2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
23 #include <asm/pgtable.h>
26 #include <linux/hugetlb.h>
27 #include <linux/node.h>
30 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
31 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
32 unsigned long hugepages_treat_as_movable
;
34 static int max_hstate
;
35 unsigned int default_hstate_idx
;
36 struct hstate hstates
[HUGE_MAX_HSTATE
];
38 __initdata
LIST_HEAD(huge_boot_pages
);
40 /* for command line parsing */
41 static struct hstate
* __initdata parsed_hstate
;
42 static unsigned long __initdata default_hstate_max_huge_pages
;
43 static unsigned long __initdata default_hstate_size
;
45 #define for_each_hstate(h) \
46 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
49 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
51 static DEFINE_SPINLOCK(hugetlb_lock
);
54 * Region tracking -- allows tracking of reservations and instantiated pages
55 * across the pages in a mapping.
57 * The region data structures are protected by a combination of the mmap_sem
58 * and the hugetlb_instantion_mutex. To access or modify a region the caller
59 * must either hold the mmap_sem for write, or the mmap_sem for read and
60 * the hugetlb_instantiation mutex:
62 * down_write(&mm->mmap_sem);
64 * down_read(&mm->mmap_sem);
65 * mutex_lock(&hugetlb_instantiation_mutex);
68 struct list_head link
;
73 static long region_add(struct list_head
*head
, long f
, long t
)
75 struct file_region
*rg
, *nrg
, *trg
;
77 /* Locate the region we are either in or before. */
78 list_for_each_entry(rg
, head
, link
)
82 /* Round our left edge to the current segment if it encloses us. */
86 /* Check for and consume any regions we now overlap with. */
88 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
89 if (&rg
->link
== head
)
94 /* If this area reaches higher then extend our area to
95 * include it completely. If this is not the first area
96 * which we intend to reuse, free it. */
109 static long region_chg(struct list_head
*head
, long f
, long t
)
111 struct file_region
*rg
, *nrg
;
114 /* Locate the region we are before or in. */
115 list_for_each_entry(rg
, head
, link
)
119 /* If we are below the current region then a new region is required.
120 * Subtle, allocate a new region at the position but make it zero
121 * size such that we can guarantee to record the reservation. */
122 if (&rg
->link
== head
|| t
< rg
->from
) {
123 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
128 INIT_LIST_HEAD(&nrg
->link
);
129 list_add(&nrg
->link
, rg
->link
.prev
);
134 /* Round our left edge to the current segment if it encloses us. */
139 /* Check for and consume any regions we now overlap with. */
140 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
141 if (&rg
->link
== head
)
146 /* We overlap with this area, if it extends futher than
147 * us then we must extend ourselves. Account for its
148 * existing reservation. */
153 chg
-= rg
->to
- rg
->from
;
158 static long region_truncate(struct list_head
*head
, long end
)
160 struct file_region
*rg
, *trg
;
163 /* Locate the region we are either in or before. */
164 list_for_each_entry(rg
, head
, link
)
167 if (&rg
->link
== head
)
170 /* If we are in the middle of a region then adjust it. */
171 if (end
> rg
->from
) {
174 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
177 /* Drop any remaining regions. */
178 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
179 if (&rg
->link
== head
)
181 chg
+= rg
->to
- rg
->from
;
188 static long region_count(struct list_head
*head
, long f
, long t
)
190 struct file_region
*rg
;
193 /* Locate each segment we overlap with, and count that overlap. */
194 list_for_each_entry(rg
, head
, link
) {
203 seg_from
= max(rg
->from
, f
);
204 seg_to
= min(rg
->to
, t
);
206 chg
+= seg_to
- seg_from
;
213 * Convert the address within this vma to the page offset within
214 * the mapping, in pagecache page units; huge pages here.
216 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
217 struct vm_area_struct
*vma
, unsigned long address
)
219 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
220 (vma
->vm_pgoff
>> huge_page_order(h
));
224 * Return the size of the pages allocated when backing a VMA. In the majority
225 * cases this will be same size as used by the page table entries.
227 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
229 struct hstate
*hstate
;
231 if (!is_vm_hugetlb_page(vma
))
234 hstate
= hstate_vma(vma
);
236 return 1UL << (hstate
->order
+ PAGE_SHIFT
);
238 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
241 * Return the page size being used by the MMU to back a VMA. In the majority
242 * of cases, the page size used by the kernel matches the MMU size. On
243 * architectures where it differs, an architecture-specific version of this
244 * function is required.
246 #ifndef vma_mmu_pagesize
247 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
249 return vma_kernel_pagesize(vma
);
254 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
255 * bits of the reservation map pointer, which are always clear due to
258 #define HPAGE_RESV_OWNER (1UL << 0)
259 #define HPAGE_RESV_UNMAPPED (1UL << 1)
260 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
263 * These helpers are used to track how many pages are reserved for
264 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
265 * is guaranteed to have their future faults succeed.
267 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
268 * the reserve counters are updated with the hugetlb_lock held. It is safe
269 * to reset the VMA at fork() time as it is not in use yet and there is no
270 * chance of the global counters getting corrupted as a result of the values.
272 * The private mapping reservation is represented in a subtly different
273 * manner to a shared mapping. A shared mapping has a region map associated
274 * with the underlying file, this region map represents the backing file
275 * pages which have ever had a reservation assigned which this persists even
276 * after the page is instantiated. A private mapping has a region map
277 * associated with the original mmap which is attached to all VMAs which
278 * reference it, this region map represents those offsets which have consumed
279 * reservation ie. where pages have been instantiated.
