Add linux-next specific files for 20110831
[linux-2.6/next.git] / drivers / edac / amd64_edac.c
blob9bf0b6228529f7d24484d7467ba5f8ba610012ee
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 static struct msr __percpu *msrs;
19 * count successfully initialized driver instances for setup_pci_device()
21 static atomic_t drv_instances = ATOMIC_INIT(0);
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
32 *FIXME: Produce a better mapping/linearisation.
34 struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
66 int err = 0;
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
73 return err;
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
79 int err = 0;
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
86 return err;
91 * Depending on the family, F2 DCT reads need special handling:
93 * K8: has a single DCT only
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
105 if (addr >= 0x100)
106 return -EINVAL;
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
117 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
118 const char *func)
120 u32 reg = 0;
121 u8 dct = 0;
123 if (addr >= 0x140 && addr <= 0x1a0) {
124 dct = 1;
125 addr -= 0x100;
128 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
129 reg &= 0xfffffffe;
130 reg |= dct;
131 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
133 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
137 * Memory scrubber control interface. For K8, memory scrubbing is handled by
138 * hardware and can involve L2 cache, dcache as well as the main memory. With
139 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
140 * functionality.
142 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
144 * bytes/sec for the setting.
146 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
147 * other archs, we might not have access to the caches directly.
151 * scan the scrub rate mapping table for a close or matching bandwidth value to
152 * issue. If requested is too big, then use last maximum value found.
154 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
156 u32 scrubval;
157 int i;
160 * map the configured rate (new_bw) to a value specific to the AMD64
161 * memory controller and apply to register. Search for the first
162 * bandwidth entry that is greater or equal than the setting requested
163 * and program that. If at last entry, turn off DRAM scrubbing.
165 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
167 * skip scrub rates which aren't recommended
168 * (see F10 BKDG, F3x58)
170 if (scrubrates[i].scrubval < min_rate)
171 continue;
173 if (scrubrates[i].bandwidth <= new_bw)
174 break;
177 * if no suitable bandwidth found, turn off DRAM scrubbing
178 * entirely by falling back to the last element in the
179 * scrubrates array.
183 scrubval = scrubrates[i].scrubval;
185 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
187 if (scrubval)
188 return scrubrates[i].bandwidth;
190 return 0;
193 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
195 struct amd64_pvt *pvt = mci->pvt_info;
196 u32 min_scrubrate = 0x5;
198 if (boot_cpu_data.x86 == 0xf)
199 min_scrubrate = 0x0;
201 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
204 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
206 struct amd64_pvt *pvt = mci->pvt_info;
207 u32 scrubval = 0;
208 int i, retval = -EINVAL;
210 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
212 scrubval = scrubval & 0x001F;
214 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
215 if (scrubrates[i].scrubval == scrubval) {
216 retval = scrubrates[i].bandwidth;
217 break;
220 return retval;
224 * returns true if the SysAddr given by sys_addr matches the
225 * DRAM base/limit associated with node_id
227 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
228 unsigned nid)
230 u64 addr;
232 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
233 * all ones if the most significant implemented address bit is 1.
234 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
235 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
236 * Application Programming.
238 addr = sys_addr & 0x000000ffffffffffull;
240 return ((addr >= get_dram_base(pvt, nid)) &&
241 (addr <= get_dram_limit(pvt, nid)));
245 * Attempt to map a SysAddr to a node. On success, return a pointer to the
246 * mem_ctl_info structure for the node that the SysAddr maps to.
248 * On failure, return NULL.
250 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
251 u64 sys_addr)
253 struct amd64_pvt *pvt;
254 unsigned node_id;
255 u32 intlv_en, bits;
258 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
259 * 3.4.4.2) registers to map the SysAddr to a node ID.
261 pvt = mci->pvt_info;
264 * The value of this field should be the same for all DRAM Base
265 * registers. Therefore we arbitrarily choose to read it from the
266 * register for node 0.
268 intlv_en = dram_intlv_en(pvt, 0);
270 if (intlv_en == 0) {
271 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
272 if (amd64_base_limit_match(pvt, sys_addr, node_id))
273 goto found;
275 goto err_no_match;
278 if (unlikely((intlv_en != 0x01) &&
279 (intlv_en != 0x03) &&
280 (intlv_en != 0x07))) {
281 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
282 return NULL;
285 bits = (((u32) sys_addr) >> 12) & intlv_en;
287 for (node_id = 0; ; ) {
288 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
289 break; /* intlv_sel field matches */
291 if (++node_id >= DRAM_RANGES)
292 goto err_no_match;
295 /* sanity test for sys_addr */
296 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
297 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
298 "range for node %d with node interleaving enabled.\n",
299 __func__, sys_addr, node_id);
300 return NULL;
303 found:
304 return edac_mc_find((int)node_id);
306 err_no_match:
307 debugf2("sys_addr 0x%lx doesn't match any node\n",
308 (unsigned long)sys_addr);
310 return NULL;
314 * compute the CS base address of the @csrow on the DRAM controller @dct.
315 * For details see F2x[5C:40] in the processor's BKDG
317 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
318 u64 *base, u64 *mask)
320 u64 csbase, csmask, base_bits, mask_bits;
321 u8 addr_shift;
323 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
324 csbase = pvt->csels[dct].csbases[csrow];
325 csmask = pvt->csels[dct].csmasks[csrow];
326 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
327 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
328 addr_shift = 4;
329 } else {
330 csbase = pvt->csels[dct].csbases[csrow];
331 csmask = pvt->csels[dct].csmasks[csrow >> 1];
332 addr_shift = 8;
334 if (boot_cpu_data.x86 == 0x15)
335 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
336 else
337 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
340 *base = (csbase & base_bits) << addr_shift;
342 *mask = ~0ULL;
343 /* poke holes for the csmask */
344 *mask &= ~(mask_bits << addr_shift);
345 /* OR them in */
346 *mask |= (csmask & mask_bits) << addr_shift;
349 #define for_each_chip_select(i, dct, pvt) \
350 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
352 #define chip_select_base(i, dct, pvt) \
353 pvt->csels[dct].csbases[i]
355 #define for_each_chip_select_mask(i, dct, pvt) \
356 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
359 * @input_addr is an InputAddr associated with the node given by mci. Return the
360 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
362 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
364 struct amd64_pvt *pvt;
365 int csrow;
366 u64 base, mask;
368 pvt = mci->pvt_info;
370 for_each_chip_select(csrow, 0, pvt) {
371 if (!csrow_enabled(csrow, 0, pvt))
372 continue;
374 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
376 mask = ~mask;
378 if ((input_addr & mask) == (base & mask)) {
379 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
380 (unsigned long)input_addr, csrow,
381 pvt->mc_node_id);
383 return csrow;
386 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
387 (unsigned long)input_addr, pvt->mc_node_id);
389 return -1;
393 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
394 * for the node represented by mci. Info is passed back in *hole_base,
395 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
396 * info is invalid. Info may be invalid for either of the following reasons:
398 * - The revision of the node is not E or greater. In this case, the DRAM Hole
399 * Address Register does not exist.
401 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
402 * indicating that its contents are not valid.
404 * The values passed back in *hole_base, *hole_offset, and *hole_size are
405 * complete 32-bit values despite the fact that the bitfields in the DHAR
406 * only represent bits 31-24 of the base and offset values.
408 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
409 u64 *hole_offset, u64 *hole_size)
411 struct amd64_pvt *pvt = mci->pvt_info;
412 u64 base;
414 /* only revE and later have the DRAM Hole Address Register */
415 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
416 debugf1(" revision %d for node %d does not support DHAR\n",
417 pvt->ext_model, pvt->mc_node_id);
418 return 1;
421 /* valid for Fam10h and above */
422 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
423 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
424 return 1;
427 if (!dhar_valid(pvt)) {
428 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
429 pvt->mc_node_id);
430 return 1;
433 /* This node has Memory Hoisting */
435 /* +------------------+--------------------+--------------------+-----
436 * | memory | DRAM hole | relocated |
437 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
438 * | | | DRAM hole |
439 * | | | [0x100000000, |
440 * | | | (0x100000000+ |
441 * | | | (0xffffffff-x))] |
442 * +------------------+--------------------+--------------------+-----
444 * Above is a diagram of physical memory showing the DRAM hole and the
445 * relocated addresses from the DRAM hole. As shown, the DRAM hole
446 * starts at address x (the base address) and extends through address
447 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
448 * addresses in the hole so that they start at 0x100000000.
