Merge remote-tracking branch 'cleancache/linux-next'
[linux-2.6/next.git] / drivers / mmc / host / mmci.c
blobb4a7e4fba90fa2fdb30e78632e09d85a484baff2
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
33 #include <asm/div64.h>
34 #include <asm/io.h>
35 #include <asm/sizes.h>
37 #include "mmci.h"
39 #define DRIVER_NAME "mmci-pl18x"
41 static unsigned int fmax = 515633;
43 /**
44 * struct variant_data - MMCI variant-specific quirks
45 * @clkreg: default value for MCICLOCK register
46 * @clkreg_enable: enable value for MMCICLOCK register
47 * @datalength_bits: number of bits in the MMCIDATALENGTH register
48 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
49 * is asserted (likewise for RX)
50 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
51 * is asserted (likewise for RX)
52 * @sdio: variant supports SDIO
53 * @st_clkdiv: true if using a ST-specific clock divider algorithm
55 struct variant_data {
56 unsigned int clkreg;
57 unsigned int clkreg_enable;
58 unsigned int datalength_bits;
59 unsigned int fifosize;
60 unsigned int fifohalfsize;
61 bool sdio;
62 bool st_clkdiv;
65 static struct variant_data variant_arm = {
66 .fifosize = 16 * 4,
67 .fifohalfsize = 8 * 4,
68 .datalength_bits = 16,
71 static struct variant_data variant_arm_extended_fifo = {
72 .fifosize = 128 * 4,
73 .fifohalfsize = 64 * 4,
74 .datalength_bits = 16,
77 static struct variant_data variant_u300 = {
78 .fifosize = 16 * 4,
79 .fifohalfsize = 8 * 4,
80 .clkreg_enable = 1 << 13, /* HWFCEN */
81 .datalength_bits = 16,
82 .sdio = true,
85 static struct variant_data variant_ux500 = {
86 .fifosize = 30 * 4,
87 .fifohalfsize = 8 * 4,
88 .clkreg = MCI_CLK_ENABLE,
89 .clkreg_enable = 1 << 14, /* HWFCEN */
90 .datalength_bits = 24,
91 .sdio = true,
92 .st_clkdiv = true,
96 * This must be called with host->lock held
98 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
100 struct variant_data *variant = host->variant;
101 u32 clk = variant->clkreg;
103 if (desired) {
104 if (desired >= host->mclk) {
105 clk = MCI_CLK_BYPASS;
106 host->cclk = host->mclk;
107 } else if (variant->st_clkdiv) {
109 * DB8500 TRM says f = mclk / (clkdiv + 2)
110 * => clkdiv = (mclk / f) - 2
111 * Round the divider up so we don't exceed the max
112 * frequency
114 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
115 if (clk >= 256)
116 clk = 255;
117 host->cclk = host->mclk / (clk + 2);
118 } else {
120 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
121 * => clkdiv = mclk / (2 * f) - 1
123 clk = host->mclk / (2 * desired) - 1;
124 if (clk >= 256)
125 clk = 255;
126 host->cclk = host->mclk / (2 * (clk + 1));
129 clk |= variant->clkreg_enable;
130 clk |= MCI_CLK_ENABLE;
131 /* This hasn't proven to be worthwhile */
132 /* clk |= MCI_CLK_PWRSAVE; */
135 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
136 clk |= MCI_4BIT_BUS;
137 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
138 clk |= MCI_ST_8BIT_BUS;
140 writel(clk, host->base + MMCICLOCK);
143 static void
144 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
146 writel(0, host->base + MMCICOMMAND);
148 BUG_ON(host->data);
150 host->mrq = NULL;
151 host->cmd = NULL;
154 * Need to drop the host lock here; mmc_request_done may call
155 * back into the driver...
157 spin_unlock(&host->lock);
158 mmc_request_done(host->mmc, mrq);
159 spin_lock(&host->lock);
162 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
164 void __iomem *base = host->base;
166 if (host->singleirq) {
167 unsigned int mask0 = readl(base + MMCIMASK0);
169 mask0 &= ~MCI_IRQ1MASK;
170 mask0 |= mask;
172 writel(mask0, base + MMCIMASK0);
175 writel(mask, base + MMCIMASK1);
178 static void mmci_stop_data(struct mmci_host *host)
180 writel(0, host->base + MMCIDATACTRL);
181 mmci_set_mask1(host, 0);
182 host->data = NULL;
185 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
187 unsigned int flags = SG_MITER_ATOMIC;
189 if (data->flags & MMC_DATA_READ)
190 flags |= SG_MITER_TO_SG;
191 else
192 flags |= SG_MITER_FROM_SG;
194 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
198 * All the DMA operation mode stuff goes inside this ifdef.