281 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
283 return (unsigned long)vma
->vm_private_data
;
286 static void set_vma_private_data(struct vm_area_struct
*vma
,
289 vma
->vm_private_data
= (void *)value
;
294 struct list_head regions
;
297 static struct resv_map
*resv_map_alloc(void)
299 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
303 kref_init(&resv_map
->refs
);
304 INIT_LIST_HEAD(&resv_map
->regions
);
309 static void resv_map_release(struct kref
*ref
)
311 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
313 /* Clear out any active regions before we release the map. */
314 region_truncate(&resv_map
->regions
, 0);
318 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
320 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
321 if (!(vma
->vm_flags
& VM_MAYSHARE
))
322 return (struct resv_map
*)(get_vma_private_data(vma
) &
327 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
329 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
330 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
332 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
333 HPAGE_RESV_MASK
) | (unsigned long)map
);
336 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
338 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
339 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
341 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
344 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
346 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
348 return (get_vma_private_data(vma
) & flag
) != 0;
351 /* Decrement the reserved pages in the hugepage pool by one */
352 static void decrement_hugepage_resv_vma(struct hstate
*h
,
353 struct vm_area_struct
*vma
)
355 if (vma
->vm_flags
& VM_NORESERVE
)
358 if (vma
->vm_flags
& VM_MAYSHARE
) {
359 /* Shared mappings always use reserves */
360 h
->resv_huge_pages
--;
361 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
363 * Only the process that called mmap() has reserves for
366 h
->resv_huge_pages
--;
370 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
371 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
373 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
374 if (!(vma
->vm_flags
& VM_MAYSHARE
))
375 vma
->vm_private_data
= (void *)0;
378 /* Returns true if the VMA has associated reserve pages */
379 static int vma_has_reserves(struct vm_area_struct
*vma
)
381 if (vma
->vm_flags
& VM_MAYSHARE
)
383 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
388 static void clear_gigantic_page(struct page
*page
,
389 unsigned long addr
, unsigned long sz
)
392 struct page
*p
= page
;
395 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++, p
= mem_map_next(p
, page
, i
)) {
397 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
400 static void clear_huge_page(struct page
*page
,
401 unsigned long addr
, unsigned long sz
)
405 if (unlikely(sz
> MAX_ORDER_NR_PAGES
)) {
406 clear_gigantic_page(page
, addr
, sz
);
411 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++) {
413 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
417 static void copy_gigantic_page(struct page
*dst
, struct page
*src
,
418 unsigned long addr
, struct vm_area_struct
*vma
)
421 struct hstate
*h
= hstate_vma(vma
);
422 struct page
*dst_base
= dst
;
423 struct page
*src_base
= src
;
425 for (i
= 0; i
< pages_per_huge_page(h
); ) {
427 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
430 dst
= mem_map_next(dst
, dst_base
, i
);
431 src
= mem_map_next(src
, src_base
, i
);
434 static void copy_huge_page(struct page
*dst
, struct page
*src
,
435 unsigned long addr
, struct vm_area_struct
*vma
)
438 struct hstate
*h
= hstate_vma(vma
);
440 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
441 copy_gigantic_page(dst
, src
, addr
, vma
);
446 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
448 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
452 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
454 int nid
= page_to_nid(page
);
455 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
456 h
->free_huge_pages
++;
457 h
->free_huge_pages_node
[nid
]++;
460 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
461 struct vm_area_struct
*vma
,
462 unsigned long address
, int avoid_reserve
)
465 struct page
*page
= NULL
;
466 struct mempolicy
*mpol
;
467 nodemask_t
*nodemask
;
468 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
469 htlb_alloc_mask
, &mpol
, &nodemask
);
474 * A child process with MAP_PRIVATE mappings created by their parent
475 * have no page reserves. This check ensures that reservations are
476 * not "stolen". The child may still get SIGKILLed
478 if (!vma_has_reserves(vma
) &&
479 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
482 /* If reserves cannot be used, ensure enough pages are in the pool */
483 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
486 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
487 MAX_NR_ZONES
- 1, nodemask
) {
488 nid
= zone_to_nid(zone
);
489 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
) &&
490 !list_empty(&h
->hugepage_freelists
[nid
])) {
491 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
493 list_del(&page
->lru
);
494 h
->free_huge_pages
--;
495 h
->free_huge_pages_node
[nid
]--;
498 decrement_hugepage_resv_vma(h
, vma
);
507 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
511 VM_BUG_ON(h
->order
>= MAX_ORDER
);
514 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
515 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
516 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
517 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
518 1 << PG_private
| 1<< PG_writeback
);
520 set_compound_page_dtor(page
, NULL
);
521 set_page_refcounted(page
);
522 arch_release_hugepage(page
);
523 __free_pages(page
, huge_page_order(h
));
526 struct hstate
*size_to_hstate(unsigned long size
)
531 if (huge_page_size(h
) == size
)
537 static void free_huge_page(struct page
*page
)
540 * Can't pass hstate in here because it is called from the
541 * compound page destructor.
543 struct hstate
*h
= page_hstate(page
);
544 int nid
= page_to_nid(page
);
545 struct address_space
*mapping
;
547 mapping
= (struct address_space
*) page_private(page
);
548 set_page_private(page
, 0);
549 BUG_ON(page_count(page
));
550 INIT_LIST_HEAD(&page
->lru
);
552 spin_lock(&hugetlb_lock
);
553 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
554 update_and_free_page(h
, page
);
555 h
->surplus_huge_pages
--;
556 h
->surplus_huge_pages_node
[nid
]--;
558 enqueue_huge_page(h
, page
);
560 spin_unlock(&hugetlb_lock
);
562 hugetlb_put_quota(mapping
, 1);
565 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
567 set_compound_page_dtor(page
, free_huge_page
);
568 spin_lock(&hugetlb_lock
);
570 h
->nr_huge_pages_node
[nid
]++;
571 spin_unlock(&hugetlb_lock
);
572 put_page(page
); /* free it into the hugepage allocator */
575 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
578 int nr_pages
= 1 << order
;
579 struct page
*p
= page
+ 1;
581 /* we rely on prep_new_huge_page to set the destructor */
582 set_compound_order(page
, order
);
584 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
586 p
->first_page
= page
;
590 int PageHuge(struct page
*page
)
592 compound_page_dtor
*dtor
;
594 if (!PageCompound(page
))
597 page
= compound_head(page
);
598 dtor
= get_compound_page_dtor(page
);
600 return dtor
== free_huge_page
;
603 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
607 if (h
->order
>= MAX_ORDER
)
610 page
= alloc_pages_exact_node(nid
,
611 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
612 __GFP_REPEAT
|__GFP_NOWARN
,
615 if (arch_prepare_hugepage(page
)) {
616 __free_pages(page
, huge_page_order(h
));
619 prep_new_huge_page(h
, page
, nid
);
626 * common helper functions for hstate_next_node_to_{alloc|free}.
627 * We may have allocated or freed a huge page based on a different
628 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
629 * be outside of *nodes_allowed. Ensure that we use an allowed
630 * node for alloc or free.
632 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
634 nid
= next_node(nid
, *nodes_allowed
);
635 if (nid
== MAX_NUMNODES
)
636 nid
= first_node(*nodes_allowed
);
637 VM_BUG_ON(nid
>= MAX_NUMNODES
);
642 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
644 if (!node_isset(nid
, *nodes_allowed
))
645 nid
= next_node_allowed(nid
, nodes_allowed
);
650 * returns the previously saved node ["this node"] from which to
651 * allocate a persistent huge page for the pool and advance the
652 * next node from which to allocate, handling wrap at end of node
655 static int hstate_next_node_to_alloc(struct hstate
*h
,
656 nodemask_t
*nodes_allowed
)
660 VM_BUG_ON(!nodes_allowed
);
662 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
663 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
668 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
675 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
676 next_nid
= start_nid
;
679 page
= alloc_fresh_huge_page_node(h
, next_nid
);
684 next_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
685 } while (next_nid
!= start_nid
);
688 count_vm_event(HTLB_BUDDY_PGALLOC
);
690 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
696 * helper for free_pool_huge_page() - return the previously saved
697 * node ["this node"] from which to free a huge page. Advance the
698 * next node id whether or not we find a free huge page to free so
699 * that the next attempt to free addresses the next node.
701 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
705 VM_BUG_ON(!nodes_allowed
);
707 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
708 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
714 * Free huge page from pool from next node to free.
715 * Attempt to keep persistent huge pages more or less
716 * balanced over allowed nodes.
717 * Called with hugetlb_lock locked.
719 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
726 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
727 next_nid
= start_nid
;
731 * If we're returning unused surplus pages, only examine
732 * nodes with surplus pages.
734 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[next_nid
]) &&
735 !list_empty(&h
->hugepage_freelists
[next_nid
])) {
737 list_entry(h
->hugepage_freelists
[next_nid
].next
,
739 list_del(&page
->lru
);
740 h
->free_huge_pages
--;
741 h
->free_huge_pages_node
[next_nid
]--;
743 h
->surplus_huge_pages
--;
744 h
->surplus_huge_pages_node
[next_nid
]--;
746 update_and_free_page(h
, page
);
750 next_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
751 } while (next_nid
!= start_nid
);
756 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
757 struct vm_area_struct
*vma
, unsigned long address
)
762 if (h
->order
>= MAX_ORDER
)
766 * Assume we will successfully allocate the surplus page to
767 * prevent racing processes from causing the surplus to exceed
770 * This however introduces a different race, where a process B
771 * tries to grow the static hugepage pool while alloc_pages() is
772 * called by process A. B will only examine the per-node
773 * counters in determining if surplus huge pages can be
774 * converted to normal huge pages in adjust_pool_surplus(). A
775 * won't be able to increment the per-node counter, until the
776 * lock is dropped by B, but B doesn't drop hugetlb_lock until
777 * no more huge pages can be converted from surplus to normal
778 * state (and doesn't try to convert again). Thus, we have a
779 * case where a surplus huge page exists, the pool is grown, and
780 * the surplus huge page still exists after, even though it
781 * should just have been converted to a normal huge page. This
782 * does not leak memory, though, as the hugepage will be freed
783 * once it is out of use. It also does not allow the counters to
784 * go out of whack in adjust_pool_surplus() as we don't modify
785 * the node values until we've gotten the hugepage and only the
786 * per-node value is checked there.