451 base = dhar_base(pvt);
453 *hole_base = base;
454 *hole_size = (0x1ull << 32) - base;
456 if (boot_cpu_data.x86 > 0xf)
457 *hole_offset = f10_dhar_offset(pvt);
458 else
459 *hole_offset = k8_dhar_offset(pvt);
461 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
462 pvt->mc_node_id, (unsigned long)*hole_base,
463 (unsigned long)*hole_offset, (unsigned long)*hole_size);
465 return 0;
467 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
470 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
471 * assumed that sys_addr maps to the node given by mci.
473 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
474 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
475 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
476 * then it is also involved in translating a SysAddr to a DramAddr. Sections
477 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
478 * These parts of the documentation are unclear. I interpret them as follows:
480 * When node n receives a SysAddr, it processes the SysAddr as follows:
482 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
483 * Limit registers for node n. If the SysAddr is not within the range
484 * specified by the base and limit values, then node n ignores the Sysaddr
485 * (since it does not map to node n). Otherwise continue to step 2 below.
487 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
488 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
489 * the range of relocated addresses (starting at 0x100000000) from the DRAM
490 * hole. If not, skip to step 3 below. Else get the value of the
491 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
492 * offset defined by this value from the SysAddr.
494 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
495 * Base register for node n. To obtain the DramAddr, subtract the base
496 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
498 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
500 struct amd64_pvt *pvt = mci->pvt_info;
501 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
502 int ret = 0;
504 dram_base = get_dram_base(pvt, pvt->mc_node_id);
506 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
507 &hole_size);
508 if (!ret) {
509 if ((sys_addr >= (1ull << 32)) &&
510 (sys_addr < ((1ull << 32) + hole_size))) {
511 /* use DHAR to translate SysAddr to DramAddr */
512 dram_addr = sys_addr - hole_offset;
514 debugf2("using DHAR to translate SysAddr 0x%lx to "
515 "DramAddr 0x%lx\n",
516 (unsigned long)sys_addr,
517 (unsigned long)dram_addr);
519 return dram_addr;
524 * Translate the SysAddr to a DramAddr as shown near the start of
525 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
526 * only deals with 40-bit values. Therefore we discard bits 63-40 of
527 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
528 * discard are all 1s. Otherwise the bits we discard are all 0s. See
529 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
530 * Programmer's Manual Volume 1 Application Programming.
532 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
534 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
535 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
536 (unsigned long)dram_addr);
537 return dram_addr;
541 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
542 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
543 * for node interleaving.
545 static int num_node_interleave_bits(unsigned intlv_en)
547 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
548 int n;
550 BUG_ON(intlv_en > 7);
551 n = intlv_shift_table[intlv_en];
552 return n;
555 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
556 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
558 struct amd64_pvt *pvt;
559 int intlv_shift;
560 u64 input_addr;
562 pvt = mci->pvt_info;
565 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
566 * concerning translating a DramAddr to an InputAddr.
568 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
569 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
570 (dram_addr & 0xfff);
572 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
573 intlv_shift, (unsigned long)dram_addr,
574 (unsigned long)input_addr);
576 return input_addr;
580 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
581 * assumed that @sys_addr maps to the node given by mci.
583 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
585 u64 input_addr;
587 input_addr =
588 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
590 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
591 (unsigned long)sys_addr, (unsigned long)input_addr);
593 return input_addr;
598 * @input_addr is an InputAddr associated with the node represented by mci.
599 * Translate @input_addr to a DramAddr and return the result.
601 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
603 struct amd64_pvt *pvt;
604 unsigned node_id, intlv_shift;
605 u64 bits, dram_addr;
606 u32 intlv_sel;
609 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 * shows how to translate a DramAddr to an InputAddr. Here we reverse
611 * this procedure. When translating from a DramAddr to an InputAddr, the
612 * bits used for node interleaving are discarded. Here we recover these
613 * bits from the IntlvSel field of the DRAM Limit register (section
614 * 3.4.4.2) for the node that input_addr is associated with.
616 pvt = mci->pvt_info;
617 node_id = pvt->mc_node_id;
619 BUG_ON(node_id > 7);
621 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
622 if (intlv_shift == 0) {
623 debugf1(" InputAddr 0x%lx translates to DramAddr of "
624 "same value\n", (unsigned long)input_addr);
626 return input_addr;
629 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
630 (input_addr & 0xfff);
632 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
633 dram_addr = bits + (intlv_sel << 12);
635 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
636 "(%d node interleave bits)\n", (unsigned long)input_addr,
637 (unsigned long)dram_addr, intlv_shift);
639 return dram_addr;
643 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
644 * @dram_addr to a SysAddr.
646 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
648 struct amd64_pvt *pvt = mci->pvt_info;
649 u64 hole_base, hole_offset, hole_size, base, sys_addr;
650 int ret = 0;
652 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
653 &hole_size);
654 if (!ret) {
655 if ((dram_addr >= hole_base) &&
656 (dram_addr < (hole_base + hole_size))) {
657 sys_addr = dram_addr + hole_offset;
659 debugf1("using DHAR to translate DramAddr 0x%lx to "
660 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
661 (unsigned long)sys_addr);
663 return sys_addr;
667 base = get_dram_base(pvt, pvt->mc_node_id);
668 sys_addr = dram_addr + base;
671 * The sys_addr we have computed up to this point is a 40-bit value
672 * because the k8 deals with 40-bit values. However, the value we are
673 * supposed to return is a full 64-bit physical address. The AMD
674 * x86-64 architecture specifies that the most significant implemented
675 * address bit through bit 63 of a physical address must be either all
676 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
677 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
678 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
679 * Programming.
681 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
683 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
684 pvt->mc_node_id, (unsigned long)dram_addr,
685 (unsigned long)sys_addr);
687 return sys_addr;
691 * @input_addr is an InputAddr associated with the node given by mci. Translate
692 * @input_addr to a SysAddr.
694 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
695 u64 input_addr)
697 return dram_addr_to_sys_addr(mci,
698 input_addr_to_dram_addr(mci, input_addr));
702 * Find the minimum and maximum InputAddr values that map to the given @csrow.
703 * Pass back these values in *input_addr_min and *input_addr_max.
705 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
706 u64 *input_addr_min, u64 *input_addr_max)
708 struct amd64_pvt *pvt;
709 u64 base, mask;
711 pvt = mci->pvt_info;
712 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
714 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
716 *input_addr_min = base & ~mask;
717 *input_addr_max = base | mask;
720 /* Map the Error address to a PAGE and PAGE OFFSET. */
721 static inline void error_address_to_page_and_offset(u64 error_address,
722 u32 *page, u32 *offset)
724 *page = (u32) (error_address >> PAGE_SHIFT);
725 *offset = ((u32) error_address) & ~PAGE_MASK;
729 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
730 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
731 * of a node that detected an ECC memory error. mci represents the node that
732 * the error address maps to (possibly different from the node that detected
733 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
734 * error.
736 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
738 int csrow;
740 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
742 if (csrow == -1)
743 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
744 "address 0x%lx\n", (unsigned long)sys_addr);
745 return csrow;
748 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
751 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
752 * are ECC capable.
