xen: cleancache shim to Xen Transcendent Memory
[linux-2.6/next.git] / fs / ext4 / super.c
blob51476477c818e97d900c36bbd325f3dec44e40d0
1 /*
2 * linux/fs/ext4/super.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
47 #include "ext4.h"
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
56 static struct proc_dir_entry *ext4_proc_root;
57 static struct kset *ext4_kset;
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ext4_features *ext4_feat;
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static const char *ext4_decode_error(struct super_block *sb, int errno,
71 char nbuf[16]);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static void ext4_write_super(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
80 static void ext4_destroy_lazyinit_thread(void);
81 static void ext4_unregister_li_request(struct super_block *sb);
82 static void ext4_clear_request_list(void);
84 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
85 static struct file_system_type ext3_fs_type = {
86 .owner = THIS_MODULE,
87 .name = "ext3",
88 .mount = ext4_mount,
89 .kill_sb = kill_block_super,
90 .fs_flags = FS_REQUIRES_DEV,
92 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
93 #else
94 #define IS_EXT3_SB(sb) (0)
95 #endif
97 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
98 struct ext4_group_desc *bg)
100 return le32_to_cpu(bg->bg_block_bitmap_lo) |
101 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
102 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
105 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
106 struct ext4_group_desc *bg)
108 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
109 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
110 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
113 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
114 struct ext4_group_desc *bg)
116 return le32_to_cpu(bg->bg_inode_table_lo) |
117 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
118 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
121 __u32 ext4_free_blks_count(struct super_block *sb,
122 struct ext4_group_desc *bg)
124 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
125 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
126 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
129 __u32 ext4_free_inodes_count(struct super_block *sb,
130 struct ext4_group_desc *bg)
132 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
133 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
134 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
137 __u32 ext4_used_dirs_count(struct super_block *sb,
138 struct ext4_group_desc *bg)
140 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
141 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
142 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
145 __u32 ext4_itable_unused_count(struct super_block *sb,
146 struct ext4_group_desc *bg)
148 return le16_to_cpu(bg->bg_itable_unused_lo) |
149 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
150 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
153 void ext4_block_bitmap_set(struct super_block *sb,
154 struct ext4_group_desc *bg, ext4_fsblk_t blk)
156 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
157 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
158 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
161 void ext4_inode_bitmap_set(struct super_block *sb,
162 struct ext4_group_desc *bg, ext4_fsblk_t blk)
164 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
165 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
166 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
169 void ext4_inode_table_set(struct super_block *sb,
170 struct ext4_group_desc *bg, ext4_fsblk_t blk)
172 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
173 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
174 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
177 void ext4_free_blks_set(struct super_block *sb,
178 struct ext4_group_desc *bg, __u32 count)
180 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
181 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
182 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
185 void ext4_free_inodes_set(struct super_block *sb,
186 struct ext4_group_desc *bg, __u32 count)
188 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
189 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
190 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
193 void ext4_used_dirs_set(struct super_block *sb,
194 struct ext4_group_desc *bg, __u32 count)
196 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
197 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
198 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
201 void ext4_itable_unused_set(struct super_block *sb,
202 struct ext4_group_desc *bg, __u32 count)
204 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
205 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
206 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
210 /* Just increment the non-pointer handle value */
211 static handle_t *ext4_get_nojournal(void)
213 handle_t *handle = current->journal_info;
214 unsigned long ref_cnt = (unsigned long)handle;
216 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
218 ref_cnt++;
219 handle = (handle_t *)ref_cnt;
221 current->journal_info = handle;
222 return handle;
226 /* Decrement the non-pointer handle value */
227 static void ext4_put_nojournal(handle_t *handle)
229 unsigned long ref_cnt = (unsigned long)handle;
231 BUG_ON(ref_cnt == 0);
233 ref_cnt--;
234 handle = (handle_t *)ref_cnt;
236 current->journal_info = handle;
240 * Wrappers for jbd2_journal_start/end.
242 * The only special thing we need to do here is to make sure that all
243 * journal_end calls result in the superblock being marked dirty, so
244 * that sync() will call the filesystem's write_super callback if
245 * appropriate.
247 * To avoid j_barrier hold in userspace when a user calls freeze(),
248 * ext4 prevents a new handle from being started by s_frozen, which
249 * is in an upper layer.
251 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
253 journal_t *journal;
254 handle_t *handle;
256 if (sb->s_flags & MS_RDONLY)
257 return ERR_PTR(-EROFS);
259 journal = EXT4_SB(sb)->s_journal;
260 handle = ext4_journal_current_handle();
263 * If a handle has been started, it should be allowed to
264 * finish, otherwise deadlock could happen between freeze
265 * and others(e.g. truncate) due to the restart of the
266 * journal handle if the filesystem is forzen and active
267 * handles are not stopped.
269 if (!handle)
270 vfs_check_frozen(sb, SB_FREEZE_TRANS);
272 if (!journal)
273 return ext4_get_nojournal();
275 * Special case here: if the journal has aborted behind our
276 * backs (eg. EIO in the commit thread), then we still need to
277 * take the FS itself readonly cleanly.
279 if (is_journal_aborted(journal)) {
280 ext4_abort(sb, "Detected aborted journal");
281 return ERR_PTR(-EROFS);
283 return jbd2_journal_start(journal, nblocks);
287 * The only special thing we need to do here is to make sure that all
288 * jbd2_journal_stop calls result in the superblock being marked dirty, so
289 * that sync() will call the filesystem's write_super callback if
290 * appropriate.
292 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
294 struct super_block *sb;
295 int err;
296 int rc;
298 if (!ext4_handle_valid(handle)) {
299 ext4_put_nojournal(handle);
300 return 0;
302 sb = handle->h_transaction->t_journal->j_private;
303 err = handle->h_err;
304 rc = jbd2_journal_stop(handle);
306 if (!err)
307 err = rc;
308 if (err)
309 __ext4_std_error(sb, where, line, err);
310 return err;
313 void ext4_journal_abort_handle(const char *caller, unsigned int line,
314 const char *err_fn, struct buffer_head *bh,
315 handle_t *handle, int err)
317 char nbuf[16];
318 const char *errstr = ext4_decode_error(NULL, err, nbuf);
320 BUG_ON(!ext4_handle_valid(handle));
322 if (bh)
323 BUFFER_TRACE(bh, "abort");
325 if (!handle->h_err)
326 handle->h_err = err;
328 if (is_handle_aborted(handle))
329 return;
331 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
332 caller, line, errstr, err_fn);
334 jbd2_journal_abort_handle(handle);
337 static void __save_error_info(struct super_block *sb, const char *func,
338 unsigned int line)
340 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
342 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
343 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
344 es->s_last_error_time = cpu_to_le32(get_seconds());
345 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
346 es->s_last_error_line = cpu_to_le32(line);
347 if (!es->s_first_error_time) {
348 es->s_first_error_time = es->s_last_error_time;
349 strncpy(es->s_first_error_func, func,
350 sizeof(es->s_first_error_func));
351 es->s_first_error_line = cpu_to_le32(line);
352 es->s_first_error_ino = es->s_last_error_ino;
353 es->s_first_error_block = es->s_last_error_block;
356 * Start the daily error reporting function if it hasn't been
357 * started already
359 if (!es->s_error_count)
360 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
361 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
364 static void save_error_info(struct super_block *sb, const char *func,
365 unsigned int line)
367 __save_error_info(sb, func, line);
368 ext4_commit_super(sb, 1);
372 /* Deal with the reporting of failure conditions on a filesystem such as
373 * inconsistencies detected or read IO failures.
375 * On ext2, we can store the error state of the filesystem in the
376 * superblock. That is not possible on ext4, because we may have other
377 * write ordering constraints on the superblock which prevent us from
378 * writing it out straight away; and given that the journal is about to
379 * be aborted, we can't rely on the current, or future, transactions to
380 * write out the superblock safely.
382 * We'll just use the jbd2_journal_abort() error code to record an error in
383 * the journal instead. On recovery, the journal will complain about
384 * that error until we've noted it down and cleared it.
387 static void ext4_handle_error(struct super_block *sb)
389 if (sb->s_flags & MS_RDONLY)
390 return;
392 if (!test_opt(sb, ERRORS_CONT)) {
393 journal_t *journal = EXT4_SB(sb)->s_journal;
395 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
396 if (journal)
397 jbd2_journal_abort(journal, -EIO);
399 if (test_opt(sb, ERRORS_RO)) {
400 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
401 sb->s_flags |= MS_RDONLY;
403 if (test_opt(sb, ERRORS_PANIC))
404 panic("EXT4-fs (device %s): panic forced after error\n",
405 sb->s_id);
408 void __ext4_error(struct super_block *sb, const char *function,
409 unsigned int line, const char *fmt, ...)
411 struct va_format vaf;
412 va_list args;
414 va_start(args, fmt);
415 vaf.fmt = fmt;
416 vaf.va = &args;
417 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
418 sb->s_id, function, line, current->comm, &vaf);
419 va_end(args);
421 ext4_handle_error(sb);
424 void ext4_error_inode(struct inode *inode, const char *function,
425 unsigned int line, ext4_fsblk_t block,
426 const char *fmt, ...)
428 va_list args;
429 struct va_format vaf;
430 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
432 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
433 es->s_last_error_block = cpu_to_le64(block);
434 save_error_info(inode->i_sb, function, line);
435 va_start(args, fmt);
436 vaf.fmt = fmt;
437 vaf.va = &args;
438 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
439 inode->i_sb->s_id, function, line, inode->i_ino);
440 if (block)
441 printk(KERN_CONT "block %llu: ", block);
442 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
443 va_end(args);
445 ext4_handle_error(inode->i_sb);
448 void ext4_error_file(struct file *file, const char *function,
449 unsigned int line, ext4_fsblk_t block,
450 const char *fmt, ...)
452 va_list args;
453 struct va_format vaf;
454 struct ext4_super_block *es;
455 struct inode *inode = file->f_dentry->d_inode;
456 char pathname[80], *path;
458 es = EXT4_SB(inode->i_sb)->s_es;
459 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
460 save_error_info(inode->i_sb, function, line);
461 path = d_path(&(file->f_path), pathname, sizeof(pathname));
462 if (IS_ERR(path))
463 path = "(unknown)";
464 printk(KERN_CRIT
465 "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
466 inode->i_sb->s_id, function, line, inode->i_ino);
467 if (block)
468 printk(KERN_CONT "block %llu: ", block);
469 va_start(args, fmt);
470 vaf.fmt = fmt;
471 vaf.va = &args;
472 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
473 va_end(args);
475 ext4_handle_error(inode->i_sb);
478 static const char *ext4_decode_error(struct super_block *sb, int errno,
479 char nbuf[16])
481 char *errstr = NULL;
483 switch (errno) {
484 case -EIO:
485 errstr = "IO failure";
486 break;
487 case -ENOMEM:
488 errstr = "Out of memory";
489 break;
490 case -EROFS:
491 if (!sb || (EXT4_SB(sb)->s_journal &&
492 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
493 errstr = "Journal has aborted";
494 else
495 errstr = "Readonly filesystem";
496 break;
497 default:
498 /* If the caller passed in an extra buffer for unknown
499 * errors, textualise them now. Else we just return
500 * NULL. */
501 if (nbuf) {
502 /* Check for truncated error codes... */
503 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
504 errstr = nbuf;
506 break;
509 return errstr;
512 /* __ext4_std_error decodes expected errors from journaling functions
513 * automatically and invokes the appropriate error response. */
515 void __ext4_std_error(struct super_block *sb, const char *function,
516 unsigned int line, int errno)
518 char nbuf[16];
519 const char *errstr;
521 /* Special case: if the error is EROFS, and we're not already
522 * inside a transaction, then there's really no point in logging
523 * an error. */
524 if (errno == -EROFS && journal_current_handle() == NULL &&
525 (sb->s_flags & MS_RDONLY))
526 return;
528 errstr = ext4_decode_error(sb, errno, nbuf);
529 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
530 sb->s_id, function, line, errstr);
531 save_error_info(sb, function, line);
533 ext4_handle_error(sb);
537 * ext4_abort is a much stronger failure handler than ext4_error. The
538 * abort function may be used to deal with unrecoverable failures such
539 * as journal IO errors or ENOMEM at a critical moment in log management.
541 * We unconditionally force the filesystem into an ABORT|READONLY state,
542 * unless the error response on the fs has been set to panic in which
543 * case we take the easy way out and panic immediately.
546 void __ext4_abort(struct super_block *sb, const char *function,
547 unsigned int line, const char *fmt, ...)
549 va_list args;
551 save_error_info(sb, function, line);
552 va_start(args, fmt);
553 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
554 function, line);
555 vprintk(fmt, args);
556 printk("\n");
557 va_end(args);
559 if ((sb->s_flags & MS_RDONLY) == 0) {
560 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
561 sb->s_flags |= MS_RDONLY;
562 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
563 if (EXT4_SB(sb)->s_journal)
564 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
565 save_error_info(sb, function, line);
567 if (test_opt(sb, ERRORS_PANIC))
568 panic("EXT4-fs panic from previous error\n");
571 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
573 struct va_format vaf;
574 va_list args;
576 va_start(args, fmt);
577 vaf.fmt = fmt;
578 vaf.va = &args;
579 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
580 va_end(args);
583 void __ext4_warning(struct super_block *sb, const char *function,
584 unsigned int line, const char *fmt, ...)
586 struct va_format vaf;
587 va_list args;
589 va_start(args, fmt);
590 vaf.fmt = fmt;
591 vaf.va = &args;
592 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
593 sb->s_id, function, line, &vaf);
594 va_end(args);
597 void __ext4_grp_locked_error(const char *function, unsigned int line,
598 struct super_block *sb, ext4_group_t grp,
599 unsigned long ino, ext4_fsblk_t block,
600 const char *fmt, ...)
601 __releases(bitlock)
602 __acquires(bitlock)
604 struct va_format vaf;
605 va_list args;
606 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
608 es->s_last_error_ino = cpu_to_le32(ino);
609 es->s_last_error_block = cpu_to_le64(block);
610 __save_error_info(sb, function, line);
612 va_start(args, fmt);
614 vaf.fmt = fmt;
615 vaf.va = &args;
616 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
617 sb->s_id, function, line, grp);
618 if (ino)
619 printk(KERN_CONT "inode %lu: ", ino);
620 if (block)
621 printk(KERN_CONT "block %llu:", (unsigned long long) block);
622 printk(KERN_CONT "%pV\n", &vaf);
623 va_end(args);
625 if (test_opt(sb, ERRORS_CONT)) {
626 ext4_commit_super(sb, 0);
627 return;
630 ext4_unlock_group(sb, grp);
631 ext4_handle_error(sb);
633 * We only get here in the ERRORS_RO case; relocking the group
634 * may be dangerous, but nothing bad will happen since the
635 * filesystem will have already been marked read/only and the
636 * journal has been aborted. We return 1 as a hint to callers
637 * who might what to use the return value from
638 * ext4_grp_locked_error() to distinguish between the
639 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
640 * aggressively from the ext4 function in question, with a
641 * more appropriate error code.
643 ext4_lock_group(sb, grp);
644 return;
647 void ext4_update_dynamic_rev(struct super_block *sb)
649 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
651 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
652 return;
654 ext4_warning(sb,
655 "updating to rev %d because of new feature flag, "
656 "running e2fsck is recommended",
657 EXT4_DYNAMIC_REV);
659 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
660 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
661 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
662 /* leave es->s_feature_*compat flags alone */
663 /* es->s_uuid will be set by e2fsck if empty */
666 * The rest of the superblock fields should be zero, and if not it
667 * means they are likely already in use, so leave them alone. We
668 * can leave it up to e2fsck to clean up any inconsistencies there.