788 spin_lock(&hugetlb_lock
);
789 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
790 spin_unlock(&hugetlb_lock
);
794 h
->surplus_huge_pages
++;
796 spin_unlock(&hugetlb_lock
);
798 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
799 __GFP_REPEAT
|__GFP_NOWARN
,
802 if (page
&& arch_prepare_hugepage(page
)) {
803 __free_pages(page
, huge_page_order(h
));
807 spin_lock(&hugetlb_lock
);
810 * This page is now managed by the hugetlb allocator and has
811 * no users -- drop the buddy allocator's reference.
813 put_page_testzero(page
);
814 VM_BUG_ON(page_count(page
));
815 nid
= page_to_nid(page
);
816 set_compound_page_dtor(page
, free_huge_page
);
818 * We incremented the global counters already
820 h
->nr_huge_pages_node
[nid
]++;
821 h
->surplus_huge_pages_node
[nid
]++;
822 __count_vm_event(HTLB_BUDDY_PGALLOC
);
825 h
->surplus_huge_pages
--;
826 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
828 spin_unlock(&hugetlb_lock
);
834 * Increase the hugetlb pool such that it can accomodate a reservation
837 static int gather_surplus_pages(struct hstate
*h
, int delta
)
839 struct list_head surplus_list
;
840 struct page
*page
, *tmp
;
842 int needed
, allocated
;
844 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
846 h
->resv_huge_pages
+= delta
;
851 INIT_LIST_HEAD(&surplus_list
);
855 spin_unlock(&hugetlb_lock
);
856 for (i
= 0; i
< needed
; i
++) {
857 page
= alloc_buddy_huge_page(h
, NULL
, 0);
860 * We were not able to allocate enough pages to
861 * satisfy the entire reservation so we free what
862 * we've allocated so far.
864 spin_lock(&hugetlb_lock
);
869 list_add(&page
->lru
, &surplus_list
);
874 * After retaking hugetlb_lock, we need to recalculate 'needed'
875 * because either resv_huge_pages or free_huge_pages may have changed.
877 spin_lock(&hugetlb_lock
);
878 needed
= (h
->resv_huge_pages
+ delta
) -
879 (h
->free_huge_pages
+ allocated
);
884 * The surplus_list now contains _at_least_ the number of extra pages
885 * needed to accomodate the reservation. Add the appropriate number
886 * of pages to the hugetlb pool and free the extras back to the buddy
887 * allocator. Commit the entire reservation here to prevent another
888 * process from stealing the pages as they are added to the pool but
889 * before they are reserved.
892 h
->resv_huge_pages
+= delta
;
895 /* Free the needed pages to the hugetlb pool */
896 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
899 list_del(&page
->lru
);
900 enqueue_huge_page(h
, page
);
903 /* Free unnecessary surplus pages to the buddy allocator */
904 if (!list_empty(&surplus_list
)) {
905 spin_unlock(&hugetlb_lock
);
906 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
907 list_del(&page
->lru
);
909 * The page has a reference count of zero already, so
910 * call free_huge_page directly instead of using
911 * put_page. This must be done with hugetlb_lock
912 * unlocked which is safe because free_huge_page takes
913 * hugetlb_lock before deciding how to free the page.
915 free_huge_page(page
);
917 spin_lock(&hugetlb_lock
);
924 * When releasing a hugetlb pool reservation, any surplus pages that were
925 * allocated to satisfy the reservation must be explicitly freed if they were
927 * Called with hugetlb_lock held.
929 static void return_unused_surplus_pages(struct hstate
*h
,
930 unsigned long unused_resv_pages
)
932 unsigned long nr_pages
;
934 /* Uncommit the reservation */
935 h
->resv_huge_pages
-= unused_resv_pages
;
937 /* Cannot return gigantic pages currently */
938 if (h
->order
>= MAX_ORDER
)
941 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
944 * We want to release as many surplus pages as possible, spread
945 * evenly across all nodes with memory. Iterate across these nodes
946 * until we can no longer free unreserved surplus pages. This occurs
947 * when the nodes with surplus pages have no free pages.
948 * free_pool_huge_page() will balance the the freed pages across the
949 * on-line nodes with memory and will handle the hstate accounting.
952 if (!free_pool_huge_page(h
, &node_states
[N_HIGH_MEMORY
], 1))
958 * Determine if the huge page at addr within the vma has an associated
959 * reservation. Where it does not we will need to logically increase
960 * reservation and actually increase quota before an allocation can occur.
961 * Where any new reservation would be required the reservation change is
962 * prepared, but not committed. Once the page has been quota'd allocated
963 * an instantiated the change should be committed via vma_commit_reservation.
964 * No action is required on failure.
966 static long vma_needs_reservation(struct hstate
*h
,
967 struct vm_area_struct
*vma
, unsigned long addr
)
969 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
970 struct inode
*inode
= mapping
->host
;
972 if (vma
->vm_flags
& VM_MAYSHARE
) {
973 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
974 return region_chg(&inode
->i_mapping
->private_list
,
977 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
982 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
983 struct resv_map
*reservations
= vma_resv_map(vma
);
985 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
991 static void vma_commit_reservation(struct hstate
*h
,
992 struct vm_area_struct
*vma
, unsigned long addr
)
994 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
995 struct inode
*inode
= mapping
->host
;
997 if (vma
->vm_flags
& VM_MAYSHARE
) {
998 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
999 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
1001 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1002 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1003 struct resv_map
*reservations
= vma_resv_map(vma
);
1005 /* Mark this page used in the map. */
1006 region_add(&reservations
->regions
, idx
, idx
+ 1);
1010 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1011 unsigned long addr
, int avoid_reserve
)
1013 struct hstate
*h
= hstate_vma(vma
);
1015 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1016 struct inode
*inode
= mapping
->host
;
1020 * Processes that did not create the mapping will have no reserves and
1021 * will not have accounted against quota. Check that the quota can be
1022 * made before satisfying the allocation
1023 * MAP_NORESERVE mappings may also need pages and quota allocated
1024 * if no reserve mapping overlaps.
1026 chg
= vma_needs_reservation(h
, vma
, addr
);
1028 return ERR_PTR(chg
);
1030 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
1031 return ERR_PTR(-ENOSPC
);
1033 spin_lock(&hugetlb_lock
);
1034 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
1035 spin_unlock(&hugetlb_lock
);
1038 page
= alloc_buddy_huge_page(h
, vma
, addr
);
1040 hugetlb_put_quota(inode
->i_mapping
, chg
);
1041 return ERR_PTR(-VM_FAULT_OOM
);
1045 set_page_refcounted(page
);
1046 set_page_private(page
, (unsigned long) mapping
);
1048 vma_commit_reservation(h
, vma
, addr
);
1053 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1055 struct huge_bootmem_page
*m
;
1056 int nr_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
1061 addr
= __alloc_bootmem_node_nopanic(
1062 NODE_DATA(hstate_next_node_to_alloc(h
,
1063 &node_states
[N_HIGH_MEMORY
])),
1064 huge_page_size(h
), huge_page_size(h
), 0);
1068 * Use the beginning of the huge page to store the
1069 * huge_bootmem_page struct (until gather_bootmem
1070 * puts them into the mem_map).