199 * This assumes that you have a generic DMA device interface,
200 * no custom DMA interfaces are supported.
202 #ifdef CONFIG_DMA_ENGINE
203 static void __devinit mmci_dma_setup(struct mmci_host *host)
205 struct mmci_platform_data *plat = host->plat;
206 const char *rxname, *txname;
207 dma_cap_mask_t mask;
209 if (!plat || !plat->dma_filter) {
210 dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
211 return;
214 /* Try to acquire a generic DMA engine slave channel */
215 dma_cap_zero(mask);
216 dma_cap_set(DMA_SLAVE, mask);
219 * If only an RX channel is specified, the driver will
220 * attempt to use it bidirectionally, however if it is
221 * is specified but cannot be located, DMA will be disabled.
223 if (plat->dma_rx_param) {
224 host->dma_rx_channel = dma_request_channel(mask,
225 plat->dma_filter,
226 plat->dma_rx_param);
227 /* E.g if no DMA hardware is present */
228 if (!host->dma_rx_channel)
229 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
232 if (plat->dma_tx_param) {
233 host->dma_tx_channel = dma_request_channel(mask,
234 plat->dma_filter,
235 plat->dma_tx_param);
236 if (!host->dma_tx_channel)
237 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
238 } else {
239 host->dma_tx_channel = host->dma_rx_channel;
242 if (host->dma_rx_channel)
243 rxname = dma_chan_name(host->dma_rx_channel);
244 else
245 rxname = "none";
247 if (host->dma_tx_channel)
248 txname = dma_chan_name(host->dma_tx_channel);
249 else
250 txname = "none";
252 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
253 rxname, txname);
256 * Limit the maximum segment size in any SG entry according to
257 * the parameters of the DMA engine device.
259 if (host->dma_tx_channel) {
260 struct device *dev = host->dma_tx_channel->device->dev;
261 unsigned int max_seg_size = dma_get_max_seg_size(dev);
263 if (max_seg_size < host->mmc->max_seg_size)
264 host->mmc->max_seg_size = max_seg_size;
266 if (host->dma_rx_channel) {
267 struct device *dev = host->dma_rx_channel->device->dev;
268 unsigned int max_seg_size = dma_get_max_seg_size(dev);
270 if (max_seg_size < host->mmc->max_seg_size)
271 host->mmc->max_seg_size = max_seg_size;
276 * This is used in __devinit or __devexit so inline it
277 * so it can be discarded.
279 static inline void mmci_dma_release(struct mmci_host *host)
281 struct mmci_platform_data *plat = host->plat;
283 if (host->dma_rx_channel)
284 dma_release_channel(host->dma_rx_channel);
285 if (host->dma_tx_channel && plat->dma_tx_param)
286 dma_release_channel(host->dma_tx_channel);
287 host->dma_rx_channel = host->dma_tx_channel = NULL;
290 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
292 struct dma_chan *chan = host->dma_current;
293 enum dma_data_direction dir;
294 u32 status;
295 int i;
297 /* Wait up to 1ms for the DMA to complete */
298 for (i = 0; ; i++) {
299 status = readl(host->base + MMCISTATUS);
300 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
301 break;
302 udelay(10);
306 * Check to see whether we still have some data left in the FIFO -
307 * this catches DMA controllers which are unable to monitor the
308 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
309 * contiguous buffers. On TX, we'll get a FIFO underrun error.
311 if (status & MCI_RXDATAAVLBLMASK) {
312 dmaengine_terminate_all(chan);
313 if (!data->error)
314 data->error = -EIO;
317 if (data->flags & MMC_DATA_WRITE) {
318 dir = DMA_TO_DEVICE;
319 } else {
320 dir = DMA_FROM_DEVICE;
323 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
326 * Use of DMA with scatter-gather is impossible.
327 * Give up with DMA and switch back to PIO mode.
