUT_TIME_USEC 10000
82 #define SI_USEC_PER_JIFFY (1000000/HZ)
83 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
84 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
85 short timeout */
87 enum si_intf_state {
88 SI_NORMAL,
89 SI_GETTING_FLAGS,
90 SI_GETTING_EVENTS,
91 SI_CLEARING_FLAGS,
92 SI_CLEARING_FLAGS_THEN_SET_IRQ,
93 SI_GETTING_MESSAGES,
94 SI_ENABLE_INTERRUPTS1,
95 SI_ENABLE_INTERRUPTS2,
96 SI_DISABLE_INTERRUPTS1,
97 SI_DISABLE_INTERRUPTS2
98 /* FIXME - add watchdog stuff. */
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG 2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
106 enum si_type {
107 SI_KCS, SI_SMIC, SI_BT
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
111 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
112 "ACPI", "SMBIOS", "PCI",
113 "device-tree", "default" };
115 #define DEVICE_NAME "ipmi_si"
117 static struct platform_driver ipmi_driver;
120 * Indexes into stats[] in smi_info below.
122 enum si_stat_indexes {
124 * Number of times the driver requested a timer while an operation
125 * was in progress.
127 SI_STAT_short_timeouts = 0,
130 * Number of times the driver requested a timer while nothing was in
131 * progress.
133 SI_STAT_long_timeouts,
135 /* Number of times the interface was idle while being polled. */
136 SI_STAT_idles,
138 /* Number of interrupts the driver handled. */
139 SI_STAT_interrupts,
141 /* Number of time the driver got an ATTN from the hardware. */
142 SI_STAT_attentions,
144 /* Number of times the driver requested flags from the hardware. */
145 SI_STAT_flag_fetches,
147 /* Number of times the hardware didn't follow the state machine. */
148 SI_STAT_hosed_count,
150 /* Number of completed messages. */
151 SI_STAT_complete_transactions,
153 /* Number of IPMI events received from the hardware. */
154 SI_STAT_events,
156 /* Number of watchdog pretimeouts. */
157 SI_STAT_watchdog_pretimeouts,
159 /* Number of asyncronous messages received. */
160 SI_STAT_incoming_messages,
163 /* This *must* remain last, add new values above this. */
164 SI_NUM_STATS
167 struct smi_info {
168 int intf_num;
169 ipmi_smi_t intf;
170 struct si_sm_data *si_sm;
171 struct si_sm_handlers *handlers;
172 enum si_type si_type;
173 spinlock_t si_lock;
174 spinlock_t msg_lock;
175 struct list_head xmit_msgs;
176 struct list_head hp_xmit_msgs;
177 struct ipmi_smi_msg *curr_msg;
178 enum si_intf_state si_state;
181 * Used to handle the various types of I/O that can occur with
182 * IPMI
184 struct si_sm_io io;
185 int (*io_setup)(struct smi_info *info);
186 void (*io_cleanup)(struct smi_info *info);
187 int (*irq_setup)(struct smi_info *info);
188 void (*irq_cleanup)(struct smi_info *info);
189 unsigned int io_size;
190 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
191 void (*addr_source_cleanup)(struct smi_info *info);
192 void *addr_source_data;
195 * Per-OEM handler, called from handle_flags(). Returns 1
196 * when handle_flags() needs to be re-run or 0 indicating it
197 * set si_state itself.
199 int (*oem_data_avail_handler)(struct smi_info *smi_info);
202 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
203 * is set to hold the flags until we are done handling everything
204 * from the flags.
206 #define RECEIVE_MSG_AVAIL 0x01
207 #define EVENT_MSG_BUFFER_FULL 0x02
208 #define WDT_PRE_TIMEOUT_INT 0x08
209 #define OEM0_DATA_AVAIL 0x20
210 #define OEM1_DATA_AVAIL 0x40
211 #define OEM2_DATA_AVAIL 0x80
212 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
213 OEM1_DATA_AVAIL | \
214 OEM2_DATA_AVAIL)
215 unsigned char msg_flags;
217 /* Does the BMC have an event buffer? */
218 char has_event_buffer;
221 * If set to true, this will request events the next time the
222 * state machine is idle.
224 atomic_t req_events;
227 * If true, run the state machine to completion on every send
228 * call. Generally used after a panic to make sure stuff goes
229 * out.
231 int run_to_completion;
233 /* The I/O port of an SI interface. */
234 int port;
237 * The space between start addresses of the two ports. For
238 * instance, if the first port is 0xca2 and the spacing is 4, then
239 * the second port is 0xca6.
241 unsigned int spacing;
243 /* zero if no irq; */
244 int irq;
246 /* The timer for this si. */
247 struct timer_list si_timer;
249 /* The time (in jiffies) the last timeout occurred at. */
250 unsigned long last_timeout_jiffies;
252 /* Used to gracefully stop the timer without race conditions. */
253 atomic_t stop_operation;
256 * The driver will disable interrupts when it gets into a
257 * situation where it cannot handle messages due to lack of
258 * memory. Once that situation clears up, it will re-enable
259 * interrupts.
261 int interrupt_disabled;
263 /* From the get device id response... */
264 struct ipmi_device_id device_id;
266 /* Driver model stuff. */
267 struct device *dev;
268 struct platform_device *pdev;
271 * True if we allocated the device, false if it came from
272 * someplace else (like PCI).
274 int dev_registered;
276 /* Slave address, could be reported from DMI. */
277 unsigned char slave_addr;
279 /* Counters and things for the proc filesystem. */
280 atomic_t stats[SI_NUM_STATS];
282 struct task_struct *thread;
284 struct list_head link;
285 union ipmi_smi_info_union addr_info;
288 #define smi_inc_stat(smi, stat) \
289 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
293 #define SI_MAX_PARMS 4
295 static int force_kipmid[SI_MAX_PARMS];
296 static int num_force_kipmid;
297 #ifdef CONFIG_PCI
298 static int pci_registered;
299 #endif
300 #ifdef CONFIG_ACPI
301 static int pnp_registered;
302 #endif
304 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
305 static int num_max_busy_us;
307 static int unload_when_empty = 1;
309 static int add_smi(struct smi_info *smi);
310 static int try_smi_init(struct smi_info *smi);
311 static void cleanup_one_si(struct smi_info *to_clean);
312 static void cleanup_ipmi_si(void);
314 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
315 static int register_xaction_notifier(struct notifier_block *nb)
317 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
320 static void deliver_recv_msg(struct smi_info *smi_info,
321 struct ipmi_smi_msg *msg)
323 /* Deliver the message to the upper layer with the lock
324 released. */
326 if (smi_info->run_to_completion) {
327 ipmi_smi_msg_received(smi_info->intf, msg);
328 } else {
329 spin_unlock(&(smi_info->si_lock));
330 ipmi_smi_msg_received(smi_info->intf, msg);
331 spin_lock(&(smi_info->si_lock));
335 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
337 struct ipmi_smi_msg *msg = smi_info->curr_msg;
339 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
340 cCode = IPMI_ERR_UNSPECIFIED;
341 /* else use it as is */
343 /* Make it a response */
344 msg->rsp[0] = msg->data[0] | 4;
345 msg->rsp[1] = msg->data[1];
346 msg->rsp[2] = cCode;
347 msg->rsp_size = 3;
349 smi_info->curr_msg = NULL;
350 deliver_recv_msg(smi_info, msg);
353 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
355 int rv;
356 struct list_head *entry = NULL;
357 #ifdef DEBUG_TIMING
358 struct timeval t;
359 #endif
362 * No need to save flags, we aleady have interrupts off and we
363 * already hold the SMI lock.
365 if (!smi_info->run_to_completion)
366 spin_lock(&(smi_info->msg_lock));
368 /* Pick the high priority queue first. */
369 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
370 entry = smi_info->hp_xmit_msgs.next;
371 } else if (!list_empty(&(smi_info->xmit_msgs))) {
372 entry = smi_info->xmit_msgs.next;
375 if (!entry) {
376 smi_info->curr_msg = NULL;
377 rv = SI_SM_IDLE;
378 } else {
379 int err;
381 list_del(entry);
382 smi_info->curr_msg = list_entry(entry,
383 struct ipmi_smi_msg,
384 link);
385 #ifdef DEBUG_TIMING
386 do_gettimeofday(&t);
387 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
388 #endif
389 err = atomic_notifier_call_chain(&xaction_notifier_list,
390 0, smi_info);
391 if (err & NOTIFY_STOP_MASK) {
392 rv = SI_SM_CALL_WITHOUT_DELAY;
393 goto out;
395 err = smi_info->handlers->start_transaction(
396 smi_info->si_sm,
397 smi_info->curr_msg->data,
398 smi_info->curr_msg->data_size);
399 if (err)
400 return_hosed_msg(smi_info, err);
402 rv = SI_SM_CALL_WITHOUT_DELAY;
404 out:
405 if (!smi_info->run_to_completion)
406 spin_unlock(&(smi_info->msg_lock));
408 return rv;
411 static void start_enable_irq(struct smi_info *smi_info)
413 unsigned char msg[2];
416 * If we are enabling interrupts, we have to tell the
417 * BMC to use them.
419 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
420 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
422 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
423 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
426 static void start_disable_irq(struct smi_info *smi_info)
428 unsigned char msg[2];
430 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
431 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
433 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
434 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
437 static void start_clear_flags(struct smi_info *smi_info)
439 unsigned char msg[3];
441 /* Make sure the watchdog pre-timeout flag is not set at startup. */
442 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
444 msg[2] = WDT_PRE_TIMEOUT_INT;
446 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
447 smi_info->si_state = SI_CLEARING_FLAGS;
451 * When we have a situtaion where we run out of memory and cannot
452 * allocate messages, we just leave them in the BMC and run the system
453 * polled until we can allocate some memory. Once we have some
454 * memory, we will re-enable the interrupt.
456 static inline void disable_si_irq(struct smi_info *smi_info)
458 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
459 start_disable_irq(smi_info);
460 smi_info->interrupt_disabled = 1;
461 if (!atomic_read(&smi_info->stop_operation))
462 mod_timer(&smi_info->si_timer,
463 jiffies + SI_TIMEOUT_JIFFIES);
467 static inline void enable_si_irq(struct smi_info *smi_info)
469 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
470 start_enable_irq(smi_info);
471 smi_info->interrupt_disabled = 0;
475 static void handle_flags(struct smi_info *smi_info)
477 retry:
478 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
479 /* Watchdog pre-timeout */
480 smi_inc_stat(smi_info, watchdog_pretimeouts);
482 start_clear_flags(smi_info);
483 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
484 spin_unlock(&(smi_info->si_lock));
485 ipmi_smi_watchdog_pretimeout(smi_info->intf);
486 spin_lock(&(smi_info->si_lock));
487 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
488 /* Messages available. */
489 smi_info->curr_msg = ipmi_alloc_smi_msg();
490 if (!smi_info->curr_msg) {
491 disable_si_irq(smi_info);
492 smi_info->si_state = SI_NORMAL;
493 return;
495 enable_si_irq(smi_info);
497 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
498 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
499 smi_info->curr_msg->data_size = 2;
501 smi_info->handlers->start_transaction(
502 smi_info->si_sm,
503 smi_info->curr_msg->data,
504 smi_info->curr_msg->data_size);
505 smi_info->si_state = SI_GETTING_MESSAGES;
506 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
507 /* Events available. */
508 smi_info->curr_msg = ipmi_alloc_smi_msg();
509 if (!smi_info->curr_msg) {
510 disable_si_irq(smi_info);
511 smi_info->si_state = SI_NORMAL;
512 return;
514 enable_si_irq(smi_info);
516 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
517 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
518 smi_info->curr_msg->data_size = 2;
520 smi_info->handlers->start_transaction(
521 smi_info->si_sm,
522 smi_info->curr_msg->data,
523 smi_info->curr_msg->data_size);
524 smi_info->si_state = SI_GETTING_EVENTS;
525 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
526 smi_info->oem_data_avail_handler) {
527 if (smi_info->oem_data_avail_handler(smi_info))
528 goto retry;
529 } else
530 smi_info->si_state = SI_NORMAL;
533 static void handle_transaction_done(struct smi_info *smi_info)
535 struct ipmi_smi_msg *msg;
536 #ifdef DEBUG_TIMING
537 struct timeval t;
539 do_gettimeofday(&t);
540 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
541 #endif
542 switch (smi_info->si_state) {
543 case SI_NORMAL:
544 if (!smi_info->curr_msg)
545 break;
547 smi_info->curr_msg->rsp_size
548 = smi_info->handlers->get_result(
549 smi_info->si_sm,
550 smi_info->curr_msg->rsp,
551 IPMI_MAX_MSG_LENGTH);
554 * Do this here becase deliver_recv_msg() releases the
555 * lock, and a new message can be put in during the
556 * time the lock is released.