754 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
756 u8 bit;
757 enum dev_type edac_cap = EDAC_FLAG_NONE;
759 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
760 ? 19
761 : 17;
763 if (pvt->dclr0 & BIT(bit))
764 edac_cap = EDAC_FLAG_SECDED;
766 return edac_cap;
769 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
771 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
773 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
775 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
776 (dclr & BIT(16)) ? "un" : "",
777 (dclr & BIT(19)) ? "yes" : "no");
779 debugf1(" PAR/ERR parity: %s\n",
780 (dclr & BIT(8)) ? "enabled" : "disabled");
782 if (boot_cpu_data.x86 == 0x10)
783 debugf1(" DCT 128bit mode width: %s\n",
784 (dclr & BIT(11)) ? "128b" : "64b");
786 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
787 (dclr & BIT(12)) ? "yes" : "no",
788 (dclr & BIT(13)) ? "yes" : "no",
789 (dclr & BIT(14)) ? "yes" : "no",
790 (dclr & BIT(15)) ? "yes" : "no");
793 /* Display and decode various NB registers for debug purposes. */
794 static void dump_misc_regs(struct amd64_pvt *pvt)
796 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
798 debugf1(" NB two channel DRAM capable: %s\n",
799 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
801 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
802 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
803 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
805 amd64_dump_dramcfg_low(pvt->dclr0, 0);
807 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
809 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
810 "offset: 0x%08x\n",
811 pvt->dhar, dhar_base(pvt),
812 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
813 : f10_dhar_offset(pvt));
815 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
817 amd64_debug_display_dimm_sizes(pvt, 0);
819 /* everything below this point is Fam10h and above */
820 if (boot_cpu_data.x86 == 0xf)
821 return;
823 amd64_debug_display_dimm_sizes(pvt, 1);
825 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
827 /* Only if NOT ganged does dclr1 have valid info */
828 if (!dct_ganging_enabled(pvt))
829 amd64_dump_dramcfg_low(pvt->dclr1, 1);
833 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
835 static void prep_chip_selects(struct amd64_pvt *pvt)
837 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
838 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
839 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
840 } else {
841 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
842 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
847 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
849 static void read_dct_base_mask(struct amd64_pvt *pvt)
851 int cs;
853 prep_chip_selects(pvt);
855 for_each_chip_select(cs, 0, pvt) {
856 int reg0 = DCSB0 + (cs * 4);
857 int reg1 = DCSB1 + (cs * 4);
858 u32 *base0 = &pvt->csels[0].csbases[cs];
859 u32 *base1 = &pvt->csels[1].csbases[cs];
861 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
862 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
863 cs, *base0, reg0);
865 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
866 continue;
868 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
869 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
870 cs, *base1, reg1);
873 for_each_chip_select_mask(cs, 0, pvt) {
874 int reg0 = DCSM0 + (cs * 4);
875 int reg1 = DCSM1 + (cs * 4);
876 u32 *mask0 = &pvt->csels[0].csmasks[cs];
877 u32 *mask1 = &pvt->csels[1].csmasks[cs];
879 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
880 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
881 cs, *mask0, reg0);
883 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
884 continue;
886 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
887 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
888 cs, *mask1, reg1);
892 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
894 enum mem_type type;
896 /* F15h supports only DDR3 */
897 if (boot_cpu_data.x86 >= 0x15)
898 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
899 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
900 if (pvt->dchr0 & DDR3_MODE)
901 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
902 else
903 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
904 } else {
905 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
908 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
910 return type;
913 /* Get the number of DCT channels the memory controller is using. */
914 static int k8_early_channel_count(struct amd64_pvt *pvt)
916 int flag;
918 if (pvt->ext_model >= K8_REV_F)
919 /* RevF (NPT) and later */
920 flag = pvt->dclr0 & WIDTH_128;
921 else
922 /* RevE and earlier */
923 flag = pvt->dclr0 & REVE_WIDTH_128;
925 /* not used */
926 pvt->dclr1 = 0;
928 return (flag) ? 2 : 1;
931 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
932 static u64 get_error_address(struct mce *m)
934 struct cpuinfo_x86 *c = &boot_cpu_data;
935 u64 addr;
936 u8 start_bit = 1;
937 u8 end_bit = 47;
939 if (c->x86 == 0xf) {
940 start_bit = 3;
941 end_bit = 39;
944 addr = m->addr & GENMASK(start_bit, end_bit);
947 * Erratum 637 workaround
949 if (c->x86 == 0x15) {
950 struct amd64_pvt *pvt;
951 u64 cc6_base, tmp_addr;
952 u32 tmp;
953 u8 mce_nid, intlv_en;
955 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
956 return addr;
958 mce_nid = amd_get_nb_id(m->extcpu);
959 pvt = mcis[mce_nid]->pvt_info;
961 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
962 intlv_en = tmp >> 21 & 0x7;
964 /* add [47:27] + 3 trailing bits */
965 cc6_base = (tmp & GENMASK(0, 20)) << 3;
967 /* reverse and add DramIntlvEn */
968 cc6_base |= intlv_en ^ 0x7;
970 /* pin at [47:24] */
971 cc6_base <<= 24;
973 if (!intlv_en)
974 return cc6_base | (addr & GENMASK(0, 23));
976 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
978 /* faster log2 */
979 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
981 /* OR DramIntlvSel into bits [14:12] */
982 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
984 /* add remaining [11:0] bits from original MC4_ADDR */
985 tmp_addr |= addr & GENMASK(0, 11);
987 return cc6_base | tmp_addr;
990 return addr;
993 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
995 struct cpuinfo_x86 *c = &boot_cpu_data;
996 int off = range << 3;
998 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
999 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1001 if (c->x86 == 0xf)
1002 return;
1004 if (!dram_rw(pvt, range))
1005 return;
1007 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1008 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1010 /* Factor in CC6 save area by reading dst node's limit reg */
1011 if (c->x86 == 0x15) {
1012 struct pci_dev *f1 = NULL;
1013 u8 nid = dram_dst_node(pvt, range);
1014 u32 llim;
1016 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1017 if (WARN_ON(!f1))
1018 return;
1020 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1022 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1024 /* {[39:27],111b} */
1025 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1027 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1029 /* [47:40] */
1030 pvt->ranges[range].lim.hi |= llim >> 13;
1032 pci_dev_put(f1);
1036 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1037 u16 syndrome)
1039 struct mem_ctl_info *src_mci;
1040 struct amd64_pvt *pvt = mci->pvt_info;
1041 int channel, csrow;
1042 u32 page, offset;
1044 /* CHIPKILL enabled */
1045 if (pvt->nbcfg & NBCFG_CHIPKILL) {
1046 channel = get_channel_from_ecc_syndrome(mci, syndrome);
1047 if (channel < 0) {
1049 * Syndrome didn't map, so we don't know which of the
1050 * 2 DIMMs is in error. So we need to ID 'both' of them
1051 * as suspect.
1053 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1054 "error reporting race\n", syndrome);
1055 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1056 return;
1058 } else {
1060 * non-chipkill ecc mode
1062 * The k8 documentation is unclear about how to determine the
1063 * channel number when using non-chipkill memory. This method
1064 * was obtained from email communication with someone at AMD.
1065 * (Wish the email was placed in this comment - norsk)
1067 channel = ((sys_addr & BIT(3)) != 0);
1071 * Find out which node the error address belongs to. This may be
1072 * different from the node that detected the error.
1074 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1075 if (!src_mci) {
1076 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1077 (unsigned long)sys_addr);
1078 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1079 return;
1082 /* Now map the sys_addr to a CSROW */
1083 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1084 if (csrow < 0) {
1085 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1086 } else {
1087 error_address_to_page_and_offset(sys_addr, &page, &offset);
1089 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1090 channel, EDAC_MOD_STR);
1094 static int ddr2_cs_size(unsigned i, bool dct_width)
1096 unsigned shift = 0;
1098 if (i <= 2)
1099 shift = i;
1100 else if (!(i & 0x1))
1101 shift = i >> 1;
1102 else
1103 shift = (i + 1) >> 1;
1105 return 128 << (shift + !!dct_width);
1108 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1109 unsigned cs_mode)
1111 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1113 if (pvt->ext_model >= K8_REV_F) {
1114 WARN_ON(cs_mode > 11);
1115 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1117 else if (pvt->ext_model >= K8_REV_D) {
1118 WARN_ON(cs_mode > 10);
1120 if (cs_mode == 3 || cs_mode == 8)
1121 return 32 << (cs_mode - 1);
1122 else
1123 return 32 << cs_mode;
1125 else {
1126 WARN_ON(cs_mode > 6);
1127 return 32 << cs_mode;
1132 * Get the number of DCT channels in use.
1134 * Return:
1135 * number of Memory Channels in operation
1136 * Pass back:
1137 * contents of the DCL0_LOW register
1139 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1141 int i, j, channels = 0;
1143 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1144 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1145 return 2;
1148 * Need to check if in unganged mode: In such, there are 2 channels,
1149 * but they are not in 128 bit mode and thus the above 'dclr0' status
1150 * bit will be OFF.