329 if (status & MCI_RXDATAAVLBLMASK) {
330 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
331 mmci_dma_release(host);
335 static void mmci_dma_data_error(struct mmci_host *host)
337 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
338 dmaengine_terminate_all(host->dma_current);
341 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
343 struct variant_data *variant = host->variant;
344 struct dma_slave_config conf = {
345 .src_addr = host->phybase + MMCIFIFO,
346 .dst_addr = host->phybase + MMCIFIFO,
347 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
348 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
349 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
350 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
352 struct mmc_data *data = host->data;
353 struct dma_chan *chan;
354 struct dma_device *device;
355 struct dma_async_tx_descriptor *desc;
356 int nr_sg;
358 host->dma_current = NULL;
360 if (data->flags & MMC_DATA_READ) {
361 conf.direction = DMA_FROM_DEVICE;
362 chan = host->dma_rx_channel;
363 } else {
364 conf.direction = DMA_TO_DEVICE;
365 chan = host->dma_tx_channel;
368 /* If there's no DMA channel, fall back to PIO */
369 if (!chan)
370 return -EINVAL;
372 /* If less than or equal to the fifo size, don't bother with DMA */
373 if (host->size <= variant->fifosize)
374 return -EINVAL;
376 device = chan->device;
377 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
378 if (nr_sg == 0)
379 return -EINVAL;
381 dmaengine_slave_config(chan, &conf);
382 desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
383 conf.direction, DMA_CTRL_ACK);
384 if (!desc)
385 goto unmap_exit;
387 /* Okay, go for it. */
388 host->dma_current = chan;
390 dev_vdbg(mmc_dev(host->mmc),
391 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
392 data->sg_len, data->blksz, data->blocks, data->flags);
393 dmaengine_submit(desc);
394 dma_async_issue_pending(chan);
396 datactrl |= MCI_DPSM_DMAENABLE;
398 /* Trigger the DMA transfer */
399 writel(datactrl, host->base + MMCIDATACTRL);
402 * Let the MMCI say when the data is ended and it's time
403 * to fire next DMA request. When that happens, MMCI will
404 * call mmci_data_end()
406 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
407 host->base + MMCIMASK0);
408 return 0;
410 unmap_exit:
411 dmaengine_terminate_all(chan);
412 dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
413 return -ENOMEM;
415 #else
416 /* Blank functions if the DMA engine is not available */
417 static inline void mmci_dma_setup(struct mmci_host *host)
421 static inline void mmci_dma_release(struct mmci_host *host)
425 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
429 static inline void mmci_dma_data_error(struct mmci_host *host)
433 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
435 return -ENOSYS;
437 #endif
439 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
441 struct variant_data *variant = host->variant;
442 unsigned int datactrl, timeout, irqmask;
443 unsigned long long clks;
444 void __iomem *base;
445 int blksz_bits;
447 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
448 data->blksz, data->blocks, data->flags);
450 host->data = data;
451 host->size = data->blksz * data->blocks;
452 data->bytes_xfered = 0;
454 clks = (unsigned long long)data->timeout_ns * host->cclk;
455 do_div(clks, 1000000000UL);
457 timeout = data->timeout_clks + (unsigned int)clks;
459 base = host->base;
460 writel(timeout, base + MMCIDATATIMER);
461 writel(host->size, base + MMCIDATALENGTH);
463 blksz_bits = ffs(data->blksz) - 1;
464 BUG_ON(1 << blksz_bits != data->blksz);
466 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
468 if (data->flags & MMC_DATA_READ)
469 datactrl |= MCI_DPSM_DIRECTION;
472 * Attempt to use DMA operation mode, if this
473 * should fail, fall back to PIO mode
475 if (!mmci_dma_start_data(host, datactrl))
476 return;
478 /* IRQ mode, map the SG list for CPU reading/writing */
479 mmci_init_sg(host, data);
481 if (data->flags & MMC_DATA_READ) {
482 irqmask = MCI_RXFIFOHALFFULLMASK;
485 * If we have less than the fifo 'half-full' threshold to
486 * transfer, trigger a PIO interrupt as soon as any data
487 * is available.
489 if (host->size < variant->fifohalfsize)
490 irqmask |= MCI_RXDATAAVLBLMASK;
491 } else {
493 * We don't actually need to include "FIFO empty" here
494 * since its implicit in "FIFO half empty".