673 * Open the external journal device
675 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
677 struct block_device *bdev;
678 char b[BDEVNAME_SIZE];
680 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
681 if (IS_ERR(bdev))
682 goto fail;
683 return bdev;
685 fail:
686 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
687 __bdevname(dev, b), PTR_ERR(bdev));
688 return NULL;
692 * Release the journal device
694 static int ext4_blkdev_put(struct block_device *bdev)
696 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
699 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
701 struct block_device *bdev;
702 int ret = -ENODEV;
704 bdev = sbi->journal_bdev;
705 if (bdev) {
706 ret = ext4_blkdev_put(bdev);
707 sbi->journal_bdev = NULL;
709 return ret;
712 static inline struct inode *orphan_list_entry(struct list_head *l)
714 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
717 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
719 struct list_head *l;
721 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
722 le32_to_cpu(sbi->s_es->s_last_orphan));
724 printk(KERN_ERR "sb_info orphan list:\n");
725 list_for_each(l, &sbi->s_orphan) {
726 struct inode *inode = orphan_list_entry(l);
727 printk(KERN_ERR " "
728 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
729 inode->i_sb->s_id, inode->i_ino, inode,
730 inode->i_mode, inode->i_nlink,
731 NEXT_ORPHAN(inode));
735 static void ext4_put_super(struct super_block *sb)
737 struct ext4_sb_info *sbi = EXT4_SB(sb);
738 struct ext4_super_block *es = sbi->s_es;
739 int i, err;
741 ext4_unregister_li_request(sb);
742 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
744 flush_workqueue(sbi->dio_unwritten_wq);
745 destroy_workqueue(sbi->dio_unwritten_wq);
747 lock_super(sb);
748 if (sb->s_dirt)
749 ext4_commit_super(sb, 1);
751 if (sbi->s_journal) {
752 err = jbd2_journal_destroy(sbi->s_journal);
753 sbi->s_journal = NULL;
754 if (err < 0)
755 ext4_abort(sb, "Couldn't clean up the journal");
758 del_timer(&sbi->s_err_report);
759 ext4_release_system_zone(sb);
760 ext4_mb_release(sb);
761 ext4_ext_release(sb);
762 ext4_xattr_put_super(sb);
764 if (!(sb->s_flags & MS_RDONLY)) {
765 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
766 es->s_state = cpu_to_le16(sbi->s_mount_state);
767 ext4_commit_super(sb, 1);
769 if (sbi->s_proc) {
770 remove_proc_entry(sb->s_id, ext4_proc_root);
772 kobject_del(&sbi->s_kobj);
774 for (i = 0; i < sbi->s_gdb_count; i++)
775 brelse(sbi->s_group_desc[i]);
776 kfree(sbi->s_group_desc);
777 if (is_vmalloc_addr(sbi->s_flex_groups))
778 vfree(sbi->s_flex_groups);
779 else
780 kfree(sbi->s_flex_groups);
781 percpu_counter_destroy(&sbi->s_freeblocks_counter);
782 percpu_counter_destroy(&sbi->s_freeinodes_counter);
783 percpu_counter_destroy(&sbi->s_dirs_counter);
784 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
785 brelse(sbi->s_sbh);
786 #ifdef CONFIG_QUOTA
787 for (i = 0; i < MAXQUOTAS; i++)
788 kfree(sbi->s_qf_names[i]);
789 #endif
791 /* Debugging code just in case the in-memory inode orphan list
792 * isn't empty. The on-disk one can be non-empty if we've
793 * detected an error and taken the fs readonly, but the
794 * in-memory list had better be clean by this point. */
795 if (!list_empty(&sbi->s_orphan))
796 dump_orphan_list(sb, sbi);
797 J_ASSERT(list_empty(&sbi->s_orphan));
799 invalidate_bdev(sb->s_bdev);
800 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
802 * Invalidate the journal device's buffers. We don't want them
803 * floating about in memory - the physical journal device may
804 * hotswapped, and it breaks the `ro-after' testing code.
806 sync_blockdev(sbi->journal_bdev);
807 invalidate_bdev(sbi->journal_bdev);
808 ext4_blkdev_remove(sbi);
810 sb->s_fs_info = NULL;
812 * Now that we are completely done shutting down the
813 * superblock, we need to actually destroy the kobject.
815 unlock_super(sb);
816 kobject_put(&sbi->s_kobj);
817 wait_for_completion(&sbi->s_kobj_unregister);
818 kfree(sbi->s_blockgroup_lock);
819 kfree(sbi);
822 static struct kmem_cache *ext4_inode_cachep;
825 * Called inside transaction, so use GFP_NOFS
827 static struct inode *ext4_alloc_inode(struct super_block *sb)
829 struct ext4_inode_info *ei;
831 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
832 if (!ei)
833 return NULL;
835 ei->vfs_inode.i_version = 1;
836 ei->vfs_inode.i_data.writeback_index = 0;
837 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
838 INIT_LIST_HEAD(&ei->i_prealloc_list);
839 spin_lock_init(&ei->i_prealloc_lock);
840 ei->i_reserved_data_blocks = 0;
841 ei->i_reserved_meta_blocks = 0;
842 ei->i_allocated_meta_blocks = 0;
843 ei->i_da_metadata_calc_len = 0;
844 spin_lock_init(&(ei->i_block_reservation_lock));
845 #ifdef CONFIG_QUOTA
846 ei->i_reserved_quota = 0;
847 #endif
848 ei->jinode = NULL;
849 INIT_LIST_HEAD(&ei->i_completed_io_list);
850 spin_lock_init(&ei->i_completed_io_lock);
851 ei->cur_aio_dio = NULL;
852 ei->i_sync_tid = 0;
853 ei->i_datasync_tid = 0;
854 atomic_set(&ei->i_ioend_count, 0);
855 atomic_set(&ei->i_aiodio_unwritten, 0);
857 return &ei->vfs_inode;
860 static int ext4_drop_inode(struct inode *inode)
862 int drop = generic_drop_inode(inode);
864 trace_ext4_drop_inode(inode, drop);
865 return drop;
868 static void ext4_i_callback(struct rcu_head *head)
870 struct inode *inode = container_of(head, struct inode, i_rcu);
871 INIT_LIST_HEAD(&inode->i_dentry);
872 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
875 static void ext4_destroy_inode(struct inode *inode)
877 ext4_ioend_wait(inode);
878 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
879 ext4_msg(inode->i_sb, KERN_ERR,
880 "Inode %lu (%p): orphan list check failed!",
881 inode->i_ino, EXT4_I(inode));
882 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
883 EXT4_I(inode), sizeof(struct ext4_inode_info),
884 true);
885 dump_stack();
887 call_rcu(&inode->i_rcu, ext4_i_callback);
890 static void init_once(void *foo)
892 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
894 INIT_LIST_HEAD(&ei->i_orphan);
895 #ifdef CONFIG_EXT4_FS_XATTR
896 init_rwsem(&ei->xattr_sem);
897 #endif
898 init_rwsem(&ei->i_data_sem);
899 inode_init_once(&ei->vfs_inode);
902 static int init_inodecache(void)
904 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
905 sizeof(struct ext4_inode_info),
906 0, (SLAB_RECLAIM_ACCOUNT|
907 SLAB_MEM_SPREAD),
908 init_once);
909 if (ext4_inode_cachep == NULL)
910 return -ENOMEM;
911 return 0;
914 static void destroy_inodecache(void)
916 kmem_cache_destroy(ext4_inode_cachep);
919 void ext4_clear_inode(struct inode *inode)
921 invalidate_inode_buffers(inode);
922 end_writeback(inode);
923 dquot_drop(inode);
924 ext4_discard_preallocations(inode);
925 if (EXT4_I(inode)->jinode) {
926 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
927 EXT4_I(inode)->jinode);
928 jbd2_free_inode(EXT4_I(inode)->jinode);
929 EXT4_I(inode)->jinode = NULL;
933 static inline void ext4_show_quota_options(struct seq_file *seq,
934 struct super_block *sb)
936 #if defined(CONFIG_QUOTA)
937 struct ext4_sb_info *sbi = EXT4_SB(sb);
939 if (sbi->s_jquota_fmt) {
940 char *fmtname = "";
942 switch (sbi->s_jquota_fmt) {
943 case QFMT_VFS_OLD:
944 fmtname = "vfsold";
945 break;
946 case QFMT_VFS_V0:
947 fmtname = "vfsv0";
948 break;
949 case QFMT_VFS_V1:
950 fmtname = "vfsv1";
951 break;
953 seq_printf(seq, ",jqfmt=%s", fmtname);
956 if (sbi->s_qf_names[USRQUOTA])
957 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
959 if (sbi->s_qf_names[GRPQUOTA])
960 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
962 if (test_opt(sb, USRQUOTA))
963 seq_puts(seq, ",usrquota");
965 if (test_opt(sb, GRPQUOTA))
966 seq_puts(seq, ",grpquota");
967 #endif
971 * Show an option if
972 * - it's set to a non-default value OR
973 * - if the per-sb default is different from the global default
975 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
977 int def_errors;
978 unsigned long def_mount_opts;
979 struct super_block *sb = vfs->mnt_sb;
980 struct ext4_sb_info *sbi = EXT4_SB(sb);
981 struct ext4_super_block *es = sbi->s_es;
983 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
984 def_errors = le16_to_cpu(es->s_errors);
986 if (sbi->s_sb_block != 1)
987 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
988 if (test_opt(sb, MINIX_DF))
989 seq_puts(seq, ",minixdf");
990 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
991 seq_puts(seq, ",grpid");
992 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
993 seq_puts(seq, ",nogrpid");
994 if (sbi->s_resuid != EXT4_DEF_RESUID ||
995 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
996 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
998 if (sbi->s_resgid != EXT4_DEF_RESGID ||
999 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
1000 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
1002 if (test_opt(sb, ERRORS_RO)) {
1003 if (def_errors == EXT4_ERRORS_PANIC ||
1004 def_errors == EXT4_ERRORS_CONTINUE) {
1005 seq_puts(seq, ",errors=remount-ro");
1008 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1009 seq_puts(seq, ",errors=continue");
1010 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1011 seq_puts(seq, ",errors=panic");
1012 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
1013 seq_puts(seq, ",nouid32");
1014 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
1015 seq_puts(seq, ",debug");
1016 if (test_opt(sb, OLDALLOC))
1017 seq_puts(seq, ",oldalloc");
1018 #ifdef CONFIG_EXT4_FS_XATTR
1019 if (test_opt(sb, XATTR_USER))
1020 seq_puts(seq, ",user_xattr");
1021 if (!test_opt(sb, XATTR_USER))
1022 seq_puts(seq, ",nouser_xattr");
1023 #endif
1024 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1025 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1026 seq_puts(seq, ",acl");
1027 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1028 seq_puts(seq, ",noacl");
1029 #endif
1030 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1031 seq_printf(seq, ",commit=%u",
1032 (unsigned) (sbi->s_commit_interval / HZ));
1034 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1035 seq_printf(seq, ",min_batch_time=%u",
1036 (unsigned) sbi->s_min_batch_time);
1038 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1039 seq_printf(seq, ",max_batch_time=%u",
1040 (unsigned) sbi->s_min_batch_time);
1044 * We're changing the default of barrier mount option, so
1045 * let's always display its mount state so it's clear what its
1046 * status is.
1048 seq_puts(seq, ",barrier=");
1049 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1050 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1051 seq_puts(seq, ",journal_async_commit");
1052 else if (test_opt(sb, JOURNAL_CHECKSUM))
1053 seq_puts(seq, ",journal_checksum");
1054 if (test_opt(sb, I_VERSION))
1055 seq_puts(seq, ",i_version");
1056 if (!test_opt(sb, DELALLOC) &&
1057 !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1058 seq_puts(seq, ",nodelalloc");
1060 if (!test_opt(sb, MBLK_IO_SUBMIT))
1061 seq_puts(seq, ",nomblk_io_submit");
1062 if (sbi->s_stripe)
1063 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1065 * journal mode get enabled in different ways
1066 * So just print the value even if we didn't specify it
1068 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1069 seq_puts(seq, ",data=journal");
1070 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1071 seq_puts(seq, ",data=ordered");
1072 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1073 seq_puts(seq, ",data=writeback");
1075 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1076 seq_printf(seq, ",inode_readahead_blks=%u",
1077 sbi->s_inode_readahead_blks);
1079 if (test_opt(sb, DATA_ERR_ABORT))
1080 seq_puts(seq, ",data_err=abort");
1082 if (test_opt(sb, NO_AUTO_DA_ALLOC))
1083 seq_puts(seq, ",noauto_da_alloc");
1085 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1086 seq_puts(seq, ",discard");
1088 if (test_opt(sb, NOLOAD))
1089 seq_puts(seq, ",norecovery");
1091 if (test_opt(sb, DIOREAD_NOLOCK))
1092 seq_puts(seq, ",dioread_nolock");
1094 if (test_opt(sb, BLOCK_VALIDITY) &&
1095 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1096 seq_puts(seq, ",block_validity");
1098 if (!test_opt(sb, INIT_INODE_TABLE))
1099 seq_puts(seq, ",noinit_inode_table");
1100 else if (sbi->s_li_wait_mult)
1101 seq_printf(seq, ",init_inode_table=%u",
1102 (unsigned) sbi->s_li_wait_mult);
1104 ext4_show_quota_options(seq, sb);
1106 return 0;
1109 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1110 u64 ino, u32 generation)
1112 struct inode *inode;
1114 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1115 return ERR_PTR(-ESTALE);
1116 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1117 return ERR_PTR(-ESTALE);
1119 /* iget isn't really right if the inode is currently unallocated!!
1121 * ext4_read_inode will return a bad_inode if the inode had been
1122 * deleted, so we should be safe.
1124 * Currently we don't know the generation for parent directory, so
1125 * a generation of 0 means "accept any"
1127 inode = ext4_iget(sb, ino);
1128 if (IS_ERR(inode))
1129 return ERR_CAST(inode);
1130 if (generation && inode->i_generation != generation) {
1131 iput(inode);
1132 return ERR_PTR(-ESTALE);
1135 return inode;
1138 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1139 int fh_len, int fh_type)
1141 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1142 ext4_nfs_get_inode);
1145 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1146 int fh_len, int fh_type)
1148 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1149 ext4_nfs_get_inode);
1153 * Try to release metadata pages (indirect blocks, directories) which are
1154 * mapped via the block device. Since these pages could have journal heads
1155 * which would prevent try_to_free_buffers() from freeing them, we must use
1156 * jbd2 layer's try_to_free_buffers() function to release them.