1152 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1153 * their CSEnable bit on. If so, then SINGLE DIMM case.
1155 debugf0("Data width is not 128 bits - need more decoding\n");
1158 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1159 * is more than just one DIMM present in unganged mode. Need to check
1160 * both controllers since DIMMs can be placed in either one.
1162 for (i = 0; i < 2; i++) {
1163 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1165 for (j = 0; j < 4; j++) {
1166 if (DBAM_DIMM(j, dbam) > 0) {
1167 channels++;
1168 break;
1173 if (channels > 2)
1174 channels = 2;
1176 amd64_info("MCT channel count: %d\n", channels);
1178 return channels;
1181 static int ddr3_cs_size(unsigned i, bool dct_width)
1183 unsigned shift = 0;
1184 int cs_size = 0;
1186 if (i == 0 || i == 3 || i == 4)
1187 cs_size = -1;
1188 else if (i <= 2)
1189 shift = i;
1190 else if (i == 12)
1191 shift = 7;
1192 else if (!(i & 0x1))
1193 shift = i >> 1;
1194 else
1195 shift = (i + 1) >> 1;
1197 if (cs_size != -1)
1198 cs_size = (128 * (1 << !!dct_width)) << shift;
1200 return cs_size;
1203 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1204 unsigned cs_mode)
1206 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1208 WARN_ON(cs_mode > 11);
1210 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1211 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1212 else
1213 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1217 * F15h supports only 64bit DCT interfaces
1219 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1220 unsigned cs_mode)
1222 WARN_ON(cs_mode > 12);
1224 return ddr3_cs_size(cs_mode, false);
1227 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1230 if (boot_cpu_data.x86 == 0xf)
1231 return;
1233 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1234 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1235 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1237 debugf0(" DCTs operate in %s mode.\n",
1238 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1240 if (!dct_ganging_enabled(pvt))
1241 debugf0(" Address range split per DCT: %s\n",
1242 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1244 debugf0(" data interleave for ECC: %s, "
1245 "DRAM cleared since last warm reset: %s\n",
1246 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1247 (dct_memory_cleared(pvt) ? "yes" : "no"));
1249 debugf0(" channel interleave: %s, "
1250 "interleave bits selector: 0x%x\n",
1251 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1252 dct_sel_interleave_addr(pvt));
1255 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1259 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1260 * Interleaving Modes.
1262 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1263 bool hi_range_sel, u8 intlv_en)
1265 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1267 if (dct_ganging_enabled(pvt))
1268 return 0;
1270 if (hi_range_sel)
1271 return dct_sel_high;
1274 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1276 if (dct_interleave_enabled(pvt)) {
1277 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1279 /* return DCT select function: 0=DCT0, 1=DCT1 */
1280 if (!intlv_addr)
1281 return sys_addr >> 6 & 1;
1283 if (intlv_addr & 0x2) {
1284 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1285 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1287 return ((sys_addr >> shift) & 1) ^ temp;
1290 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1293 if (dct_high_range_enabled(pvt))
1294 return ~dct_sel_high & 1;
1296 return 0;
1299 /* Convert the sys_addr to the normalized DCT address */
1300 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1301 u64 sys_addr, bool hi_rng,
1302 u32 dct_sel_base_addr)
1304 u64 chan_off;
1305 u64 dram_base = get_dram_base(pvt, range);
1306 u64 hole_off = f10_dhar_offset(pvt);
1307 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1309 if (hi_rng) {
1311 * if
1312 * base address of high range is below 4Gb
1313 * (bits [47:27] at [31:11])
1314 * DRAM address space on this DCT is hoisted above 4Gb &&
1315 * sys_addr > 4Gb
1317 * remove hole offset from sys_addr
1318 * else
1319 * remove high range offset from sys_addr
1321 if ((!(dct_sel_base_addr >> 16) ||
1322 dct_sel_base_addr < dhar_base(pvt)) &&
1323 dhar_valid(pvt) &&
1324 (sys_addr >= BIT_64(32)))
1325 chan_off = hole_off;
1326 else
1327 chan_off = dct_sel_base_off;
1328 } else {
1330 * if
1331 * we have a valid hole &&
1332 * sys_addr > 4Gb
1334 * remove hole
1335 * else
1336 * remove dram base to normalize to DCT address
1338 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1339 chan_off = hole_off;
1340 else
1341 chan_off = dram_base;
1344 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1348 * checks if the csrow passed in is marked as SPARED, if so returns the new
1349 * spare row
1351 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1353 int tmp_cs;
1355 if (online_spare_swap_done(pvt, dct) &&
1356 csrow == online_spare_bad_dramcs(pvt, dct)) {
1358 for_each_chip_select(tmp_cs, dct, pvt) {
1359 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1360 csrow = tmp_cs;
1361 break;
1365 return csrow;
1369 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1370 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1372 * Return:
1373 * -EINVAL: NOT FOUND
1374 * 0..csrow = Chip-Select Row
1376 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1378 struct mem_ctl_info *mci;
1379 struct amd64_pvt *pvt;
1380 u64 cs_base, cs_mask;
1381 int cs_found = -EINVAL;
1382 int csrow;
1384 mci = mcis[nid];
1385 if (!mci)
1386 return cs_found;
1388 pvt = mci->pvt_info;
1390 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1392 for_each_chip_select(csrow, dct, pvt) {
1393 if (!csrow_enabled(csrow, dct, pvt))
1394 continue;
1396 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1398 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1399 csrow, cs_base, cs_mask);
1401 cs_mask = ~cs_mask;
1403 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1404 "(CSBase & ~CSMask)=0x%llx\n",
1405 (in_addr & cs_mask), (cs_base & cs_mask));
1407 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1408 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1410 debugf1(" MATCH csrow=%d\n", cs_found);
1411 break;
1414 return cs_found;
1418 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1419 * swapped with a region located at the bottom of memory so that the GPU can use
1420 * the interleaved region and thus two channels.
1422 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1424 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1426 if (boot_cpu_data.x86 == 0x10) {
1427 /* only revC3 and revE have that feature */
1428 if (boot_cpu_data.x86_model < 4 ||
1429 (boot_cpu_data.x86_model < 0xa &&
1430 boot_cpu_data.x86_mask < 3))
1431 return sys_addr;
1434 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1436 if (!(swap_reg & 0x1))
1437 return sys_addr;
1439 swap_base = (swap_reg >> 3) & 0x7f;
1440 swap_limit = (swap_reg >> 11) & 0x7f;
1441 rgn_size = (swap_reg >> 20) & 0x7f;
1442 tmp_addr = sys_addr >> 27;
1444 if (!(sys_addr >> 34) &&
1445 (((tmp_addr >= swap_base) &&
1446 (tmp_addr <= swap_limit)) ||
1447 (tmp_addr < rgn_size)))
1448 return sys_addr ^ (u64)swap_base << 27;
1450 return sys_addr;
1453 /* For a given @dram_range, check if @sys_addr falls within it. */
1454 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1455 u64 sys_addr, int *nid, int *chan_sel)
1457 int cs_found = -EINVAL;
1458 u64 chan_addr;
1459 u32 dct_sel_base;
1460 u8 channel;
1461 bool high_range = false;
1463 u8 node_id = dram_dst_node(pvt, range);
1464 u8 intlv_en = dram_intlv_en(pvt, range);
1465 u32 intlv_sel = dram_intlv_sel(pvt, range);
1467 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1468 range, sys_addr, get_dram_limit(pvt, range));
1470 if (dhar_valid(pvt) &&
1471 dhar_base(pvt) <= sys_addr &&
1472 sys_addr < BIT_64(32)) {
1473 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1474 sys_addr);
1475 return -EINVAL;
1478 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1479 return -EINVAL;
1481 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1483 dct_sel_base = dct_sel_baseaddr(pvt);
1486 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1487 * select between DCT0 and DCT1.