558 msg = smi_info->curr_msg;
559 smi_info->curr_msg = NULL;
560 deliver_recv_msg(smi_info, msg);
561 break;
563 case SI_GETTING_FLAGS:
565 unsigned char msg[4];
566 unsigned int len;
568 /* We got the flags from the SMI, now handle them. */
569 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
570 if (msg[2] != 0) {
571 /* Error fetching flags, just give up for now. */
572 smi_info->si_state = SI_NORMAL;
573 } else if (len < 4) {
575 * Hmm, no flags. That's technically illegal, but
576 * don't use uninitialized data.
578 smi_info->si_state = SI_NORMAL;
579 } else {
580 smi_info->msg_flags = msg[3];
581 handle_flags(smi_info);
583 break;
586 case SI_CLEARING_FLAGS:
587 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
589 unsigned char msg[3];
591 /* We cleared the flags. */
592 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
593 if (msg[2] != 0) {
594 /* Error clearing flags */
595 dev_warn(smi_info->dev,
596 "Error clearing flags: %2.2x\n", msg[2]);
598 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
599 start_enable_irq(smi_info);
600 else
601 smi_info->si_state = SI_NORMAL;
602 break;
605 case SI_GETTING_EVENTS:
607 smi_info->curr_msg->rsp_size
608 = smi_info->handlers->get_result(
609 smi_info->si_sm,
610 smi_info->curr_msg->rsp,
611 IPMI_MAX_MSG_LENGTH);
614 * Do this here becase deliver_recv_msg() releases the
615 * lock, and a new message can be put in during the
616 * time the lock is released.
618 msg = smi_info->curr_msg;
619 smi_info->curr_msg = NULL;
620 if (msg->rsp[2] != 0) {
621 /* Error getting event, probably done. */
622 msg->done(msg);
624 /* Take off the event flag. */
625 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
626 handle_flags(smi_info);
627 } else {
628 smi_inc_stat(smi_info, events);
631 * Do this before we deliver the message
632 * because delivering the message releases the
633 * lock and something else can mess with the
634 * state.
636 handle_flags(smi_info);
638 deliver_recv_msg(smi_info, msg);
640 break;
643 case SI_GETTING_MESSAGES:
645 smi_info->curr_msg->rsp_size
646 = smi_info->handlers->get_result(
647 smi_info->si_sm,
648 smi_info->curr_msg->rsp,
649 IPMI_MAX_MSG_LENGTH);
652 * Do this here becase deliver_recv_msg() releases the
653 * lock, and a new message can be put in during the
654 * time the lock is released.
656 msg = smi_info->curr_msg;
657 smi_info->curr_msg = NULL;
658 if (msg->rsp[2] != 0) {
659 /* Error getting event, probably done. */
660 msg->done(msg);
662 /* Take off the msg flag. */
663 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
664 handle_flags(smi_info);
665 } else {
666 smi_inc_stat(smi_info, incoming_messages);
669 * Do this before we deliver the message
670 * because delivering the message releases the
671 * lock and something else can mess with the
672 * state.
674 handle_flags(smi_info);
676 deliver_recv_msg(smi_info, msg);
678 break;
681 case SI_ENABLE_INTERRUPTS1:
683 unsigned char msg[4];
685 /* We got the flags from the SMI, now handle them. */
686 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
687 if (msg[2] != 0) {
688 dev_warn(smi_info->dev, "Could not enable interrupts"
689 ", failed get, using polled mode.\n");
690 smi_info->si_state = SI_NORMAL;
691 } else {
692 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
693 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
694 msg[2] = (msg[3] |
695 IPMI_BMC_RCV_MSG_INTR |
696 IPMI_BMC_EVT_MSG_INTR);
697 smi_info->handlers->start_transaction(
698 smi_info->si_sm, msg, 3);
699 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
701 break;
704 case SI_ENABLE_INTERRUPTS2:
706 unsigned char msg[4];
708 /* We got the flags from the SMI, now handle them. */
709 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
710 if (msg[2] != 0)
711 dev_warn(smi_info->dev, "Could not enable interrupts"
712 ", failed set, using polled mode.\n");
713 else
714 smi_info->interrupt_disabled = 0;
715 smi_info->si_state = SI_NORMAL;
716 break;
719 case SI_DISABLE_INTERRUPTS1:
721 unsigned char msg[4];
723 /* We got the flags from the SMI, now handle them. */
724 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
725 if (msg[2] != 0) {
726 dev_warn(smi_info->dev, "Could not disable interrupts"
727 ", failed get.\n");
728 smi_info->si_state = SI_NORMAL;
729 } else {
730 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
731 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
732 msg[2] = (msg[3] &
733 ~(IPMI_BMC_RCV_MSG_INTR |
734 IPMI_BMC_EVT_MSG_INTR));
735 smi_info->handlers->start_transaction(
736 smi_info->si_sm, msg, 3);
737 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
739 break;
742 case SI_DISABLE_INTERRUPTS2:
744 unsigned char msg[4];
746 /* We got the flags from the SMI, now handle them. */
747 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
748 if (msg[2] != 0) {
749 dev_warn(smi_info->dev, "Could not disable interrupts"
750 ", failed set.\n");
752 smi_info->si_state = SI_NORMAL;
753 break;
759 * Called on timeouts and events. Timeouts should pass the elapsed
760 * time, interrupts should pass in zero. Must be called with
761 * si_lock held and interrupts disabled.
763 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
764 int time)
766 enum si_sm_result si_sm_result;
768 restart:
770 * There used to be a loop here that waited a little while
771 * (around 25us) before giving up. That turned out to be
772 * pointless, the minimum delays I was seeing were in the 300us
773 * range, which is far too long to wait in an interrupt. So
774 * we just run until the state machine tells us something
775 * happened or it needs a delay.
777 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
778 time = 0;
779 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
780 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
783 smi_inc_stat(smi_info, complete_transactions);
785 handle_transaction_done(smi_info);
786 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
787 } else if (si_sm_result == SI_SM_HOSED) {
788 smi_inc_stat(smi_info, hosed_count);
791 * Do the before return_hosed_msg, because that
792 * releases the lock.
794 smi_info->si_state = SI_NORMAL;
795 if (smi_info->curr_msg != NULL) {
797 * If we were handling a user message, format
798 * a response to send to the upper layer to
799 * tell it about the error.
801 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
803 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
807 * We prefer handling attn over new messages. But don't do
808 * this if there is not yet an upper layer to handle anything.
810 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
811 unsigned char msg[2];
813 smi_inc_stat(smi_info, attentions);
816 * Got a attn, send down a get message flags to see
817 * what's causing it. It would be better to handle
818 * this in the upper layer, but due to the way
819 * interrupts work with the SMI, that's not really
820 * possible.
822 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
823 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
825 smi_info->handlers->start_transaction(
826 smi_info->si_sm, msg, 2);
827 smi_info->si_state = SI_GETTING_FLAGS;
828 goto restart;
831 /* If we are currently idle, try to start the next message. */
832 if (si_sm_result == SI_SM_IDLE) {
833 smi_inc_stat(smi_info, idles);
835 si_sm_result = start_next_msg(smi_info);
836 if (si_sm_result != SI_SM_IDLE)
837 goto restart;
840 if ((si_sm_result == SI_SM_IDLE)
841 && (atomic_read(&smi_info->req_events))) {
843 * We are idle and the upper layer requested that I fetch
844 * events, so do so.
846 atomic_set(&smi_info->req_events, 0);
848 smi_info->curr_msg = ipmi_alloc_smi_msg();
849 if (!smi_info->curr_msg)
850 goto out;
852 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
853 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
854 smi_info->curr_msg->data_size = 2;
856 smi_info->handlers->start_transaction(
857 smi_info->si_sm,
858 smi_info->curr_msg->data,
859 smi_info->curr_msg->data_size);
860 smi_info->si_state = SI_GETTING_EVENTS;
861 goto restart;
863 out:
864 return si_sm_result;
867 static void sender(void *send_info,
868 struct ipmi_smi_msg *msg,
869 int priority)
871 struct smi_info *smi_info = send_info;
872 enum si_sm_result result;
873 unsigned long flags;
874 #ifdef DEBUG_TIMING
875 struct timeval t;
876 #endif
878 if (atomic_read(&smi_info->stop_operation)) {
879 msg->rsp[0] = msg->data[0] | 4;
880 msg->rsp[1] = msg->data[1];
881 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
882 msg->rsp_size = 3;
883 deliver_recv_msg(smi_info, msg);
884 return;
887 #ifdef DEBUG_TIMING
888 do_gettimeofday(&t);
889 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
890 #endif
893 * last_timeout_jiffies is updated here to avoid
894 * smi_timeout() handler passing very large time_diff
895 * value to smi_event_handler() that causes
896 * the send command to abort.
898 smi_info->last_timeout_jiffies = jiffies;
900 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
902 if (smi_info->thread)
903 wake_up_process(smi_info->thread);
905 if (smi_info->run_to_completion) {
907 * If we are running to completion, then throw it in
908 * the list and run transactions until everything is
909 * clear. Priority doesn't matter here.
913 * Run to completion means we are single-threaded, no
914 * need for locks.
916 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
918 result = smi_event_handler(smi_info, 0);
919 while (result != SI_SM_IDLE) {
920 udelay(SI_SHORT_TIMEOUT_USEC);
921 result = smi_event_handler(smi_info,
922 SI_SHORT_TIMEOUT_USEC);
924 return;
927 spin_lock_irqsave(&smi_info->msg_lock, flags);
928 if (priority > 0)
929 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
930 else
931 list_add_tail(&msg->link, &smi_info->xmit_msgs);
932 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
934 spin_lock_irqsave(&smi_info->si_lock, flags);
935 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
936 start_next_msg(smi_info);
937 spin_unlock_irqrestore(&smi_info->si_lock, flags);
940 static void set_run_to_completion(void *send_info, int i_run_to_completion)
942 struct smi_info *smi_info = send_info;
943 enum si_sm_result result;
945 smi_info->run_to_completion = i_run_to_completion;
946 if (i_run_to_completion) {
947 result = smi_event_handler(smi_info, 0);
948 while (result != SI_SM_IDLE) {
949 udelay(SI_SHORT_TIMEOUT_USEC);
950 result = smi_event_handler(smi_info,
951 SI_SHORT_TIMEOUT_USEC);
957 * Use -1 in the nsec value of the busy waiting timespec to tell that
958 * we are spinning in kipmid looking for something and not delaying
959 * between checks
961 static inline void ipmi_si_set_not_busy(struct timespec *ts)
963 ts->tv_nsec = -1;
965 static inline int ipmi_si_is_busy(struct timespec *ts)
967 return ts->tv_nsec != -1;
970 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
971 const struct smi_info *smi_info,
972 struct timespec *busy_until)
974 unsigned int max_busy_us = 0;
976 if (smi_info->intf_num < num_max_busy_us)
977 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
978 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
979 ipmi_si_set_not_busy(busy_until);
980 else if (!ipmi_si_is_busy(busy_until)) {
981 getnstimeofday(busy_until);
982 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
983 } else {
984 struct timespec now;
985 getnstimeofday(&now);
986 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
987 ipmi_si_set_not_busy(busy_until);
988 return 0;
991 return 1;
996 * A busy-waiting loop for speeding up IPMI operation.