496 irqmask = MCI_TXFIFOHALFEMPTYMASK;
499 /* The ST Micro variants has a special bit to enable SDIO */
500 if (variant->sdio && host->mmc->card)
501 if (mmc_card_sdio(host->mmc->card))
502 datactrl |= MCI_ST_DPSM_SDIOEN;
504 writel(datactrl, base + MMCIDATACTRL);
505 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
506 mmci_set_mask1(host, irqmask);
509 static void
510 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
512 void __iomem *base = host->base;
514 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
515 cmd->opcode, cmd->arg, cmd->flags);
517 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
518 writel(0, base + MMCICOMMAND);
519 udelay(1);
522 c |= cmd->opcode | MCI_CPSM_ENABLE;
523 if (cmd->flags & MMC_RSP_PRESENT) {
524 if (cmd->flags & MMC_RSP_136)
525 c |= MCI_CPSM_LONGRSP;
526 c |= MCI_CPSM_RESPONSE;
528 if (/*interrupt*/0)
529 c |= MCI_CPSM_INTERRUPT;
531 host->cmd = cmd;
533 writel(cmd->arg, base + MMCIARGUMENT);
534 writel(c, base + MMCICOMMAND);
537 static void
538 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
539 unsigned int status)
541 /* First check for errors */
542 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
543 u32 remain, success;
545 /* Terminate the DMA transfer */
546 if (dma_inprogress(host))
547 mmci_dma_data_error(host);
550 * Calculate how far we are into the transfer. Note that
551 * the data counter gives the number of bytes transferred
552 * on the MMC bus, not on the host side. On reads, this
553 * can be as much as a FIFO-worth of data ahead. This
554 * matters for FIFO overruns only.
556 remain = readl(host->base + MMCIDATACNT);
557 success = data->blksz * data->blocks - remain;
559 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
560 status, success);
561 if (status & MCI_DATACRCFAIL) {
562 /* Last block was not successful */
563 success -= 1;
564 data->error = -EILSEQ;
565 } else if (status & MCI_DATATIMEOUT) {
566 data->error = -ETIMEDOUT;
567 } else if (status & MCI_TXUNDERRUN) {
568 data->error = -EIO;
569 } else if (status & MCI_RXOVERRUN) {
570 if (success > host->variant->fifosize)
571 success -= host->variant->fifosize;
572 else
573 success = 0;
574 data->error = -EIO;
576 data->bytes_xfered = round_down(success, data->blksz);
579 if (status & MCI_DATABLOCKEND)
580 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
582 if (status & MCI_DATAEND || data->error) {
583 if (dma_inprogress(host))
584 mmci_dma_unmap(host, data);
585 mmci_stop_data(host);
587 if (!data->error)
588 /* The error clause is handled above, success! */
589 data->bytes_xfered = data->blksz * data->blocks;
591 if (!data->stop) {
592 mmci_request_end(host, data->mrq);
593 } else {
594 mmci_start_command(host, data->stop, 0);
599 static void
600 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
601 unsigned int status)
603 void __iomem *base = host->base;
605 host->cmd = NULL;
607 if (status & MCI_CMDTIMEOUT) {
608 cmd->error = -ETIMEDOUT;
609 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
610 cmd->error = -EILSEQ;
611 } else {
612 cmd->resp[0] = readl(base + MMCIRESPONSE0);
613 cmd->resp[1] = readl(base + MMCIRESPONSE1);
614 cmd->resp[2] = readl(base + MMCIRESPONSE2);
615 cmd->resp[3] = readl(base + MMCIRESPONSE3);
618 if (!cmd->data || cmd->error) {
619 if (host->data)
620 mmci_stop_data(host);
621 mmci_request_end(host, cmd->mrq);
622 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
623 mmci_start_data(host, cmd->data);
627 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
629 void __iomem *base = host->base;
630 char *ptr = buffer;
631 u32 status;
632 int host_remain = host->size;
634 do {
635 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
637 if (count > remain)
638 count = remain;
640 if (count <= 0)
641 break;
643 readsl(base + MMCIFIFO, ptr, count >> 2);
645 ptr += count;
646 remain -= count;
647 host_remain -= count;
649 if (remain == 0)
650 break;
652 status = readl(base + MMCISTATUS);
653 } while (status & MCI_RXDATAAVLBL);
655 return ptr - buffer;
658 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
660 struct variant_data *variant = host->variant;
661 void __iomem *base = host->base;
662 char *ptr = buffer;
664 do {
665 unsigned int count, maxcnt;
667 maxcnt = status & MCI_TXFIFOEMPTY ?
668 variant->fifosize : variant->fifohalfsize;
669 count = min(remain, maxcnt);
672 * The ST Micro variant for SDIO transfer sizes
673 * less then 8 bytes should have clock H/W flow
674 * control disabled.