1158 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1159 gfp_t wait)
1161 journal_t *journal = EXT4_SB(sb)->s_journal;
1163 WARN_ON(PageChecked(page));
1164 if (!page_has_buffers(page))
1165 return 0;
1166 if (journal)
1167 return jbd2_journal_try_to_free_buffers(journal, page,
1168 wait & ~__GFP_WAIT);
1169 return try_to_free_buffers(page);
1172 #ifdef CONFIG_QUOTA
1173 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1174 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1176 static int ext4_write_dquot(struct dquot *dquot);
1177 static int ext4_acquire_dquot(struct dquot *dquot);
1178 static int ext4_release_dquot(struct dquot *dquot);
1179 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1180 static int ext4_write_info(struct super_block *sb, int type);
1181 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1182 struct path *path);
1183 static int ext4_quota_off(struct super_block *sb, int type);
1184 static int ext4_quota_on_mount(struct super_block *sb, int type);
1185 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1186 size_t len, loff_t off);
1187 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1188 const char *data, size_t len, loff_t off);
1190 static const struct dquot_operations ext4_quota_operations = {
1191 #ifdef CONFIG_QUOTA
1192 .get_reserved_space = ext4_get_reserved_space,
1193 #endif
1194 .write_dquot = ext4_write_dquot,
1195 .acquire_dquot = ext4_acquire_dquot,
1196 .release_dquot = ext4_release_dquot,
1197 .mark_dirty = ext4_mark_dquot_dirty,
1198 .write_info = ext4_write_info,
1199 .alloc_dquot = dquot_alloc,
1200 .destroy_dquot = dquot_destroy,
1203 static const struct quotactl_ops ext4_qctl_operations = {
1204 .quota_on = ext4_quota_on,
1205 .quota_off = ext4_quota_off,
1206 .quota_sync = dquot_quota_sync,
1207 .get_info = dquot_get_dqinfo,
1208 .set_info = dquot_set_dqinfo,
1209 .get_dqblk = dquot_get_dqblk,
1210 .set_dqblk = dquot_set_dqblk
1212 #endif
1214 static const struct super_operations ext4_sops = {
1215 .alloc_inode = ext4_alloc_inode,
1216 .destroy_inode = ext4_destroy_inode,
1217 .write_inode = ext4_write_inode,
1218 .dirty_inode = ext4_dirty_inode,
1219 .drop_inode = ext4_drop_inode,
1220 .evict_inode = ext4_evict_inode,
1221 .put_super = ext4_put_super,
1222 .sync_fs = ext4_sync_fs,
1223 .freeze_fs = ext4_freeze,
1224 .unfreeze_fs = ext4_unfreeze,
1225 .statfs = ext4_statfs,
1226 .remount_fs = ext4_remount,
1227 .show_options = ext4_show_options,
1228 #ifdef CONFIG_QUOTA
1229 .quota_read = ext4_quota_read,
1230 .quota_write = ext4_quota_write,
1231 #endif
1232 .bdev_try_to_free_page = bdev_try_to_free_page,
1235 static const struct super_operations ext4_nojournal_sops = {
1236 .alloc_inode = ext4_alloc_inode,
1237 .destroy_inode = ext4_destroy_inode,
1238 .write_inode = ext4_write_inode,
1239 .dirty_inode = ext4_dirty_inode,
1240 .drop_inode = ext4_drop_inode,
1241 .evict_inode = ext4_evict_inode,
1242 .write_super = ext4_write_super,
1243 .put_super = ext4_put_super,
1244 .statfs = ext4_statfs,
1245 .remount_fs = ext4_remount,
1246 .show_options = ext4_show_options,
1247 #ifdef CONFIG_QUOTA
1248 .quota_read = ext4_quota_read,
1249 .quota_write = ext4_quota_write,
1250 #endif
1251 .bdev_try_to_free_page = bdev_try_to_free_page,
1254 static const struct export_operations ext4_export_ops = {
1255 .fh_to_dentry = ext4_fh_to_dentry,
1256 .fh_to_parent = ext4_fh_to_parent,
1257 .get_parent = ext4_get_parent,
1260 enum {
1261 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1262 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1263 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1264 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1265 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1266 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1267 Opt_journal_update, Opt_journal_dev,
1268 Opt_journal_checksum, Opt_journal_async_commit,
1269 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1270 Opt_data_err_abort, Opt_data_err_ignore,
1271 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1272 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1273 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1274 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1275 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1276 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1277 Opt_inode_readahead_blks, Opt_journal_ioprio,
1278 Opt_dioread_nolock, Opt_dioread_lock,
1279 Opt_discard, Opt_nodiscard,
1280 Opt_init_inode_table, Opt_noinit_inode_table,
1283 static const match_table_t tokens = {
1284 {Opt_bsd_df, "bsddf"},
1285 {Opt_minix_df, "minixdf"},
1286 {Opt_grpid, "grpid"},
1287 {Opt_grpid, "bsdgroups"},
1288 {Opt_nogrpid, "nogrpid"},
1289 {Opt_nogrpid, "sysvgroups"},
1290 {Opt_resgid, "resgid=%u"},
1291 {Opt_resuid, "resuid=%u"},
1292 {Opt_sb, "sb=%u"},
1293 {Opt_err_cont, "errors=continue"},
1294 {Opt_err_panic, "errors=panic"},
1295 {Opt_err_ro, "errors=remount-ro"},
1296 {Opt_nouid32, "nouid32"},
1297 {Opt_debug, "debug"},
1298 {Opt_oldalloc, "oldalloc"},
1299 {Opt_orlov, "orlov"},
1300 {Opt_user_xattr, "user_xattr"},
1301 {Opt_nouser_xattr, "nouser_xattr"},
1302 {Opt_acl, "acl"},
1303 {Opt_noacl, "noacl"},
1304 {Opt_noload, "noload"},
1305 {Opt_noload, "norecovery"},
1306 {Opt_nobh, "nobh"},
1307 {Opt_bh, "bh"},
1308 {Opt_commit, "commit=%u"},
1309 {Opt_min_batch_time, "min_batch_time=%u"},
1310 {Opt_max_batch_time, "max_batch_time=%u"},
1311 {Opt_journal_update, "journal=update"},
1312 {Opt_journal_dev, "journal_dev=%u"},
1313 {Opt_journal_checksum, "journal_checksum"},
1314 {Opt_journal_async_commit, "journal_async_commit"},
1315 {Opt_abort, "abort"},
1316 {Opt_data_journal, "data=journal"},
1317 {Opt_data_ordered, "data=ordered"},
1318 {Opt_data_writeback, "data=writeback"},
1319 {Opt_data_err_abort, "data_err=abort"},
1320 {Opt_data_err_ignore, "data_err=ignore"},
1321 {Opt_offusrjquota, "usrjquota="},
1322 {Opt_usrjquota, "usrjquota=%s"},
1323 {Opt_offgrpjquota, "grpjquota="},
1324 {Opt_grpjquota, "grpjquota=%s"},
1325 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1326 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1327 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1328 {Opt_grpquota, "grpquota"},
1329 {Opt_noquota, "noquota"},
1330 {Opt_quota, "quota"},
1331 {Opt_usrquota, "usrquota"},
1332 {Opt_barrier, "barrier=%u"},
1333 {Opt_barrier, "barrier"},
1334 {Opt_nobarrier, "nobarrier"},
1335 {Opt_i_version, "i_version"},
1336 {Opt_stripe, "stripe=%u"},
1337 {Opt_resize, "resize"},
1338 {Opt_delalloc, "delalloc"},
1339 {Opt_nodelalloc, "nodelalloc"},
1340 {Opt_mblk_io_submit, "mblk_io_submit"},
1341 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1342 {Opt_block_validity, "block_validity"},
1343 {Opt_noblock_validity, "noblock_validity"},
1344 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1345 {Opt_journal_ioprio, "journal_ioprio=%u"},
1346 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1347 {Opt_auto_da_alloc, "auto_da_alloc"},
1348 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1349 {Opt_dioread_nolock, "dioread_nolock"},
1350 {Opt_dioread_lock, "dioread_lock"},
1351 {Opt_discard, "discard"},
1352 {Opt_nodiscard, "nodiscard"},
1353 {Opt_init_inode_table, "init_itable=%u"},
1354 {Opt_init_inode_table, "init_itable"},
1355 {Opt_noinit_inode_table, "noinit_itable"},
1356 {Opt_err, NULL},
1359 static ext4_fsblk_t get_sb_block(void **data)
1361 ext4_fsblk_t sb_block;
1362 char *options = (char *) *data;
1364 if (!options || strncmp(options, "sb=", 3) != 0)
1365 return 1; /* Default location */
1367 options += 3;
1368 /* TODO: use simple_strtoll with >32bit ext4 */
1369 sb_block = simple_strtoul(options, &options, 0);
1370 if (*options && *options != ',') {
1371 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1372 (char *) *data);
1373 return 1;
1375 if (*options == ',')
1376 options++;
1377 *data = (void *) options;
1379 return sb_block;
1382 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1383 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1384 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1386 #ifdef CONFIG_QUOTA
1387 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1389 struct ext4_sb_info *sbi = EXT4_SB(sb);
1390 char *qname;
1392 if (sb_any_quota_loaded(sb) &&
1393 !sbi->s_qf_names[qtype]) {
1394 ext4_msg(sb, KERN_ERR,
1395 "Cannot change journaled "
1396 "quota options when quota turned on");
1397 return 0;
1399 qname = match_strdup(args);
1400 if (!qname) {
1401 ext4_msg(sb, KERN_ERR,
1402 "Not enough memory for storing quotafile name");
1403 return 0;
1405 if (sbi->s_qf_names[qtype] &&
1406 strcmp(sbi->s_qf_names[qtype], qname)) {
1407 ext4_msg(sb, KERN_ERR,
1408 "%s quota file already specified", QTYPE2NAME(qtype));
1409 kfree(qname);
1410 return 0;
1412 sbi->s_qf_names[qtype] = qname;
1413 if (strchr(sbi->s_qf_names[qtype], '/')) {
1414 ext4_msg(sb, KERN_ERR,
1415 "quotafile must be on filesystem root");
1416 kfree(sbi->s_qf_names[qtype]);
1417 sbi->s_qf_names[qtype] = NULL;
1418 return 0;
1420 set_opt(sb, QUOTA);
1421 return 1;
1424 static int clear_qf_name(struct super_block *sb, int qtype)
1427 struct ext4_sb_info *sbi = EXT4_SB(sb);
1429 if (sb_any_quota_loaded(sb) &&
1430 sbi->s_qf_names[qtype]) {
1431 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1432 " when quota turned on");
1433 return 0;
1436 * The space will be released later when all options are confirmed
1437 * to be correct
1439 sbi->s_qf_names[qtype] = NULL;
1440 return 1;
1442 #endif
1444 static int parse_options(char *options, struct super_block *sb,
1445 unsigned long *journal_devnum,
1446 unsigned int *journal_ioprio,
1447 ext4_fsblk_t *n_blocks_count, int is_remount)
1449 struct ext4_sb_info *sbi = EXT4_SB(sb);
1450 char *p;
1451 substring_t args[MAX_OPT_ARGS];
1452 int data_opt = 0;
1453 int option;
1454 #ifdef CONFIG_QUOTA
1455 int qfmt;
1456 #endif
1458 if (!options)
1459 return 1;
1461 while ((p = strsep(&options, ",")) != NULL) {
1462 int token;
1463 if (!*p)
1464 continue;
1467 * Initialize args struct so we know whether arg was
1468 * found; some options take optional arguments.
1470 args[0].to = args[0].from = NULL;
1471 token = match_token(p, tokens, args);
1472 switch (token) {
1473 case Opt_bsd_df:
1474 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1475 clear_opt(sb, MINIX_DF);
1476 break;
1477 case Opt_minix_df:
1478 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1479 set_opt(sb, MINIX_DF);
1481 break;
1482 case Opt_grpid:
1483 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1484 set_opt(sb, GRPID);
1486 break;
1487 case Opt_nogrpid:
1488 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1489 clear_opt(sb, GRPID);
1491 break;
1492 case Opt_resuid:
1493 if (match_int(&args[0], &option))
1494 return 0;
1495 sbi->s_resuid = option;
1496 break;
1497 case Opt_resgid:
1498 if (match_int(&args[0], &option))
1499 return 0;
1500 sbi->s_resgid = option;
1501 break;
1502 case Opt_sb:
1503 /* handled by get_sb_block() instead of here */
1504 /* *sb_block = match_int(&args[0]); */
1505 break;
1506 case Opt_err_panic:
1507 clear_opt(sb, ERRORS_CONT);
1508 clear_opt(sb, ERRORS_RO);
1509 set_opt(sb, ERRORS_PANIC);
1510 break;
1511 case Opt_err_ro:
1512 clear_opt(sb, ERRORS_CONT);
1513 clear_opt(sb, ERRORS_PANIC);
1514 set_opt(sb, ERRORS_RO);
1515 break;
1516 case Opt_err_cont:
1517 clear_opt(sb, ERRORS_RO);
1518 clear_opt(sb, ERRORS_PANIC);
1519 set_opt(sb, ERRORS_CONT);
1520 break;
1521 case Opt_nouid32:
1522 set_opt(sb, NO_UID32);
1523 break;
1524 case Opt_debug:
1525 set_opt(sb, DEBUG);
1526 break;
1527 case Opt_oldalloc:
1528 set_opt(sb, OLDALLOC);
1529 break;
1530 case Opt_orlov:
1531 clear_opt(sb, OLDALLOC);
1532 break;
1533 #ifdef CONFIG_EXT4_FS_XATTR
1534 case Opt_user_xattr:
1535 set_opt(sb, XATTR_USER);
1536 break;
1537 case Opt_nouser_xattr:
1538 clear_opt(sb, XATTR_USER);
1539 break;
1540 #else
1541 case Opt_user_xattr:
1542 case Opt_nouser_xattr:
1543 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1544 break;
1545 #endif
1546 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1547 case Opt_acl:
1548 set_opt(sb, POSIX_ACL);
1549 break;
1550 case Opt_noacl:
1551 clear_opt(sb, POSIX_ACL);
1552 break;
1553 #else
1554 case Opt_acl:
1555 case Opt_noacl:
1556 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1557 break;
1558 #endif
1559 case Opt_journal_update:
1560 /* @@@ FIXME */
1561 /* Eventually we will want to be able to create
1562 a journal file here. For now, only allow the
1563 user to specify an existing inode to be the
1564 journal file. */
1565 if (is_remount) {
1566 ext4_msg(sb, KERN_ERR,
1567 "Cannot specify journal on remount");
1568 return 0;
1570 set_opt(sb, UPDATE_JOURNAL);
1571 break;
1572 case Opt_journal_dev:
1573 if (is_remount) {
1574 ext4_msg(sb, KERN_ERR,
1575 "Cannot specify journal on remount");
1576 return 0;
1578 if (match_int(&args[0], &option))
1579 return 0;
1580 *journal_devnum = option;
1581 break;
1582 case Opt_journal_checksum:
1583 set_opt(sb, JOURNAL_CHECKSUM);
1584 break;
1585 case Opt_journal_async_commit:
1586 set_opt(sb, JOURNAL_ASYNC_COMMIT);
1587 set_opt(sb, JOURNAL_CHECKSUM);
1588 break;
1589 case Opt_noload:
1590 set_opt(sb, NOLOAD);
1591 break;
1592 case Opt_commit:
1593 if (match_int(&args[0], &option))
1594 return 0;
1595 if (option < 0)
1596 return 0;
1597 if (option == 0)
1598 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1599 sbi->s_commit_interval = HZ * option;
1600 break;
1601 case Opt_max_batch_time:
1602 if (match_int(&args[0], &option))
1603 return 0;
1604 if (option < 0)
1605 return 0;
1606 if (option == 0)
1607 option = EXT4_DEF_MAX_BATCH_TIME;
1608 sbi->s_max_batch_time = option;
1609 break;
1610 case Opt_min_batch_time:
1611 if (match_int(&args[0], &option))
1612 return 0;
1613 if (option < 0)
1614 return 0;
1615 sbi->s_min_batch_time = option;
1616 break;
1617 case Opt_data_journal:
1618 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1619 goto datacheck;
1620 case Opt_data_ordered:
1621 data_opt = EXT4_MOUNT_ORDERED_DATA;
1622 goto datacheck;
1623 case Opt_data_writeback:
1624 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1625 datacheck:
1626 if (is_remount) {
1627 if (test_opt(sb, DATA_FLAGS) != data_opt) {
1628 ext4_msg(sb, KERN_ERR,
1629 "Cannot change data mode on remount");
1630 return 0;
1632 } else {
1633 clear_opt(sb, DATA_FLAGS);
1634 sbi->s_mount_opt |= data_opt;
1636 break;
1637 case Opt_data_err_abort:
1638 set_opt(sb, DATA_ERR_ABORT);
1639 break;
1640 case Opt_data_err_ignore:
1641 clear_opt(sb, DATA_ERR_ABORT);
1642 break;
1643 #ifdef CONFIG_QUOTA
1644 case Opt_usrjquota:
1645 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1646 return 0;
1647 break;
1648 case Opt_grpjquota:
1649 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1650 return 0;
1651 break;
1652 case Opt_offusrjquota:
1653 if (!clear_qf_name(sb, USRQUOTA))
1654 return 0;
1655 break;
1656 case Opt_offgrpjquota:
1657 if (!clear_qf_name(sb, GRPQUOTA))
1658 return 0;
1659 break;
1661 case Opt_jqfmt_vfsold:
1662 qfmt = QFMT_VFS_OLD;
1663 goto set_qf_format;
1664 case Opt_jqfmt_vfsv0:
1665 qfmt = QFMT_VFS_V0;
1666 goto set_qf_format;
1667 case Opt_jqfmt_vfsv1:
1668 qfmt = QFMT_VFS_V1;
1669 set_qf_format:
1670 if (sb_any_quota_loaded(sb) &&
1671 sbi->s_jquota_fmt != qfmt) {
1672 ext4_msg(sb, KERN_ERR, "Cannot change "
1673 "journaled quota options when "
1674 "quota turned on");
1675 return 0;
1677 sbi->s_jquota_fmt = qfmt;
1678 break;
1679 case Opt_quota:
1680 case Opt_usrquota:
1681 set_opt(sb, QUOTA);
1682 set_opt(sb, USRQUOTA);
1683 break;
1684 case Opt_grpquota:
1685 set_opt(sb, QUOTA);
1686 set_opt(sb, GRPQUOTA);
1687 break;
1688 case Opt_noquota:
1689 if (sb_any_quota_loaded(sb)) {
1690 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1691 "options when quota turned on");
1692 return 0;
1694 clear_opt(sb, QUOTA);
1695 clear_opt(sb, USRQUOTA);
1696 clear_opt(sb, GRPQUOTA);
1697 break;
1698 #else
1699 case Opt_quota:
1700 case Opt_usrquota:
1701 case Opt_grpquota:
1702 ext4_msg(sb, KERN_ERR,
1703 "quota options not supported");
1704 break;
1705 case Opt_usrjquota:
1706 case Opt_grpjquota:
1707 case Opt_offusrjquota:
1708 case Opt_offgrpjquota:
1709 case Opt_jqfmt_vfsold:
1710 case Opt_jqfmt_vfsv0:
1711 case Opt_jqfmt_vfsv1:
1712 ext4_msg(sb, KERN_ERR,
1713 "journaled quota options not supported");
1714 break;
1715 case Opt_noquota:
1716 break;
1717 #endif
1718 case Opt_abort:
1719 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1720 break;
1721 case Opt_nobarrier:
1722 clear_opt(sb, BARRIER);
1723 break;
1724 case Opt_barrier:
1725 if (args[0].from) {
1726 if (match_int(&args[0], &option))
1727 return 0;
1728 } else
1729 option = 1; /* No argument, default to 1 */
1730 if (option)
1731 set_opt(sb, BARRIER);
1732 else
1733 clear_opt(sb, BARRIER);
1734 break;
1735 case Opt_ignore:
1736 break;
1737 case Opt_resize:
1738 if (!is_remount) {
1739 ext4_msg(sb, KERN_ERR,
1740 "resize option only available "
1741 "for remount");
1742 return 0;
1744 if (match_int(&args[0], &option) != 0)
1745 return 0;
1746 *n_blocks_count = option;
1747 break;
1748 case Opt_nobh:
1749 ext4_msg(sb, KERN_WARNING,
1750 "Ignoring deprecated nobh option");
1751 break;
1752 case Opt_bh:
1753 ext4_msg(sb, KERN_WARNING,
1754 "Ignoring deprecated bh option");
1755 break;
1756 case Opt_i_version:
1757 set_opt(sb, I_VERSION);
1758 sb->s_flags |= MS_I_VERSION;
1759 break;
1760 case Opt_nodelalloc:
1761 clear_opt(sb, DELALLOC);
1762 break;
1763 case Opt_mblk_io_submit:
1764 set_opt(sb, MBLK_IO_SUBMIT);
1765 break;
1766 case Opt_nomblk_io_submit:
1767 clear_opt(sb, MBLK_IO_SUBMIT);
1768 break;
1769 case Opt_stripe:
1770 if (match_int(&args[0], &option))
1771 return 0;
1772 if (option < 0)
1773 return 0;
1774 sbi->s_stripe = option;
1775 break;
1776 case Opt_delalloc:
1777 set_opt(sb, DELALLOC);
1778 break;
1779 case Opt_block_validity:
1780 set_opt(sb, BLOCK_VALIDITY);
1781 break;
1782 case Opt_noblock_validity:
1783 clear_opt(sb, BLOCK_VALIDITY);
1784 break;
1785 case Opt_inode_readahead_blks:
1786 if (match_int(&args[0], &option))
1787 return 0;
1788 if (option < 0 || option > (1 << 30))
1789 return 0;
1790 if (option && !is_power_of_2(option)) {
1791 ext4_msg(sb, KERN_ERR,
1792 "EXT4-fs: inode_readahead_blks"
1793 " must be a power of 2");
1794 return 0;
1796 sbi->s_inode_readahead_blks = option;
1797 break;
1798 case Opt_journal_ioprio:
1799 if (match_int(&args[0], &option))
1800 return 0;
1801 if (option < 0 || option > 7)
1802 break;
1803 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1804 option);
1805 break;
1806 case Opt_noauto_da_alloc:
1807 set_opt(sb, NO_AUTO_DA_ALLOC);
1808 break;
1809 case Opt_auto_da_alloc:
1810 if (args[0].from) {
1811 if (match_int(&args[0], &option))
1812 return 0;
1813 } else
1814 option = 1; /* No argument, default to 1 */
1815 if (option)
1816 clear_opt(sb, NO_AUTO_DA_ALLOC);
1817 else
1818 set_opt(sb,NO_AUTO_DA_ALLOC);
1819 break;
1820 case Opt_discard:
1821 set_opt(sb, DISCARD);
1822 break;
1823 case Opt_nodiscard:
1824 clear_opt(sb, DISCARD);
1825 break;
1826 case Opt_dioread_nolock:
1827 set_opt(sb, DIOREAD_NOLOCK);
1828 break;
1829 case Opt_dioread_lock:
1830 clear_opt(sb, DIOREAD_NOLOCK);
1831 break;
1832 case Opt_init_inode_table:
1833 set_opt(sb, INIT_INODE_TABLE);
1834 if (args[0].from) {
1835 if (match_int(&args[0], &option))
1836 return 0;
1837 } else
1838 option = EXT4_DEF_LI_WAIT_MULT;
1839 if (option < 0)
1840 return 0;
1841 sbi->s_li_wait_mult = option;
1842 break;
1843 case Opt_noinit_inode_table:
1844 clear_opt(sb, INIT_INODE_TABLE);
1845 break;
1846 default:
1847 ext4_msg(sb, KERN_ERR,
1848 "Unrecognized mount option \"%s\" "
1849 "or missing value", p);
1850 return 0;
1853 #ifdef CONFIG_QUOTA
1854 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1855 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1856 clear_opt(sb, USRQUOTA);
1858 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1859 clear_opt(sb, GRPQUOTA);
1861 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1862 ext4_msg(sb, KERN_ERR, "old and new quota "
1863 "format mixing");
1864 return 0;
1867 if (!sbi->s_jquota_fmt) {
1868 ext4_msg(sb, KERN_ERR, "journaled quota format "
1869 "not specified");
1870 return 0;
1872 } else {
1873 if (sbi->s_jquota_fmt) {
1874 ext4_msg(sb, KERN_ERR, "journaled quota format "
1875 "specified with no journaling "
1876 "enabled");
1877 return 0;
1880 #endif
1881 return 1;
1884 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1885 int read_only)
1887 struct ext4_sb_info *sbi = EXT4_SB(sb);
1888 int res = 0;
1890 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1891 ext4_msg(sb, KERN_ERR, "revision level too high, "
1892 "forcing read-only mode");
1893 res = MS_RDONLY;
1895 if (read_only)
1896 return res;
1897 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1898 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1899 "running e2fsck is recommended");
1900 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1901 ext4_msg(sb, KERN_WARNING,
1902 "warning: mounting fs with errors, "
1903 "running e2fsck is recommended");
1904 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1905 le16_to_cpu(es->s_mnt_count) >=
1906 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1907 ext4_msg(sb, KERN_WARNING,
1908 "warning: maximal mount count reached, "
1909 "running e2fsck is recommended");
1910 else if (le32_to_cpu(es->s_checkinterval) &&
1911 (le32_to_cpu(es->s_lastcheck) +
1912 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1913 ext4_msg(sb, KERN_WARNING,
1914 "warning: checktime reached, "
1915 "running e2fsck is recommended");
1916 if (!sbi->s_journal)
1917 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1918 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1919 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1920 le16_add_cpu(&es->s_mnt_count, 1);
1921 es->s_mtime = cpu_to_le32(get_seconds());
1922 ext4_update_dynamic_rev(sb);
1923 if (sbi->s_journal)
1924 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1926 ext4_commit_super(sb, 1);
1927 if (test_opt(sb, DEBUG))
1928 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1929 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1930 sb->s_blocksize,
1931 sbi->s_groups_count,
1932 EXT4_BLOCKS_PER_GROUP(sb),
1933 EXT4_INODES_PER_GROUP(sb),
1934 sbi->s_mount_opt, sbi->s_mount_opt2);
1936 cleancache_init_fs(sb);
1937 return res;
1940 static int ext4_fill_flex_info(struct super_block *sb)
1942 struct ext4_sb_info *sbi = EXT4_SB(sb);
1943 struct ext4_group_desc *gdp = NULL;
1944 ext4_group_t flex_group_count;
1945 ext4_group_t flex_group;
1946 int groups_per_flex = 0;
1947 size_t size;
1948 int i;
1950 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1951 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1953 if (groups_per_flex < 2) {
1954 sbi->s_log_groups_per_flex = 0;
1955 return 1;
1958 /* We allocate both existing and potentially added groups */
1959 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1960 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1961 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1962 size = flex_group_count * sizeof(struct flex_groups);
1963 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1964 if (sbi->s_flex_groups == NULL) {
1965 sbi->s_flex_groups = vzalloc(size);
1966 if (sbi->s_flex_groups == NULL) {
1967 ext4_msg(sb, KERN_ERR,
1968 "not enough memory for %u flex groups",
1969 flex_group_count);
1970 goto failed;
1974 for (i = 0; i < sbi->s_groups_count; i++) {
1975 gdp = ext4_get_group_desc(sb, i, NULL);
1977 flex_group = ext4_flex_group(sbi, i);
1978 atomic_add(ext4_free_inodes_count(sb, gdp),
1979 &sbi->s_flex_groups[flex_group].free_inodes);
1980 atomic_add(ext4_free_blks_count(sb, gdp),
1981 &sbi->s_flex_groups[flex_group].free_blocks);
1982 atomic_add(ext4_used_dirs_count(sb, gdp),
1983 &sbi->s_flex_groups[flex_group].used_dirs);
1986 return 1;
1987 failed:
1988 return 0;
1991 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1992 struct ext4_group_desc *gdp)
1994 __u16 crc = 0;
1996 if (sbi->s_es->s_feature_ro_compat &
1997 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1998 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1999 __le32 le_group = cpu_to_le32(block_group);
2001 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2002 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2003 crc = crc16(crc, (__u8 *)gdp, offset);
2004 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2005 /* for checksum of struct ext4_group_desc do the rest...*/
2006 if ((sbi->s_es->s_feature_incompat &
2007 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2008 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2009 crc = crc16(crc, (__u8 *)gdp + offset,
2010 le16_to_cpu(sbi->s_es->s_desc_size) -
2011 offset);
2014 return cpu_to_le16(crc);
2017 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
2018 struct ext4_group_desc *gdp)
2020 if ((sbi->s_es->s_feature_ro_compat &
2021 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
2022 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
2023 return 0;
2025 return 1;
2028 /* Called at mount-time, super-block is locked */
2029 static int ext4_check_descriptors(struct super_block *sb,
2030 ext4_group_t *first_not_zeroed)
2032 struct ext4_sb_info *sbi = EXT4_SB(sb);
2033 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2034 ext4_fsblk_t last_block;
2035 ext4_fsblk_t block_bitmap;
2036 ext4_fsblk_t inode_bitmap;
2037 ext4_fsblk_t inode_table;
2038 int flexbg_flag = 0;
2039 ext4_group_t i, grp = sbi->s_groups_count;
2041 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2042 flexbg_flag = 1;
2044 ext4_debug("Checking group descriptors");
2046 for (i = 0; i < sbi->s_groups_count; i++) {
2047 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2049 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2050 last_block = ext4_blocks_count(sbi->s_es) - 1;
2051 else
2052 last_block = first_block +
2053 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2055 if ((grp == sbi->s_groups_count) &&
2056 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2057 grp = i;
2059 block_bitmap = ext4_block_bitmap(sb, gdp);
2060 if (block_bitmap < first_block || block_bitmap > last_block) {
2061 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2062 "Block bitmap for group %u not in group "
2063 "(block %llu)!", i, block_bitmap);
2064 return 0;
2066 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2067 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2068 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2069 "Inode bitmap for group %u not in group "
2070 "(block %llu)!", i, inode_bitmap);
2071 return 0;
2073 inode_table = ext4_inode_table(sb, gdp);
2074 if (inode_table < first_block ||
2075 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2076 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2077 "Inode table for group %u not in group "
2078 "(block %llu)!", i, inode_table);
2079 return 0;
2081 ext4_lock_group(sb, i);
2082 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2083 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2084 "Checksum for group %u failed (%u!=%u)",
2085 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2086 gdp)), le16_to_cpu(gdp->bg_checksum));
2087 if (!(sb->s_flags & MS_RDONLY)) {
2088 ext4_unlock_group(sb, i);
2089 return 0;
2092 ext4_unlock_group(sb, i);
2093 if (!flexbg_flag)
2094 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2096 if (NULL != first_not_zeroed)
2097 *first_not_zeroed = grp;
2099 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2100 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2101 return 1;
2104 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2105 * the superblock) which were deleted from all directories, but held open by
2106 * a process at the time of a crash. We walk the list and try to delete these
2107 * inodes at recovery time (only with a read-write filesystem).
2109 * In order to keep the orphan inode chain consistent during traversal (in
2110 * case of crash during recovery), we link each inode into the superblock
2111 * orphan list_head and handle it the same way as an inode deletion during
2112 * normal operation (which journals the operations for us).
2114 * We only do an iget() and an iput() on each inode, which is very safe if we
2115 * accidentally point at an in-use or already deleted inode. The worst that
2116 * can happen in this case is that we get a "bit already cleared" message from
2117 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2118 * e2fsck was run on this filesystem, and it must have already done the orphan
2119 * inode cleanup for us, so we can safely abort without any further action.
2121 static void ext4_orphan_cleanup(struct super_block *sb,
2122 struct ext4_super_block *es)
2124 unsigned int s_flags = sb->s_flags;
2125 int nr_orphans = 0, nr_truncates = 0;
2126 #ifdef CONFIG_QUOTA
2127 int i;
2128 #endif
2129 if (!es->s_last_orphan) {
2130 jbd_debug(4, "no orphan inodes to clean up\n");
2131 return;
2134 if (bdev_read_only(sb->s_bdev)) {
2135 ext4_msg(sb, KERN_ERR, "write access "
2136 "unavailable, skipping orphan cleanup");
2137 return;
2140 /* Check if feature set would not allow a r/w mount */
2141 if (!ext4_feature_set_ok(sb, 0)) {
2142 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2143 "unknown ROCOMPAT features");
2144 return;
2147 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2148 if (es->s_last_orphan)
2149 jbd_debug(1, "Errors on filesystem, "
2150 "clearing orphan list.\n");
2151 es->s_last_orphan = 0;
2152 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2153 return;
2156 if (s_flags & MS_RDONLY) {
2157 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2158 sb->s_flags &= ~MS_RDONLY;
2160 #ifdef CONFIG_QUOTA
2161 /* Needed for iput() to work correctly and not trash data */
2162 sb->s_flags |= MS_ACTIVE;
2163 /* Turn on quotas so that they are updated correctly */
2164 for (i = 0; i < MAXQUOTAS; i++) {
2165 if (EXT4_SB(sb)->s_qf_names[i]) {
2166 int ret = ext4_quota_on_mount(sb, i);
2167 if (ret < 0)
2168 ext4_msg(sb, KERN_ERR,
2169 "Cannot turn on journaled "
2170 "quota: error %d", ret);
2173 #endif
2175 while (es->s_last_orphan) {
2176 struct inode *inode;
2178 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2179 if (IS_ERR(inode)) {
2180 es->s_last_orphan = 0;
2181 break;
2184 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2185 dquot_initialize(inode);
2186 if (inode->i_nlink) {
2187 ext4_msg(sb, KERN_DEBUG,
2188 "%s: truncating inode %lu to %lld bytes",
2189 __func__, inode->i_ino, inode->i_size);
2190 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2191 inode->i_ino, inode->i_size);
2192 ext4_truncate(inode);
2193 nr_truncates++;
2194 } else {
2195 ext4_msg(sb, KERN_DEBUG,
2196 "%s: deleting unreferenced inode %lu",
2197 __func__, inode->i_ino);
2198 jbd_debug(2, "deleting unreferenced inode %lu\n",
2199 inode->i_ino);
2200 nr_orphans++;
2202 iput(inode); /* The delete magic happens here! */
2205 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2207 if (nr_orphans)
2208 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2209 PLURAL(nr_orphans));
2210 if (nr_truncates)
2211 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2212 PLURAL(nr_truncates));
2213 #ifdef CONFIG_QUOTA
2214 /* Turn quotas off */
2215 for (i = 0; i < MAXQUOTAS; i++) {
2216 if (sb_dqopt(sb)->files[i])
2217 dquot_quota_off(sb, i);
2219 #endif
2220 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2224 * Maximal extent format file size.
2225 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2226 * extent format containers, within a sector_t, and within i_blocks
2227 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2228 * so that won't be a limiting factor.
2230 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2232 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2234 loff_t res;
2235 loff_t upper_limit = MAX_LFS_FILESIZE;
2237 /* small i_blocks in vfs inode? */
2238 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2240 * CONFIG_LBDAF is not enabled implies the inode
2241 * i_block represent total blocks in 512 bytes
2242 * 32 == size of vfs inode i_blocks * 8
2244 upper_limit = (1LL << 32) - 1;
2246 /* total blocks in file system block size */
2247 upper_limit >>= (blkbits - 9);
2248 upper_limit <<= blkbits;
2251 /* 32-bit extent-start container, ee_block */
2252 res = 1LL << 32;
2253 res <<= blkbits;
2254 res -= 1;
2256 /* Sanity check against vm- & vfs- imposed limits */
2257 if (res > upper_limit)
2258 res = upper_limit;
2260 return res;
2264 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2265 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2266 * We need to be 1 filesystem block less than the 2^48 sector limit.
2268 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2270 loff_t res = EXT4_NDIR_BLOCKS;
2271 int meta_blocks;
2272 loff_t upper_limit;
2273 /* This is calculated to be the largest file size for a dense, block
2274 * mapped file such that the file's total number of 512-byte sectors,
2275 * including data and all indirect blocks, does not exceed (2^48 - 1).
2277 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2278 * number of 512-byte sectors of the file.
2281 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2283 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2284 * the inode i_block field represents total file blocks in
2285 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2287 upper_limit = (1LL << 32) - 1;
2289 /* total blocks in file system block size */
2290 upper_limit >>= (bits - 9);
2292 } else {
2294 * We use 48 bit ext4_inode i_blocks
2295 * With EXT4_HUGE_FILE_FL set the i_blocks
2296 * represent total number of blocks in
2297 * file system block size
2299 upper_limit = (1LL << 48) - 1;
2303 /* indirect blocks */
2304 meta_blocks = 1;
2305 /* double indirect blocks */
2306 meta_blocks += 1 + (1LL << (bits-2));
2307 /* tripple indirect blocks */
2308 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2310 upper_limit -= meta_blocks;
2311 upper_limit <<= bits;
2313 res += 1LL << (bits-2);
2314 res += 1LL << (2*(bits-2));
2315 res += 1LL << (3*(bits-2));
2316 res <<= bits;
2317 if (res > upper_limit)
2318 res = upper_limit;
2320 if (res > MAX_LFS_FILESIZE)
2321 res = MAX_LFS_FILESIZE;
2323 return res;
2326 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2327 ext4_fsblk_t logical_sb_block, int nr)
2329 struct ext4_sb_info *sbi = EXT4_SB(sb);
2330 ext4_group_t bg, first_meta_bg;
2331 int has_super = 0;
2333 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2335 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2336 nr < first_meta_bg)
2337 return logical_sb_block + nr + 1;
2338 bg = sbi->s_desc_per_block * nr;
2339 if (ext4_bg_has_super(sb, bg))
2340 has_super = 1;
2342 return (has_super + ext4_group_first_block_no(sb, bg));
2346 * ext4_get_stripe_size: Get the stripe size.
2347 * @sbi: In memory super block info
2349 * If we have specified it via mount option, then
2350 * use the mount option value. If the value specified at mount time is
2351 * greater than the blocks per group use the super block value.
2352 * If the super block value is greater than blocks per group return 0.
2353 * Allocator needs it be less than blocks per group.