998 * Lousy hardware makes this hard. This is only enabled for systems
999 * that are not BT and do not have interrupts. It starts spinning
1000 * when an operation is complete or until max_busy tells it to stop
1001 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1002 * Documentation/IPMI.txt for details.
1004 static int ipmi_thread(void *data)
1006 struct smi_info *smi_info = data;
1007 unsigned long flags;
1008 enum si_sm_result smi_result;
1009 struct timespec busy_until;
1011 ipmi_si_set_not_busy(&busy_until);
1012 set_user_nice(current, 19);
1013 while (!kthread_should_stop()) {
1014 int busy_wait;
1016 spin_lock_irqsave(&(smi_info->si_lock), flags);
1017 smi_result = smi_event_handler(smi_info, 0);
1018 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1019 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1020 &busy_until);
1021 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1022 ; /* do nothing */
1023 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1024 schedule();
1025 else if (smi_result == SI_SM_IDLE)
1026 schedule_timeout_interruptible(100);
1027 else
1028 schedule_timeout_interruptible(1);
1030 return 0;
1034 static void poll(void *send_info)
1036 struct smi_info *smi_info = send_info;
1037 unsigned long flags;
1040 * Make sure there is some delay in the poll loop so we can
1041 * drive time forward and timeout things.
1043 udelay(10);
1044 spin_lock_irqsave(&smi_info->si_lock, flags);
1045 smi_event_handler(smi_info, 10);
1046 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1049 static void request_events(void *send_info)
1051 struct smi_info *smi_info = send_info;
1053 if (atomic_read(&smi_info->stop_operation) ||
1054 !smi_info->has_event_buffer)
1055 return;
1057 atomic_set(&smi_info->req_events, 1);
1060 static int initialized;
1062 static void smi_timeout(unsigned long data)
1064 struct smi_info *smi_info = (struct smi_info *) data;
1065 enum si_sm_result smi_result;
1066 unsigned long flags;
1067 unsigned long jiffies_now;
1068 long time_diff;
1069 long timeout;
1070 #ifdef DEBUG_TIMING
1071 struct timeval t;
1072 #endif
1074 spin_lock_irqsave(&(smi_info->si_lock), flags);
1075 #ifdef DEBUG_TIMING
1076 do_gettimeofday(&t);
1077 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1078 #endif
1079 jiffies_now = jiffies;
1080 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1081 * SI_USEC_PER_JIFFY);
1082 smi_result = smi_event_handler(smi_info, time_diff);
1084 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1086 smi_info->last_timeout_jiffies = jiffies_now;
1088 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1089 /* Running with interrupts, only do long timeouts. */
1090 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1091 smi_inc_stat(smi_info, long_timeouts);
1092 goto do_mod_timer;
1096 * If the state machine asks for a short delay, then shorten
1097 * the timer timeout.
1099 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1100 smi_inc_stat(smi_info, short_timeouts);
1101 timeout = jiffies + 1;
1102 } else {
1103 smi_inc_stat(smi_info, long_timeouts);
1104 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1107 do_mod_timer:
1108 if (smi_result != SI_SM_IDLE)
1109 mod_timer(&(smi_info->si_timer), timeout);
1112 static irqreturn_t si_irq_handler(int irq, void *data)
1114 struct smi_info *smi_info = data;
1115 unsigned long flags;
1116 #ifdef DEBUG_TIMING
1117 struct timeval t;
1118 #endif
1120 spin_lock_irqsave(&(smi_info->si_lock), flags);
1122 smi_inc_stat(smi_info, interrupts);
1124 #ifdef DEBUG_TIMING
1125 do_gettimeofday(&t);
1126 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1127 #endif
1128 smi_event_handler(smi_info, 0);
1129 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1130 return IRQ_HANDLED;
1133 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1135 struct smi_info *smi_info = data;
1136 /* We need to clear the IRQ flag for the BT interface. */
1137 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1138 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1139 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1140 return si_irq_handler(irq, data);
1143 static int smi_start_processing(void *send_info,
1144 ipmi_smi_t intf)
1146 struct smi_info *new_smi = send_info;
1147 int enable = 0;
1149 new_smi->intf = intf;
1151 /* Try to claim any interrupts. */
1152 if (new_smi->irq_setup)
1153 new_smi->irq_setup(new_smi);
1155 /* Set up the timer that drives the interface. */
1156 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1157 new_smi->last_timeout_jiffies = jiffies;
1158 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1161 * Check if the user forcefully enabled the daemon.
1163 if (new_smi->intf_num < num_force_kipmid)
1164 enable = force_kipmid[new_smi->intf_num];
1166 * The BT interface is efficient enough to not need a thread,
1167 * and there is no need for a thread if we have interrupts.
1169 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1170 enable = 1;
1172 if (enable) {
1173 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1174 "kipmi%d", new_smi->intf_num);
1175 if (IS_ERR(new_smi->thread)) {
1176 dev_notice(new_smi->dev, "Could not start"
1177 " kernel thread due to error %ld, only using"
1178 " timers to drive the interface\n",
1179 PTR_ERR(new_smi->thread));
1180 new_smi->thread = NULL;
1184 return 0;
1187 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1189 struct smi_info *smi = send_info;
1191 data->addr_src = smi->addr_source;
1192 data->dev = smi->dev;
1193 data->addr_info = smi->addr_info;
1194 get_device(smi->dev);
1196 return 0;
1199 static void set_maintenance_mode(void *send_info, int enable)
1201 struct smi_info *smi_info = send_info;
1203 if (!enable)
1204 atomic_set(&smi_info->req_events, 0);
1207 static struct ipmi_smi_handlers handlers = {
1208 .owner = THIS_MODULE,
1209 .start_processing = smi_start_processing,
1210 .get_smi_info = get_smi_info,
1211 .sender = sender,
1212 .request_events = request_events,
1213 .set_maintenance_mode = set_maintenance_mode,
1214 .set_run_to_completion = set_run_to_completion,
1215 .poll = poll,
1219 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1220 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1223 static LIST_HEAD(smi_infos);
1224 static DEFINE_MUTEX(smi_infos_lock);
1225 static int smi_num; /* Used to sequence the SMIs */
1227 #define DEFAULT_REGSPACING 1
1228 #define DEFAULT_REGSIZE 1
1230 static int si_trydefaults = 1;
1231 static char *si_type[SI_MAX_PARMS];
1232 #define MAX_SI_TYPE_STR 30
1233 static char si_type_str[MAX_SI_TYPE_STR];
1234 static unsigned long addrs[SI_MAX_PARMS];
1235 static unsigned int num_addrs;
1236 static unsigned int ports[SI_MAX_PARMS];
1237 static unsigned int num_ports;
1238 static int irqs[SI_MAX_PARMS];
1239 static unsigned int num_irqs;
1240 static int regspacings[SI_MAX_PARMS];
1241 static unsigned int num_regspacings;
1242 static int regsizes[SI_MAX_PARMS];
1243 static unsigned int num_regsizes;
1244 static int regshifts[SI_MAX_PARMS];
1245 static unsigned int num_regshifts;
1246 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1247 static unsigned int num_slave_addrs;
1249 #define IPMI_IO_ADDR_SPACE 0
1250 #define IPMI_MEM_ADDR_SPACE 1
1251 static char *addr_space_to_str[] = { "i/o", "mem" };
1253 static int hotmod_handler(const char *val, struct kernel_param *kp);
1255 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1256 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1257 " Documentation/IPMI.txt in the kernel sources for the"
1258 " gory details.");
1260 module_param_named(trydefaults, si_trydefaults, bool, 0);
1261 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1262 " default scan of the KCS and SMIC interface at the standard"
1263 " address");
1264 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1265 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1266 " interface separated by commas. The types are 'kcs',"
1267 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1268 " the first interface to kcs and the second to bt");
1269 module_param_array(addrs, ulong, &num_addrs, 0);
1270 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1271 " addresses separated by commas. Only use if an interface"
1272 " is in memory. Otherwise, set it to zero or leave"
1273 " it blank.");
1274 module_param_array(ports, uint, &num_ports, 0);
1275 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1276 " addresses separated by commas. Only use if an interface"
1277 " is a port. Otherwise, set it to zero or leave"
1278 " it blank.");
1279 module_param_array(irqs, int, &num_irqs, 0);
1280 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1281 " addresses separated by commas. Only use if an interface"
1282 " has an interrupt. Otherwise, set it to zero or leave"
1283 " it blank.");
1284 module_param_array(regspacings, int, &num_regspacings, 0);
1285 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1286 " and each successive register used by the interface. For"
1287 " instance, if the start address is 0xca2 and the spacing"
1288 " is 2, then the second address is at 0xca4. Defaults"
1289 " to 1.");
1290 module_param_array(regsizes, int, &num_regsizes, 0);
1291 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1292 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1293 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1294 " the 8-bit IPMI register has to be read from a larger"
1295 " register.");
1296 module_param_array(regshifts, int, &num_regshifts, 0);
1297 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1298 " IPMI register, in bits. For instance, if the data"
1299 " is read from a 32-bit word and the IPMI data is in"
1300 " bit 8-15, then the shift would be 8");
1301 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1302 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1303 " the controller. Normally this is 0x20, but can be"
1304 " overridden by this parm. This is an array indexed"
1305 " by interface number.");
1306 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1307 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1308 " disabled(0). Normally the IPMI driver auto-detects"
1309 " this, but the value may be overridden by this parm.");
1310 module_param(unload_when_empty, int, 0);
1311 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1312 " specified or found, default is 1. Setting to 0"
1313 " is useful for hot add of devices using hotmod.");
1314 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1315 MODULE_PARM_DESC(kipmid_max_busy_us,
1316 "Max time (in microseconds) to busy-wait for IPMI data before"
1317 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1318 " if kipmid is using up a lot of CPU time.");
1321 static void std_irq_cleanup(struct smi_info *info)
1323 if (info->si_type == SI_BT)
1324 /* Disable the interrupt in the BT interface. */
1325 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1326 free_irq(info->irq, info);
1329 static int std_irq_setup(struct smi_info *info)
1331 int rv;
1333 if (!info->irq)
1334 return 0;
1336 if (info->si_type == SI_BT) {
1337 rv = request_irq(info->irq,
1338 si_bt_irq_handler,
1339 IRQF_SHARED | IRQF_DISABLED,
1340 DEVICE_NAME,
1341 info);
1342 if (!rv)
1343 /* Enable the interrupt in the BT interface. */
1344 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1345 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1346 } else
1347 rv = request_irq(info->irq,
1348 si_irq_handler,
1349 IRQF_SHARED | IRQF_DISABLED,
1350 DEVICE_NAME,
1351 info);
1352 if (rv) {
1353 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1354 " running polled\n",
1355 DEVICE_NAME, info->irq);
1356 info->irq = 0;
1357 } else {
1358 info->irq_cleanup = std_irq_cleanup;
1359 dev_info(info->dev, "Using irq %d\n", info->irq);
1362 return rv;
1365 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1367 unsigned int addr = io->addr_data;
1369 return inb(addr + (offset * io->regspacing));
1372 static void port_outb(struct si_sm_io *io, unsigned int offset,
1373 unsigned char b)
1375 unsigned int addr = io->addr_data;
1377 outb(b, addr + (offset * io->regspacing));
1380 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1382 unsigned int addr = io->addr_data;
1384 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1387 static void port_outw(struct si_sm_io *io, unsigned int offset,
1388 unsigned char b)
1390 unsigned int addr = io->addr_data;
1392 outw(b << io->regshift, addr + (offset * io->regspacing));
1395 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1397 unsigned int addr = io->addr_data;
1399 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1402 static void port_outl(struct si_sm_io *io, unsigned int offset,
1403 unsigned char b)
1405 unsigned int addr = io->addr_data;
1407 outl(b << io->regshift, addr+(offset * io->regspacing));
1410 static void port_cleanup(struct smi_info *info)
1412 unsigned int addr = info->io.addr_data;
1413 int idx;
1415 if (addr) {
1416 for (idx = 0; idx < info->io_size; idx++)
1417 release_region(addr + idx * info->io.regspacing,
1418 info->io.regsize);
1422 static int port_setup(struct smi_info *info)
1424 unsigned int addr = info->io.addr_data;
1425 int idx;
1427 if (!addr)
1428 return -ENODEV;
1430 info->io_cleanup = port_cleanup;
1433 * Figure out the actual inb/inw/inl/etc routine to use based
1434 * upon the register size.