676 if (variant->sdio &&
677 mmc_card_sdio(host->mmc->card)) {
678 if (count < 8)
679 writel(readl(host->base + MMCICLOCK) &
680 ~variant->clkreg_enable,
681 host->base + MMCICLOCK);
682 else
683 writel(readl(host->base + MMCICLOCK) |
684 variant->clkreg_enable,
685 host->base + MMCICLOCK);
689 * SDIO especially may want to send something that is
690 * not divisible by 4 (as opposed to card sectors
691 * etc), and the FIFO only accept full 32-bit writes.
692 * So compensate by adding +3 on the count, a single
693 * byte become a 32bit write, 7 bytes will be two
694 * 32bit writes etc.
696 writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
698 ptr += count;
699 remain -= count;
701 if (remain == 0)
702 break;
704 status = readl(base + MMCISTATUS);
705 } while (status & MCI_TXFIFOHALFEMPTY);
707 return ptr - buffer;
711 * PIO data transfer IRQ handler.
713 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
715 struct mmci_host *host = dev_id;
716 struct sg_mapping_iter *sg_miter = &host->sg_miter;
717 struct variant_data *variant = host->variant;
718 void __iomem *base = host->base;
719 unsigned long flags;
720 u32 status;
722 status = readl(base + MMCISTATUS);
724 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
726 local_irq_save(flags);
728 do {
729 unsigned int remain, len;
730 char *buffer;
733 * For write, we only need to test the half-empty flag
734 * here - if the FIFO is completely empty, then by
735 * definition it is more than half empty.
737 * For read, check for data available.
739 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
740 break;
742 if (!sg_miter_next(sg_miter))
743 break;
745 buffer = sg_miter->addr;
746 remain = sg_miter->length;
748 len = 0;
749 if (status & MCI_RXACTIVE)
750 len = mmci_pio_read(host, buffer, remain);
751 if (status & MCI_TXACTIVE)
752 len = mmci_pio_write(host, buffer, remain, status);
754 sg_miter->consumed = len;
756 host->size -= len;
757 remain -= len;
759 if (remain)
760 break;
762 status = readl(base + MMCISTATUS);
763 } while (1);
765 sg_miter_stop(sg_miter);
767 local_irq_restore(flags);
770 * If we have less than the fifo 'half-full' threshold to transfer,
771 * trigger a PIO interrupt as soon as any data is available.
773 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
774 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
777 * If we run out of data, disable the data IRQs; this
778 * prevents a race where the FIFO becomes empty before
779 * the chip itself has disabled the data path, and
780 * stops us racing with our data end IRQ.
782 if (host->size == 0) {
783 mmci_set_mask1(host, 0);
784 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
787 return IRQ_HANDLED;
791 * Handle completion of command and data transfers.
793 static irqreturn_t mmci_irq(int irq, void *dev_id)
795 struct mmci_host *host = dev_id;
796 u32 status;
797 int ret = 0;
799 spin_lock(&host->lock);
801 do {
802 struct mmc_command *cmd;
803 struct mmc_data *data;
805 status = readl(host->base + MMCISTATUS);
807 if (host->singleirq) {
808 if (status & readl(host->base + MMCIMASK1))
809 mmci_pio_irq(irq, dev_id);
811 status &= ~MCI_IRQ1MASK;
814 status &= readl(host->base + MMCIMASK0);
815 writel(status, host->base + MMCICLEAR);
817 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
819 data = host->data;
820 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
821 MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
822 mmci_data_irq(host, data, status);
824 cmd = host->cmd;
825 if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
826 mmci_cmd_irq(host, cmd, status);
828 ret = 1;
829 } while (status);
831 spin_unlock(&host->lock);
833 return IRQ_RETVAL(ret);
836 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
838 struct mmci_host *host = mmc_priv(mmc);
839 unsigned long flags;
841 WARN_ON(host->mrq != NULL);
843 if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
844 dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
845 mrq->data->blksz);
846 mrq->cmd->error = -EINVAL;
847 mmc_request_done(mmc, mrq);
848 return;
851 spin_lock_irqsave(&host->lock, flags);
853 host->mrq = mrq;
855 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
856 mmci_start_data(host, mrq->data);
858 mmci_start_command(host, mrq->cmd, 0);
860 spin_unlock_irqrestore(&host->lock, flags);
863 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
865 struct mmci_host *host = mmc_priv(mmc);
866 u32 pwr = 0;
867 unsigned long flags;
868 int ret;
870 switch (ios->power_mode) {
871 case MMC_POWER_OFF:
872 if (host->vcc)
873 ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
874 break;
875 case MMC_POWER_UP:
876 if (host->vcc) {
877 ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
878 if (ret) {
879 dev_err(mmc_dev(mmc), "unable to set OCR\n");
881 * The .set_ios() function in the mmc_host_ops
882 * struct return void, and failing to set the
883 * power should be rare so we print an error
884 * and return here.