1080 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1081 /* Put them into a private list first because mem_map is not up yet */
1082 list_add(&m
->list
, &huge_boot_pages
);
1087 static void prep_compound_huge_page(struct page
*page
, int order
)
1089 if (unlikely(order
> (MAX_ORDER
- 1)))
1090 prep_compound_gigantic_page(page
, order
);
1092 prep_compound_page(page
, order
);
1095 /* Put bootmem huge pages into the standard lists after mem_map is up */
1096 static void __init
gather_bootmem_prealloc(void)
1098 struct huge_bootmem_page
*m
;
1100 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1101 struct page
*page
= virt_to_page(m
);
1102 struct hstate
*h
= m
->hstate
;
1103 __ClearPageReserved(page
);
1104 WARN_ON(page_count(page
) != 1);
1105 prep_compound_huge_page(page
, h
->order
);
1106 prep_new_huge_page(h
, page
, page_to_nid(page
));
1110 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1114 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1115 if (h
->order
>= MAX_ORDER
) {
1116 if (!alloc_bootmem_huge_page(h
))
1118 } else if (!alloc_fresh_huge_page(h
,
1119 &node_states
[N_HIGH_MEMORY
]))
1122 h
->max_huge_pages
= i
;
1125 static void __init
hugetlb_init_hstates(void)
1129 for_each_hstate(h
) {
1130 /* oversize hugepages were init'ed in early boot */
1131 if (h
->order
< MAX_ORDER
)
1132 hugetlb_hstate_alloc_pages(h
);
1136 static char * __init
memfmt(char *buf
, unsigned long n
)
1138 if (n
>= (1UL << 30))
1139 sprintf(buf
, "%lu GB", n
>> 30);
1140 else if (n
>= (1UL << 20))
1141 sprintf(buf
, "%lu MB", n
>> 20);
1143 sprintf(buf
, "%lu KB", n
>> 10);
1147 static void __init
report_hugepages(void)
1151 for_each_hstate(h
) {
1153 printk(KERN_INFO
"HugeTLB registered %s page size, "
1154 "pre-allocated %ld pages\n",
1155 memfmt(buf
, huge_page_size(h
)),
1156 h
->free_huge_pages
);
1160 #ifdef CONFIG_HIGHMEM
1161 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1162 nodemask_t
*nodes_allowed
)
1166 if (h
->order
>= MAX_ORDER
)
1169 for_each_node_mask(i
, *nodes_allowed
) {
1170 struct page
*page
, *next
;
1171 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1172 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1173 if (count
>= h
->nr_huge_pages
)
1175 if (PageHighMem(page
))
1177 list_del(&page
->lru
);
1178 update_and_free_page(h
, page
);
1179 h
->free_huge_pages
--;
1180 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1185 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1186 nodemask_t
*nodes_allowed
)
1192 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1193 * balanced by operating on them in a round-robin fashion.
1194 * Returns 1 if an adjustment was made.
1196 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1199 int start_nid
, next_nid
;
1202 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1205 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
1207 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
1208 next_nid
= start_nid
;
1214 * To shrink on this node, there must be a surplus page
1216 if (!h
->surplus_huge_pages_node
[nid
]) {
1217 next_nid
= hstate_next_node_to_alloc(h
,
1224 * Surplus cannot exceed the total number of pages
1226 if (h
->surplus_huge_pages_node
[nid
] >=
1227 h
->nr_huge_pages_node
[nid
]) {
1228 next_nid
= hstate_next_node_to_free(h
,
1234 h
->surplus_huge_pages
+= delta
;
1235 h
->surplus_huge_pages_node
[nid
] += delta
;
1238 } while (next_nid
!= start_nid
);
1243 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1244 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1245 nodemask_t
*nodes_allowed
)
1247 unsigned long min_count
, ret
;
1249 if (h
->order
>= MAX_ORDER
)
1250 return h
->max_huge_pages
;
1253 * Increase the pool size
1254 * First take pages out of surplus state. Then make up the
1255 * remaining difference by allocating fresh huge pages.
1257 * We might race with alloc_buddy_huge_page() here and be unable
1258 * to convert a surplus huge page to a normal huge page. That is
1259 * not critical, though, it just means the overall size of the
1260 * pool might be one hugepage larger than it needs to be, but
1261 * within all the constraints specified by the sysctls.
1263 spin_lock(&hugetlb_lock
);
1264 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1265 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1269 while (count
> persistent_huge_pages(h
)) {
1271 * If this allocation races such that we no longer need the
1272 * page, free_huge_page will handle it by freeing the page
1273 * and reducing the surplus.
1275 spin_unlock(&hugetlb_lock
);
1276 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1277 spin_lock(&hugetlb_lock
);
1284 * Decrease the pool size
1285 * First return free pages to the buddy allocator (being careful
1286 * to keep enough around to satisfy reservations). Then place
1287 * pages into surplus state as needed so the pool will shrink
1288 * to the desired size as pages become free.
1290 * By placing pages into the surplus state independent of the
1291 * overcommit value, we are allowing the surplus pool size to
1292 * exceed overcommit. There are few sane options here. Since
1293 * alloc_buddy_huge_page() is checking the global counter,
1294 * though, we'll note that we're not allowed to exceed surplus
1295 * and won't grow the pool anywhere else. Not until one of the
1296 * sysctls are changed, or the surplus pages go out of use.
1298 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1299 min_count
= max(count
, min_count
);
1300 try_to_free_low(h
, min_count
, nodes_allowed
);
1301 while (min_count
< persistent_huge_pages(h
)) {
1302 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1305 while (count
< persistent_huge_pages(h
)) {
1306 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1310 ret
= persistent_huge_pages(h
);
1311 spin_unlock(&hugetlb_lock
);
1315 #define HSTATE_ATTR_RO(_name) \
1316 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1318 #define HSTATE_ATTR(_name) \
1319 static struct kobj_attribute _name##_attr = \
1320 __ATTR(_name, 0644, _name##_show, _name##_store)
1322 static struct kobject
*hugepages_kobj
;
1323 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1325 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1327 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1331 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1332 if (hstate_kobjs
[i
] == kobj
) {
1334 *nidp
= NUMA_NO_NODE
;
1338 return kobj_to_node_hstate(kobj
, nidp
);
1341 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1342 struct kobj_attribute
*attr
, char *buf
)
1345 unsigned long nr_huge_pages
;
1348 h
= kobj_to_hstate(kobj
, &nid
);
1349 if (nid
== NUMA_NO_NODE
)
1350 nr_huge_pages
= h
->nr_huge_pages
;
1352 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1354 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1356 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1357 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1358 const char *buf
, size_t len
)
1362 unsigned long count
;
1364 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1366 err
= strict_strtoul(buf
, 10, &count
);
1370 h
= kobj_to_hstate(kobj
, &nid
);
1371 if (nid
== NUMA_NO_NODE
) {
1373 * global hstate attribute
1375 if (!(obey_mempolicy
&&
1376 init_nodemask_of_mempolicy(nodes_allowed
))) {
1377 NODEMASK_FREE(nodes_allowed
);
1378 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1380 } else if (nodes_allowed
) {
1382 * per node hstate attribute: adjust count to global,
1383 * but restrict alloc/free to the specified node.
1385 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1386 init_nodemask_of_node(nodes_allowed
, nid
);
1388 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1390 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1392 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1393 NODEMASK_FREE(nodes_allowed
);
1398 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1399 struct kobj_attribute
*attr
, char *buf
)
1401 return nr_hugepages_show_common(kobj
, attr
, buf
);
1404 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1405 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1407 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1409 HSTATE_ATTR(nr_hugepages
);
1414 * hstate attribute for optionally mempolicy-based constraint on persistent
1415 * huge page alloc/free.