1436 switch (info->io.regsize) {
1437 case 1:
1438 info->io.inputb = port_inb;
1439 info->io.outputb = port_outb;
1440 break;
1441 case 2:
1442 info->io.inputb = port_inw;
1443 info->io.outputb = port_outw;
1444 break;
1445 case 4:
1446 info->io.inputb = port_inl;
1447 info->io.outputb = port_outl;
1448 break;
1449 default:
1450 dev_warn(info->dev, "Invalid register size: %d\n",
1451 info->io.regsize);
1452 return -EINVAL;
1456 * Some BIOSes reserve disjoint I/O regions in their ACPI
1457 * tables. This causes problems when trying to register the
1458 * entire I/O region. Therefore we must register each I/O
1459 * port separately.
1461 for (idx = 0; idx < info->io_size; idx++) {
1462 if (request_region(addr + idx * info->io.regspacing,
1463 info->io.regsize, DEVICE_NAME) == NULL) {
1464 /* Undo allocations */
1465 while (idx--) {
1466 release_region(addr + idx * info->io.regspacing,
1467 info->io.regsize);
1469 return -EIO;
1472 return 0;
1475 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1477 return readb((io->addr)+(offset * io->regspacing));
1480 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1481 unsigned char b)
1483 writeb(b, (io->addr)+(offset * io->regspacing));
1486 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1488 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1489 & 0xff;
1492 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1493 unsigned char b)
1495 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1498 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1500 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1501 & 0xff;
1504 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1505 unsigned char b)
1507 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1510 #ifdef readq
1511 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1513 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1514 & 0xff;
1517 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1518 unsigned char b)
1520 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1522 #endif
1524 static void mem_cleanup(struct smi_info *info)
1526 unsigned long addr = info->io.addr_data;
1527 int mapsize;
1529 if (info->io.addr) {
1530 iounmap(info->io.addr);
1532 mapsize = ((info->io_size * info->io.regspacing)
1533 - (info->io.regspacing - info->io.regsize));
1535 release_mem_region(addr, mapsize);
1539 static int mem_setup(struct smi_info *info)
1541 unsigned long addr = info->io.addr_data;
1542 int mapsize;
1544 if (!addr)
1545 return -ENODEV;
1547 info->io_cleanup = mem_cleanup;
1550 * Figure out the actual readb/readw/readl/etc routine to use based
1551 * upon the register size.
1553 switch (info->io.regsize) {
1554 case 1:
1555 info->io.inputb = intf_mem_inb;
1556 info->io.outputb = intf_mem_outb;
1557 break;
1558 case 2:
1559 info->io.inputb = intf_mem_inw;
1560 info->io.outputb = intf_mem_outw;
1561 break;
1562 case 4:
1563 info->io.inputb = intf_mem_inl;
1564 info->io.outputb = intf_mem_outl;
1565 break;
1566 #ifdef readq
1567 case 8:
1568 info->io.inputb = mem_inq;
1569 info->io.outputb = mem_outq;
1570 break;
1571 #endif
1572 default:
1573 dev_warn(info->dev, "Invalid register size: %d\n",
1574 info->io.regsize);
1575 return -EINVAL;
1579 * Calculate the total amount of memory to claim. This is an
1580 * unusual looking calculation, but it avoids claiming any
1581 * more memory than it has to. It will claim everything
1582 * between the first address to the end of the last full
1583 * register.
1585 mapsize = ((info->io_size * info->io.regspacing)
1586 - (info->io.regspacing - info->io.regsize));
1588 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1589 return -EIO;
1591 info->io.addr = ioremap(addr, mapsize);
1592 if (info->io.addr == NULL) {
1593 release_mem_region(addr, mapsize);
1594 return -EIO;
1596 return 0;
1600 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1601 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1602 * Options are:
1603 * rsp=<regspacing>
1604 * rsi=<regsize>
1605 * rsh=<regshift>
1606 * irq=<irq>
1607 * ipmb=<ipmb addr>
1609 enum hotmod_op { HM_ADD, HM_REMOVE };
1610 struct hotmod_vals {
1611 char *name;
1612 int val;
1614 static struct hotmod_vals hotmod_ops[] = {
1615 { "add", HM_ADD },
1616 { "remove", HM_REMOVE },
1617 { NULL }
1619 static struct hotmod_vals hotmod_si[] = {
1620 { "kcs", SI_KCS },
1621 { "smic", SI_SMIC },
1622 { "bt", SI_BT },
1623 { NULL }
1625 static struct hotmod_vals hotmod_as[] = {
1626 { "mem", IPMI_MEM_ADDR_SPACE },
1627 { "i/o", IPMI_IO_ADDR_SPACE },
1628 { NULL }
1631 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1633 char *s;
1634 int i;
1636 s = strchr(*curr, ',');
1637 if (!s) {
1638 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1639 return -EINVAL;
1641 *s = '\0';
1642 s++;
1643 for (i = 0; hotmod_ops[i].name; i++) {
1644 if (strcmp(*curr, v[i].name) == 0) {
1645 *val = v[i].val;
1646 *curr = s;
1647 return 0;
1651 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1652 return -EINVAL;
1655 static int check_hotmod_int_op(const char *curr, const char *option,
1656 const char *name, int *val)
1658 char *n;
1660 if (strcmp(curr, name) == 0) {
1661 if (!option) {
1662 printk(KERN_WARNING PFX
1663 "No option given for '%s'\n",
1664 curr);
1665 return -EINVAL;
1667 *val = simple_strtoul(option, &n, 0);
1668 if ((*n != '\0') || (*option == '\0')) {
1669 printk(KERN_WARNING PFX
1670 "Bad option given for '%s'\n",
1671 curr);
1672 return -EINVAL;
1674 return 1;
1676 return 0;
1679 static struct smi_info *smi_info_alloc(void)
1681 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1683 if (info) {
1684 spin_lock_init(&info->si_lock);
1685 spin_lock_init(&info->msg_lock);
1687 return info;
1690 static int hotmod_handler(const char *val, struct kernel_param *kp)
1692 char *str = kstrdup(val, GFP_KERNEL);
1693 int rv;
1694 char *next, *curr, *s, *n, *o;
1695 enum hotmod_op op;
1696 enum si_type si_type;
1697 int addr_space;
1698 unsigned long addr;
1699 int regspacing;
1700 int regsize;
1701 int regshift;
1702 int irq;
1703 int ipmb;
1704 int ival;
1705 int len;
1706 struct smi_info *info;
1708 if (!str)
1709 return -ENOMEM;
1711 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1712 len = strlen(str);
1713 ival = len - 1;
1714 while ((ival >= 0) && isspace(str[ival])) {
1715 str[ival] = '\0';
1716 ival--;
1719 for (curr = str; curr; curr = next) {
1720 regspacing = 1;
1721 regsize = 1;
1722 regshift = 0;
1723 irq = 0;
1724 ipmb = 0; /* Choose the default if not specified */
1726 next = strchr(curr, ':');
1727 if (next) {
1728 *next = '\0';
1729 next++;
1732 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1733 if (rv)
1734 break;
1735 op = ival;
1737 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1738 if (rv)
1739 break;
1740 si_type = ival;
1742 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1743 if (rv)
1744 break;
1746 s = strchr(curr, ',');
1747 if (s) {
1748 *s = '\0';
1749 s++;
1751 addr = simple_strtoul(curr, &n, 0);
1752 if ((*n != '\0') || (*curr == '\0')) {
1753 printk(KERN_WARNING PFX "Invalid hotmod address"
1754 " '%s'\n", curr);
1755 break;
1758 while (s) {
1759 curr = s;
1760 s = strchr(curr, ',');
1761 if (s) {
1762 *s = '\0';
1763 s++;
1765 o = strchr(curr, '=');
1766 if (o) {
1767 *o = '\0';
1768 o++;
1770 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1771 if (rv < 0)
1772 goto out;
1773 else if (rv)
1774 continue;
1775 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1776 if (rv < 0)
1777 goto out;
1778 else if (rv)
1779 continue;
1780 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1781 if (rv < 0)
1782 goto out;
1783 else if (rv)
1784 continue;
1785 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1786 if (rv < 0)
1787 goto out;
1788 else if (rv)
1789 continue;
1790 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1791 if (rv < 0)
1792 goto out;
1793 else if (rv)
1794 continue;
1796 rv = -EINVAL;
1797 printk(KERN_WARNING PFX
1798 "Invalid hotmod option '%s'\n",
1799 curr);
1800 goto out;
1803 if (op == HM_ADD) {
1804 info = smi_info_alloc();
1805 if (!info) {
1806 rv = -ENOMEM;
1807 goto out;
1810 info->addr_source = SI_HOTMOD;
1811 info->si_type = si_type;
1812 info->io.addr_data = addr;
1813 info->io.addr_type = addr_space;
1814 if (addr_space == IPMI_MEM_ADDR_SPACE)
1815 info->io_setup = mem_setup;
1816 else
1817 info->io_setup = port_setup;
1819 info->io.addr = NULL;
1820 info->io.regspacing = regspacing;
1821 if (!info->io.regspacing)
1822 info->io.regspacing = DEFAULT_REGSPACING;
1823 info->io.regsize = regsize;
1824 if (!info->io.regsize)
1825 info->io.regsize = DEFAULT_REGSPACING;
1826 info->io.regshift = regshift;
1827 info->irq = irq;
1828 if (info->irq)
1829 info->irq_setup = std_irq_setup;
1830 info->slave_addr = ipmb;
1832 if (!add_smi(info)) {
1833 if (try_smi_init(info))
1834 cleanup_one_si(info);
1835 } else {
1836 kfree(info);
1838 } else {
1839 /* remove */
1840 struct smi_info *e, *tmp_e;
1842 mutex_lock(&smi_infos_lock);
1843 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1844 if (e->io.addr_type != addr_space)
1845 continue;
1846 if (e->si_type != si_type)
1847 continue;
1848 if (e->io.addr_data == addr)
1849 cleanup_one_si(e);
1851 mutex_unlock(&smi_infos_lock);
1854 rv = len;
1855 out:
1856 kfree(str);
1857 return rv;
1860 static int __devinit hardcode_find_bmc(void)
1862 int ret = -ENODEV;
1863 int i;
1864 struct smi_info *info;
1866 for (i = 0; i < SI_MAX_PARMS; i++) {
1867 if (!ports[i] && !addrs[i])
1868 continue;
1870 info = smi_info_alloc();
1871 if (!info)
1872 return -ENOMEM;
1874 info->addr_source = SI_HARDCODED;
1875 printk(KERN_INFO PFX "probing via hardcoded address\n");
1877 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1878 info->si_type = SI_KCS;
1879 } else if (strcmp(si_type[i], "smic") == 0) {
1880 info->si_type = SI_SMIC;
1881 } else if (strcmp(si_type[i], "bt") == 0) {
1882 info->si_type = SI_BT;
1883 } else {
1884 printk(KERN_WARNING PFX "Interface type specified "
1885 "for interface %d, was invalid: %s\n",
1886 i, si_type[i]);
1887 kfree(info);
1888 continue;
1891 if (ports[i]) {
1892 /* An I/O port */
1893 info->io_setup = port_setup;
1894 info->io.addr_data = ports[i];
1895 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1896 } else if (addrs[i]) {
1897 /* A memory port */
1898 info->io_setup = mem_setup;
1899 info->io.addr_data = addrs[i];
1900 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1901 } else {
1902 printk(KERN_WARNING PFX "Interface type specified "
1903 "for interface %d, but port and address were "
1904 "not set or set to zero.\n", i);
1905 kfree(info);
1906 continue;
1909 info->io.addr = NULL;
1910 info->io.regspacing = regspacings[i];
1911 if (!info->io.regspacing)
1912 info->io.regspacing = DEFAULT_REGSPACING;
1913 info->io.regsize = regsizes[i];
1914 if (!info->io.regsize)
1915 info->io.regsize = DEFAULT_REGSPACING;
1916 info->io.regshift = regshifts[i];
1917 info->irq = irqs[i];
1918 if (info->irq)
1919 info->irq_setup = std_irq_setup;
1920 info->slave_addr = slave_addrs[i];
1922 if (!add_smi(info)) {
1923 if (try_smi_init(info))
1924 cleanup_one_si(info);
1925 ret = 0;
1926 } else {
1927 kfree(info);
1930 return ret;
1933 #ifdef CONFIG_ACPI
1935 #include <linux/acpi.h>
1938 * Once we get an ACPI failure, we don't try any more, because we go
1939 * through the tables sequentially. Once we don't find a table, there
1940 * are no more.