1489 if (dct_high_range_enabled(pvt) &&
1490 !dct_ganging_enabled(pvt) &&
1491 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1492 high_range = true;
1494 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1496 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1497 high_range, dct_sel_base);
1499 /* Remove node interleaving, see F1x120 */
1500 if (intlv_en)
1501 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1502 (chan_addr & 0xfff);
1504 /* remove channel interleave */
1505 if (dct_interleave_enabled(pvt) &&
1506 !dct_high_range_enabled(pvt) &&
1507 !dct_ganging_enabled(pvt)) {
1509 if (dct_sel_interleave_addr(pvt) != 1) {
1510 if (dct_sel_interleave_addr(pvt) == 0x3)
1511 /* hash 9 */
1512 chan_addr = ((chan_addr >> 10) << 9) |
1513 (chan_addr & 0x1ff);
1514 else
1515 /* A[6] or hash 6 */
1516 chan_addr = ((chan_addr >> 7) << 6) |
1517 (chan_addr & 0x3f);
1518 } else
1519 /* A[12] */
1520 chan_addr = ((chan_addr >> 13) << 12) |
1521 (chan_addr & 0xfff);
1524 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
1526 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1528 if (cs_found >= 0) {
1529 *nid = node_id;
1530 *chan_sel = channel;
1532 return cs_found;
1535 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1536 int *node, int *chan_sel)
1538 int cs_found = -EINVAL;
1539 unsigned range;
1541 for (range = 0; range < DRAM_RANGES; range++) {
1543 if (!dram_rw(pvt, range))
1544 continue;
1546 if ((get_dram_base(pvt, range) <= sys_addr) &&
1547 (get_dram_limit(pvt, range) >= sys_addr)) {
1549 cs_found = f1x_match_to_this_node(pvt, range,
1550 sys_addr, node,
1551 chan_sel);
1552 if (cs_found >= 0)
1553 break;
1556 return cs_found;
1560 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1561 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1563 * The @sys_addr is usually an error address received from the hardware
1564 * (MCX_ADDR).
1566 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1567 u16 syndrome)
1569 struct amd64_pvt *pvt = mci->pvt_info;
1570 u32 page, offset;
1571 int nid, csrow, chan = 0;
1573 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1575 if (csrow < 0) {
1576 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1577 return;
1580 error_address_to_page_and_offset(sys_addr, &page, &offset);
1583 * We need the syndromes for channel detection only when we're
1584 * ganged. Otherwise @chan should already contain the channel at
1585 * this point.
1587 if (dct_ganging_enabled(pvt))
1588 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1590 if (chan >= 0)
1591 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1592 EDAC_MOD_STR);
1593 else
1595 * Channel unknown, report all channels on this CSROW as failed.
1597 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1598 edac_mc_handle_ce(mci, page, offset, syndrome,
1599 csrow, chan, EDAC_MOD_STR);
1603 * debug routine to display the memory sizes of all logical DIMMs and its
1604 * CSROWs
1606 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1608 int dimm, size0, size1, factor = 0;
1609 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1610 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1612 if (boot_cpu_data.x86 == 0xf) {
1613 if (pvt->dclr0 & WIDTH_128)
1614 factor = 1;
1616 /* K8 families < revF not supported yet */
1617 if (pvt->ext_model < K8_REV_F)
1618 return;
1619 else
1620 WARN_ON(ctrl != 0);
1623 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1624 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1625 : pvt->csels[0].csbases;
1627 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1629 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1631 /* Dump memory sizes for DIMM and its CSROWs */
1632 for (dimm = 0; dimm < 4; dimm++) {
1634 size0 = 0;
1635 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1636 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1637 DBAM_DIMM(dimm, dbam));
1639 size1 = 0;
1640 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1641 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1642 DBAM_DIMM(dimm, dbam));
1644 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1645 dimm * 2, size0 << factor,
1646 dimm * 2 + 1, size1 << factor);
1650 static struct amd64_family_type amd64_family_types[] = {
1651 [K8_CPUS] = {
1652 .ctl_name = "K8",
1653 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1654 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1655 .ops = {
1656 .early_channel_count = k8_early_channel_count,
1657 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1658 .dbam_to_cs = k8_dbam_to_chip_select,
1659 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1662 [F10_CPUS] = {
1663 .ctl_name = "F10h",
1664 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1665 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1666 .ops = {
1667 .early_channel_count = f1x_early_channel_count,
1668 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1669 .dbam_to_cs = f10_dbam_to_chip_select,
1670 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1673 [F15_CPUS] = {
1674 .ctl_name = "F15h",
1675 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1676 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1677 .ops = {
1678 .early_channel_count = f1x_early_channel_count,
1679 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1680 .dbam_to_cs = f15_dbam_to_chip_select,
1681 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1686 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1687 unsigned int device,
1688 struct pci_dev *related)
1690 struct pci_dev *dev = NULL;
1692 dev = pci_get_device(vendor, device, dev);
1693 while (dev) {
1694 if ((dev->bus->number == related->bus->number) &&
1695 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1696 break;
1697 dev = pci_get_device(vendor, device, dev);
1700 return dev;
1704 * These are tables of eigenvectors (one per line) which can be used for the
1705 * construction of the syndrome tables. The modified syndrome search algorithm
1706 * uses those to find the symbol in error and thus the DIMM.
1708 * Algorithm courtesy of Ross LaFetra from AMD.
1710 static u16 x4_vectors[] = {
1711 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1712 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1713 0x0001, 0x0002, 0x0004, 0x0008,
1714 0x1013, 0x3032, 0x4044, 0x8088,
1715 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1716 0x4857, 0xc4fe, 0x13cc, 0x3288,
1717 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1718 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1719 0x15c1, 0x2a42, 0x89ac, 0x4758,
1720 0x2b03, 0x1602, 0x4f0c, 0xca08,
1721 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1722 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1723 0x2b87, 0x164e, 0x642c, 0xdc18,
1724 0x40b9, 0x80de, 0x1094, 0x20e8,
1725 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1726 0x11c1, 0x2242, 0x84ac, 0x4c58,
1727 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1728 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1729 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1730 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1731 0x16b3, 0x3d62, 0x4f34, 0x8518,
1732 0x1e2f, 0x391a, 0x5cac, 0xf858,
1733 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1734 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1735 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1736 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1737 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1738 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1739 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1740 0x185d, 0x2ca6, 0x7914, 0x9e28,
1741 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1742 0x4199, 0x82ee, 0x19f4, 0x2e58,
1743 0x4807, 0xc40e, 0x130c, 0x3208,
1744 0x1905, 0x2e0a, 0x5804, 0xac08,
1745 0x213f, 0x132a, 0xadfc, 0x5ba8,
1746 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1749 static u16 x8_vectors[] = {
1750 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1751 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1752 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1753 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1754 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1755 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1756 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1757 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1758 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1759 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1760 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1761 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1762 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1763 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1764 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1765 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1766 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1767 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1768 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1771 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1772 unsigned v_dim)
1774 unsigned int i, err_sym;
1776 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1777 u16 s = syndrome;
1778 unsigned v_idx = err_sym * v_dim;
1779 unsigned v_end = (err_sym + 1) * v_dim;
1781 /* walk over all 16 bits of the syndrome */
1782 for (i = 1; i < (1U << 16); i <<= 1) {
1784 /* if bit is set in that eigenvector... */
1785 if (v_idx < v_end && vectors[v_idx] & i) {
1786 u16 ev_comp = vectors[v_idx++];
1788 /* ... and bit set in the modified syndrome, */
1789 if (s & i) {
1790 /* remove it. */
1791 s ^= ev_comp;
1793 if (!s)
1794 return err_sym;
1797 } else if (s & i)
1798 /* can't get to zero, move to next symbol */
1799 break;
1803 debugf0("syndrome(%x) not found\n", syndrome);
1804 return -1;
1807 static int map_err_sym_to_channel(int err_sym, int sym_size)
1809 if (sym_size == 4)
1810 switch (err_sym) {
1811 case 0x20:
1812 case 0x21:
1813 return 0;
1814 break;
1815 case 0x22:
1816 case 0x23:
1817 return 1;
1818 break;
1819 default:
1820 return err_sym >> 4;
1821 break;
1823 /* x8 symbols */
1824 else
1825 switch (err_sym) {
1826 /* imaginary bits not in a DIMM */
1827 case 0x10:
1828 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1829 err_sym);
1830 return -1;
1831 break;
1833 case 0x11:
1834 return 0;
1835 break;
1836 case 0x12:
1837 return 1;
1838 break;
1839 default:
1840 return err_sym >> 3;
1841 break;
1843 return -1;
1846 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1848 struct amd64_pvt *pvt = mci->pvt_info;
1849 int err_sym = -1;
1851 if (pvt->ecc_sym_sz == 8)
1852 err_sym = decode_syndrome(syndrome, x8_vectors,
1853 ARRAY_SIZE(x8_vectors),
1854 pvt->ecc_sym_sz);
1855 else if (pvt->ecc_sym_sz == 4)
1856 err_sym = decode_syndrome(syndrome, x4_vectors,
1857 ARRAY_SIZE(x4_vectors),
1858 pvt->ecc_sym_sz);
1859 else {
1860 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1861 return err_sym;
1864 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1868 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1869 * ADDRESS and process.