1417 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1418 struct kobj_attribute
*attr
, char *buf
)
1420 return nr_hugepages_show_common(kobj
, attr
, buf
);
1423 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1424 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1426 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1428 HSTATE_ATTR(nr_hugepages_mempolicy
);
1432 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1433 struct kobj_attribute
*attr
, char *buf
)
1435 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1436 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1438 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1439 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1442 unsigned long input
;
1443 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1445 err
= strict_strtoul(buf
, 10, &input
);
1449 spin_lock(&hugetlb_lock
);
1450 h
->nr_overcommit_huge_pages
= input
;
1451 spin_unlock(&hugetlb_lock
);
1455 HSTATE_ATTR(nr_overcommit_hugepages
);
1457 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1458 struct kobj_attribute
*attr
, char *buf
)
1461 unsigned long free_huge_pages
;
1464 h
= kobj_to_hstate(kobj
, &nid
);
1465 if (nid
== NUMA_NO_NODE
)
1466 free_huge_pages
= h
->free_huge_pages
;
1468 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1470 return sprintf(buf
, "%lu\n", free_huge_pages
);
1472 HSTATE_ATTR_RO(free_hugepages
);
1474 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1475 struct kobj_attribute
*attr
, char *buf
)
1477 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1478 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1480 HSTATE_ATTR_RO(resv_hugepages
);
1482 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1483 struct kobj_attribute
*attr
, char *buf
)
1486 unsigned long surplus_huge_pages
;
1489 h
= kobj_to_hstate(kobj
, &nid
);
1490 if (nid
== NUMA_NO_NODE
)
1491 surplus_huge_pages
= h
->surplus_huge_pages
;
1493 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1495 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1497 HSTATE_ATTR_RO(surplus_hugepages
);
1499 static struct attribute
*hstate_attrs
[] = {
1500 &nr_hugepages_attr
.attr
,
1501 &nr_overcommit_hugepages_attr
.attr
,
1502 &free_hugepages_attr
.attr
,
1503 &resv_hugepages_attr
.attr
,
1504 &surplus_hugepages_attr
.attr
,
1506 &nr_hugepages_mempolicy_attr
.attr
,
1511 static struct attribute_group hstate_attr_group
= {
1512 .attrs
= hstate_attrs
,
1515 static int __init
hugetlb_sysfs_add_hstate(struct hstate
*h
,
1516 struct kobject
*parent
,
1517 struct kobject
**hstate_kobjs
,
1518 struct attribute_group
*hstate_attr_group
)
1521 int hi
= h
- hstates
;
1523 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1524 if (!hstate_kobjs
[hi
])
1527 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1529 kobject_put(hstate_kobjs
[hi
]);
1534 static void __init
hugetlb_sysfs_init(void)
1539 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1540 if (!hugepages_kobj
)
1543 for_each_hstate(h
) {
1544 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1545 hstate_kobjs
, &hstate_attr_group
);
1547 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1555 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1556 * with node sysdevs in node_devices[] using a parallel array. The array
1557 * index of a node sysdev or _hstate == node id.
1558 * This is here to avoid any static dependency of the node sysdev driver, in
1559 * the base kernel, on the hugetlb module.
1561 struct node_hstate
{
1562 struct kobject
*hugepages_kobj
;
1563 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1565 struct node_hstate node_hstates
[MAX_NUMNODES
];
1568 * A subset of global hstate attributes for node sysdevs
1570 static struct attribute
*per_node_hstate_attrs
[] = {
1571 &nr_hugepages_attr
.attr
,
1572 &free_hugepages_attr
.attr
,
1573 &surplus_hugepages_attr
.attr
,
1577 static struct attribute_group per_node_hstate_attr_group
= {
1578 .attrs
= per_node_hstate_attrs
,
1582 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1583 * Returns node id via non-NULL nidp.
1585 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1589 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1590 struct node_hstate
*nhs
= &node_hstates
[nid
];
1592 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1593 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1605 * Unregister hstate attributes from a single node sysdev.
1606 * No-op if no hstate attributes attached.
1608 void hugetlb_unregister_node(struct node
*node
)
1611 struct node_hstate
*nhs
= &node_hstates
[node
->sysdev
.id
];
1613 if (!nhs
->hugepages_kobj
)
1614 return; /* no hstate attributes */
1617 if (nhs
->hstate_kobjs
[h
- hstates
]) {
1618 kobject_put(nhs
->hstate_kobjs
[h
- hstates
]);
1619 nhs
->hstate_kobjs
[h
- hstates
] = NULL
;
1622 kobject_put(nhs
->hugepages_kobj
);
1623 nhs
->hugepages_kobj
= NULL
;
1627 * hugetlb module exit: unregister hstate attributes from node sysdevs
1630 static void hugetlb_unregister_all_nodes(void)
1635 * disable node sysdev registrations.
1637 register_hugetlbfs_with_node(NULL
, NULL
);
1640 * remove hstate attributes from any nodes that have them.
1642 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1643 hugetlb_unregister_node(&node_devices
[nid
]);
1647 * Register hstate attributes for a single node sysdev.
1648 * No-op if attributes already registered.
1650 void hugetlb_register_node(struct node
*node
)
1653 struct node_hstate
*nhs
= &node_hstates
[node
->sysdev
.id
];
1656 if (nhs
->hugepages_kobj
)
1657 return; /* already allocated */
1659 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1660 &node
->sysdev
.kobj
);
1661 if (!nhs
->hugepages_kobj
)
1664 for_each_hstate(h
) {
1665 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1667 &per_node_hstate_attr_group
);
1669 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s"
1671 h
->name
, node
->sysdev
.id
);
1672 hugetlb_unregister_node(node
);
1679 * hugetlb init time: register hstate attributes for all registered node
1680 * sysdevs of nodes that have memory. All on-line nodes should have
1681 * registered their associated sysdev by this time.
1683 static void hugetlb_register_all_nodes(void)
1687 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1688 struct node
*node
= &node_devices
[nid
];
1689 if (node
->sysdev
.id
== nid
)
1690 hugetlb_register_node(node
);
1694 * Let the node sysdev driver know we're here so it can
1695 * [un]register hstate attributes on node hotplug.
1697 register_hugetlbfs_with_node(hugetlb_register_node
,
1698 hugetlb_unregister_node
);
1700 #else /* !CONFIG_NUMA */
1702 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1710 static void hugetlb_unregister_all_nodes(void) { }
1712 static void hugetlb_register_all_nodes(void) { }
1716 static void __exit
hugetlb_exit(void)
1720 hugetlb_unregister_all_nodes();
1722 for_each_hstate(h
) {
1723 kobject_put(hstate_kobjs
[h
- hstates
]);
1726 kobject_put(hugepages_kobj
);
1728 module_exit(hugetlb_exit
);
1730 static int __init
hugetlb_init(void)
1732 /* Some platform decide whether they support huge pages at boot
1733 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1734 * there is no such support
1736 if (HPAGE_SHIFT
== 0)
1739 if (!size_to_hstate(default_hstate_size
)) {
1740 default_hstate_size
= HPAGE_SIZE
;
1741 if (!size_to_hstate(default_hstate_size
))
1742 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1744 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1745 if (default_hstate_max_huge_pages
)
1746 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1748 hugetlb_init_hstates();
1750 gather_bootmem_prealloc();
1754 hugetlb_sysfs_init();
1756 hugetlb_register_all_nodes();
1760 module_init(hugetlb_init
);
1762 /* Should be called on processing a hugepagesz=... option */
1763 void __init
hugetlb_add_hstate(unsigned order
)
1768 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1769 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1772 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1774 h
= &hstates
[max_hstate
++];
1776 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1777 h
->nr_huge_pages
= 0;
1778 h
->free_huge_pages
= 0;
1779 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1780 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1781 h
->next_nid_to_alloc
= first_node(node_states
[N_HIGH_MEMORY
]);
1782 h
->next_nid_to_free
= first_node(node_states
[N_HIGH_MEMORY
]);
1783 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1784 huge_page_size(h
)/1024);
1789 static int __init
hugetlb_nrpages_setup(char *s
)
1792 static unsigned long *last_mhp
;
1795 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1796 * so this hugepages= parameter goes to the "default hstate".