1942 static int acpi_failure;
1944 /* For GPE-type interrupts. */
1945 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1946 u32 gpe_number, void *context)
1948 struct smi_info *smi_info = context;
1949 unsigned long flags;
1950 #ifdef DEBUG_TIMING
1951 struct timeval t;
1952 #endif
1954 spin_lock_irqsave(&(smi_info->si_lock), flags);
1956 smi_inc_stat(smi_info, interrupts);
1958 #ifdef DEBUG_TIMING
1959 do_gettimeofday(&t);
1960 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1961 #endif
1962 smi_event_handler(smi_info, 0);
1963 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1965 return ACPI_INTERRUPT_HANDLED;
1968 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1970 if (!info->irq)
1971 return;
1973 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1976 static int acpi_gpe_irq_setup(struct smi_info *info)
1978 acpi_status status;
1980 if (!info->irq)
1981 return 0;
1983 /* FIXME - is level triggered right? */
1984 status = acpi_install_gpe_handler(NULL,
1985 info->irq,
1986 ACPI_GPE_LEVEL_TRIGGERED,
1987 &ipmi_acpi_gpe,
1988 info);
1989 if (status != AE_OK) {
1990 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1991 " running polled\n", DEVICE_NAME, info->irq);
1992 info->irq = 0;
1993 return -EINVAL;
1994 } else {
1995 info->irq_cleanup = acpi_gpe_irq_cleanup;
1996 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1997 return 0;
2002 * Defined at
2003 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2005 struct SPMITable {
2006 s8 Signature[4];
2007 u32 Length;
2008 u8 Revision;
2009 u8 Checksum;
2010 s8 OEMID[6];
2011 s8 OEMTableID[8];
2012 s8 OEMRevision[4];
2013 s8 CreatorID[4];
2014 s8 CreatorRevision[4];
2015 u8 InterfaceType;
2016 u8 IPMIlegacy;
2017 s16 SpecificationRevision;
2020 * Bit 0 - SCI interrupt supported
2021 * Bit 1 - I/O APIC/SAPIC
2023 u8 InterruptType;
2026 * If bit 0 of InterruptType is set, then this is the SCI
2027 * interrupt in the GPEx_STS register.
2029 u8 GPE;
2031 s16 Reserved;
2034 * If bit 1 of InterruptType is set, then this is the I/O
2035 * APIC/SAPIC interrupt.
2037 u32 GlobalSystemInterrupt;
2039 /* The actual register address. */
2040 struct acpi_generic_address addr;
2042 u8 UID[4];
2044 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2047 static int __devinit try_init_spmi(struct SPMITable *spmi)
2049 struct smi_info *info;
2051 if (spmi->IPMIlegacy != 1) {
2052 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2053 return -ENODEV;
2056 info = smi_info_alloc();
2057 if (!info) {
2058 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2059 return -ENOMEM;
2062 info->addr_source = SI_SPMI;
2063 printk(KERN_INFO PFX "probing via SPMI\n");
2065 /* Figure out the interface type. */
2066 switch (spmi->InterfaceType) {
2067 case 1: /* KCS */
2068 info->si_type = SI_KCS;
2069 break;
2070 case 2: /* SMIC */
2071 info->si_type = SI_SMIC;
2072 break;
2073 case 3: /* BT */
2074 info->si_type = SI_BT;
2075 break;
2076 default:
2077 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2078 spmi->InterfaceType);
2079 kfree(info);
2080 return -EIO;
2083 if (spmi->InterruptType & 1) {
2084 /* We've got a GPE interrupt. */
2085 info->irq = spmi->GPE;
2086 info->irq_setup = acpi_gpe_irq_setup;
2087 } else if (spmi->InterruptType & 2) {
2088 /* We've got an APIC/SAPIC interrupt. */
2089 info->irq = spmi->GlobalSystemInterrupt;
2090 info->irq_setup = std_irq_setup;
2091 } else {
2092 /* Use the default interrupt setting. */
2093 info->irq = 0;
2094 info->irq_setup = NULL;
2097 if (spmi->addr.bit_width) {
2098 /* A (hopefully) properly formed register bit width. */
2099 info->io.regspacing = spmi->addr.bit_width / 8;
2100 } else {
2101 info->io.regspacing = DEFAULT_REGSPACING;
2103 info->io.regsize = info->io.regspacing;
2104 info->io.regshift = spmi->addr.bit_offset;
2106 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2107 info->io_setup = mem_setup;
2108 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2109 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2110 info->io_setup = port_setup;
2111 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2112 } else {
2113 kfree(info);
2114 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2115 return -EIO;
2117 info->io.addr_data = spmi->addr.address;
2119 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2120 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2121 info->io.addr_data, info->io.regsize, info->io.regspacing,
2122 info->irq);
2124 if (add_smi(info))
2125 kfree(info);
2127 return 0;
2130 static void __devinit spmi_find_bmc(void)
2132 acpi_status status;
2133 struct SPMITable *spmi;
2134 int i;
2136 if (acpi_disabled)
2137 return;
2139 if (acpi_failure)
2140 return;
2142 for (i = 0; ; i++) {
2143 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2144 (struct acpi_table_header **)&spmi);
2145 if (status != AE_OK)
2146 return;
2148 try_init_spmi(spmi);
2152 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2153 const struct pnp_device_id *dev_id)
2155 struct acpi_device *acpi_dev;
2156 struct smi_info *info;
2157 struct resource *res, *res_second;
2158 acpi_handle handle;
2159 acpi_status status;
2160 unsigned long long tmp;
2162 acpi_dev = pnp_acpi_device(dev);
2163 if (!acpi_dev)
2164 return -ENODEV;
2166 info = smi_info_alloc();
2167 if (!info)
2168 return -ENOMEM;
2170 info->addr_source = SI_ACPI;
2171 printk(KERN_INFO PFX "probing via ACPI\n");
2173 handle = acpi_dev->handle;
2174 info->addr_info.acpi_info.acpi_handle = handle;
2176 /* _IFT tells us the interface type: KCS, BT, etc */
2177 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2178 if (ACPI_FAILURE(status))
2179 goto err_free;
2181 switch (tmp) {
2182 case 1:
2183 info->si_type = SI_KCS;
2184 break;
2185 case 2:
2186 info->si_type = SI_SMIC;
2187 break;
2188 case 3:
2189 info->si_type = SI_BT;
2190 break;
2191 default:
2192 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2193 goto err_free;
2196 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2197 if (res) {
2198 info->io_setup = port_setup;
2199 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2200 } else {
2201 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2202 if (res) {
2203 info->io_setup = mem_setup;
2204 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2207 if (!res) {
2208 dev_err(&dev->dev, "no I/O or memory address\n");
2209 goto err_free;
2211 info->io.addr_data = res->start;
2213 info->io.regspacing = DEFAULT_REGSPACING;
2214 res_second = pnp_get_resource(dev,
2215 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2216 IORESOURCE_IO : IORESOURCE_MEM,
2218 if (res_second) {
2219 if (res_second->start > info->io.addr_data)
2220 info->io.regspacing = res_second->start - info->io.addr_data;
2222 info->io.regsize = DEFAULT_REGSPACING;
2223 info->io.regshift = 0;
2225 /* If _GPE exists, use it; otherwise use standard interrupts */
2226 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2227 if (ACPI_SUCCESS(status)) {
2228 info->irq = tmp;
2229 info->irq_setup = acpi_gpe_irq_setup;
2230 } else if (pnp_irq_valid(dev, 0)) {
2231 info->irq = pnp_irq(dev, 0);
2232 info->irq_setup = std_irq_setup;
2235 info->dev = &dev->dev;
2236 pnp_set_drvdata(dev, info);
2238 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2239 res, info->io.regsize, info->io.regspacing,
2240 info->irq);
2242 if (add_smi(info))
2243 goto err_free;
2245 return 0;
2247 err_free:
2248 kfree(info);
2249 return -EINVAL;
2252 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2254 struct smi_info *info = pnp_get_drvdata(dev);
2256 cleanup_one_si(info);
2259 static const struct pnp_device_id pnp_dev_table[] = {
2260 {"IPI0001", 0},
2261 {"", 0},
2264 static struct pnp_driver ipmi_pnp_driver = {
2265 .name = DEVICE_NAME,
2266 .probe = ipmi_pnp_probe,
2267 .remove = __devexit_p(ipmi_pnp_remove),
2268 .id_table = pnp_dev_table,
2270 #endif
2272 #ifdef CONFIG_DMI
2273 struct dmi_ipmi_data {
2274 u8 type;
2275 u8 addr_space;
2276 unsigned long base_addr;
2277 u8 irq;
2278 u8 offset;
2279 u8 slave_addr;
2282 static int __devinit decode_dmi(const struct dmi_header *dm,
2283 struct dmi_ipmi_data *dmi)
2285 const u8 *data = (const u8 *)dm;
2286 unsigned long base_addr;
2287 u8 reg_spacing;
2288 u8 len = dm->length;
2290 dmi->type = data[4];
2292 memcpy(&base_addr, data+8, sizeof(unsigned long));
2293 if (len >= 0x11) {
2294 if (base_addr & 1) {
2295 /* I/O */
2296 base_addr &= 0xFFFE;
2297 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2298 } else
2299 /* Memory */
2300 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2302 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2303 is odd. */
2304 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2306 dmi->irq = data[0x11];
2308 /* The top two bits of byte 0x10 hold the register spacing. */
2309 reg_spacing = (data[0x10] & 0xC0) >> 6;
2310 switch (reg_spacing) {
2311 case 0x00: /* Byte boundaries */
2312 dmi->offset = 1;
2313 break;
2314 case 0x01: /* 32-bit boundaries */
2315 dmi->offset = 4;
2316 break;
2317 case 0x02: /* 16-byte boundaries */
2318 dmi->offset = 16;
2319 break;
2320 default:
2321 /* Some other interface, just ignore it. */
2322 return -EIO;
2324 } else {
2325 /* Old DMI spec. */
2327 * Note that technically, the lower bit of the base
2328 * address should be 1 if the address is I/O and 0 if
2329 * the address is in memory. So many systems get that
2330 * wrong (and all that I have seen are I/O) so we just
2331 * ignore that bit and assume I/O. Systems that use
2332 * memory should use the newer spec, anyway.