1871 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1873 struct amd64_pvt *pvt = mci->pvt_info;
1874 u64 sys_addr;
1875 u16 syndrome;
1877 /* Ensure that the Error Address is VALID */
1878 if (!(m->status & MCI_STATUS_ADDRV)) {
1879 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1880 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1881 return;
1884 sys_addr = get_error_address(m);
1885 syndrome = extract_syndrome(m->status);
1887 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1889 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1892 /* Handle any Un-correctable Errors (UEs) */
1893 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1895 struct mem_ctl_info *log_mci, *src_mci = NULL;
1896 int csrow;
1897 u64 sys_addr;
1898 u32 page, offset;
1900 log_mci = mci;
1902 if (!(m->status & MCI_STATUS_ADDRV)) {
1903 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1904 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1905 return;
1908 sys_addr = get_error_address(m);
1911 * Find out which node the error address belongs to. This may be
1912 * different from the node that detected the error.
1914 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1915 if (!src_mci) {
1916 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1917 (unsigned long)sys_addr);
1918 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1919 return;
1922 log_mci = src_mci;
1924 csrow = sys_addr_to_csrow(log_mci, sys_addr);
1925 if (csrow < 0) {
1926 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1927 (unsigned long)sys_addr);
1928 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1929 } else {
1930 error_address_to_page_and_offset(sys_addr, &page, &offset);
1931 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1935 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1936 struct mce *m)
1938 u16 ec = EC(m->status);
1939 u8 xec = XEC(m->status, 0x1f);
1940 u8 ecc_type = (m->status >> 45) & 0x3;
1942 /* Bail early out if this was an 'observed' error */
1943 if (PP(ec) == NBSL_PP_OBS)
1944 return;
1946 /* Do only ECC errors */
1947 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1948 return;
1950 if (ecc_type == 2)
1951 amd64_handle_ce(mci, m);
1952 else if (ecc_type == 1)
1953 amd64_handle_ue(mci, m);
1956 void amd64_decode_bus_error(int node_id, struct mce *m)
1958 __amd64_decode_bus_error(mcis[node_id], m);
1962 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1963 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1965 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1967 /* Reserve the ADDRESS MAP Device */
1968 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1969 if (!pvt->F1) {
1970 amd64_err("error address map device not found: "
1971 "vendor %x device 0x%x (broken BIOS?)\n",
1972 PCI_VENDOR_ID_AMD, f1_id);
1973 return -ENODEV;
1976 /* Reserve the MISC Device */
1977 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1978 if (!pvt->F3) {
1979 pci_dev_put(pvt->F1);
1980 pvt->F1 = NULL;
1982 amd64_err("error F3 device not found: "
1983 "vendor %x device 0x%x (broken BIOS?)\n",
1984 PCI_VENDOR_ID_AMD, f3_id);
1986 return -ENODEV;
1988 debugf1("F1: %s\n", pci_name(pvt->F1));
1989 debugf1("F2: %s\n", pci_name(pvt->F2));
1990 debugf1("F3: %s\n", pci_name(pvt->F3));
1992 return 0;
1995 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1997 pci_dev_put(pvt->F1);
1998 pci_dev_put(pvt->F3);
2002 * Retrieve the hardware registers of the memory controller (this includes the
2003 * 'Address Map' and 'Misc' device regs)
2005 static void read_mc_regs(struct amd64_pvt *pvt)
2007 struct cpuinfo_x86 *c = &boot_cpu_data;
2008 u64 msr_val;
2009 u32 tmp;
2010 unsigned range;
2013 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2014 * those are Read-As-Zero
2016 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2017 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
2019 /* check first whether TOP_MEM2 is enabled */
2020 rdmsrl(MSR_K8_SYSCFG, msr_val);
2021 if (msr_val & (1U << 21)) {
2022 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2023 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2024 } else
2025 debugf0(" TOP_MEM2 disabled.\n");
2027 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2029 read_dram_ctl_register(pvt);
2031 for (range = 0; range < DRAM_RANGES; range++) {
2032 u8 rw;
2034 /* read settings for this DRAM range */
2035 read_dram_base_limit_regs(pvt, range);
2037 rw = dram_rw(pvt, range);
2038 if (!rw)
2039 continue;
2041 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2042 range,
2043 get_dram_base(pvt, range),
2044 get_dram_limit(pvt, range));
2046 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2047 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2048 (rw & 0x1) ? "R" : "-",
2049 (rw & 0x2) ? "W" : "-",
2050 dram_intlv_sel(pvt, range),
2051 dram_dst_node(pvt, range));
2054 read_dct_base_mask(pvt);
2056 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2057 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2059 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2061 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2062 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2064 if (!dct_ganging_enabled(pvt)) {
2065 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2066 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2069 pvt->ecc_sym_sz = 4;
2071 if (c->x86 >= 0x10) {
2072 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2073 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2075 /* F10h, revD and later can do x8 ECC too */
2076 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2077 pvt->ecc_sym_sz = 8;
2079 dump_misc_regs(pvt);
2083 * NOTE: CPU Revision Dependent code
2085 * Input:
2086 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2087 * k8 private pointer to -->
2088 * DRAM Bank Address mapping register
2089 * node_id
2090 * DCL register where dual_channel_active is
2092 * The DBAM register consists of 4 sets of 4 bits each definitions:
2094 * Bits: CSROWs
2095 * 0-3 CSROWs 0 and 1
2096 * 4-7 CSROWs 2 and 3
2097 * 8-11 CSROWs 4 and 5
2098 * 12-15 CSROWs 6 and 7
2100 * Values range from: 0 to 15
2101 * The meaning of the values depends on CPU revision and dual-channel state,
2102 * see relevant BKDG more info.
2104 * The memory controller provides for total of only 8 CSROWs in its current
2105 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2106 * single channel or two (2) DIMMs in dual channel mode.
2108 * The following code logic collapses the various tables for CSROW based on CPU
2109 * revision.
2111 * Returns:
2112 * The number of PAGE_SIZE pages on the specified CSROW number it
2113 * encompasses
2116 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2118 u32 cs_mode, nr_pages;
2121 * The math on this doesn't look right on the surface because x/2*4 can
2122 * be simplified to x*2 but this expression makes use of the fact that
2123 * it is integral math where 1/2=0. This intermediate value becomes the
2124 * number of bits to shift the DBAM register to extract the proper CSROW
2125 * field.
2127 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2129 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2132 * If dual channel then double the memory size of single channel.
2133 * Channel count is 1 or 2
2135 nr_pages <<= (pvt->channel_count - 1);
2137 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2138 debugf0(" nr_pages= %u channel-count = %d\n",
2139 nr_pages, pvt->channel_count);
2141 return nr_pages;
2145 * Initialize the array of csrow attribute instances, based on the values
2146 * from pci config hardware registers.