2356 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2358 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2359 unsigned long stripe_width =
2360 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2362 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2363 return sbi->s_stripe;
2365 if (stripe_width <= sbi->s_blocks_per_group)
2366 return stripe_width;
2368 if (stride <= sbi->s_blocks_per_group)
2369 return stride;
2371 return 0;
2374 /* sysfs supprt */
2376 struct ext4_attr {
2377 struct attribute attr;
2378 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2379 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2380 const char *, size_t);
2381 int offset;
2384 static int parse_strtoul(const char *buf,
2385 unsigned long max, unsigned long *value)
2387 char *endp;
2389 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2390 endp = skip_spaces(endp);
2391 if (*endp || *value > max)
2392 return -EINVAL;
2394 return 0;
2397 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2398 struct ext4_sb_info *sbi,
2399 char *buf)
2401 return snprintf(buf, PAGE_SIZE, "%llu\n",
2402 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2405 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2406 struct ext4_sb_info *sbi, char *buf)
2408 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2410 if (!sb->s_bdev->bd_part)
2411 return snprintf(buf, PAGE_SIZE, "0\n");
2412 return snprintf(buf, PAGE_SIZE, "%lu\n",
2413 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2414 sbi->s_sectors_written_start) >> 1);
2417 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2418 struct ext4_sb_info *sbi, char *buf)
2420 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2422 if (!sb->s_bdev->bd_part)
2423 return snprintf(buf, PAGE_SIZE, "0\n");
2424 return snprintf(buf, PAGE_SIZE, "%llu\n",
2425 (unsigned long long)(sbi->s_kbytes_written +
2426 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2427 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2430 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2431 struct ext4_sb_info *sbi,
2432 const char *buf, size_t count)
2434 unsigned long t;
2436 if (parse_strtoul(buf, 0x40000000, &t))
2437 return -EINVAL;
2439 if (t && !is_power_of_2(t))
2440 return -EINVAL;
2442 sbi->s_inode_readahead_blks = t;
2443 return count;
2446 static ssize_t sbi_ui_show(struct ext4_attr *a,
2447 struct ext4_sb_info *sbi, char *buf)
2449 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2451 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2454 static ssize_t sbi_ui_store(struct ext4_attr *a,
2455 struct ext4_sb_info *sbi,
2456 const char *buf, size_t count)
2458 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2459 unsigned long t;
2461 if (parse_strtoul(buf, 0xffffffff, &t))
2462 return -EINVAL;
2463 *ui = t;
2464 return count;
2467 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2468 static struct ext4_attr ext4_attr_##_name = { \
2469 .attr = {.name = __stringify(_name), .mode = _mode }, \
2470 .show = _show, \
2471 .store = _store, \
2472 .offset = offsetof(struct ext4_sb_info, _elname), \
2474 #define EXT4_ATTR(name, mode, show, store) \
2475 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2477 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2478 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2479 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2480 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2481 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2482 #define ATTR_LIST(name) &ext4_attr_##name.attr
2484 EXT4_RO_ATTR(delayed_allocation_blocks);
2485 EXT4_RO_ATTR(session_write_kbytes);
2486 EXT4_RO_ATTR(lifetime_write_kbytes);
2487 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2488 inode_readahead_blks_store, s_inode_readahead_blks);
2489 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2490 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2491 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2492 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2493 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2494 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2495 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2496 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2498 static struct attribute *ext4_attrs[] = {
2499 ATTR_LIST(delayed_allocation_blocks),
2500 ATTR_LIST(session_write_kbytes),
2501 ATTR_LIST(lifetime_write_kbytes),
2502 ATTR_LIST(inode_readahead_blks),
2503 ATTR_LIST(inode_goal),
2504 ATTR_LIST(mb_stats),
2505 ATTR_LIST(mb_max_to_scan),
2506 ATTR_LIST(mb_min_to_scan),
2507 ATTR_LIST(mb_order2_req),
2508 ATTR_LIST(mb_stream_req),
2509 ATTR_LIST(mb_group_prealloc),
2510 ATTR_LIST(max_writeback_mb_bump),
2511 NULL,
2514 /* Features this copy of ext4 supports */
2515 EXT4_INFO_ATTR(lazy_itable_init);
2516 EXT4_INFO_ATTR(batched_discard);
2518 static struct attribute *ext4_feat_attrs[] = {
2519 ATTR_LIST(lazy_itable_init),
2520 ATTR_LIST(batched_discard),
2521 NULL,
2524 static ssize_t ext4_attr_show(struct kobject *kobj,
2525 struct attribute *attr, char *buf)
2527 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2528 s_kobj);
2529 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2531 return a->show ? a->show(a, sbi, buf) : 0;
2534 static ssize_t ext4_attr_store(struct kobject *kobj,
2535 struct attribute *attr,
2536 const char *buf, size_t len)
2538 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2539 s_kobj);
2540 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2542 return a->store ? a->store(a, sbi, buf, len) : 0;
2545 static void ext4_sb_release(struct kobject *kobj)
2547 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2548 s_kobj);
2549 complete(&sbi->s_kobj_unregister);
2552 static const struct sysfs_ops ext4_attr_ops = {
2553 .show = ext4_attr_show,
2554 .store = ext4_attr_store,
2557 static struct kobj_type ext4_ktype = {
2558 .default_attrs = ext4_attrs,
2559 .sysfs_ops = &ext4_attr_ops,
2560 .release = ext4_sb_release,
2563 static void ext4_feat_release(struct kobject *kobj)
2565 complete(&ext4_feat->f_kobj_unregister);
2568 static struct kobj_type ext4_feat_ktype = {
2569 .default_attrs = ext4_feat_attrs,
2570 .sysfs_ops = &ext4_attr_ops,
2571 .release = ext4_feat_release,
2575 * Check whether this filesystem can be mounted based on
2576 * the features present and the RDONLY/RDWR mount requested.
2577 * Returns 1 if this filesystem can be mounted as requested,
2578 * 0 if it cannot be.
2580 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2582 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2583 ext4_msg(sb, KERN_ERR,
2584 "Couldn't mount because of "
2585 "unsupported optional features (%x)",
2586 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2587 ~EXT4_FEATURE_INCOMPAT_SUPP));
2588 return 0;
2591 if (readonly)
2592 return 1;
2594 /* Check that feature set is OK for a read-write mount */
2595 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2596 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2597 "unsupported optional features (%x)",
2598 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2599 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2600 return 0;
2603 * Large file size enabled file system can only be mounted
2604 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2606 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2607 if (sizeof(blkcnt_t) < sizeof(u64)) {
2608 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2609 "cannot be mounted RDWR without "
2610 "CONFIG_LBDAF");
2611 return 0;
2614 return 1;
2618 * This function is called once a day if we have errors logged
2619 * on the file system
2621 static void print_daily_error_info(unsigned long arg)
2623 struct super_block *sb = (struct super_block *) arg;
2624 struct ext4_sb_info *sbi;
2625 struct ext4_super_block *es;
2627 sbi = EXT4_SB(sb);
2628 es = sbi->s_es;
2630 if (es->s_error_count)
2631 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2632 le32_to_cpu(es->s_error_count));
2633 if (es->s_first_error_time) {
2634 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2635 sb->s_id, le32_to_cpu(es->s_first_error_time),
2636 (int) sizeof(es->s_first_error_func),
2637 es->s_first_error_func,
2638 le32_to_cpu(es->s_first_error_line));
2639 if (es->s_first_error_ino)
2640 printk(": inode %u",
2641 le32_to_cpu(es->s_first_error_ino));
2642 if (es->s_first_error_block)
2643 printk(": block %llu", (unsigned long long)
2644 le64_to_cpu(es->s_first_error_block));
2645 printk("\n");
2647 if (es->s_last_error_time) {
2648 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2649 sb->s_id, le32_to_cpu(es->s_last_error_time),
2650 (int) sizeof(es->s_last_error_func),
2651 es->s_last_error_func,
2652 le32_to_cpu(es->s_last_error_line));
2653 if (es->s_last_error_ino)
2654 printk(": inode %u",
2655 le32_to_cpu(es->s_last_error_ino));
2656 if (es->s_last_error_block)
2657 printk(": block %llu", (unsigned long long)
2658 le64_to_cpu(es->s_last_error_block));
2659 printk("\n");
2661 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2664 static void ext4_lazyinode_timeout(unsigned long data)
2666 struct task_struct *p = (struct task_struct *)data;
2667 wake_up_process(p);
2670 /* Find next suitable group and run ext4_init_inode_table */
2671 static int ext4_run_li_request(struct ext4_li_request *elr)
2673 struct ext4_group_desc *gdp = NULL;
2674 ext4_group_t group, ngroups;
2675 struct super_block *sb;
2676 unsigned long timeout = 0;
2677 int ret = 0;
2679 sb = elr->lr_super;
2680 ngroups = EXT4_SB(sb)->s_groups_count;
2682 for (group = elr->lr_next_group; group < ngroups; group++) {
2683 gdp = ext4_get_group_desc(sb, group, NULL);
2684 if (!gdp) {
2685 ret = 1;
2686 break;
2689 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2690 break;
2693 if (group == ngroups)
2694 ret = 1;
2696 if (!ret) {
2697 timeout = jiffies;
2698 ret = ext4_init_inode_table(sb, group,
2699 elr->lr_timeout ? 0 : 1);
2700 if (elr->lr_timeout == 0) {
2701 timeout = jiffies - timeout;
2702 if (elr->lr_sbi->s_li_wait_mult)
2703 timeout *= elr->lr_sbi->s_li_wait_mult;
2704 else
2705 timeout *= 20;
2706 elr->lr_timeout = timeout;
2708 elr->lr_next_sched = jiffies + elr->lr_timeout;
2709 elr->lr_next_group = group + 1;
2712 return ret;
2716 * Remove lr_request from the list_request and free the
2717 * request tructure. Should be called with li_list_mtx held
2719 static void ext4_remove_li_request(struct ext4_li_request *elr)
2721 struct ext4_sb_info *sbi;
2723 if (!elr)
2724 return;
2726 sbi = elr->lr_sbi;
2728 list_del(&elr->lr_request);
2729 sbi->s_li_request = NULL;
2730 kfree(elr);
2733 static void ext4_unregister_li_request(struct super_block *sb)
2735 struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request;
2737 if (!ext4_li_info)
2738 return;
2740 mutex_lock(&ext4_li_info->li_list_mtx);
2741 ext4_remove_li_request(elr);
2742 mutex_unlock(&ext4_li_info->li_list_mtx);
2745 static struct task_struct *ext4_lazyinit_task;
2748 * This is the function where ext4lazyinit thread lives. It walks
2749 * through the request list searching for next scheduled filesystem.
2750 * When such a fs is found, run the lazy initialization request
2751 * (ext4_rn_li_request) and keep track of the time spend in this
2752 * function. Based on that time we compute next schedule time of
2753 * the request. When walking through the list is complete, compute
2754 * next waking time and put itself into sleep.
2756 static int ext4_lazyinit_thread(void *arg)
2758 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2759 struct list_head *pos, *n;
2760 struct ext4_li_request *elr;
2761 unsigned long next_wakeup;
2762 DEFINE_WAIT(wait);
2764 BUG_ON(NULL == eli);
2766 eli->li_timer.data = (unsigned long)current;
2767 eli->li_timer.function = ext4_lazyinode_timeout;
2769 eli->li_task = current;
2770 wake_up(&eli->li_wait_task);
2772 cont_thread:
2773 while (true) {
2774 next_wakeup = MAX_JIFFY_OFFSET;
2776 mutex_lock(&eli->li_list_mtx);
2777 if (list_empty(&eli->li_request_list)) {
2778 mutex_unlock(&eli->li_list_mtx);
2779 goto exit_thread;
2782 list_for_each_safe(pos, n, &eli->li_request_list) {
2783 elr = list_entry(pos, struct ext4_li_request,
2784 lr_request);
2786 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2787 if (ext4_run_li_request(elr) != 0) {
2788 /* error, remove the lazy_init job */
2789 ext4_remove_li_request(elr);
2790 continue;
2794 if (time_before(elr->lr_next_sched, next_wakeup))
2795 next_wakeup = elr->lr_next_sched;
2797 mutex_unlock(&eli->li_list_mtx);
2799 if (freezing(current))
2800 refrigerator();
2802 if ((time_after_eq(jiffies, next_wakeup)) ||
2803 (MAX_JIFFY_OFFSET == next_wakeup)) {
2804 cond_resched();
2805 continue;
2808 eli->li_timer.expires = next_wakeup;
2809 add_timer(&eli->li_timer);
2810 prepare_to_wait(&eli->li_wait_daemon, &wait,
2811 TASK_INTERRUPTIBLE);
2812 if (time_before(jiffies, next_wakeup))
2813 schedule();
2814 finish_wait(&eli->li_wait_daemon, &wait);
2815 if (kthread_should_stop()) {
2816 ext4_clear_request_list();
2817 goto exit_thread;
2821 exit_thread:
2823 * It looks like the request list is empty, but we need
2824 * to check it under the li_list_mtx lock, to prevent any
2825 * additions into it, and of course we should lock ext4_li_mtx
2826 * to atomically free the list and ext4_li_info, because at
2827 * this point another ext4 filesystem could be registering
2828 * new one.
2830 mutex_lock(&ext4_li_mtx);
2831 mutex_lock(&eli->li_list_mtx);
2832 if (!list_empty(&eli->li_request_list)) {
2833 mutex_unlock(&eli->li_list_mtx);
2834 mutex_unlock(&ext4_li_mtx);
2835 goto cont_thread;
2837 mutex_unlock(&eli->li_list_mtx);
2838 del_timer_sync(&ext4_li_info->li_timer);
2839 eli->li_task = NULL;
2840 wake_up(&eli->li_wait_task);
2842 kfree(ext4_li_info);
2843 ext4_lazyinit_task = NULL;
2844 ext4_li_info = NULL;
2845 mutex_unlock(&ext4_li_mtx);
2847 return 0;
2850 static void ext4_clear_request_list(void)
2852 struct list_head *pos, *n;
2853 struct ext4_li_request *elr;
2855 mutex_lock(&ext4_li_info->li_list_mtx);
2856 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2857 elr = list_entry(pos, struct ext4_li_request,
2858 lr_request);
2859 ext4_remove_li_request(elr);
2861 mutex_unlock(&ext4_li_info->li_list_mtx);
2864 static int ext4_run_lazyinit_thread(void)
2866 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2867 ext4_li_info, "ext4lazyinit");
2868 if (IS_ERR(ext4_lazyinit_task)) {
2869 int err = PTR_ERR(ext4_lazyinit_task);
2870 ext4_clear_request_list();
2871 del_timer_sync(&ext4_li_info->li_timer);
2872 kfree(ext4_li_info);
2873 ext4_li_info = NULL;
2874 printk(KERN_CRIT "EXT4: error %d creating inode table "
2875 "initialization thread\n",
2876 err);
2877 return err;
2879 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2881 wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL);
2882 return 0;
2886 * Check whether it make sense to run itable init. thread or not.
2887 * If there is at least one uninitialized inode table, return
2888 * corresponding group number, else the loop goes through all
2889 * groups and return total number of groups.
2891 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2893 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2894 struct ext4_group_desc *gdp = NULL;
2896 for (group = 0; group < ngroups; group++) {
2897 gdp = ext4_get_group_desc(sb, group, NULL);
2898 if (!gdp)
2899 continue;
2901 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2902 break;
2905 return group;
2908 static int ext4_li_info_new(void)
2910 struct ext4_lazy_init *eli = NULL;
2912 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2913 if (!eli)
2914 return -ENOMEM;
2916 eli->li_task = NULL;
2917 INIT_LIST_HEAD(&eli->li_request_list);
2918 mutex_init(&eli->li_list_mtx);
2920 init_waitqueue_head(&eli->li_wait_daemon);
2921 init_waitqueue_head(&eli->li_wait_task);
2922 init_timer(&eli->li_timer);
2923 eli->li_state |= EXT4_LAZYINIT_QUIT;
2925 ext4_li_info = eli;
2927 return 0;
2930 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2931 ext4_group_t start)
2933 struct ext4_sb_info *sbi = EXT4_SB(sb);
2934 struct ext4_li_request *elr;
2935 unsigned long rnd;
2937 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2938 if (!elr)
2939 return NULL;
2941 elr->lr_super = sb;
2942 elr->lr_sbi = sbi;
2943 elr->lr_next_group = start;
2946 * Randomize first schedule time of the request to
2947 * spread the inode table initialization requests
2948 * better.
2950 get_random_bytes(&rnd, sizeof(rnd));
2951 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2952 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2954 return elr;
2957 static int ext4_register_li_request(struct super_block *sb,
2958 ext4_group_t first_not_zeroed)
2960 struct ext4_sb_info *sbi = EXT4_SB(sb);
2961 struct ext4_li_request *elr;
2962 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2963 int ret = 0;
2965 if (sbi->s_li_request != NULL)
2966 return 0;
2968 if (first_not_zeroed == ngroups ||
2969 (sb->s_flags & MS_RDONLY) ||
2970 !test_opt(sb, INIT_INODE_TABLE)) {
2971 sbi->s_li_request = NULL;
2972 return 0;
2975 if (first_not_zeroed == ngroups) {
2976 sbi->s_li_request = NULL;
2977 return 0;
2980 elr = ext4_li_request_new(sb, first_not_zeroed);
2981 if (!elr)
2982 return -ENOMEM;
2984 mutex_lock(&ext4_li_mtx);
2986 if (NULL == ext4_li_info) {
2987 ret = ext4_li_info_new();
2988 if (ret)
2989 goto out;
2992 mutex_lock(&ext4_li_info->li_list_mtx);
2993 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2994 mutex_unlock(&ext4_li_info->li_list_mtx);
2996 sbi->s_li_request = elr;
2998 * set elr to NULL here since it has been inserted to
2999 * the request_list and the removal and free of it is
3000 * handled by ext4_clear_request_list from now on.
3002 elr = NULL;
3004 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3005 ret = ext4_run_lazyinit_thread();
3006 if (ret)
3007 goto out;
3009 out:
3010 mutex_unlock(&ext4_li_mtx);
3011 if (ret)
3012 kfree(elr);
3013 return ret;
3017 * We do not need to lock anything since this is called on
3018 * module unload.
3020 static void ext4_destroy_lazyinit_thread(void)
3023 * If thread exited earlier
3024 * there's nothing to be done.