2334 dmi->base_addr = base_addr & 0xfffe;
2335 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2336 dmi->offset = 1;
2339 dmi->slave_addr = data[6];
2341 return 0;
2344 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2346 struct smi_info *info;
2348 info = smi_info_alloc();
2349 if (!info) {
2350 printk(KERN_ERR PFX "Could not allocate SI data\n");
2351 return;
2354 info->addr_source = SI_SMBIOS;
2355 printk(KERN_INFO PFX "probing via SMBIOS\n");
2357 switch (ipmi_data->type) {
2358 case 0x01: /* KCS */
2359 info->si_type = SI_KCS;
2360 break;
2361 case 0x02: /* SMIC */
2362 info->si_type = SI_SMIC;
2363 break;
2364 case 0x03: /* BT */
2365 info->si_type = SI_BT;
2366 break;
2367 default:
2368 kfree(info);
2369 return;
2372 switch (ipmi_data->addr_space) {
2373 case IPMI_MEM_ADDR_SPACE:
2374 info->io_setup = mem_setup;
2375 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2376 break;
2378 case IPMI_IO_ADDR_SPACE:
2379 info->io_setup = port_setup;
2380 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2381 break;
2383 default:
2384 kfree(info);
2385 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2386 ipmi_data->addr_space);
2387 return;
2389 info->io.addr_data = ipmi_data->base_addr;
2391 info->io.regspacing = ipmi_data->offset;
2392 if (!info->io.regspacing)
2393 info->io.regspacing = DEFAULT_REGSPACING;
2394 info->io.regsize = DEFAULT_REGSPACING;
2395 info->io.regshift = 0;
2397 info->slave_addr = ipmi_data->slave_addr;
2399 info->irq = ipmi_data->irq;
2400 if (info->irq)
2401 info->irq_setup = std_irq_setup;
2403 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2404 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2405 info->io.addr_data, info->io.regsize, info->io.regspacing,
2406 info->irq);
2408 if (add_smi(info))
2409 kfree(info);
2412 static void __devinit dmi_find_bmc(void)
2414 const struct dmi_device *dev = NULL;
2415 struct dmi_ipmi_data data;
2416 int rv;
2418 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2419 memset(&data, 0, sizeof(data));
2420 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2421 &data);
2422 if (!rv)
2423 try_init_dmi(&data);
2426 #endif /* CONFIG_DMI */
2428 #ifdef CONFIG_PCI
2430 #define PCI_ERMC_CLASSCODE 0x0C0700
2431 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2432 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2433 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2434 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2435 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2437 #define PCI_HP_VENDOR_ID 0x103C
2438 #define PCI_MMC_DEVICE_ID 0x121A
2439 #define PCI_MMC_ADDR_CW 0x10
2441 static void ipmi_pci_cleanup(struct smi_info *info)
2443 struct pci_dev *pdev = info->addr_source_data;
2445 pci_disable_device(pdev);
2448 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2449 const struct pci_device_id *ent)
2451 int rv;
2452 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2453 struct smi_info *info;
2455 info = smi_info_alloc();
2456 if (!info)
2457 return -ENOMEM;
2459 info->addr_source = SI_PCI;
2460 dev_info(&pdev->dev, "probing via PCI");
2462 switch (class_type) {
2463 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2464 info->si_type = SI_SMIC;
2465 break;
2467 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2468 info->si_type = SI_KCS;
2469 break;
2471 case PCI_ERMC_CLASSCODE_TYPE_BT:
2472 info->si_type = SI_BT;
2473 break;
2475 default:
2476 kfree(info);
2477 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2478 return -ENOMEM;
2481 rv = pci_enable_device(pdev);
2482 if (rv) {
2483 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2484 kfree(info);
2485 return rv;
2488 info->addr_source_cleanup = ipmi_pci_cleanup;
2489 info->addr_source_data = pdev;
2491 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2492 info->io_setup = port_setup;
2493 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2494 } else {
2495 info->io_setup = mem_setup;
2496 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2498 info->io.addr_data = pci_resource_start(pdev, 0);
2500 info->io.regspacing = DEFAULT_REGSPACING;
2501 info->io.regsize = DEFAULT_REGSPACING;
2502 info->io.regshift = 0;
2504 info->irq = pdev->irq;
2505 if (info->irq)
2506 info->irq_setup = std_irq_setup;
2508 info->dev = &pdev->dev;
2509 pci_set_drvdata(pdev, info);
2511 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2512 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2513 info->irq);
2515 if (add_smi(info))
2516 kfree(info);
2518 return 0;
2521 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2523 struct smi_info *info = pci_get_drvdata(pdev);
2524 cleanup_one_si(info);
2527 #ifdef CONFIG_PM
2528 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2530 return 0;
2533 static int ipmi_pci_resume(struct pci_dev *pdev)
2535 return 0;
2537 #endif
2539 static struct pci_device_id ipmi_pci_devices[] = {
2540 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2541 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2542 { 0, }
2544 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2546 static struct pci_driver ipmi_pci_driver = {
2547 .name = DEVICE_NAME,
2548 .id_table = ipmi_pci_devices,
2549 .probe = ipmi_pci_probe,
2550 .remove = __devexit_p(ipmi_pci_remove),
2551 #ifdef CONFIG_PM
2552 .suspend = ipmi_pci_suspend,
2553 .resume = ipmi_pci_resume,
2554 #endif
2556 #endif /* CONFIG_PCI */
2558 static struct of_device_id ipmi_match[];
2559 static int __devinit ipmi_probe(struct platform_device *dev)
2561 #ifdef CONFIG_OF
2562 const struct of_device_id *match;
2563 struct smi_info *info;
2564 struct resource resource;
2565 const __be32 *regsize, *regspacing, *regshift;
2566 struct device_node *np = dev->dev.of_node;
2567 int ret;
2568 int proplen;
2570 dev_info(&dev->dev, "probing via device tree\n");
2572 match = of_match_device(ipmi_match, &dev->dev);
2573 if (!match)
2574 return -EINVAL;
2576 ret = of_address_to_resource(np, 0, &resource);
2577 if (ret) {
2578 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2579 return ret;
2582 regsize = of_get_property(np, "reg-size", &proplen);
2583 if (regsize && proplen != 4) {
2584 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2585 return -EINVAL;
2588 regspacing = of_get_property(np, "reg-spacing", &proplen);
2589 if (regspacing && proplen != 4) {
2590 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2591 return -EINVAL;
2594 regshift = of_get_property(np, "reg-shift", &proplen);
2595 if (regshift && proplen != 4) {
2596 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2597 return -EINVAL;
2600 info = smi_info_alloc();
2602 if (!info) {
2603 dev_err(&dev->dev,
2604 "could not allocate memory for OF probe\n");
2605 return -ENOMEM;
2608 info->si_type = (enum si_type) match->data;
2609 info->addr_source = SI_DEVICETREE;
2610 info->irq_setup = std_irq_setup;
2612 if (resource.flags & IORESOURCE_IO) {
2613 info->io_setup = port_setup;
2614 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2615 } else {
2616 info->io_setup = mem_setup;
2617 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2620 info->io.addr_data = resource.start;
2622 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2623 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2624 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2626 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2627 info->dev = &dev->dev;
2629 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2630 info->io.addr_data, info->io.regsize, info->io.regspacing,
2631 info->irq);
2633 dev_set_drvdata(&dev->dev, info);
2635 if (add_smi(info)) {
2636 kfree(info);
2637 return -EBUSY;
2639 #endif
2640 return 0;
2643 static int __devexit ipmi_remove(struct platform_device *dev)
2645 #ifdef CONFIG_OF
2646 cleanup_one_si(dev_get_drvdata(&dev->dev));
2647 #endif
2648 return 0;
2651 static struct of_device_id ipmi_match[] =
2653 { .type = "ipmi", .compatible = "ipmi-kcs",
2654 .data = (void *)(unsigned long) SI_KCS },
2655 { .type = "ipmi", .compatible = "ipmi-smic",
2656 .data = (void *)(unsigned long) SI_SMIC },
2657 { .type = "ipmi", .compatible = "ipmi-bt",
2658 .data = (void *)(unsigned long) SI_BT },
2662 static struct platform_driver ipmi_driver = {
2663 .driver = {
2664 .name = DEVICE_NAME,
2665 .owner = THIS_MODULE,
2666 .of_match_table = ipmi_match,
2668 .probe = ipmi_probe,
2669 .remove = __devexit_p(ipmi_remove),
2672 static int wait_for_msg_done(struct smi_info *smi_info)
2674 enum si_sm_result smi_result;
2676 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2677 for (;;) {
2678 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2679 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2680 schedule_timeout_uninterruptible(1);
2681 smi_result = smi_info->handlers->event(
2682 smi_info->si_sm, 100);
2683 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2684 smi_result = smi_info->handlers->event(
2685 smi_info->si_sm, 0);
2686 } else
2687 break;
2689 if (smi_result == SI_SM_HOSED)
2691 * We couldn't get the state machine to run, so whatever's at
2692 * the port is probably not an IPMI SMI interface.
2694 return -ENODEV;
2696 return 0;
2699 static int try_get_dev_id(struct smi_info *smi_info)
2701 unsigned char msg[2];
2702 unsigned char *resp;
2703 unsigned long resp_len;
2704 int rv = 0;
2706 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2707 if (!resp)
2708 return -ENOMEM;
2711 * Do a Get Device ID command, since it comes back with some
2712 * useful info.