1799 mhp
= &default_hstate_max_huge_pages
;
1801 mhp
= &parsed_hstate
->max_huge_pages
;
1803 if (mhp
== last_mhp
) {
1804 printk(KERN_WARNING
"hugepages= specified twice without "
1805 "interleaving hugepagesz=, ignoring\n");
1809 if (sscanf(s
, "%lu", mhp
) <= 0)
1813 * Global state is always initialized later in hugetlb_init.
1814 * But we need to allocate >= MAX_ORDER hstates here early to still
1815 * use the bootmem allocator.
1817 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1818 hugetlb_hstate_alloc_pages(parsed_hstate
);
1824 __setup("hugepages=", hugetlb_nrpages_setup
);
1826 static int __init
hugetlb_default_setup(char *s
)
1828 default_hstate_size
= memparse(s
, &s
);
1831 __setup("default_hugepagesz=", hugetlb_default_setup
);
1833 static unsigned int cpuset_mems_nr(unsigned int *array
)
1836 unsigned int nr
= 0;
1838 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1844 #ifdef CONFIG_SYSCTL
1845 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
1846 struct ctl_table
*table
, int write
,
1847 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1849 struct hstate
*h
= &default_hstate
;
1853 tmp
= h
->max_huge_pages
;
1856 table
->maxlen
= sizeof(unsigned long);
1857 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1860 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
1861 GFP_KERNEL
| __GFP_NORETRY
);
1862 if (!(obey_mempolicy
&&
1863 init_nodemask_of_mempolicy(nodes_allowed
))) {
1864 NODEMASK_FREE(nodes_allowed
);
1865 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1867 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
1869 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1870 NODEMASK_FREE(nodes_allowed
);
1876 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1877 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1880 return hugetlb_sysctl_handler_common(false, table
, write
,
1881 buffer
, length
, ppos
);
1885 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
1886 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1888 return hugetlb_sysctl_handler_common(true, table
, write
,
1889 buffer
, length
, ppos
);
1891 #endif /* CONFIG_NUMA */
1893 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1894 void __user
*buffer
,
1895 size_t *length
, loff_t
*ppos
)
1897 proc_dointvec(table
, write
, buffer
, length
, ppos
);
1898 if (hugepages_treat_as_movable
)
1899 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1901 htlb_alloc_mask
= GFP_HIGHUSER
;
1905 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1906 void __user
*buffer
,
1907 size_t *length
, loff_t
*ppos
)
1909 struct hstate
*h
= &default_hstate
;
1913 tmp
= h
->nr_overcommit_huge_pages
;
1916 table
->maxlen
= sizeof(unsigned long);
1917 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1920 spin_lock(&hugetlb_lock
);
1921 h
->nr_overcommit_huge_pages
= tmp
;
1922 spin_unlock(&hugetlb_lock
);
1928 #endif /* CONFIG_SYSCTL */
1930 void hugetlb_report_meminfo(struct seq_file
*m
)
1932 struct hstate
*h
= &default_hstate
;
1934 "HugePages_Total: %5lu\n"
1935 "HugePages_Free: %5lu\n"
1936 "HugePages_Rsvd: %5lu\n"
1937 "HugePages_Surp: %5lu\n"
1938 "Hugepagesize: %8lu kB\n",
1942 h
->surplus_huge_pages
,
1943 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1946 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1948 struct hstate
*h
= &default_hstate
;
1950 "Node %d HugePages_Total: %5u\n"
1951 "Node %d HugePages_Free: %5u\n"
1952 "Node %d HugePages_Surp: %5u\n",
1953 nid
, h
->nr_huge_pages_node
[nid
],
1954 nid
, h
->free_huge_pages_node
[nid
],
1955 nid
, h
->surplus_huge_pages_node
[nid
]);
1958 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1959 unsigned long hugetlb_total_pages(void)
1961 struct hstate
*h
= &default_hstate
;
1962 return h
->nr_huge_pages
* pages_per_huge_page(h
);
1965 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
1969 spin_lock(&hugetlb_lock
);
1971 * When cpuset is configured, it breaks the strict hugetlb page
1972 * reservation as the accounting is done on a global variable. Such
1973 * reservation is completely rubbish in the presence of cpuset because
1974 * the reservation is not checked against page availability for the
1975 * current cpuset. Application can still potentially OOM'ed by kernel
1976 * with lack of free htlb page in cpuset that the task is in.
1977 * Attempt to enforce strict accounting with cpuset is almost
1978 * impossible (or too ugly) because cpuset is too fluid that
1979 * task or memory node can be dynamically moved between cpusets.
1981 * The change of semantics for shared hugetlb mapping with cpuset is
1982 * undesirable. However, in order to preserve some of the semantics,
1983 * we fall back to check against current free page availability as
1984 * a best attempt and hopefully to minimize the impact of changing
1985 * semantics that cpuset has.
1988 if (gather_surplus_pages(h
, delta
) < 0)
1991 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
1992 return_unused_surplus_pages(h
, delta
);
1999 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2002 spin_unlock(&hugetlb_lock
);
2006 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2008 struct resv_map
*reservations
= vma_resv_map(vma
);
2011 * This new VMA should share its siblings reservation map if present.
2012 * The VMA will only ever have a valid reservation map pointer where
2013 * it is being copied for another still existing VMA. As that VMA
2014 * has a reference to the reservation map it cannot dissappear until
2015 * after this open call completes. It is therefore safe to take a
2016 * new reference here without additional locking.
2019 kref_get(&reservations
->refs
);
2022 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2024 struct hstate
*h
= hstate_vma(vma
);
2025 struct resv_map
*reservations
= vma_resv_map(vma
);
2026 unsigned long reserve
;
2027 unsigned long start
;
2031 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2032 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2034 reserve
= (end
- start
) -
2035 region_count(&reservations
->regions
, start
, end
);
2037 kref_put(&reservations
->refs
, resv_map_release
);
2040 hugetlb_acct_memory(h
, -reserve
);
2041 hugetlb_put_quota(vma
->vm_file
->f_mapping
, reserve
);
2047 * We cannot handle pagefaults against hugetlb pages at all. They cause
2048 * handle_mm_fault() to try to instantiate regular-sized pages in the
2049 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2052 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2058 const struct vm_operations_struct hugetlb_vm_ops
= {
2059 .fault
= hugetlb_vm_op_fault
,
2060 .open
= hugetlb_vm_op_open
,
2061 .close
= hugetlb_vm_op_close
,
2064 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2071 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
2073 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
2075 entry
= pte_mkyoung(entry
);
2076 entry
= pte_mkhuge(entry
);
2081 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2082 unsigned long address
, pte_t
*ptep
)
2086 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
2087 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
2088 update_mmu_cache(vma
, address
, entry
);
2093 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2094 struct vm_area_struct
*vma
)
2096 pte_t
*src_pte
, *dst_pte
, entry
;
2097 struct page
*ptepage
;
2100 struct hstate
*h
= hstate_vma(vma
);
2101 unsigned long sz
= huge_page_size(h
);
2103 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2105 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2106 src_pte
= huge_pte_offset(src
, addr
);
2109 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2113 /* If the pagetables are shared don't copy or take references */
2114 if (dst_pte
== src_pte
)
2117 spin_lock(&dst
->page_table_lock
);
2118 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
2119 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
2121 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2122 entry
= huge_ptep_get(src_pte
);
2123 ptepage
= pte_page(entry
);
2125 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2127 spin_unlock(&src
->page_table_lock
);
2128 spin_unlock(&dst
->page_table_lock
);
2136 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2137 unsigned long end
, struct page
*ref_page
)
2139 struct mm_struct
*mm
= vma
->vm_mm
;
2140 unsigned long address
;
2145 struct hstate
*h
= hstate_vma(vma
);
2146 unsigned long sz
= huge_page_size(h
);
2149 * A page gathering list, protected by per file i_mmap_lock. The
2150 * lock is used to avoid list corruption from multiple unmapping
2151 * of the same page since we are using page->lru.