3026 if (!ext4_li_info || !ext4_lazyinit_task)
3027 return;
3029 kthread_stop(ext4_lazyinit_task);
3032 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3033 __releases(kernel_lock)
3034 __acquires(kernel_lock)
3036 char *orig_data = kstrdup(data, GFP_KERNEL);
3037 struct buffer_head *bh;
3038 struct ext4_super_block *es = NULL;
3039 struct ext4_sb_info *sbi;
3040 ext4_fsblk_t block;
3041 ext4_fsblk_t sb_block = get_sb_block(&data);
3042 ext4_fsblk_t logical_sb_block;
3043 unsigned long offset = 0;
3044 unsigned long journal_devnum = 0;
3045 unsigned long def_mount_opts;
3046 struct inode *root;
3047 char *cp;
3048 const char *descr;
3049 int ret = -ENOMEM;
3050 int blocksize;
3051 unsigned int db_count;
3052 unsigned int i;
3053 int needs_recovery, has_huge_files;
3054 __u64 blocks_count;
3055 int err;
3056 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3057 ext4_group_t first_not_zeroed;
3059 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3060 if (!sbi)
3061 goto out_free_orig;
3063 sbi->s_blockgroup_lock =
3064 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3065 if (!sbi->s_blockgroup_lock) {
3066 kfree(sbi);
3067 goto out_free_orig;
3069 sb->s_fs_info = sbi;
3070 sbi->s_mount_opt = 0;
3071 sbi->s_resuid = EXT4_DEF_RESUID;
3072 sbi->s_resgid = EXT4_DEF_RESGID;
3073 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3074 sbi->s_sb_block = sb_block;
3075 if (sb->s_bdev->bd_part)
3076 sbi->s_sectors_written_start =
3077 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3079 /* Cleanup superblock name */
3080 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3081 *cp = '!';
3083 ret = -EINVAL;
3084 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3085 if (!blocksize) {
3086 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3087 goto out_fail;
3091 * The ext4 superblock will not be buffer aligned for other than 1kB
3092 * block sizes. We need to calculate the offset from buffer start.
3094 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3095 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3096 offset = do_div(logical_sb_block, blocksize);
3097 } else {
3098 logical_sb_block = sb_block;
3101 if (!(bh = sb_bread(sb, logical_sb_block))) {
3102 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3103 goto out_fail;
3106 * Note: s_es must be initialized as soon as possible because
3107 * some ext4 macro-instructions depend on its value
3109 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3110 sbi->s_es = es;
3111 sb->s_magic = le16_to_cpu(es->s_magic);
3112 if (sb->s_magic != EXT4_SUPER_MAGIC)
3113 goto cantfind_ext4;
3114 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3116 /* Set defaults before we parse the mount options */
3117 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3118 set_opt(sb, INIT_INODE_TABLE);
3119 if (def_mount_opts & EXT4_DEFM_DEBUG)
3120 set_opt(sb, DEBUG);
3121 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3122 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3123 "2.6.38");
3124 set_opt(sb, GRPID);
3126 if (def_mount_opts & EXT4_DEFM_UID16)
3127 set_opt(sb, NO_UID32);
3128 /* xattr user namespace & acls are now defaulted on */
3129 #ifdef CONFIG_EXT4_FS_XATTR
3130 set_opt(sb, XATTR_USER);
3131 #endif
3132 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3133 set_opt(sb, POSIX_ACL);
3134 #endif
3135 set_opt(sb, MBLK_IO_SUBMIT);
3136 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3137 set_opt(sb, JOURNAL_DATA);
3138 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3139 set_opt(sb, ORDERED_DATA);
3140 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3141 set_opt(sb, WRITEBACK_DATA);
3143 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3144 set_opt(sb, ERRORS_PANIC);
3145 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3146 set_opt(sb, ERRORS_CONT);
3147 else
3148 set_opt(sb, ERRORS_RO);
3149 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3150 set_opt(sb, BLOCK_VALIDITY);
3151 if (def_mount_opts & EXT4_DEFM_DISCARD)
3152 set_opt(sb, DISCARD);
3154 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3155 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3156 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3157 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3158 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3160 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3161 set_opt(sb, BARRIER);
3164 * enable delayed allocation by default
3165 * Use -o nodelalloc to turn it off
3167 if (!IS_EXT3_SB(sb) &&
3168 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3169 set_opt(sb, DELALLOC);
3171 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3172 &journal_devnum, &journal_ioprio, NULL, 0)) {
3173 ext4_msg(sb, KERN_WARNING,
3174 "failed to parse options in superblock: %s",
3175 sbi->s_es->s_mount_opts);
3177 if (!parse_options((char *) data, sb, &journal_devnum,
3178 &journal_ioprio, NULL, 0))
3179 goto failed_mount;
3181 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3182 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3184 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3185 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3186 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3187 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3188 ext4_msg(sb, KERN_WARNING,
3189 "feature flags set on rev 0 fs, "
3190 "running e2fsck is recommended");
3193 * Check feature flags regardless of the revision level, since we
3194 * previously didn't change the revision level when setting the flags,
3195 * so there is a chance incompat flags are set on a rev 0 filesystem.
3197 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3198 goto failed_mount;
3200 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3202 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3203 blocksize > EXT4_MAX_BLOCK_SIZE) {
3204 ext4_msg(sb, KERN_ERR,
3205 "Unsupported filesystem blocksize %d", blocksize);
3206 goto failed_mount;
3209 if (sb->s_blocksize != blocksize) {
3210 /* Validate the filesystem blocksize */
3211 if (!sb_set_blocksize(sb, blocksize)) {
3212 ext4_msg(sb, KERN_ERR, "bad block size %d",
3213 blocksize);
3214 goto failed_mount;
3217 brelse(bh);
3218 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3219 offset = do_div(logical_sb_block, blocksize);
3220 bh = sb_bread(sb, logical_sb_block);
3221 if (!bh) {
3222 ext4_msg(sb, KERN_ERR,
3223 "Can't read superblock on 2nd try");
3224 goto failed_mount;
3226 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3227 sbi->s_es = es;
3228 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3229 ext4_msg(sb, KERN_ERR,
3230 "Magic mismatch, very weird!");
3231 goto failed_mount;
3235 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3236 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3237 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3238 has_huge_files);
3239 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3241 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3242 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3243 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3244 } else {
3245 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3246 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3247 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3248 (!is_power_of_2(sbi->s_inode_size)) ||
3249 (sbi->s_inode_size > blocksize)) {
3250 ext4_msg(sb, KERN_ERR,
3251 "unsupported inode size: %d",
3252 sbi->s_inode_size);
3253 goto failed_mount;
3255 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3256 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3259 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3260 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3261 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3262 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3263 !is_power_of_2(sbi->s_desc_size)) {
3264 ext4_msg(sb, KERN_ERR,
3265 "unsupported descriptor size %lu",
3266 sbi->s_desc_size);
3267 goto failed_mount;
3269 } else
3270 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3272 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3273 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3274 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3275 goto cantfind_ext4;
3277 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3278 if (sbi->s_inodes_per_block == 0)
3279 goto cantfind_ext4;
3280 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3281 sbi->s_inodes_per_block;
3282 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3283 sbi->s_sbh = bh;
3284 sbi->s_mount_state = le16_to_cpu(es->s_state);
3285 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3286 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3288 for (i = 0; i < 4; i++)
3289 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3290 sbi->s_def_hash_version = es->s_def_hash_version;
3291 i = le32_to_cpu(es->s_flags);
3292 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3293 sbi->s_hash_unsigned = 3;
3294 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3295 #ifdef __CHAR_UNSIGNED__
3296 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3297 sbi->s_hash_unsigned = 3;
3298 #else
3299 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3300 #endif
3301 sb->s_dirt = 1;
3304 if (sbi->s_blocks_per_group > blocksize * 8) {
3305 ext4_msg(sb, KERN_ERR,
3306 "#blocks per group too big: %lu",
3307 sbi->s_blocks_per_group);
3308 goto failed_mount;
3310 if (sbi->s_inodes_per_group > blocksize * 8) {
3311 ext4_msg(sb, KERN_ERR,
3312 "#inodes per group too big: %lu",
3313 sbi->s_inodes_per_group);
3314 goto failed_mount;
3318 * Test whether we have more sectors than will fit in sector_t,
3319 * and whether the max offset is addressable by the page cache.
3321 err = generic_check_addressable(sb->s_blocksize_bits,
3322 ext4_blocks_count(es));
3323 if (err) {
3324 ext4_msg(sb, KERN_ERR, "filesystem"
3325 " too large to mount safely on this system");
3326 if (sizeof(sector_t) < 8)
3327 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3328 ret = err;
3329 goto failed_mount;
3332 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3333 goto cantfind_ext4;
3335 /* check blocks count against device size */
3336 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3337 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3338 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3339 "exceeds size of device (%llu blocks)",
3340 ext4_blocks_count(es), blocks_count);
3341 goto failed_mount;
3345 * It makes no sense for the first data block to be beyond the end
3346 * of the filesystem.
3348 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3349 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3350 "block %u is beyond end of filesystem (%llu)",
3351 le32_to_cpu(es->s_first_data_block),
3352 ext4_blocks_count(es));
3353 goto failed_mount;
3355 blocks_count = (ext4_blocks_count(es) -
3356 le32_to_cpu(es->s_first_data_block) +
3357 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3358 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3359 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3360 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3361 "(block count %llu, first data block %u, "
3362 "blocks per group %lu)", sbi->s_groups_count,
3363 ext4_blocks_count(es),
3364 le32_to_cpu(es->s_first_data_block),
3365 EXT4_BLOCKS_PER_GROUP(sb));
3366 goto failed_mount;
3368 sbi->s_groups_count = blocks_count;
3369 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3370 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3371 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3372 EXT4_DESC_PER_BLOCK(sb);
3373 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
3374 GFP_KERNEL);
3375 if (sbi->s_group_desc == NULL) {
3376 ext4_msg(sb, KERN_ERR, "not enough memory");
3377 goto failed_mount;
3380 #ifdef CONFIG_PROC_FS
3381 if (ext4_proc_root)
3382 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3383 #endif
3385 bgl_lock_init(sbi->s_blockgroup_lock);
3387 for (i = 0; i < db_count; i++) {
3388 block = descriptor_loc(sb, logical_sb_block, i);
3389 sbi->s_group_desc[i] = sb_bread(sb, block);
3390 if (!sbi->s_group_desc[i]) {
3391 ext4_msg(sb, KERN_ERR,
3392 "can't read group descriptor %d", i);
3393 db_count = i;
3394 goto failed_mount2;
3397 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3398 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3399 goto failed_mount2;
3401 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3402 if (!ext4_fill_flex_info(sb)) {
3403 ext4_msg(sb, KERN_ERR,
3404 "unable to initialize "
3405 "flex_bg meta info!");
3406 goto failed_mount2;
3409 sbi->s_gdb_count = db_count;
3410 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3411 spin_lock_init(&sbi->s_next_gen_lock);
3413 init_timer(&sbi->s_err_report);
3414 sbi->s_err_report.function = print_daily_error_info;
3415 sbi->s_err_report.data = (unsigned long) sb;
3417 err = percpu_counter_init(&sbi->s_freeblocks_counter,
3418 ext4_count_free_blocks(sb));
3419 if (!err) {
3420 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3421 ext4_count_free_inodes(sb));
3423 if (!err) {
3424 err = percpu_counter_init(&sbi->s_dirs_counter,
3425 ext4_count_dirs(sb));
3427 if (!err) {
3428 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3430 if (err) {
3431 ext4_msg(sb, KERN_ERR, "insufficient memory");
3432 goto failed_mount3;
3435 sbi->s_stripe = ext4_get_stripe_size(sbi);
3436 sbi->s_max_writeback_mb_bump = 128;
3439 * set up enough so that it can read an inode
3441 if (!test_opt(sb, NOLOAD) &&
3442 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3443 sb->s_op = &ext4_sops;
3444 else
3445 sb->s_op = &ext4_nojournal_sops;
3446 sb->s_export_op = &ext4_export_ops;
3447 sb->s_xattr = ext4_xattr_handlers;
3448 #ifdef CONFIG_QUOTA
3449 sb->s_qcop = &ext4_qctl_operations;
3450 sb->dq_op = &ext4_quota_operations;
3451 #endif
3452 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3454 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3455 mutex_init(&sbi->s_orphan_lock);
3456 mutex_init(&sbi->s_resize_lock);
3458 sb->s_root = NULL;
3460 needs_recovery = (es->s_last_orphan != 0 ||
3461 EXT4_HAS_INCOMPAT_FEATURE(sb,
3462 EXT4_FEATURE_INCOMPAT_RECOVER));
3465 * The first inode we look at is the journal inode. Don't try
3466 * root first: it may be modified in the journal!
3468 if (!test_opt(sb, NOLOAD) &&
3469 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3470 if (ext4_load_journal(sb, es, journal_devnum))
3471 goto failed_mount3;
3472 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3473 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3474 ext4_msg(sb, KERN_ERR, "required journal recovery "
3475 "suppressed and not mounted read-only");
3476 goto failed_mount_wq;
3477 } else {
3478 clear_opt(sb, DATA_FLAGS);
3479 set_opt(sb, WRITEBACK_DATA);
3480 sbi->s_journal = NULL;
3481 needs_recovery = 0;
3482 goto no_journal;
3485 if (ext4_blocks_count(es) > 0xffffffffULL &&
3486 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3487 JBD2_FEATURE_INCOMPAT_64BIT)) {
3488 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3489 goto failed_mount_wq;
3492 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3493 jbd2_journal_set_features(sbi->s_journal,
3494 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3495 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3496 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3497 jbd2_journal_set_features(sbi->s_journal,
3498 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3499 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3500 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3501 } else {
3502 jbd2_journal_clear_features(sbi->s_journal,
3503 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3504 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3507 /* We have now updated the journal if required, so we can
3508 * validate the data journaling mode. */
3509 switch (test_opt(sb, DATA_FLAGS)) {
3510 case 0:
3511 /* No mode set, assume a default based on the journal
3512 * capabilities: ORDERED_DATA if the journal can
3513 * cope, else JOURNAL_DATA
3515 if (jbd2_journal_check_available_features
3516 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3517 set_opt(sb, ORDERED_DATA);
3518 else
3519 set_opt(sb, JOURNAL_DATA);
3520 break;
3522 case EXT4_MOUNT_ORDERED_DATA:
3523 case EXT4_MOUNT_WRITEBACK_DATA:
3524 if (!jbd2_journal_check_available_features
3525 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3526 ext4_msg(sb, KERN_ERR, "Journal does not support "
3527 "requested data journaling mode");
3528 goto failed_mount_wq;
3530 default:
3531 break;
3533 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3536 * The journal may have updated the bg summary counts, so we
3537 * need to update the global counters.
3539 percpu_counter_set(&sbi->s_freeblocks_counter,
3540 ext4_count_free_blocks(sb));
3541 percpu_counter_set(&sbi->s_freeinodes_counter,
3542 ext4_count_free_inodes(sb));
3543 percpu_counter_set(&sbi->s_dirs_counter,
3544 ext4_count_dirs(sb));
3545 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3547 no_journal:
3549 * The maximum number of concurrent works can be high and
3550 * concurrency isn't really necessary. Limit it to 1.
3552 EXT4_SB(sb)->dio_unwritten_wq =
3553 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3554 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3555 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3556 goto failed_mount_wq;
3560 * The jbd2_journal_load will have done any necessary log recovery,
3561 * so we can safely mount the rest of the filesystem now.
3564 root = ext4_iget(sb, EXT4_ROOT_INO);
3565 if (IS_ERR(root)) {
3566 ext4_msg(sb, KERN_ERR, "get root inode failed");
3567 ret = PTR_ERR(root);
3568 root = NULL;
3569 goto failed_mount4;
3571 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3572 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3573 goto failed_mount4;
3575 sb->s_root = d_alloc_root(root);
3576 if (!sb->s_root) {
3577 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3578 ret = -ENOMEM;
3579 goto failed_mount4;
3582 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3584 /* determine the minimum size of new large inodes, if present */
3585 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3586 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3587 EXT4_GOOD_OLD_INODE_SIZE;
3588 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3589 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3590 if (sbi->s_want_extra_isize <
3591 le16_to_cpu(es->s_want_extra_isize))
3592 sbi->s_want_extra_isize =
3593 le16_to_cpu(es->s_want_extra_isize);
3594 if (sbi->s_want_extra_isize <
3595 le16_to_cpu(es->s_min_extra_isize))
3596 sbi->s_want_extra_isize =
3597 le16_to_cpu(es->s_min_extra_isize);
3600 /* Check if enough inode space is available */
3601 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3602 sbi->s_inode_size) {
3603 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3604 EXT4_GOOD_OLD_INODE_SIZE;
3605 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3606 "available");
3609 if (test_opt(sb, DELALLOC) &&
3610 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3611 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3612 "requested data journaling mode");
3613 clear_opt(sb, DELALLOC);
3615 if (test_opt(sb, DIOREAD_NOLOCK)) {
3616 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3617 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3618 "option - requested data journaling mode");
3619 clear_opt(sb, DIOREAD_NOLOCK);
3621 if (sb->s_blocksize < PAGE_SIZE) {
3622 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3623 "option - block size is too small");
3624 clear_opt(sb, DIOREAD_NOLOCK);
3628 err = ext4_setup_system_zone(sb);
3629 if (err) {
3630 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3631 "zone (%d)", err);
3632 goto failed_mount4;
3635 ext4_ext_init(sb);
3636 err = ext4_mb_init(sb, needs_recovery);
3637 if (err) {
3638 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3639 err);
3640 goto failed_mount4;
3643 err = ext4_register_li_request(sb, first_not_zeroed);
3644 if (err)
3645 goto failed_mount4;
3647 sbi->s_kobj.kset = ext4_kset;
3648 init_completion(&sbi->s_kobj_unregister);
3649 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3650 "%s", sb->s_id);
3651 if (err) {
3652 ext4_mb_release(sb);
3653 ext4_ext_release(sb);
3654 goto failed_mount4;
3657 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3658 ext4_orphan_cleanup(sb, es);
3659 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3660 if (needs_recovery) {
3661 ext4_msg(sb, KERN_INFO, "recovery complete");
3662 ext4_mark_recovery_complete(sb, es);
3664 if (EXT4_SB(sb)->s_journal) {
3665 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3666 descr = " journalled data mode";
3667 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3668 descr = " ordered data mode";
3669 else
3670 descr = " writeback data mode";
3671 } else
3672 descr = "out journal";
3674 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3675 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3676 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3678 if (es->s_error_count)
3679 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3681 kfree(orig_data);
3682 return 0;
3684 cantfind_ext4:
3685 if (!silent)
3686 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3687 goto failed_mount;
3689 failed_mount4:
3690 iput(root);
3691 sb->s_root = NULL;
3692 ext4_msg(sb, KERN_ERR, "mount failed");
3693 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3694 failed_mount_wq:
3695 ext4_release_system_zone(sb);
3696 if (sbi->s_journal) {
3697 jbd2_journal_destroy(sbi->s_journal);
3698 sbi->s_journal = NULL;
3700 failed_mount3:
3701 del_timer(&sbi->s_err_report);
3702 if (sbi->s_flex_groups) {
3703 if (is_vmalloc_addr(sbi->s_flex_groups))
3704 vfree(sbi->s_flex_groups);
3705 else
3706 kfree(sbi->s_flex_groups);
3708 percpu_counter_destroy(&sbi->s_freeblocks_counter);
3709 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3710 percpu_counter_destroy(&sbi->s_dirs_counter);
3711 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3712 failed_mount2:
3713 for (i = 0; i < db_count; i++)
3714 brelse(sbi->s_group_desc[i]);
3715 kfree(sbi->s_group_desc);
3716 failed_mount:
3717 if (sbi->s_proc) {
3718 remove_proc_entry(sb->s_id, ext4_proc_root);
3720 #ifdef CONFIG_QUOTA
3721 for (i = 0; i < MAXQUOTAS; i++)
3722 kfree(sbi->s_qf_names[i]);
3723 #endif
3724 ext4_blkdev_remove(sbi);
3725 brelse(bh);
3726 out_fail:
3727 sb->s_fs_info = NULL;
3728 kfree(sbi->s_blockgroup_lock);
3729 kfree(sbi);
3730 out_free_orig:
3731 kfree(orig_data);
3732 return ret;
3736 * Setup any per-fs journal parameters now. We'll do this both on
3737 * initial mount, once the journal has been initialised but before we've
3738 * done any recovery; and again on any subsequent remount.