2714 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2715 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2716 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2718 rv = wait_for_msg_done(smi_info);
2719 if (rv)
2720 goto out;
2722 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2723 resp, IPMI_MAX_MSG_LENGTH);
2725 /* Check and record info from the get device id, in case we need it. */
2726 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2728 out:
2729 kfree(resp);
2730 return rv;
2733 static int try_enable_event_buffer(struct smi_info *smi_info)
2735 unsigned char msg[3];
2736 unsigned char *resp;
2737 unsigned long resp_len;
2738 int rv = 0;
2740 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2741 if (!resp)
2742 return -ENOMEM;
2744 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2745 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2746 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2748 rv = wait_for_msg_done(smi_info);
2749 if (rv) {
2750 printk(KERN_WARNING PFX "Error getting response from get"
2751 " global enables command, the event buffer is not"
2752 " enabled.\n");
2753 goto out;
2756 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2757 resp, IPMI_MAX_MSG_LENGTH);
2759 if (resp_len < 4 ||
2760 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2761 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2762 resp[2] != 0) {
2763 printk(KERN_WARNING PFX "Invalid return from get global"
2764 " enables command, cannot enable the event buffer.\n");
2765 rv = -EINVAL;
2766 goto out;
2769 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2770 /* buffer is already enabled, nothing to do. */
2771 goto out;
2773 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2774 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2775 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2776 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2778 rv = wait_for_msg_done(smi_info);
2779 if (rv) {
2780 printk(KERN_WARNING PFX "Error getting response from set"
2781 " global, enables command, the event buffer is not"
2782 " enabled.\n");
2783 goto out;
2786 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2787 resp, IPMI_MAX_MSG_LENGTH);
2789 if (resp_len < 3 ||
2790 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2791 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2792 printk(KERN_WARNING PFX "Invalid return from get global,"
2793 "enables command, not enable the event buffer.\n");
2794 rv = -EINVAL;
2795 goto out;
2798 if (resp[2] != 0)
2800 * An error when setting the event buffer bit means
2801 * that the event buffer is not supported.
2803 rv = -ENOENT;
2804 out:
2805 kfree(resp);
2806 return rv;
2809 static int smi_type_proc_show(struct seq_file *m, void *v)
2811 struct smi_info *smi = m->private;
2813 return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2816 static int smi_type_proc_open(struct inode *inode, struct file *file)
2818 return single_open(file, smi_type_proc_show, PDE(inode)->data);
2821 static const struct file_operations smi_type_proc_ops = {
2822 .open = smi_type_proc_open,
2823 .read = seq_read,
2824 .llseek = seq_lseek,
2825 .release = single_release,
2828 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2830 struct smi_info *smi = m->private;
2832 seq_printf(m, "interrupts_enabled: %d\n",
2833 smi->irq && !smi->interrupt_disabled);
2834 seq_printf(m, "short_timeouts: %u\n",
2835 smi_get_stat(smi, short_timeouts));
2836 seq_printf(m, "long_timeouts: %u\n",
2837 smi_get_stat(smi, long_timeouts));
2838 seq_printf(m, "idles: %u\n",
2839 smi_get_stat(smi, idles));
2840 seq_printf(m, "interrupts: %u\n",
2841 smi_get_stat(smi, interrupts));
2842 seq_printf(m, "attentions: %u\n",
2843 smi_get_stat(smi, attentions));
2844 seq_printf(m, "flag_fetches: %u\n",
2845 smi_get_stat(smi, flag_fetches));
2846 seq_printf(m, "hosed_count: %u\n",
2847 smi_get_stat(smi, hosed_count));
2848 seq_printf(m, "complete_transactions: %u\n",
2849 smi_get_stat(smi, complete_transactions));
2850 seq_printf(m, "events: %u\n",
2851 smi_get_stat(smi, events));
2852 seq_printf(m, "watchdog_pretimeouts: %u\n",
2853 smi_get_stat(smi, watchdog_pretimeouts));
2854 seq_printf(m, "incoming_messages: %u\n",
2855 smi_get_stat(smi, incoming_messages));
2856 return 0;
2859 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2861 return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
2864 static const struct file_operations smi_si_stats_proc_ops = {
2865 .open = smi_si_stats_proc_open,
2866 .read = seq_read,
2867 .llseek = seq_lseek,
2868 .release = single_release,
2871 static int smi_params_proc_show(struct seq_file *m, void *v)
2873 struct smi_info *smi = m->private;
2875 return seq_printf(m,
2876 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2877 si_to_str[smi->si_type],
2878 addr_space_to_str[smi->io.addr_type],
2879 smi->io.addr_data,
2880 smi->io.regspacing,
2881 smi->io.regsize,
2882 smi->io.regshift,
2883 smi->irq,
2884 smi->slave_addr);
2887 static int smi_params_proc_open(struct inode *inode, struct file *file)
2889 return single_open(file, smi_params_proc_show, PDE(inode)->data);
2892 static const struct file_operations smi_params_proc_ops = {
2893 .open = smi_params_proc_open,
2894 .read = seq_read,
2895 .llseek = seq_lseek,
2896 .release = single_release,
2900 * oem_data_avail_to_receive_msg_avail
2901 * @info - smi_info structure with msg_flags set
2903 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2904 * Returns 1 indicating need to re-run handle_flags().
2906 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2908 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2909 RECEIVE_MSG_AVAIL);
2910 return 1;
2914 * setup_dell_poweredge_oem_data_handler
2915 * @info - smi_info.device_id must be populated
2917 * Systems that match, but have firmware version < 1.40 may assert
2918 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2919 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2920 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2921 * as RECEIVE_MSG_AVAIL instead.
2923 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2924 * assert the OEM[012] bits, and if it did, the driver would have to
2925 * change to handle that properly, we don't actually check for the
2926 * firmware version.
2927 * Device ID = 0x20 BMC on PowerEdge 8G servers
2928 * Device Revision = 0x80
2929 * Firmware Revision1 = 0x01 BMC version 1.40
2930 * Firmware Revision2 = 0x40 BCD encoded
2931 * IPMI Version = 0x51 IPMI 1.5
2932 * Manufacturer ID = A2 02 00 Dell IANA
2934 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2935 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2938 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2939 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2940 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2941 #define DELL_IANA_MFR_ID 0x0002a2
2942 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2944 struct ipmi_device_id *id = &smi_info->device_id;
2945 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2946 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2947 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2948 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2949 smi_info->oem_data_avail_handler =
2950 oem_data_avail_to_receive_msg_avail;
2951 } else if (ipmi_version_major(id) < 1 ||
2952 (ipmi_version_major(id) == 1 &&
2953 ipmi_version_minor(id) < 5)) {
2954 smi_info->oem_data_avail_handler =
2955 oem_data_avail_to_receive_msg_avail;
2960 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2961 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2963 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2965 /* Make it a response */
2966 msg->rsp[0] = msg->data[0] | 4;
2967 msg->rsp[1] = msg->data[1];
2968 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2969 msg->rsp_size = 3;
2970 smi_info->curr_msg = NULL;
2971 deliver_recv_msg(smi_info, msg);
2975 * dell_poweredge_bt_xaction_handler
2976 * @info - smi_info.device_id must be populated
2978 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2979 * not respond to a Get SDR command if the length of the data
2980 * requested is exactly 0x3A, which leads to command timeouts and no
2981 * data returned. This intercepts such commands, and causes userspace
2982 * callers to try again with a different-sized buffer, which succeeds.
2985 #define STORAGE_NETFN 0x0A
2986 #define STORAGE_CMD_GET_SDR 0x23
2987 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2988 unsigned long unused,
2989 void *in)
2991 struct smi_info *smi_info = in;
2992 unsigned char *data = smi_info->curr_msg->data;
2993 unsigned int size = smi_info->curr_msg->data_size;
2994 if (size >= 8 &&
2995 (data[0]>>2) == STORAGE_NETFN &&
2996 data[1] == STORAGE_CMD_GET_SDR &&
2997 data[7] == 0x3A) {
2998 return_hosed_msg_badsize(smi_info);
2999 return NOTIFY_STOP;
3001 return NOTIFY_DONE;
3004 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3005 .notifier_call = dell_poweredge_bt_xaction_handler,
3009 * setup_dell_poweredge_bt_xaction_handler
3010 * @info - smi_info.device_id must be filled in already
3012 * Fills in smi_info.device_id.start_transaction_pre_hook
3013 * when we know what function to use there.
3015 static void
3016 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3018 struct ipmi_device_id *id = &smi_info->device_id;
3019 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3020 smi_info->si_type == SI_BT)
3021 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3025 * setup_oem_data_handler
3026 * @info - smi_info.device_id must be filled in already
3028 * Fills in smi_info.device_id.oem_data_available_handler
3029 * when we know what function to use there.
3032 static void setup_oem_data_handler(struct smi_info *smi_info)
3034 setup_dell_poweredge_oem_data_handler(smi_info);
3037 static void setup_xaction_handlers(struct smi_info *smi_info)
3039 setup_dell_poweredge_bt_xaction_handler(smi_info);
3042 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3044 if (smi_info->intf) {
3046 * The timer and thread are only running if the
3047 * interface has been started up and registered.
3049 if (smi_info->thread != NULL)
3050 kthread_stop(smi_info->thread);
3051 del_timer_sync(&smi_info->si_timer);
3055 static __devinitdata struct ipmi_default_vals
3057 int type;
3058 int port;
3059 } ipmi_defaults[] =
3061 { .type = SI_KCS, .port = 0xca2 },
3062 { .type = SI_SMIC, .port = 0xca9 },
3063 { .type = SI_BT, .port = 0xe4 },
3064 { .port = 0 }
3067 static void __devinit default_find_bmc(void)
3069 struct smi_info *info;
3070 int i;
3072 for (i = 0; ; i++) {
3073 if (!ipmi_defaults[i].port)
3074 break;
3075 #ifdef CONFIG_PPC
3076 if (check_legacy_ioport(ipmi_defaults[i].port))
3077 continue;
3078 #endif
3079 info = smi_info_alloc();
3080 if (!info)
3081 return;
3083 info->addr_source = SI_DEFAULT;
3085 info->si_type = ipmi_defaults[i].type;
3086 info->io_setup = port_setup;
3087 info->io.addr_data = ipmi_defaults[i].port;
3088 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3090 info->io.addr = NULL;
3091 info->io.regspacing = DEFAULT_REGSPACING;
3092 info->io.regsize = DEFAULT_REGSPACING;
3093 info->io.regshift = 0;
3095 if (add_smi(info) == 0) {
3096 if ((try_smi_init(info)) == 0) {
3097 /* Found one... */
3098 printk(KERN_INFO PFX "Found default %s"
3099 " state machine at %s address 0x%lx\n",
3100 si_to_str[info->si_type],
3101 addr_space_to_str[info->io.addr_type],
3102 info->io.addr_data);
3103 } else
3104 cleanup_one_si(info);
3105 } else {
3106 kfree(info);
3111 static int is_new_interface(struct smi_info *info)
3113 struct smi_info *e;
3115 list_for_each_entry(e, &smi_infos, link) {
3116 if (e->io.addr_type != info->io.addr_type)
3117 continue;
3118 if (e->io.addr_data == info->io.addr_data)
3119 return 0;
3122 return 1;
3125 static int add_smi(struct smi_info *new_smi)
3127 int rv = 0;
3129 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3130 ipmi_addr_src_to_str[new_smi->addr_source],
3131 si_to_str[new_smi->si_type]);
3132 mutex_lock(&smi_infos_lock);
3133 if (!is_new_interface(new_smi)) {
3134 printk(KERN_CONT " duplicate interface\n");
3135 rv = -EBUSY;
3136 goto out_err;
3139 printk(KERN_CONT "\n");
3141 /* So we know not to free it unless we have allocated one. */
3142 new_smi->intf = NULL;
3143 new_smi->si_sm = NULL;
3144 new_smi->handlers = NULL;
3146 list_add_tail(&new_smi->link, &smi_infos);
3148 out_err:
3149 mutex_unlock(&smi_infos_lock);
3150 return rv;
3153 static int try_smi_init(struct smi_info *new_smi)
3155 int rv = 0;
3156 int i;
3158 printk(KERN_INFO PFX "Trying %s-specified %s state"
3159 " machine at %s address 0x%lx, slave address 0x%x,"
3160 " irq %d\n",
3161 ipmi_addr_src_to_str[new_smi->addr_source],
3162 si_to_str[new_smi->si_type],
3163 addr_space_to_str[new_smi->io.addr_type],
3164 new_smi->io.addr_data,
3165 new_smi->slave_addr, new_smi->irq);
3167 switch (new_smi->si_type) {
3168 case SI_KCS:
3169 new_smi->handlers = &kcs_smi_handlers;
3170 break;
3172 case SI_SMIC:
3173 new_smi->handlers = &smic_smi_handlers;
3174 break;
3176 case SI_BT:
3177 new_smi->handlers = &bt_smi_handlers;
3178 break;
3180 default:
3181 /* No support for anything else yet. */
3182 rv = -EIO;
3183 goto out_err;
3186 /* Allocate the state machine's data and initialize it. */
3187 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3188 if (!new_smi->si_sm) {
3189 printk(KERN_ERR PFX
3190 "Could not allocate state machine memory\n");
3191 rv = -ENOMEM;
3192 goto out_err;
3194 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3195 &new_smi->io);
3197 /* Now that we know the I/O size, we can set up the I/O. */
3198 rv = new_smi->io_setup(new_smi);
3199 if (rv) {
3200 printk(KERN_ERR PFX "Could not set up I/O space\n");
3201 goto out_err;
3204 /* Do low-level detection first. */
3205 if (new_smi->handlers->detect(new_smi->si_sm)) {
3206 if (new_smi->addr_source)
3207 printk(KERN_INFO PFX "Interface detection failed\n");
3208 rv = -ENODEV;
3209 goto out_err;
3213 * Attempt a get device id command. If it fails, we probably
3214 * don't have a BMC here.