2148 static int init_csrows(struct mem_ctl_info *mci)
2150 struct csrow_info *csrow;
2151 struct amd64_pvt *pvt = mci->pvt_info;
2152 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2153 u32 val;
2154 int i, empty = 1;
2156 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2158 pvt->nbcfg = val;
2160 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2161 pvt->mc_node_id, val,
2162 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2164 for_each_chip_select(i, 0, pvt) {
2165 csrow = &mci->csrows[i];
2167 if (!csrow_enabled(i, 0, pvt)) {
2168 debugf1("----CSROW %d EMPTY for node %d\n", i,
2169 pvt->mc_node_id);
2170 continue;
2173 debugf1("----CSROW %d VALID for MC node %d\n",
2174 i, pvt->mc_node_id);
2176 empty = 0;
2177 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2178 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2179 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2180 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2181 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2182 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2184 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2185 csrow->page_mask = ~mask;
2186 /* 8 bytes of resolution */
2188 csrow->mtype = amd64_determine_memory_type(pvt, i);
2190 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2191 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2192 (unsigned long)input_addr_min,
2193 (unsigned long)input_addr_max);
2194 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2195 (unsigned long)sys_addr, csrow->page_mask);
2196 debugf1(" nr_pages: %u first_page: 0x%lx "
2197 "last_page: 0x%lx\n",
2198 (unsigned)csrow->nr_pages,
2199 csrow->first_page, csrow->last_page);
2202 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2204 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2205 csrow->edac_mode =
2206 (pvt->nbcfg & NBCFG_CHIPKILL) ?
2207 EDAC_S4ECD4ED : EDAC_SECDED;
2208 else
2209 csrow->edac_mode = EDAC_NONE;
2212 return empty;
2215 /* get all cores on this DCT */
2216 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2218 int cpu;
2220 for_each_online_cpu(cpu)
2221 if (amd_get_nb_id(cpu) == nid)
2222 cpumask_set_cpu(cpu, mask);
2225 /* check MCG_CTL on all the cpus on this node */
2226 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2228 cpumask_var_t mask;
2229 int cpu, nbe;
2230 bool ret = false;
2232 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2233 amd64_warn("%s: Error allocating mask\n", __func__);
2234 return false;
2237 get_cpus_on_this_dct_cpumask(mask, nid);
2239 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2241 for_each_cpu(cpu, mask) {
2242 struct msr *reg = per_cpu_ptr(msrs, cpu);
2243 nbe = reg->l & MSR_MCGCTL_NBE;
2245 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2246 cpu, reg->q,
2247 (nbe ? "enabled" : "disabled"));
2249 if (!nbe)
2250 goto out;
2252 ret = true;
2254 out:
2255 free_cpumask_var(mask);
2256 return ret;
2259 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2261 cpumask_var_t cmask;
2262 int cpu;
2264 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2265 amd64_warn("%s: error allocating mask\n", __func__);
2266 return false;
2269 get_cpus_on_this_dct_cpumask(cmask, nid);
2271 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2273 for_each_cpu(cpu, cmask) {
2275 struct msr *reg = per_cpu_ptr(msrs, cpu);
2277 if (on) {
2278 if (reg->l & MSR_MCGCTL_NBE)
2279 s->flags.nb_mce_enable = 1;
2281 reg->l |= MSR_MCGCTL_NBE;
2282 } else {
2284 * Turn off NB MCE reporting only when it was off before
2286 if (!s->flags.nb_mce_enable)
2287 reg->l &= ~MSR_MCGCTL_NBE;
2290 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2292 free_cpumask_var(cmask);
2294 return 0;
2297 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2298 struct pci_dev *F3)
2300 bool ret = true;
2301 u32 value, mask = 0x3; /* UECC/CECC enable */
2303 if (toggle_ecc_err_reporting(s, nid, ON)) {
2304 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2305 return false;
2308 amd64_read_pci_cfg(F3, NBCTL, &value);
2310 s->old_nbctl = value & mask;
2311 s->nbctl_valid = true;
2313 value |= mask;
2314 amd64_write_pci_cfg(F3, NBCTL, value);
2316 amd64_read_pci_cfg(F3, NBCFG, &value);
2318 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2319 nid, value, !!(value & NBCFG_ECC_ENABLE));
2321 if (!(value & NBCFG_ECC_ENABLE)) {
2322 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2324 s->flags.nb_ecc_prev = 0;
2326 /* Attempt to turn on DRAM ECC Enable */
2327 value |= NBCFG_ECC_ENABLE;
2328 amd64_write_pci_cfg(F3, NBCFG, value);
2330 amd64_read_pci_cfg(F3, NBCFG, &value);
2332 if (!(value & NBCFG_ECC_ENABLE)) {
2333 amd64_warn("Hardware rejected DRAM ECC enable,"
2334 "check memory DIMM configuration.\n");
2335 ret = false;
2336 } else {
2337 amd64_info("Hardware accepted DRAM ECC Enable\n");
2339 } else {
2340 s->flags.nb_ecc_prev = 1;
2343 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2344 nid, value, !!(value & NBCFG_ECC_ENABLE));
2346 return ret;
2349 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2350 struct pci_dev *F3)
2352 u32 value, mask = 0x3; /* UECC/CECC enable */
2355 if (!s->nbctl_valid)
2356 return;
2358 amd64_read_pci_cfg(F3, NBCTL, &value);
2359 value &= ~mask;
2360 value |= s->old_nbctl;
2362 amd64_write_pci_cfg(F3, NBCTL, value);
2364 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2365 if (!s->flags.nb_ecc_prev) {
2366 amd64_read_pci_cfg(F3, NBCFG, &value);
2367 value &= ~NBCFG_ECC_ENABLE;
2368 amd64_write_pci_cfg(F3, NBCFG, value);
2371 /* restore the NB Enable MCGCTL bit */
2372 if (toggle_ecc_err_reporting(s, nid, OFF))
2373 amd64_warn("Error restoring NB MCGCTL settings!\n");
2377 * EDAC requires that the BIOS have ECC enabled before
2378 * taking over the processing of ECC errors. A command line
2379 * option allows to force-enable hardware ECC later in
2380 * enable_ecc_error_reporting().
2382 static const char *ecc_msg =
2383 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2384 " Either enable ECC checking or force module loading by setting "
2385 "'ecc_enable_override'.\n"
2386 " (Note that use of the override may cause unknown side effects.)\n";
2388 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2390 u32 value;
2391 u8 ecc_en = 0;
2392 bool nb_mce_en = false;
2394 amd64_read_pci_cfg(F3, NBCFG, &value);
2396 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2397 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2399 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2400 if (!nb_mce_en)
2401 amd64_notice("NB MCE bank disabled, set MSR "
2402 "0x%08x[4] on node %d to enable.\n",
2403 MSR_IA32_MCG_CTL, nid);
2405 if (!ecc_en || !nb_mce_en) {
2406 amd64_notice("%s", ecc_msg);
2407 return false;
2409 return true;
2412 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2413 ARRAY_SIZE(amd64_inj_attrs) +
2416 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2418 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2420 unsigned int i = 0, j = 0;
2422 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2423 sysfs_attrs[i] = amd64_dbg_attrs[i];
2425 if (boot_cpu_data.x86 >= 0x10)
2426 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2427 sysfs_attrs[i] = amd64_inj_attrs[j];
2429 sysfs_attrs[i] = terminator;
2431 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2434 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2435 struct amd64_family_type *fam)
2437 struct amd64_pvt *pvt = mci->pvt_info;
2439 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2440 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2442 if (pvt->nbcap & NBCAP_SECDED)
2443 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2445 if (pvt->nbcap & NBCAP_CHIPKILL)
2446 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2448 mci->edac_cap = amd64_determine_edac_cap(pvt);
2449 mci->mod_name = EDAC_MOD_STR;
2450 mci->mod_ver = EDAC_AMD64_VERSION;
2451 mci->ctl_name = fam->ctl_name;
2452 mci->dev_name = pci_name(pvt->F2);
2453 mci->ctl_page_to_phys = NULL;
2455 /* memory scrubber interface */
2456 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2457 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2461 * returns a pointer to the family descriptor on success, NULL otherwise.
2463 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2465 u8 fam = boot_cpu_data.x86;
2466 struct amd64_family_type *fam_type = NULL;
2468 switch (fam) {
2469 case 0xf:
2470 fam_type = &amd64_family_types[K8_CPUS];
2471 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2472 break;
2474 case 0x10:
2475 fam_type = &amd64_family_types[F10_CPUS];
2476 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2477 break;
2479 case 0x15:
2480 fam_type = &amd64_family_types[F15_CPUS];
2481 pvt->ops = &amd64_family_types[F15_CPUS].ops;
2482 break;
2484 default:
2485 amd64_err("Unsupported family!\n");
2486 return NULL;
2489 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2491 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2492 (fam == 0xf ?