3740 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3742 struct ext4_sb_info *sbi = EXT4_SB(sb);
3744 journal->j_commit_interval = sbi->s_commit_interval;
3745 journal->j_min_batch_time = sbi->s_min_batch_time;
3746 journal->j_max_batch_time = sbi->s_max_batch_time;
3748 write_lock(&journal->j_state_lock);
3749 if (test_opt(sb, BARRIER))
3750 journal->j_flags |= JBD2_BARRIER;
3751 else
3752 journal->j_flags &= ~JBD2_BARRIER;
3753 if (test_opt(sb, DATA_ERR_ABORT))
3754 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3755 else
3756 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3757 write_unlock(&journal->j_state_lock);
3760 static journal_t *ext4_get_journal(struct super_block *sb,
3761 unsigned int journal_inum)
3763 struct inode *journal_inode;
3764 journal_t *journal;
3766 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3768 /* First, test for the existence of a valid inode on disk. Bad
3769 * things happen if we iget() an unused inode, as the subsequent
3770 * iput() will try to delete it. */
3772 journal_inode = ext4_iget(sb, journal_inum);
3773 if (IS_ERR(journal_inode)) {
3774 ext4_msg(sb, KERN_ERR, "no journal found");
3775 return NULL;
3777 if (!journal_inode->i_nlink) {
3778 make_bad_inode(journal_inode);
3779 iput(journal_inode);
3780 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3781 return NULL;
3784 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3785 journal_inode, journal_inode->i_size);
3786 if (!S_ISREG(journal_inode->i_mode)) {
3787 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3788 iput(journal_inode);
3789 return NULL;
3792 journal = jbd2_journal_init_inode(journal_inode);
3793 if (!journal) {
3794 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3795 iput(journal_inode);
3796 return NULL;
3798 journal->j_private = sb;
3799 ext4_init_journal_params(sb, journal);
3800 return journal;
3803 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3804 dev_t j_dev)
3806 struct buffer_head *bh;
3807 journal_t *journal;
3808 ext4_fsblk_t start;
3809 ext4_fsblk_t len;
3810 int hblock, blocksize;
3811 ext4_fsblk_t sb_block;
3812 unsigned long offset;
3813 struct ext4_super_block *es;
3814 struct block_device *bdev;
3816 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3818 bdev = ext4_blkdev_get(j_dev, sb);
3819 if (bdev == NULL)
3820 return NULL;
3822 blocksize = sb->s_blocksize;
3823 hblock = bdev_logical_block_size(bdev);
3824 if (blocksize < hblock) {
3825 ext4_msg(sb, KERN_ERR,
3826 "blocksize too small for journal device");
3827 goto out_bdev;
3830 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3831 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3832 set_blocksize(bdev, blocksize);
3833 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3834 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3835 "external journal");
3836 goto out_bdev;
3839 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3840 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3841 !(le32_to_cpu(es->s_feature_incompat) &
3842 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3843 ext4_msg(sb, KERN_ERR, "external journal has "
3844 "bad superblock");
3845 brelse(bh);
3846 goto out_bdev;
3849 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3850 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3851 brelse(bh);
3852 goto out_bdev;
3855 len = ext4_blocks_count(es);
3856 start = sb_block + 1;
3857 brelse(bh); /* we're done with the superblock */
3859 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3860 start, len, blocksize);
3861 if (!journal) {
3862 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3863 goto out_bdev;
3865 journal->j_private = sb;
3866 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3867 wait_on_buffer(journal->j_sb_buffer);
3868 if (!buffer_uptodate(journal->j_sb_buffer)) {
3869 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3870 goto out_journal;
3872 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3873 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3874 "user (unsupported) - %d",
3875 be32_to_cpu(journal->j_superblock->s_nr_users));
3876 goto out_journal;
3878 EXT4_SB(sb)->journal_bdev = bdev;
3879 ext4_init_journal_params(sb, journal);
3880 return journal;
3882 out_journal:
3883 jbd2_journal_destroy(journal);
3884 out_bdev:
3885 ext4_blkdev_put(bdev);
3886 return NULL;
3889 static int ext4_load_journal(struct super_block *sb,
3890 struct ext4_super_block *es,
3891 unsigned long journal_devnum)
3893 journal_t *journal;
3894 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3895 dev_t journal_dev;
3896 int err = 0;
3897 int really_read_only;
3899 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3901 if (journal_devnum &&
3902 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3903 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3904 "numbers have changed");
3905 journal_dev = new_decode_dev(journal_devnum);
3906 } else
3907 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3909 really_read_only = bdev_read_only(sb->s_bdev);
3912 * Are we loading a blank journal or performing recovery after a
3913 * crash? For recovery, we need to check in advance whether we
3914 * can get read-write access to the device.
3916 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3917 if (sb->s_flags & MS_RDONLY) {
3918 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3919 "required on readonly filesystem");
3920 if (really_read_only) {
3921 ext4_msg(sb, KERN_ERR, "write access "
3922 "unavailable, cannot proceed");
3923 return -EROFS;
3925 ext4_msg(sb, KERN_INFO, "write access will "
3926 "be enabled during recovery");
3930 if (journal_inum && journal_dev) {
3931 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3932 "and inode journals!");
3933 return -EINVAL;
3936 if (journal_inum) {
3937 if (!(journal = ext4_get_journal(sb, journal_inum)))
3938 return -EINVAL;
3939 } else {
3940 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3941 return -EINVAL;
3944 if (!(journal->j_flags & JBD2_BARRIER))
3945 ext4_msg(sb, KERN_INFO, "barriers disabled");
3947 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3948 err = jbd2_journal_update_format(journal);
3949 if (err) {
3950 ext4_msg(sb, KERN_ERR, "error updating journal");
3951 jbd2_journal_destroy(journal);
3952 return err;
3956 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3957 err = jbd2_journal_wipe(journal, !really_read_only);
3958 if (!err) {
3959 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3960 if (save)
3961 memcpy(save, ((char *) es) +
3962 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3963 err = jbd2_journal_load(journal);
3964 if (save)
3965 memcpy(((char *) es) + EXT4_S_ERR_START,
3966 save, EXT4_S_ERR_LEN);
3967 kfree(save);
3970 if (err) {
3971 ext4_msg(sb, KERN_ERR, "error loading journal");
3972 jbd2_journal_destroy(journal);
3973 return err;
3976 EXT4_SB(sb)->s_journal = journal;
3977 ext4_clear_journal_err(sb, es);
3979 if (!really_read_only && journal_devnum &&
3980 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3981 es->s_journal_dev = cpu_to_le32(journal_devnum);
3983 /* Make sure we flush the recovery flag to disk. */
3984 ext4_commit_super(sb, 1);
3987 return 0;
3990 static int ext4_commit_super(struct super_block *sb, int sync)
3992 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3993 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3994 int error = 0;
3996 if (!sbh)
3997 return error;
3998 if (buffer_write_io_error(sbh)) {
4000 * Oh, dear. A previous attempt to write the
4001 * superblock failed. This could happen because the
4002 * USB device was yanked out. Or it could happen to
4003 * be a transient write error and maybe the block will
4004 * be remapped. Nothing we can do but to retry the
4005 * write and hope for the best.
4007 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4008 "superblock detected");
4009 clear_buffer_write_io_error(sbh);
4010 set_buffer_uptodate(sbh);
4013 * If the file system is mounted read-only, don't update the
4014 * superblock write time. This avoids updating the superblock
4015 * write time when we are mounting the root file system
4016 * read/only but we need to replay the journal; at that point,
4017 * for people who are east of GMT and who make their clock
4018 * tick in localtime for Windows bug-for-bug compatibility,
4019 * the clock is set in the future, and this will cause e2fsck
4020 * to complain and force a full file system check.
4022 if (!(sb->s_flags & MS_RDONLY))
4023 es->s_wtime = cpu_to_le32(get_seconds());
4024 if (sb->s_bdev->bd_part)
4025 es->s_kbytes_written =
4026 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4027 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4028 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4029 else
4030 es->s_kbytes_written =
4031 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4032 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
4033 &EXT4_SB(sb)->s_freeblocks_counter));
4034 es->s_free_inodes_count =
4035 cpu_to_le32(percpu_counter_sum_positive(
4036 &EXT4_SB(sb)->s_freeinodes_counter));
4037 sb->s_dirt = 0;
4038 BUFFER_TRACE(sbh, "marking dirty");
4039 mark_buffer_dirty(sbh);
4040 if (sync) {
4041 error = sync_dirty_buffer(sbh);
4042 if (error)
4043 return error;
4045 error = buffer_write_io_error(sbh);
4046 if (error) {
4047 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4048 "superblock");
4049 clear_buffer_write_io_error(sbh);
4050 set_buffer_uptodate(sbh);
4053 return error;
4057 * Have we just finished recovery? If so, and if we are mounting (or
4058 * remounting) the filesystem readonly, then we will end up with a
4059 * consistent fs on disk. Record that fact.
4061 static void ext4_mark_recovery_complete(struct super_block *sb,
4062 struct ext4_super_block *es)
4064 journal_t *journal = EXT4_SB(sb)->s_journal;
4066 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4067 BUG_ON(journal != NULL);
4068 return;
4070 jbd2_journal_lock_updates(journal);
4071 if (jbd2_journal_flush(journal) < 0)
4072 goto out;
4074 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4075 sb->s_flags & MS_RDONLY) {
4076 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4077 ext4_commit_super(sb, 1);
4080 out:
4081 jbd2_journal_unlock_updates(journal);
4085 * If we are mounting (or read-write remounting) a filesystem whose journal
4086 * has recorded an error from a previous lifetime, move that error to the
4087 * main filesystem now.
4089 static void ext4_clear_journal_err(struct super_block *sb,
4090 struct ext4_super_block *es)
4092 journal_t *journal;
4093 int j_errno;
4094 const char *errstr;
4096 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4098 journal = EXT4_SB(sb)->s_journal;
4101 * Now check for any error status which may have been recorded in the
4102 * journal by a prior ext4_error() or ext4_abort()
4105 j_errno = jbd2_journal_errno(journal);
4106 if (j_errno) {
4107 char nbuf[16];
4109 errstr = ext4_decode_error(sb, j_errno, nbuf);
4110 ext4_warning(sb, "Filesystem error recorded "
4111 "from previous mount: %s", errstr);
4112 ext4_warning(sb, "Marking fs in need of filesystem check.");
4114 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4115 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4116 ext4_commit_super(sb, 1);
4118 jbd2_journal_clear_err(journal);
4123 * Force the running and committing transactions to commit,
4124 * and wait on the commit.
4126 int ext4_force_commit(struct super_block *sb)
4128 journal_t *journal;
4129 int ret = 0;
4131 if (sb->s_flags & MS_RDONLY)
4132 return 0;
4134 journal = EXT4_SB(sb)->s_journal;
4135 if (journal) {
4136 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4137 ret = ext4_journal_force_commit(journal);
4140 return ret;
4143 static void ext4_write_super(struct super_block *sb)
4145 lock_super(sb);
4146 ext4_commit_super(sb, 1);
4147 unlock_super(sb);
4150 static int ext4_sync_fs(struct super_block *sb, int wait)
4152 int ret = 0;
4153 tid_t target;
4154 struct ext4_sb_info *sbi = EXT4_SB(sb);
4156 trace_ext4_sync_fs(sb, wait);
4157 flush_workqueue(sbi->dio_unwritten_wq);
4158 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4159 if (wait)
4160 jbd2_log_wait_commit(sbi->s_journal, target);
4162 return ret;
4166 * LVM calls this function before a (read-only) snapshot is created. This
4167 * gives us a chance to flush the journal completely and mark the fs clean.
4169 * Note that only this function cannot bring a filesystem to be in a clean
4170 * state independently, because ext4 prevents a new handle from being started
4171 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4172 * the upper layer.
4174 static int ext4_freeze(struct super_block *sb)
4176 int error = 0;
4177 journal_t *journal;
4179 if (sb->s_flags & MS_RDONLY)
4180 return 0;
4182 journal = EXT4_SB(sb)->s_journal;
4184 /* Now we set up the journal barrier. */
4185 jbd2_journal_lock_updates(journal);
4188 * Don't clear the needs_recovery flag if we failed to flush
4189 * the journal.
4191 error = jbd2_journal_flush(journal);
4192 if (error < 0)
4193 goto out;
4195 /* Journal blocked and flushed, clear needs_recovery flag. */
4196 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4197 error = ext4_commit_super(sb, 1);
4198 out:
4199 /* we rely on s_frozen to stop further updates */
4200 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4201 return error;
4205 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4206 * flag here, even though the filesystem is not technically dirty yet.
4208 static int ext4_unfreeze(struct super_block *sb)
4210 if (sb->s_flags & MS_RDONLY)
4211 return 0;
4213 lock_super(sb);
4214 /* Reset the needs_recovery flag before the fs is unlocked. */
4215 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4216 ext4_commit_super(sb, 1);
4217 unlock_super(sb);
4218 return 0;
4222 * Structure to save mount options for ext4_remount's benefit
4224 struct ext4_mount_options {
4225 unsigned long s_mount_opt;
4226 unsigned long s_mount_opt2;
4227 uid_t s_resuid;
4228 gid_t s_resgid;
4229 unsigned long s_commit_interval;
4230 u32 s_min_batch_time, s_max_batch_time;
4231 #ifdef CONFIG_QUOTA
4232 int s_jquota_fmt;
4233 char *s_qf_names[MAXQUOTAS];
4234 #endif
4237 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4239 struct ext4_super_block *es;
4240 struct ext4_sb_info *sbi = EXT4_SB(sb);
4241 ext4_fsblk_t n_blocks_count = 0;
4242 unsigned long old_sb_flags;
4243 struct ext4_mount_options old_opts;
4244 int enable_quota = 0;
4245 ext4_group_t g;
4246 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4247 int err;
4248 #ifdef CONFIG_QUOTA
4249 int i;
4250 #endif
4251 char *orig_data = kstrdup(data, GFP_KERNEL);
4253 /* Store the original options */
4254 lock_super(sb);
4255 old_sb_flags = sb->s_flags;
4256 old_opts.s_mount_opt = sbi->s_mount_opt;
4257 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4258 old_opts.s_resuid = sbi->s_resuid;
4259 old_opts.s_resgid = sbi->s_resgid;
4260 old_opts.s_commit_interval = sbi->s_commit_interval;
4261 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4262 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4263 #ifdef CONFIG_QUOTA
4264 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4265 for (i = 0; i < MAXQUOTAS; i++)
4266 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4267 #endif
4268 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4269 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4272 * Allow the "check" option to be passed as a remount option.
4274 if (!parse_options(data, sb, NULL, &journal_ioprio,
4275 &n_blocks_count, 1)) {
4276 err = -EINVAL;
4277 goto restore_opts;
4280 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4281 ext4_abort(sb, "Abort forced by user");
4283 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4284 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4286 es = sbi->s_es;
4288 if (sbi->s_journal) {
4289 ext4_init_journal_params(sb, sbi->s_journal);
4290 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4293 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4294 n_blocks_count > ext4_blocks_count(es)) {
4295 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4296 err = -EROFS;
4297 goto restore_opts;
4300 if (*flags & MS_RDONLY) {
4301 err = dquot_suspend(sb, -1);
4302 if (err < 0)
4303 goto restore_opts;
4306 * First of all, the unconditional stuff we have to do
4307 * to disable replay of the journal when we next remount
4309 sb->s_flags |= MS_RDONLY;
4312 * OK, test if we are remounting a valid rw partition
4313 * readonly, and if so set the rdonly flag and then
4314 * mark the partition as valid again.