3216 rv = try_get_dev_id(new_smi);
3217 if (rv) {
3218 if (new_smi->addr_source)
3219 printk(KERN_INFO PFX "There appears to be no BMC"
3220 " at this location\n");
3221 goto out_err;
3224 setup_oem_data_handler(new_smi);
3225 setup_xaction_handlers(new_smi);
3227 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3228 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3229 new_smi->curr_msg = NULL;
3230 atomic_set(&new_smi->req_events, 0);
3231 new_smi->run_to_completion = 0;
3232 for (i = 0; i < SI_NUM_STATS; i++)
3233 atomic_set(&new_smi->stats[i], 0);
3235 new_smi->interrupt_disabled = 1;
3236 atomic_set(&new_smi->stop_operation, 0);
3237 new_smi->intf_num = smi_num;
3238 smi_num++;
3240 rv = try_enable_event_buffer(new_smi);
3241 if (rv == 0)
3242 new_smi->has_event_buffer = 1;
3245 * Start clearing the flags before we enable interrupts or the
3246 * timer to avoid racing with the timer.
3248 start_clear_flags(new_smi);
3249 /* IRQ is defined to be set when non-zero. */
3250 if (new_smi->irq)
3251 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3253 if (!new_smi->dev) {
3255 * If we don't already have a device from something
3256 * else (like PCI), then register a new one.
3258 new_smi->pdev = platform_device_alloc("ipmi_si",
3259 new_smi->intf_num);
3260 if (!new_smi->pdev) {
3261 printk(KERN_ERR PFX
3262 "Unable to allocate platform device\n");
3263 goto out_err;
3265 new_smi->dev = &new_smi->pdev->dev;
3266 new_smi->dev->driver = &ipmi_driver.driver;
3268 rv = platform_device_add(new_smi->pdev);
3269 if (rv) {
3270 printk(KERN_ERR PFX
3271 "Unable to register system interface device:"
3272 " %d\n",
3273 rv);
3274 goto out_err;
3276 new_smi->dev_registered = 1;
3279 rv = ipmi_register_smi(&handlers,
3280 new_smi,
3281 &new_smi->device_id,
3282 new_smi->dev,
3283 "bmc",
3284 new_smi->slave_addr);
3285 if (rv) {
3286 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3287 rv);
3288 goto out_err_stop_timer;
3291 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3292 &smi_type_proc_ops,
3293 new_smi);
3294 if (rv) {
3295 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3296 goto out_err_stop_timer;
3299 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3300 &smi_si_stats_proc_ops,
3301 new_smi);
3302 if (rv) {
3303 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3304 goto out_err_stop_timer;
3307 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3308 &smi_params_proc_ops,
3309 new_smi);
3310 if (rv) {
3311 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3312 goto out_err_stop_timer;
3315 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3316 si_to_str[new_smi->si_type]);
3318 return 0;
3320 out_err_stop_timer:
3321 atomic_inc(&new_smi->stop_operation);
3322 wait_for_timer_and_thread(new_smi);
3324 out_err:
3325 new_smi->interrupt_disabled = 1;
3327 if (new_smi->intf) {
3328 ipmi_unregister_smi(new_smi->intf);
3329 new_smi->intf = NULL;
3332 if (new_smi->irq_cleanup) {
3333 new_smi->irq_cleanup(new_smi);
3334 new_smi->irq_cleanup = NULL;
3338 * Wait until we know that we are out of any interrupt
3339 * handlers might have been running before we freed the
3340 * interrupt.
3342 synchronize_sched();
3344 if (new_smi->si_sm) {
3345 if (new_smi->handlers)
3346 new_smi->handlers->cleanup(new_smi->si_sm);
3347 kfree(new_smi->si_sm);
3348 new_smi->si_sm = NULL;
3350 if (new_smi->addr_source_cleanup) {
3351 new_smi->addr_source_cleanup(new_smi);
3352 new_smi->addr_source_cleanup = NULL;
3354 if (new_smi->io_cleanup) {
3355 new_smi->io_cleanup(new_smi);
3356 new_smi->io_cleanup = NULL;
3359 if (new_smi->dev_registered) {
3360 platform_device_unregister(new_smi->pdev);
3361 new_smi->dev_registered = 0;
3364 return rv;
3367 static int __devinit init_ipmi_si(void)
3369 int i;
3370 char *str;
3371 int rv;
3372 struct smi_info *e;
3373 enum ipmi_addr_src type = SI_INVALID;
3375 if (initialized)
3376 return 0;
3377 initialized = 1;
3379 rv = platform_driver_register(&ipmi_driver);
3380 if (rv) {
3381 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3382 return rv;
3386 /* Parse out the si_type string into its components. */
3387 str = si_type_str;
3388 if (*str != '\0') {
3389 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3390 si_type[i] = str;
3391 str = strchr(str, ',');
3392 if (str) {
3393 *str = '\0';
3394 str++;
3395 } else {
3396 break;
3401 printk(KERN_INFO "IPMI System Interface driver.\n");
3403 /* If the user gave us a device, they presumably want us to use it */
3404 if (!hardcode_find_bmc())
3405 return 0;
3407 #ifdef CONFIG_PCI
3408 rv = pci_register_driver(&ipmi_pci_driver);
3409 if (rv)
3410 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3411 else
3412 pci_registered = 1;
3413 #endif
3415 #ifdef CONFIG_ACPI
3416 pnp_register_driver(&ipmi_pnp_driver);
3417 pnp_registered = 1;
3418 #endif
3420 #ifdef CONFIG_DMI
3421 dmi_find_bmc();
3422 #endif
3424 #ifdef CONFIG_ACPI
3425 spmi_find_bmc();
3426 #endif
3428 /* We prefer devices with interrupts, but in the case of a machine
3429 with multiple BMCs we assume that there will be several instances
3430 of a given type so if we succeed in registering a type then also
3431 try to register everything else of the same type */
3433 mutex_lock(&smi_infos_lock);
3434 list_for_each_entry(e, &smi_infos, link) {
3435 /* Try to register a device if it has an IRQ and we either
3436 haven't successfully registered a device yet or this
3437 device has the same type as one we successfully registered */
3438 if (e->irq && (!type || e->addr_source == type)) {
3439 if (!try_smi_init(e)) {
3440 type = e->addr_source;
3445 /* type will only have been set if we successfully registered an si */
3446 if (type) {
3447 mutex_unlock(&smi_infos_lock);
3448 return 0;
3451 /* Fall back to the preferred device */
3453 list_for_each_entry(e, &smi_infos, link) {
3454 if (!e->irq && (!type || e->addr_source == type)) {
3455 if (!try_smi_init(e)) {
3456 type = e->addr_source;
3460 mutex_unlock(&smi_infos_lock);
3462 if (type)
3463 return 0;
3465 if (si_trydefaults) {
3466 mutex_lock(&smi_infos_lock);
3467 if (list_empty(&smi_infos)) {
3468 /* No BMC was found, try defaults. */
3469 mutex_unlock(&smi_infos_lock);
3470 default_find_bmc();
3471 } else
3472 mutex_unlock(&smi_infos_lock);
3475 mutex_lock(&smi_infos_lock);
3476 if (unload_when_empty && list_empty(&smi_infos)) {
3477 mutex_unlock(&smi_infos_lock);
3478 cleanup_ipmi_si();
3479 printk(KERN_WARNING PFX
3480 "Unable to find any System Interface(s)\n");
3481 return -ENODEV;
3482 } else {
3483 mutex_unlock(&smi_infos_lock);
3484 return 0;
3487 module_init(init_ipmi_si);
3489 static void cleanup_one_si(struct smi_info *to_clean)
3491 int rv = 0;
3492 unsigned long flags;
3494 if (!to_clean)
3495 return;
3497 list_del(&to_clean->link);
3499 /* Tell the driver that we are shutting down. */
3500 atomic_inc(&to_clean->stop_operation);
3503 * Make sure the timer and thread are stopped and will not run
3504 * again.
3506 wait_for_timer_and_thread(to_clean);
3509 * Timeouts are stopped, now make sure the interrupts are off
3510 * for the device. A little tricky with locks to make sure
3511 * there are no races.
3513 spin_lock_irqsave(&to_clean->si_lock, flags);
3514 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3515 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3516 poll(to_clean);
3517 schedule_timeout_uninterruptible(1);
3518 spin_lock_irqsave(&to_clean->si_lock, flags);
3520 disable_si_irq(to_clean);
3521 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3522 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3523 poll(to_clean);
3524 schedule_timeout_uninterruptible(1);
3527 /* Clean up interrupts and make sure that everything is done. */
3528 if (to_clean->irq_cleanup)
3529 to_clean->irq_cleanup(to_clean);
3530 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3531 poll(to_clean);
3532 schedule_timeout_uninterruptible(1);
3535 if (to_clean->intf)
3536 rv = ipmi_unregister_smi(to_clean->intf);
3538 if (rv) {
3539 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3540 rv);
3543 if (to_clean->handlers)
3544 to_clean->handlers->cleanup(to_clean->si_sm);
3546 kfree(to_clean->si_sm);
3548 if (to_clean->addr_source_cleanup)
3549 to_clean->addr_source_cleanup(to_clean);
3550 if (to_clean->io_cleanup)
3551 to_clean->io_cleanup(to_clean);
3553 if (to_clean->dev_registered)
3554 platform_device_unregister(to_clean->pdev);
3556 kfree(to_clean);
3559 static void cleanup_ipmi_si(void)
3561 struct smi_info *e, *tmp_e;
3563 if (!initialized)
3564 return;
3566 #ifdef CONFIG_PCI
3567 if (pci_registered)
3568 pci_unregister_driver(&ipmi_pci_driver);
3569 #endif
3570 #ifdef CONFIG_ACPI
3571 if (pnp_registered)
3572 pnp_unregister_driver(&ipmi_pnp_driver);
3573 #endif
3575 platform_driver_unregister(&ipmi_driver);
3577 mutex_lock(&smi_infos_lock);
3578 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3579 cleanup_one_si(e);
3580 mutex_unlock(&smi_infos_lock);
3582 module_exit(cleanup_ipmi_si);
3584 MODULE_LICENSE("GPL");
3585 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3586 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3587 " system interfaces.");