886 return;
889 if (host->plat->vdd_handler)
890 pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
891 ios->power_mode);
892 /* The ST version does not have this, fall through to POWER_ON */
893 if (host->hw_designer != AMBA_VENDOR_ST) {
894 pwr |= MCI_PWR_UP;
895 break;
897 case MMC_POWER_ON:
898 pwr |= MCI_PWR_ON;
899 break;
902 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
903 if (host->hw_designer != AMBA_VENDOR_ST)
904 pwr |= MCI_ROD;
905 else {
907 * The ST Micro variant use the ROD bit for something
908 * else and only has OD (Open Drain).
910 pwr |= MCI_OD;
914 spin_lock_irqsave(&host->lock, flags);
916 mmci_set_clkreg(host, ios->clock);
918 if (host->pwr != pwr) {
919 host->pwr = pwr;
920 writel(pwr, host->base + MMCIPOWER);
923 spin_unlock_irqrestore(&host->lock, flags);
926 static int mmci_get_ro(struct mmc_host *mmc)
928 struct mmci_host *host = mmc_priv(mmc);
930 if (host->gpio_wp == -ENOSYS)
931 return -ENOSYS;
933 return gpio_get_value_cansleep(host->gpio_wp);
936 static int mmci_get_cd(struct mmc_host *mmc)
938 struct mmci_host *host = mmc_priv(mmc);
939 struct mmci_platform_data *plat = host->plat;
940 unsigned int status;
942 if (host->gpio_cd == -ENOSYS) {
943 if (!plat->status)
944 return 1; /* Assume always present */
946 status = plat->status(mmc_dev(host->mmc));
947 } else
948 status = !!gpio_get_value_cansleep(host->gpio_cd)
949 ^ plat->cd_invert;
952 * Use positive logic throughout - status is zero for no card,
953 * non-zero for card inserted.
955 return status;
958 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
960 struct mmci_host *host = dev_id;
962 mmc_detect_change(host->mmc, msecs_to_jiffies(500));
964 return IRQ_HANDLED;
967 static const struct mmc_host_ops mmci_ops = {
968 .request = mmci_request,
969 .set_ios = mmci_set_ios,
970 .get_ro = mmci_get_ro,
971 .get_cd = mmci_get_cd,
974 static int __devinit mmci_probe(struct amba_device *dev,
975 const struct amba_id *id)
977 struct mmci_platform_data *plat = dev->dev.platform_data;
978 struct variant_data *variant = id->data;
979 struct mmci_host *host;
980 struct mmc_host *mmc;
981 int ret;
983 /* must have platform data */
984 if (!plat) {
985 ret = -EINVAL;
986 goto out;
989 ret = amba_request_regions(dev, DRIVER_NAME);
990 if (ret)
991 goto out;
993 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
994 if (!mmc) {
995 ret = -ENOMEM;
996 goto rel_regions;
999 host = mmc_priv(mmc);
1000 host->mmc = mmc;
1002 host->gpio_wp = -ENOSYS;
1003 host->gpio_cd = -ENOSYS;
1004 host->gpio_cd_irq = -1;
1006 host->hw_designer = amba_manf(dev);
1007 host->hw_revision = amba_rev(dev);
1008 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1009 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1011 host->clk = clk_get(&dev->dev, NULL);
1012 if (IS_ERR(host->clk)) {
1013 ret = PTR_ERR(host->clk);
1014 host->clk = NULL;
1015 goto host_free;
1018 ret = clk_enable(host->clk);
1019 if (ret)
1020 goto clk_free;
1022 host->plat = plat;
1023 host->variant = variant;
1024 host->mclk = clk_get_rate(host->clk);
1026 * According to the spec, mclk is max 100 MHz,
1027 * so we try to adjust the clock down to this,
1028 * (if possible).