4316 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4317 (sbi->s_mount_state & EXT4_VALID_FS))
4318 es->s_state = cpu_to_le16(sbi->s_mount_state);
4320 if (sbi->s_journal)
4321 ext4_mark_recovery_complete(sb, es);
4322 } else {
4323 /* Make sure we can mount this feature set readwrite */
4324 if (!ext4_feature_set_ok(sb, 0)) {
4325 err = -EROFS;
4326 goto restore_opts;
4329 * Make sure the group descriptor checksums
4330 * are sane. If they aren't, refuse to remount r/w.
4332 for (g = 0; g < sbi->s_groups_count; g++) {
4333 struct ext4_group_desc *gdp =
4334 ext4_get_group_desc(sb, g, NULL);
4336 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4337 ext4_msg(sb, KERN_ERR,
4338 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4339 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4340 le16_to_cpu(gdp->bg_checksum));
4341 err = -EINVAL;
4342 goto restore_opts;
4347 * If we have an unprocessed orphan list hanging
4348 * around from a previously readonly bdev mount,
4349 * require a full umount/remount for now.
4351 if (es->s_last_orphan) {
4352 ext4_msg(sb, KERN_WARNING, "Couldn't "
4353 "remount RDWR because of unprocessed "
4354 "orphan inode list. Please "
4355 "umount/remount instead");
4356 err = -EINVAL;
4357 goto restore_opts;
4361 * Mounting a RDONLY partition read-write, so reread
4362 * and store the current valid flag. (It may have
4363 * been changed by e2fsck since we originally mounted
4364 * the partition.)
4366 if (sbi->s_journal)
4367 ext4_clear_journal_err(sb, es);
4368 sbi->s_mount_state = le16_to_cpu(es->s_state);
4369 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4370 goto restore_opts;
4371 if (!ext4_setup_super(sb, es, 0))
4372 sb->s_flags &= ~MS_RDONLY;
4373 enable_quota = 1;
4378 * Reinitialize lazy itable initialization thread based on
4379 * current settings
4381 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4382 ext4_unregister_li_request(sb);
4383 else {
4384 ext4_group_t first_not_zeroed;
4385 first_not_zeroed = ext4_has_uninit_itable(sb);
4386 ext4_register_li_request(sb, first_not_zeroed);
4389 ext4_setup_system_zone(sb);
4390 if (sbi->s_journal == NULL)
4391 ext4_commit_super(sb, 1);
4393 #ifdef CONFIG_QUOTA
4394 /* Release old quota file names */
4395 for (i = 0; i < MAXQUOTAS; i++)
4396 if (old_opts.s_qf_names[i] &&
4397 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4398 kfree(old_opts.s_qf_names[i]);
4399 #endif
4400 unlock_super(sb);
4401 if (enable_quota)
4402 dquot_resume(sb, -1);
4404 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4405 kfree(orig_data);
4406 return 0;
4408 restore_opts:
4409 sb->s_flags = old_sb_flags;
4410 sbi->s_mount_opt = old_opts.s_mount_opt;
4411 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4412 sbi->s_resuid = old_opts.s_resuid;
4413 sbi->s_resgid = old_opts.s_resgid;
4414 sbi->s_commit_interval = old_opts.s_commit_interval;
4415 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4416 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4417 #ifdef CONFIG_QUOTA
4418 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4419 for (i = 0; i < MAXQUOTAS; i++) {
4420 if (sbi->s_qf_names[i] &&
4421 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4422 kfree(sbi->s_qf_names[i]);
4423 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4425 #endif
4426 unlock_super(sb);
4427 kfree(orig_data);
4428 return err;
4431 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4433 struct super_block *sb = dentry->d_sb;
4434 struct ext4_sb_info *sbi = EXT4_SB(sb);
4435 struct ext4_super_block *es = sbi->s_es;
4436 u64 fsid;
4438 if (test_opt(sb, MINIX_DF)) {
4439 sbi->s_overhead_last = 0;
4440 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4441 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4442 ext4_fsblk_t overhead = 0;
4445 * Compute the overhead (FS structures). This is constant
4446 * for a given filesystem unless the number of block groups
4447 * changes so we cache the previous value until it does.
4451 * All of the blocks before first_data_block are
4452 * overhead
4454 overhead = le32_to_cpu(es->s_first_data_block);
4457 * Add the overhead attributed to the superblock and
4458 * block group descriptors. If the sparse superblocks
4459 * feature is turned on, then not all groups have this.
4461 for (i = 0; i < ngroups; i++) {
4462 overhead += ext4_bg_has_super(sb, i) +
4463 ext4_bg_num_gdb(sb, i);
4464 cond_resched();
4468 * Every block group has an inode bitmap, a block
4469 * bitmap, and an inode table.
4471 overhead += ngroups * (2 + sbi->s_itb_per_group);
4472 sbi->s_overhead_last = overhead;
4473 smp_wmb();
4474 sbi->s_blocks_last = ext4_blocks_count(es);
4477 buf->f_type = EXT4_SUPER_MAGIC;
4478 buf->f_bsize = sb->s_blocksize;
4479 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4480 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4481 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4482 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4483 if (buf->f_bfree < ext4_r_blocks_count(es))
4484 buf->f_bavail = 0;
4485 buf->f_files = le32_to_cpu(es->s_inodes_count);
4486 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4487 buf->f_namelen = EXT4_NAME_LEN;
4488 fsid = le64_to_cpup((void *)es->s_uuid) ^
4489 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4490 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4491 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4493 return 0;
4496 /* Helper function for writing quotas on sync - we need to start transaction
4497 * before quota file is locked for write. Otherwise the are possible deadlocks:
4498 * Process 1 Process 2
4499 * ext4_create() quota_sync()
4500 * jbd2_journal_start() write_dquot()
4501 * dquot_initialize() down(dqio_mutex)
4502 * down(dqio_mutex) jbd2_journal_start()
4506 #ifdef CONFIG_QUOTA
4508 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4510 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4513 static int ext4_write_dquot(struct dquot *dquot)
4515 int ret, err;
4516 handle_t *handle;
4517 struct inode *inode;
4519 inode = dquot_to_inode(dquot);
4520 handle = ext4_journal_start(inode,
4521 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4522 if (IS_ERR(handle))
4523 return PTR_ERR(handle);
4524 ret = dquot_commit(dquot);
4525 err = ext4_journal_stop(handle);
4526 if (!ret)
4527 ret = err;
4528 return ret;
4531 static int ext4_acquire_dquot(struct dquot *dquot)
4533 int ret, err;
4534 handle_t *handle;
4536 handle = ext4_journal_start(dquot_to_inode(dquot),
4537 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4538 if (IS_ERR(handle))
4539 return PTR_ERR(handle);
4540 ret = dquot_acquire(dquot);
4541 err = ext4_journal_stop(handle);
4542 if (!ret)
4543 ret = err;
4544 return ret;
4547 static int ext4_release_dquot(struct dquot *dquot)
4549 int ret, err;
4550 handle_t *handle;
4552 handle = ext4_journal_start(dquot_to_inode(dquot),
4553 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4554 if (IS_ERR(handle)) {
4555 /* Release dquot anyway to avoid endless cycle in dqput() */
4556 dquot_release(dquot);
4557 return PTR_ERR(handle);
4559 ret = dquot_release(dquot);
4560 err = ext4_journal_stop(handle);
4561 if (!ret)
4562 ret = err;
4563 return ret;
4566 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4568 /* Are we journaling quotas? */
4569 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4570 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4571 dquot_mark_dquot_dirty(dquot);
4572 return ext4_write_dquot(dquot);
4573 } else {
4574 return dquot_mark_dquot_dirty(dquot);
4578 static int ext4_write_info(struct super_block *sb, int type)
4580 int ret, err;
4581 handle_t *handle;
4583 /* Data block + inode block */
4584 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4585 if (IS_ERR(handle))
4586 return PTR_ERR(handle);
4587 ret = dquot_commit_info(sb, type);
4588 err = ext4_journal_stop(handle);
4589 if (!ret)
4590 ret = err;
4591 return ret;
4595 * Turn on quotas during mount time - we need to find
4596 * the quota file and such...
4598 static int ext4_quota_on_mount(struct super_block *sb, int type)
4600 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4601 EXT4_SB(sb)->s_jquota_fmt, type);
4605 * Standard function to be called on quota_on
4607 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4608 struct path *path)
4610 int err;
4612 if (!test_opt(sb, QUOTA))
4613 return -EINVAL;
4615 /* Quotafile not on the same filesystem? */
4616 if (path->mnt->mnt_sb != sb)
4617 return -EXDEV;
4618 /* Journaling quota? */
4619 if (EXT4_SB(sb)->s_qf_names[type]) {
4620 /* Quotafile not in fs root? */
4621 if (path->dentry->d_parent != sb->s_root)
4622 ext4_msg(sb, KERN_WARNING,
4623 "Quota file not on filesystem root. "
4624 "Journaled quota will not work");
4628 * When we journal data on quota file, we have to flush journal to see
4629 * all updates to the file when we bypass pagecache...
4631 if (EXT4_SB(sb)->s_journal &&
4632 ext4_should_journal_data(path->dentry->d_inode)) {
4634 * We don't need to lock updates but journal_flush() could
4635 * otherwise be livelocked...
4637 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4638 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4639 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4640 if (err)
4641 return err;
4644 return dquot_quota_on(sb, type, format_id, path);
4647 static int ext4_quota_off(struct super_block *sb, int type)
4649 struct inode *inode = sb_dqopt(sb)->files[type];
4650 handle_t *handle;
4652 /* Force all delayed allocation blocks to be allocated.
4653 * Caller already holds s_umount sem */
4654 if (test_opt(sb, DELALLOC))
4655 sync_filesystem(sb);
4657 /* Update modification times of quota files when userspace can
4658 * start looking at them */
4659 handle = ext4_journal_start(inode, 1);
4660 if (IS_ERR(handle))
4661 goto out;
4662 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4663 ext4_mark_inode_dirty(handle, inode);
4664 ext4_journal_stop(handle);
4666 out:
4667 return dquot_quota_off(sb, type);
4670 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4671 * acquiring the locks... As quota files are never truncated and quota code
4672 * itself serializes the operations (and no one else should touch the files)
4673 * we don't have to be afraid of races */
4674 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4675 size_t len, loff_t off)
4677 struct inode *inode = sb_dqopt(sb)->files[type];
4678 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4679 int err = 0;
4680 int offset = off & (sb->s_blocksize - 1);
4681 int tocopy;
4682 size_t toread;
4683 struct buffer_head *bh;
4684 loff_t i_size = i_size_read(inode);
4686 if (off > i_size)
4687 return 0;
4688 if (off+len > i_size)
4689 len = i_size-off;
4690 toread = len;
4691 while (toread > 0) {
4692 tocopy = sb->s_blocksize - offset < toread ?
4693 sb->s_blocksize - offset : toread;
4694 bh = ext4_bread(NULL, inode, blk, 0, &err);
4695 if (err)
4696 return err;
4697 if (!bh) /* A hole? */
4698 memset(data, 0, tocopy);
4699 else
4700 memcpy(data, bh->b_data+offset, tocopy);
4701 brelse(bh);
4702 offset = 0;
4703 toread -= tocopy;
4704 data += tocopy;
4705 blk++;
4707 return len;
4710 /* Write to quotafile (we know the transaction is already started and has
4711 * enough credits) */
4712 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4713 const char *data, size_t len, loff_t off)
4715 struct inode *inode = sb_dqopt(sb)->files[type];
4716 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4717 int err = 0;
4718 int offset = off & (sb->s_blocksize - 1);
4719 struct buffer_head *bh;
4720 handle_t *handle = journal_current_handle();
4722 if (EXT4_SB(sb)->s_journal && !handle) {
4723 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4724 " cancelled because transaction is not started",
4725 (unsigned long long)off, (unsigned long long)len);
4726 return -EIO;
4729 * Since we account only one data block in transaction credits,
4730 * then it is impossible to cross a block boundary.
4732 if (sb->s_blocksize - offset < len) {
4733 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4734 " cancelled because not block aligned",
4735 (unsigned long long)off, (unsigned long long)len);
4736 return -EIO;
4739 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4740 bh = ext4_bread(handle, inode, blk, 1, &err);
4741 if (!bh)
4742 goto out;
4743 err = ext4_journal_get_write_access(handle, bh);
4744 if (err) {
4745 brelse(bh);
4746 goto out;
4748 lock_buffer(bh);
4749 memcpy(bh->b_data+offset, data, len);
4750 flush_dcache_page(bh->b_page);
4751 unlock_buffer(bh);
4752 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4753 brelse(bh);
4754 out:
4755 if (err) {
4756 mutex_unlock(&inode->i_mutex);
4757 return err;
4759 if (inode->i_size < off + len) {
4760 i_size_write(inode, off + len);
4761 EXT4_I(inode)->i_disksize = inode->i_size;
4762 ext4_mark_inode_dirty(handle, inode);
4764 mutex_unlock(&inode->i_mutex);
4765 return len;
4768 #endif
4770 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4771 const char *dev_name, void *data)
4773 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4776 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4777 static struct file_system_type ext2_fs_type = {
4778 .owner = THIS_MODULE,
4779 .name = "ext2",
4780 .mount = ext4_mount,
4781 .kill_sb = kill_block_super,
4782 .fs_flags = FS_REQUIRES_DEV,
4785 static inline void register_as_ext2(void)
4787 int err = register_filesystem(&ext2_fs_type);
4788 if (err)
4789 printk(KERN_WARNING
4790 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4793 static inline void unregister_as_ext2(void)
4795 unregister_filesystem(&ext2_fs_type);
4797 MODULE_ALIAS("ext2");
4798 #else
4799 static inline void register_as_ext2(void) { }
4800 static inline void unregister_as_ext2(void) { }
4801 #endif
4803 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4804 static inline void register_as_ext3(void)
4806 int err = register_filesystem(&ext3_fs_type);
4807 if (err)
4808 printk(KERN_WARNING
4809 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4812 static inline void unregister_as_ext3(void)
4814 unregister_filesystem(&ext3_fs_type);
4816 MODULE_ALIAS("ext3");
4817 #else
4818 static inline void register_as_ext3(void) { }
4819 static inline void unregister_as_ext3(void) { }
4820 #endif
4822 static struct file_system_type ext4_fs_type = {
4823 .owner = THIS_MODULE,
4824 .name = "ext4",
4825 .mount = ext4_mount,
4826 .kill_sb = kill_block_super,
4827 .fs_flags = FS_REQUIRES_DEV,
4830 static int __init ext4_init_feat_adverts(void)
4832 struct ext4_features *ef;
4833 int ret = -ENOMEM;
4835 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4836 if (!ef)
4837 goto out;
4839 ef->f_kobj.kset = ext4_kset;
4840 init_completion(&ef->f_kobj_unregister);
4841 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4842 "features");
4843 if (ret) {
4844 kfree(ef);
4845 goto out;
4848 ext4_feat = ef;
4849 ret = 0;
4850 out:
4851 return ret;
4854 static void ext4_exit_feat_adverts(void)
4856 kobject_put(&ext4_feat->f_kobj);
4857 wait_for_completion(&ext4_feat->f_kobj_unregister);
4858 kfree(ext4_feat);
4861 /* Shared across all ext4 file systems */
4862 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4863 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4865 static int __init ext4_init_fs(void)
4867 int i, err;
4869 ext4_check_flag_values();
4871 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
4872 mutex_init(&ext4__aio_mutex[i]);
4873 init_waitqueue_head(&ext4__ioend_wq[i]);
4876 err = ext4_init_pageio();
4877 if (err)
4878 return err;
4879 err = ext4_init_system_zone();
4880 if (err)
4881 goto out7;
4882 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4883 if (!ext4_kset)
4884 goto out6;
4885 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4886 if (!ext4_proc_root)
4887 goto out5;
4889 err = ext4_init_feat_adverts();
4890 if (err)
4891 goto out4;
4893 err = ext4_init_mballoc();
4894 if (err)
4895 goto out3;
4897 err = ext4_init_xattr();
4898 if (err)
4899 goto out2;
4900 err = init_inodecache();
4901 if (err)
4902 goto out1;
4903 register_as_ext2();
4904 register_as_ext3();
4905 err = register_filesystem(&ext4_fs_type);
4906 if (err)
4907 goto out;
4909 ext4_li_info = NULL;
4910 mutex_init(&ext4_li_mtx);
4911 return 0;
4912 out:
4913 unregister_as_ext2();
4914 unregister_as_ext3();
4915 destroy_inodecache();
4916 out1:
4917 ext4_exit_xattr();
4918 out2:
4919 ext4_exit_mballoc();
4920 out3:
4921 ext4_exit_feat_adverts();
4922 out4:
4923 remove_proc_entry("fs/ext4", NULL);
4924 out5:
4925 kset_unregister(ext4_kset);
4926 out6:
4927 ext4_exit_system_zone();
4928 out7:
4929 ext4_exit_pageio();
4930 return err;
4933 static void __exit ext4_exit_fs(void)
4935 ext4_destroy_lazyinit_thread();
4936 unregister_as_ext2();
4937 unregister_as_ext3();
4938 unregister_filesystem(&ext4_fs_type);
4939 destroy_inodecache();
4940 ext4_exit_xattr();
4941 ext4_exit_mballoc();
4942 ext4_exit_feat_adverts();
4943 remove_proc_entry("fs/ext4", NULL);
4944 kset_unregister(ext4_kset);
4945 ext4_exit_system_zone();
4946 ext4_exit_pageio();
4949 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4950 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4951 MODULE_LICENSE("GPL");
4952 module_init(ext4_init_fs)
4953 module_exit(ext4_exit_fs)