2493 (pvt->ext_model >= K8_REV_F ? "revF or later "
2494 : "revE or earlier ")
2495 : ""), pvt->mc_node_id);
2496 return fam_type;
2499 static int amd64_init_one_instance(struct pci_dev *F2)
2501 struct amd64_pvt *pvt = NULL;
2502 struct amd64_family_type *fam_type = NULL;
2503 struct mem_ctl_info *mci = NULL;
2504 int err = 0, ret;
2505 u8 nid = get_node_id(F2);
2507 ret = -ENOMEM;
2508 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2509 if (!pvt)
2510 goto err_ret;
2512 pvt->mc_node_id = nid;
2513 pvt->F2 = F2;
2515 ret = -EINVAL;
2516 fam_type = amd64_per_family_init(pvt);
2517 if (!fam_type)
2518 goto err_free;
2520 ret = -ENODEV;
2521 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2522 if (err)
2523 goto err_free;
2525 read_mc_regs(pvt);
2528 * We need to determine how many memory channels there are. Then use
2529 * that information for calculating the size of the dynamic instance
2530 * tables in the 'mci' structure.
2532 ret = -EINVAL;
2533 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2534 if (pvt->channel_count < 0)
2535 goto err_siblings;
2537 ret = -ENOMEM;
2538 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2539 if (!mci)
2540 goto err_siblings;
2542 mci->pvt_info = pvt;
2543 mci->dev = &pvt->F2->dev;
2545 setup_mci_misc_attrs(mci, fam_type);
2547 if (init_csrows(mci))
2548 mci->edac_cap = EDAC_FLAG_NONE;
2550 set_mc_sysfs_attrs(mci);
2552 ret = -ENODEV;
2553 if (edac_mc_add_mc(mci)) {
2554 debugf1("failed edac_mc_add_mc()\n");
2555 goto err_add_mc;
2558 /* register stuff with EDAC MCE */
2559 if (report_gart_errors)
2560 amd_report_gart_errors(true);
2562 amd_register_ecc_decoder(amd64_decode_bus_error);
2564 mcis[nid] = mci;
2566 atomic_inc(&drv_instances);
2568 return 0;
2570 err_add_mc:
2571 edac_mc_free(mci);
2573 err_siblings:
2574 free_mc_sibling_devs(pvt);
2576 err_free:
2577 kfree(pvt);
2579 err_ret:
2580 return ret;
2583 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2584 const struct pci_device_id *mc_type)
2586 u8 nid = get_node_id(pdev);
2587 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2588 struct ecc_settings *s;
2589 int ret = 0;
2591 ret = pci_enable_device(pdev);
2592 if (ret < 0) {
2593 debugf0("ret=%d\n", ret);
2594 return -EIO;
2597 ret = -ENOMEM;
2598 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2599 if (!s)
2600 goto err_out;
2602 ecc_stngs[nid] = s;
2604 if (!ecc_enabled(F3, nid)) {
2605 ret = -ENODEV;
2607 if (!ecc_enable_override)
2608 goto err_enable;
2610 amd64_warn("Forcing ECC on!\n");
2612 if (!enable_ecc_error_reporting(s, nid, F3))
2613 goto err_enable;
2616 ret = amd64_init_one_instance(pdev);
2617 if (ret < 0) {
2618 amd64_err("Error probing instance: %d\n", nid);
2619 restore_ecc_error_reporting(s, nid, F3);
2622 return ret;
2624 err_enable:
2625 kfree(s);
2626 ecc_stngs[nid] = NULL;
2628 err_out:
2629 return ret;
2632 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2634 struct mem_ctl_info *mci;
2635 struct amd64_pvt *pvt;
2636 u8 nid = get_node_id(pdev);
2637 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2638 struct ecc_settings *s = ecc_stngs[nid];
2640 /* Remove from EDAC CORE tracking list */
2641 mci = edac_mc_del_mc(&pdev->dev);
2642 if (!mci)
2643 return;
2645 pvt = mci->pvt_info;
2647 restore_ecc_error_reporting(s, nid, F3);
2649 free_mc_sibling_devs(pvt);
2651 /* unregister from EDAC MCE */
2652 amd_report_gart_errors(false);
2653 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2655 kfree(ecc_stngs[nid]);
2656 ecc_stngs[nid] = NULL;
2658 /* Free the EDAC CORE resources */
2659 mci->pvt_info = NULL;
2660 mcis[nid] = NULL;
2662 kfree(pvt);
2663 edac_mc_free(mci);
2667 * This table is part of the interface for loading drivers for PCI devices. The
2668 * PCI core identifies what devices are on a system during boot, and then
2669 * inquiry this table to see if this driver is for a given device found.
2671 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2673 .vendor = PCI_VENDOR_ID_AMD,
2674 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2675 .subvendor = PCI_ANY_ID,
2676 .subdevice = PCI_ANY_ID,
2677 .class = 0,
2678 .class_mask = 0,
2681 .vendor = PCI_VENDOR_ID_AMD,
2682 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2683 .subvendor = PCI_ANY_ID,
2684 .subdevice = PCI_ANY_ID,
2685 .class = 0,
2686 .class_mask = 0,
2689 .vendor = PCI_VENDOR_ID_AMD,
2690 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2691 .subvendor = PCI_ANY_ID,
2692 .subdevice = PCI_ANY_ID,
2693 .class = 0,
2694 .class_mask = 0,
2697 {0, }
2699 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2701 static struct pci_driver amd64_pci_driver = {
2702 .name = EDAC_MOD_STR,
2703 .probe = amd64_probe_one_instance,
2704 .remove = __devexit_p(amd64_remove_one_instance),
2705 .id_table = amd64_pci_table,
2708 static void setup_pci_device(void)
2710 struct mem_ctl_info *mci;
2711 struct amd64_pvt *pvt;
2713 if (amd64_ctl_pci)
2714 return;
2716 mci = mcis[0];
2717 if (mci) {
2719 pvt = mci->pvt_info;
2720 amd64_ctl_pci =
2721 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2723 if (!amd64_ctl_pci) {
2724 pr_warning("%s(): Unable to create PCI control\n",
2725 __func__);
2727 pr_warning("%s(): PCI error report via EDAC not set\n",
2728 __func__);
2733 static int __init amd64_edac_init(void)
2735 int err = -ENODEV;
2737 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2739 opstate_init();
2741 if (amd_cache_northbridges() < 0)
2742 goto err_ret;
2744 err = -ENOMEM;
2745 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2746 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2747 if (!(mcis && ecc_stngs))
2748 goto err_free;
2750 msrs = msrs_alloc();
2751 if (!msrs)
2752 goto err_free;
2754 err = pci_register_driver(&amd64_pci_driver);
2755 if (err)
2756 goto err_pci;
2758 err = -ENODEV;
2759 if (!atomic_read(&drv_instances))
2760 goto err_no_instances;
2762 setup_pci_device();
2763 return 0;
2765 err_no_instances:
2766 pci_unregister_driver(&amd64_pci_driver);
2768 err_pci:
2769 msrs_free(msrs);
2770 msrs = NULL;
2772 err_free:
2773 kfree(mcis);
2774 mcis = NULL;
2776 kfree(ecc_stngs);
2777 ecc_stngs = NULL;
2779 err_ret:
2780 return err;
2783 static void __exit amd64_edac_exit(void)
2785 if (amd64_ctl_pci)
2786 edac_pci_release_generic_ctl(amd64_ctl_pci);
2788 pci_unregister_driver(&amd64_pci_driver);
2790 kfree(ecc_stngs);
2791 ecc_stngs = NULL;
2793 kfree(mcis);
2794 mcis = NULL;
2796 msrs_free(msrs);
2797 msrs = NULL;
2800 module_init(amd64_edac_init);
2801 module_exit(amd64_edac_exit);
2803 MODULE_LICENSE("GPL");
2804 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2805 "Dave Peterson, Thayne Harbaugh");
2806 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2807 EDAC_AMD64_VERSION);
2809 module_param(edac_op_state, int, 0444);
2810 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");