1030 if (host->mclk > 100000000) {
1031 ret = clk_set_rate(host->clk, 100000000);
1032 if (ret < 0)
1033 goto clk_disable;
1034 host->mclk = clk_get_rate(host->clk);
1035 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1036 host->mclk);
1038 host->phybase = dev->res.start;
1039 host->base = ioremap(dev->res.start, resource_size(&dev->res));
1040 if (!host->base) {
1041 ret = -ENOMEM;
1042 goto clk_disable;
1045 mmc->ops = &mmci_ops;
1046 mmc->f_min = (host->mclk + 511) / 512;
1048 * If the platform data supplies a maximum operating
1049 * frequency, this takes precedence. Else, we fall back
1050 * to using the module parameter, which has a (low)
1051 * default value in case it is not specified. Either
1052 * value must not exceed the clock rate into the block,
1053 * of course.
1055 if (plat->f_max)
1056 mmc->f_max = min(host->mclk, plat->f_max);
1057 else
1058 mmc->f_max = min(host->mclk, fmax);
1059 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1061 #ifdef CONFIG_REGULATOR
1062 /* If we're using the regulator framework, try to fetch a regulator */
1063 host->vcc = regulator_get(&dev->dev, "vmmc");
1064 if (IS_ERR(host->vcc))
1065 host->vcc = NULL;
1066 else {
1067 int mask = mmc_regulator_get_ocrmask(host->vcc);
1069 if (mask < 0)
1070 dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1071 mask);
1072 else {
1073 host->mmc->ocr_avail = (u32) mask;
1074 if (plat->ocr_mask)
1075 dev_warn(&dev->dev,
1076 "Provided ocr_mask/setpower will not be used "
1077 "(using regulator instead)\n");
1080 #endif
1081 /* Fall back to platform data if no regulator is found */
1082 if (host->vcc == NULL)
1083 mmc->ocr_avail = plat->ocr_mask;
1084 mmc->caps = plat->capabilities;
1087 * We can do SGIO
1089 mmc->max_segs = NR_SG;
1092 * Since only a certain number of bits are valid in the data length
1093 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1094 * single request.
1096 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1099 * Set the maximum segment size. Since we aren't doing DMA
1100 * (yet) we are only limited by the data length register.
1102 mmc->max_seg_size = mmc->max_req_size;
1105 * Block size can be up to 2048 bytes, but must be a power of two.
1107 mmc->max_blk_size = 2048;
1110 * No limit on the number of blocks transferred.
1112 mmc->max_blk_count = mmc->max_req_size;
1114 spin_lock_init(&host->lock);
1116 writel(0, host->base + MMCIMASK0);
1117 writel(0, host->base + MMCIMASK1);
1118 writel(0xfff, host->base + MMCICLEAR);
1120 if (gpio_is_valid(plat->gpio_cd)) {
1121 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1122 if (ret == 0)
1123 ret = gpio_direction_input(plat->gpio_cd);
1124 if (ret == 0)
1125 host->gpio_cd = plat->gpio_cd;
1126 else if (ret != -ENOSYS)
1127 goto err_gpio_cd;
1129 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1130 mmci_cd_irq, 0,
1131 DRIVER_NAME " (cd)", host);
1132 if (ret >= 0)
1133 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1135 if (gpio_is_valid(plat->gpio_wp)) {
1136 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1137 if (ret == 0)
1138 ret = gpio_direction_input(plat->gpio_wp);
1139 if (ret == 0)
1140 host->gpio_wp = plat->gpio_wp;
1141 else if (ret != -ENOSYS)
1142 goto err_gpio_wp;
1145 if ((host->plat->status || host->gpio_cd != -ENOSYS)
1146 && host->gpio_cd_irq < 0)
1147 mmc->caps |= MMC_CAP_NEEDS_POLL;
1149 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1150 if (ret)
1151 goto unmap;
1153 if (dev->irq[1] == NO_IRQ)
1154 host->singleirq = true;
1155 else {
1156 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1157 DRIVER_NAME " (pio)", host);
1158 if (ret)
1159 goto irq0_free;