2153 LIST_HEAD(page_list
);
2155 WARN_ON(!is_vm_hugetlb_page(vma
));
2156 BUG_ON(start
& ~huge_page_mask(h
));
2157 BUG_ON(end
& ~huge_page_mask(h
));
2159 mmu_notifier_invalidate_range_start(mm
, start
, end
);
2160 spin_lock(&mm
->page_table_lock
);
2161 for (address
= start
; address
< end
; address
+= sz
) {
2162 ptep
= huge_pte_offset(mm
, address
);
2166 if (huge_pmd_unshare(mm
, &address
, ptep
))
2170 * If a reference page is supplied, it is because a specific
2171 * page is being unmapped, not a range. Ensure the page we
2172 * are about to unmap is the actual page of interest.
2175 pte
= huge_ptep_get(ptep
);
2176 if (huge_pte_none(pte
))
2178 page
= pte_page(pte
);
2179 if (page
!= ref_page
)
2183 * Mark the VMA as having unmapped its page so that
2184 * future faults in this VMA will fail rather than
2185 * looking like data was lost
2187 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2190 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2191 if (huge_pte_none(pte
))
2194 page
= pte_page(pte
);
2196 set_page_dirty(page
);
2197 list_add(&page
->lru
, &page_list
);
2199 spin_unlock(&mm
->page_table_lock
);
2200 flush_tlb_range(vma
, start
, end
);
2201 mmu_notifier_invalidate_range_end(mm
, start
, end
);
2202 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
2203 list_del(&page
->lru
);
2208 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2209 unsigned long end
, struct page
*ref_page
)
2211 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2212 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
2213 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2217 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2218 * mappping it owns the reserve page for. The intention is to unmap the page
2219 * from other VMAs and let the children be SIGKILLed if they are faulting the
2222 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2223 struct page
*page
, unsigned long address
)
2225 struct hstate
*h
= hstate_vma(vma
);
2226 struct vm_area_struct
*iter_vma
;
2227 struct address_space
*mapping
;
2228 struct prio_tree_iter iter
;
2232 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2233 * from page cache lookup which is in HPAGE_SIZE units.
2235 address
= address
& huge_page_mask(h
);
2236 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
2237 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
2238 mapping
= (struct address_space
*)page_private(page
);
2240 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2241 /* Do not unmap the current VMA */
2242 if (iter_vma
== vma
)
2246 * Unmap the page from other VMAs without their own reserves.
2247 * They get marked to be SIGKILLed if they fault in these
2248 * areas. This is because a future no-page fault on this VMA
2249 * could insert a zeroed page instead of the data existing
2250 * from the time of fork. This would look like data corruption
2252 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2253 unmap_hugepage_range(iter_vma
,
2254 address
, address
+ huge_page_size(h
),
2261 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2262 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2263 struct page
*pagecache_page
)
2265 struct hstate
*h
= hstate_vma(vma
);
2266 struct page
*old_page
, *new_page
;
2268 int outside_reserve
= 0;
2270 old_page
= pte_page(pte
);
2273 /* If no-one else is actually using this page, avoid the copy
2274 * and just make the page writable */
2275 avoidcopy
= (page_count(old_page
) == 1);
2277 set_huge_ptep_writable(vma
, address
, ptep
);
2282 * If the process that created a MAP_PRIVATE mapping is about to
2283 * perform a COW due to a shared page count, attempt to satisfy
2284 * the allocation without using the existing reserves. The pagecache
2285 * page is used to determine if the reserve at this address was
2286 * consumed or not. If reserves were used, a partial faulted mapping
2287 * at the time of fork() could consume its reserves on COW instead
2288 * of the full address range.
2290 if (!(vma
->vm_flags
& VM_MAYSHARE
) &&
2291 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2292 old_page
!= pagecache_page
)
2293 outside_reserve
= 1;
2295 page_cache_get(old_page
);
2296 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2298 if (IS_ERR(new_page
)) {
2299 page_cache_release(old_page
);
2302 * If a process owning a MAP_PRIVATE mapping fails to COW,
2303 * it is due to references held by a child and an insufficient
2304 * huge page pool. To guarantee the original mappers
2305 * reliability, unmap the page from child processes. The child
2306 * may get SIGKILLed if it later faults.
2308 if (outside_reserve
) {
2309 BUG_ON(huge_pte_none(pte
));
2310 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2311 BUG_ON(page_count(old_page
) != 1);
2312 BUG_ON(huge_pte_none(pte
));
2313 goto retry_avoidcopy
;
2318 return -PTR_ERR(new_page
);
2321 spin_unlock(&mm
->page_table_lock
);
2322 copy_huge_page(new_page
, old_page
, address
, vma
);
2323 __SetPageUptodate(new_page
);
2324 spin_lock(&mm
->page_table_lock
);
2326 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2327 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2329 huge_ptep_clear_flush(vma
, address
, ptep
);
2330 set_huge_pte_at(mm
, address
, ptep
,
2331 make_huge_pte(vma
, new_page
, 1));
2332 /* Make the old page be freed below */
2333 new_page
= old_page
;
2335 page_cache_release(new_page
);
2336 page_cache_release(old_page
);
2340 /* Return the pagecache page at a given address within a VMA */
2341 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2342 struct vm_area_struct
*vma
, unsigned long address
)
2344 struct address_space
*mapping
;
2347 mapping
= vma
->vm_file
->f_mapping
;
2348 idx
= vma_hugecache_offset(h
, vma
, address
);
2350 return find_lock_page(mapping
, idx
);
2354 * Return whether there is a pagecache page to back given address within VMA.
2355 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2357 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2358 struct vm_area_struct
*vma
, unsigned long address
)
2360 struct address_space
*mapping
;
2364 mapping
= vma
->vm_file
->f_mapping
;
2365 idx
= vma_hugecache_offset(h
, vma
, address
);
2367 page
= find_get_page(mapping
, idx
);
2370 return page
!= NULL
;
2373 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2374 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2376 struct hstate
*h
= hstate_vma(vma
);
2377 int ret
= VM_FAULT_SIGBUS
;
2381 struct address_space
*mapping
;
2385 * Currently, we are forced to kill the process in the event the
2386 * original mapper has unmapped pages from the child due to a failed
2387 * COW. Warn that such a situation has occured as it may not be obvious
2389 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2391 "PID %d killed due to inadequate hugepage pool\n",
2396 mapping
= vma
->vm_file
->f_mapping
;
2397 idx
= vma_hugecache_offset(h
, vma
, address
);
2400 * Use page lock to guard against racing truncation
2401 * before we get page_table_lock.
2404 page
= find_lock_page(mapping
, idx
);
2406 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2409 page
= alloc_huge_page(vma
, address
, 0);
2411 ret
= -PTR_ERR(page
);
2414 clear_huge_page(page
, address
, huge_page_size(h
));
2415 __SetPageUptodate(page
);
2417 if (vma
->vm_flags
& VM_MAYSHARE
) {
2419 struct inode
*inode
= mapping
->host
;
2421 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2429 spin_lock(&inode
->i_lock
);
2430 inode
->i_blocks
+= blocks_per_huge_page(h
);
2431 spin_unlock(&inode
->i_lock
);
2437 * If we are going to COW a private mapping later, we examine the
2438 * pending reservations for this page now. This will ensure that
2439 * any allocations necessary to record that reservation occur outside
2442 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2443 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2445 goto backout_unlocked
;
2448 spin_lock(&mm
->page_table_lock
);
2449 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2454 if (!huge_pte_none(huge_ptep_get(ptep
)))
2457 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2458 && (vma
->vm_flags
& VM_SHARED
)));
2459 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2461 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2462 /* Optimization, do the COW without a second fault */
2463 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2466 spin_unlock(&mm
->page_table_lock
);
2472 spin_unlock(&mm
->page_table_lock
);
2479 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2480 unsigned long address
, unsigned int flags
)
2485 struct page
*pagecache_page
= NULL
;
2486 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2487 struct hstate
*h
= hstate_vma(vma
);
2489 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2491 return VM_FAULT_OOM
;
2494 * Serialize hugepage allocation and instantiation, so that we don't
2495 * get spurious allocation failures if two CPUs race to instantiate
2496 * the same page in the page cache.
2498 mutex_lock(&hugetlb_instantiation_mutex
);
2499 entry
= huge_ptep_get(ptep
);
2500 if (huge_pte_none(entry
)) {
2501 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2508 * If we are going to COW the mapping later, we examine the pending
2509 * reservations for this page now. This will ensure that any
2510 * allocations necessary to record that reservation occur outside the
2511 * spinlock. For private mappings, we also lookup the pagecache
2512 * page now as it is used to determine if a reservation has been
2515 if ((flags
& FAULT_FLAG_WRITE
) && !pte_write(entry
)) {
2516 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2521 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2522 pagecache_page
= hugetlbfs_pagecache_page(h
,
2526 spin_lock(&mm
->page_table_lock
);
2527 /* Check for a racing update before calling hugetlb_cow */
2528 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2529 goto out_page_table_lock
;
2532 if (flags
& FAULT_FLAG_WRITE
) {
2533 if (!pte_write(entry
)) {
2534 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2536 goto out_page_table_lock
;
2538 entry
= pte_mkdirty(entry
);
2540 entry
= pte_mkyoung(entry
);
2541 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
2542 flags
& FAULT_FLAG_WRITE
))
2543 update_mmu_cache(vma
, address
, entry
);
2545 out_page_table_lock
:
2546 spin_unlock(&mm
->page_table_lock
);
2548 if (pagecache_page
) {
2549 unlock_page(pagecache_page
);
2550 put_page(pagecache_page
);
2554 mutex_unlock(&hugetlb_instantiation_mutex
);
2559 /* Can be overriden by architectures */
2560 __attribute__((weak
)) struct page
*
2561 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2562 pud_t
*pud
, int write
)
2568 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2569 struct page
**pages
, struct vm_area_struct
**vmas
,
2570 unsigned long *position
, int *length
, int i
,
2573 unsigned long pfn_offset
;
2574 unsigned long vaddr
= *position
;
2575 int remainder
= *length
;
2576 struct hstate
*h
= hstate_vma(vma
);
2578 spin_lock(&mm
->page_table_lock
);
2579 while (vaddr
< vma
->vm_end
&& remainder
) {
2585 * Some archs (sparc64, sh*) have multiple pte_ts to
2586 * each hugepage. We have to make sure we get the
2587 * first, for the page indexing below to work.
2589 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2590 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
2593 * When coredumping, it suits get_dump_page if we just return
2594 * an error where there's an empty slot with no huge pagecache
2595 * to back it. This way, we avoid allocating a hugepage, and
2596 * the sparse dumpfile avoids allocating disk blocks, but its
2597 * huge holes still show up with zeroes where they need to be.
2599 if (absent
&& (flags
& FOLL_DUMP
) &&
2600 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
2606 ((flags
& FOLL_WRITE
) && !pte_write(huge_ptep_get(pte
)))) {
2609 spin_unlock(&mm
->page_table_lock
);
2610 ret
= hugetlb_fault(mm
, vma
, vaddr
,
2611 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
2612 spin_lock(&mm
->page_table_lock
);
2613 if (!(ret
& VM_FAULT_ERROR
))
2620 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2621 page
= pte_page(huge_ptep_get(pte
));
2624 pages
[i
] = mem_map_offset(page
, pfn_offset
);
2635 if (vaddr
< vma
->vm_end
&& remainder
&&
2636 pfn_offset
< pages_per_huge_page(h
)) {
2638 * We use pfn_offset to avoid touching the pageframes
2639 * of this compound page.
2644 spin_unlock(&mm
->page_table_lock
);
2645 *length
= remainder
;
2648 return i
? i
: -EFAULT
;
2651 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2652 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2654 struct mm_struct
*mm
= vma
->vm_mm
;
2655 unsigned long start
= address
;
2658 struct hstate
*h
= hstate_vma(vma
);
2660 BUG_ON(address
>= end
);
2661 flush_cache_range(vma
, address
, end
);
2663 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2664 spin_lock(&mm
->page_table_lock
);
2665 for (; address
< end
; address
+= huge_page_size(h
)) {
2666 ptep
= huge_pte_offset(mm
, address
);
2669 if (huge_pmd_unshare(mm
, &address
, ptep
))
2671 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2672 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2673 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2674 set_huge_pte_at(mm
, address
, ptep
, pte
);
2677 spin_unlock(&mm
->page_table_lock
);
2678 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2680 flush_tlb_range(vma
, start
, end
);
2683 int hugetlb_reserve_pages(struct inode
*inode
,
2685 struct vm_area_struct
*vma
,
2689 struct hstate
*h
= hstate_inode(inode
);
2692 * Only apply hugepage reservation if asked. At fault time, an
2693 * attempt will be made for VM_NORESERVE to allocate a page
2694 * and filesystem quota without using reserves
2696 if (acctflag
& VM_NORESERVE
)
2700 * Shared mappings base their reservation on the number of pages that
2701 * are already allocated on behalf of the file. Private mappings need
2702 * to reserve the full area even if read-only as mprotect() may be
2703 * called to make the mapping read-write. Assume !vma is a shm mapping
2705 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2706 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2708 struct resv_map
*resv_map
= resv_map_alloc();
2714 set_vma_resv_map(vma
, resv_map
);
2715 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2721 /* There must be enough filesystem quota for the mapping */
2722 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2726 * Check enough hugepages are available for the reservation.
2727 * Hand back the quota if there are not
2729 ret
= hugetlb_acct_memory(h
, chg
);
2731 hugetlb_put_quota(inode
->i_mapping
, chg
);
2736 * Account for the reservations made. Shared mappings record regions
2737 * that have reservations as they are shared by multiple VMAs.
2738 * When the last VMA disappears, the region map says how much
2739 * the reservation was and the page cache tells how much of
2740 * the reservation was consumed. Private mappings are per-VMA and
2741 * only the consumed reservations are tracked. When the VMA
2742 * disappears, the original reservation is the VMA size and the
2743 * consumed reservations are stored in the map. Hence, nothing
2744 * else has to be done for private mappings here
2746 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2747 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2751 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2753 struct hstate
*h
= hstate_inode(inode
);
2754 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2756 spin_lock(&inode
->i_lock
);
2757 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
2758 spin_unlock(&inode
->i_lock
);
2760 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2761 hugetlb_acct_memory(h
, -(chg
- freed
));