1162 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1164 amba_set_drvdata(dev, mmc);
1166 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1167 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1168 amba_rev(dev), (unsigned long long)dev->res.start,
1169 dev->irq[0], dev->irq[1]);
1171 mmci_dma_setup(host);
1173 mmc_add_host(mmc);
1175 return 0;
1177 irq0_free:
1178 free_irq(dev->irq[0], host);
1179 unmap:
1180 if (host->gpio_wp != -ENOSYS)
1181 gpio_free(host->gpio_wp);
1182 err_gpio_wp:
1183 if (host->gpio_cd_irq >= 0)
1184 free_irq(host->gpio_cd_irq, host);
1185 if (host->gpio_cd != -ENOSYS)
1186 gpio_free(host->gpio_cd);
1187 err_gpio_cd:
1188 iounmap(host->base);
1189 clk_disable:
1190 clk_disable(host->clk);
1191 clk_free:
1192 clk_put(host->clk);
1193 host_free:
1194 mmc_free_host(mmc);
1195 rel_regions:
1196 amba_release_regions(dev);
1197 out:
1198 return ret;
1201 static int __devexit mmci_remove(struct amba_device *dev)
1203 struct mmc_host *mmc = amba_get_drvdata(dev);
1205 amba_set_drvdata(dev, NULL);
1207 if (mmc) {
1208 struct mmci_host *host = mmc_priv(mmc);
1210 mmc_remove_host(mmc);
1212 writel(0, host->base + MMCIMASK0);
1213 writel(0, host->base + MMCIMASK1);
1215 writel(0, host->base + MMCICOMMAND);
1216 writel(0, host->base + MMCIDATACTRL);
1218 mmci_dma_release(host);
1219 free_irq(dev->irq[0], host);
1220 if (!host->singleirq)
1221 free_irq(dev->irq[1], host);
1223 if (host->gpio_wp != -ENOSYS)
1224 gpio_free(host->gpio_wp);
1225 if (host->gpio_cd_irq >= 0)
1226 free_irq(host->gpio_cd_irq, host);
1227 if (host->gpio_cd != -ENOSYS)
1228 gpio_free(host->gpio_cd);
1230 iounmap(host->base);
1231 clk_disable(host->clk);
1232 clk_put(host->clk);
1234 if (host->vcc)
1235 mmc_regulator_set_ocr(mmc, host->vcc, 0);
1236 regulator_put(host->vcc);
1238 mmc_free_host(mmc);
1240 amba_release_regions(dev);
1243 return 0;
1246 #ifdef CONFIG_PM
1247 static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1249 struct mmc_host *mmc = amba_get_drvdata(dev);
1250 int ret = 0;
1252 if (mmc) {
1253 struct mmci_host *host = mmc_priv(mmc);
1255 ret = mmc_suspend_host(mmc);
1256 if (ret == 0)
1257 writel(0, host->base + MMCIMASK0);
1260 return ret;
1263 static int mmci_resume(struct amba_device *dev)
1265 struct mmc_host *mmc = amba_get_drvdata(dev);
1266 int ret = 0;
1268 if (mmc) {
1269 struct mmci_host *host = mmc_priv(mmc);
1271 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1273 ret = mmc_resume_host(mmc);
1276 return ret;
1278 #else
1279 #define mmci_suspend NULL
1280 #define mmci_resume NULL
1281 #endif
1283 static struct amba_id mmci_ids[] = {
1285 .id = 0x00041180,
1286 .mask = 0xff0fffff,
1287 .data = &variant_arm,
1290 .id = 0x01041180,
1291 .mask = 0xff0fffff,
1292 .data = &variant_arm_extended_fifo,
1295 .id = 0x00041181,
1296 .mask = 0x000fffff,
1297 .data = &variant_arm,
1299 /* ST Micro variants */
1301 .id = 0x00180180,
1302 .mask = 0x00ffffff,
1303 .data = &variant_u300,
1306 .id = 0x00280180,
1307 .mask = 0x00ffffff,
1308 .data = &variant_u300,
1311 .id = 0x00480180,
1312 .mask = 0x00ffffff,
1313 .data = &variant_ux500,
1315 { 0, 0 },
1318 static struct amba_driver mmci_driver = {
1319 .drv = {
1320 .name = DRIVER_NAME,
1322 .probe = mmci_probe,
1323 .remove = __devexit_p(mmci_remove),
1324 .suspend = mmci_suspend,
1325 .resume = mmci_resume,
1326 .id_table = mmci_ids,
1329 static int __init mmci_init(void)
1331 return amba_driver_register(&mmci_driver);
1334 static void __exit mmci_exit(void)
1336 amba_driver_unregister(&mmci_driver);
1339 module_init(mmci_init);
1340 module_exit(mmci_exit);
1341 module_param(fmax, uint, 0444);
1343 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1344 MODULE_LICENSE("GPL");