mm: move enum vm_event_item into a standalone header file
[linux-2.6/next.git] / fs / ext4 / super.c
blobcc5c157aa11df4cef77167e870dd64c6273cd4fa
1 /*
2 * linux/fs/ext4/super.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
47 #include "ext4.h"
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
56 static struct proc_dir_entry *ext4_proc_root;
57 static struct kset *ext4_kset;
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ext4_features *ext4_feat;
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static const char *ext4_decode_error(struct super_block *sb, int errno,
71 char nbuf[16]);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static void ext4_write_super(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
94 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
95 #else
96 #define IS_EXT2_SB(sb) (0)
97 #endif
100 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
101 static struct file_system_type ext3_fs_type = {
102 .owner = THIS_MODULE,
103 .name = "ext3",
104 .mount = ext4_mount,
105 .kill_sb = kill_block_super,
106 .fs_flags = FS_REQUIRES_DEV,
108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
109 #else
110 #define IS_EXT3_SB(sb) (0)
111 #endif
113 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
114 struct ext4_group_desc *bg)
116 return le32_to_cpu(bg->bg_block_bitmap_lo) |
117 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
118 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
121 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
122 struct ext4_group_desc *bg)
124 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
125 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
126 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
129 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
130 struct ext4_group_desc *bg)
132 return le32_to_cpu(bg->bg_inode_table_lo) |
133 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
134 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
137 __u32 ext4_free_blks_count(struct super_block *sb,
138 struct ext4_group_desc *bg)
140 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
141 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
142 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
145 __u32 ext4_free_inodes_count(struct super_block *sb,
146 struct ext4_group_desc *bg)
148 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
149 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
150 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
153 __u32 ext4_used_dirs_count(struct super_block *sb,
154 struct ext4_group_desc *bg)
156 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
157 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
158 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
161 __u32 ext4_itable_unused_count(struct super_block *sb,
162 struct ext4_group_desc *bg)
164 return le16_to_cpu(bg->bg_itable_unused_lo) |
165 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
166 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
169 void ext4_block_bitmap_set(struct super_block *sb,
170 struct ext4_group_desc *bg, ext4_fsblk_t blk)
172 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
173 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
174 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
177 void ext4_inode_bitmap_set(struct super_block *sb,
178 struct ext4_group_desc *bg, ext4_fsblk_t blk)
180 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
181 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
182 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
185 void ext4_inode_table_set(struct super_block *sb,
186 struct ext4_group_desc *bg, ext4_fsblk_t blk)
188 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
189 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
190 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
193 void ext4_free_blks_set(struct super_block *sb,
194 struct ext4_group_desc *bg, __u32 count)
196 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
197 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
198 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
201 void ext4_free_inodes_set(struct super_block *sb,
202 struct ext4_group_desc *bg, __u32 count)
204 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
205 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
206 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
209 void ext4_used_dirs_set(struct super_block *sb,
210 struct ext4_group_desc *bg, __u32 count)
212 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
213 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
214 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
217 void ext4_itable_unused_set(struct super_block *sb,
218 struct ext4_group_desc *bg, __u32 count)
220 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
221 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
222 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
226 /* Just increment the non-pointer handle value */
227 static handle_t *ext4_get_nojournal(void)
229 handle_t *handle = current->journal_info;
230 unsigned long ref_cnt = (unsigned long)handle;
232 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
234 ref_cnt++;
235 handle = (handle_t *)ref_cnt;
237 current->journal_info = handle;
238 return handle;
242 /* Decrement the non-pointer handle value */
243 static void ext4_put_nojournal(handle_t *handle)
245 unsigned long ref_cnt = (unsigned long)handle;
247 BUG_ON(ref_cnt == 0);
249 ref_cnt--;
250 handle = (handle_t *)ref_cnt;
252 current->journal_info = handle;
256 * Wrappers for jbd2_journal_start/end.
258 * The only special thing we need to do here is to make sure that all
259 * journal_end calls result in the superblock being marked dirty, so
260 * that sync() will call the filesystem's write_super callback if
261 * appropriate.
263 * To avoid j_barrier hold in userspace when a user calls freeze(),
264 * ext4 prevents a new handle from being started by s_frozen, which
265 * is in an upper layer.
267 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
269 journal_t *journal;
270 handle_t *handle;
272 if (sb->s_flags & MS_RDONLY)
273 return ERR_PTR(-EROFS);
275 journal = EXT4_SB(sb)->s_journal;
276 handle = ext4_journal_current_handle();
279 * If a handle has been started, it should be allowed to
280 * finish, otherwise deadlock could happen between freeze
281 * and others(e.g. truncate) due to the restart of the
282 * journal handle if the filesystem is forzen and active
283 * handles are not stopped.
285 if (!handle)
286 vfs_check_frozen(sb, SB_FREEZE_TRANS);
288 if (!journal)
289 return ext4_get_nojournal();
291 * Special case here: if the journal has aborted behind our
292 * backs (eg. EIO in the commit thread), then we still need to
293 * take the FS itself readonly cleanly.
295 if (is_journal_aborted(journal)) {
296 ext4_abort(sb, "Detected aborted journal");
297 return ERR_PTR(-EROFS);
299 return jbd2_journal_start(journal, nblocks);
303 * The only special thing we need to do here is to make sure that all
304 * jbd2_journal_stop calls result in the superblock being marked dirty, so
305 * that sync() will call the filesystem's write_super callback if
306 * appropriate.
308 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
310 struct super_block *sb;
311 int err;
312 int rc;
314 if (!ext4_handle_valid(handle)) {
315 ext4_put_nojournal(handle);
316 return 0;
318 sb = handle->h_transaction->t_journal->j_private;
319 err = handle->h_err;
320 rc = jbd2_journal_stop(handle);
322 if (!err)
323 err = rc;
324 if (err)
325 __ext4_std_error(sb, where, line, err);
326 return err;
329 void ext4_journal_abort_handle(const char *caller, unsigned int line,
330 const char *err_fn, struct buffer_head *bh,
331 handle_t *handle, int err)
333 char nbuf[16];
334 const char *errstr = ext4_decode_error(NULL, err, nbuf);
336 BUG_ON(!ext4_handle_valid(handle));
338 if (bh)
339 BUFFER_TRACE(bh, "abort");
341 if (!handle->h_err)
342 handle->h_err = err;
344 if (is_handle_aborted(handle))
345 return;
347 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
348 caller, line, errstr, err_fn);
350 jbd2_journal_abort_handle(handle);
353 static void __save_error_info(struct super_block *sb, const char *func,
354 unsigned int line)
356 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
358 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
359 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
360 es->s_last_error_time = cpu_to_le32(get_seconds());
361 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
362 es->s_last_error_line = cpu_to_le32(line);
363 if (!es->s_first_error_time) {
364 es->s_first_error_time = es->s_last_error_time;
365 strncpy(es->s_first_error_func, func,
366 sizeof(es->s_first_error_func));
367 es->s_first_error_line = cpu_to_le32(line);
368 es->s_first_error_ino = es->s_last_error_ino;
369 es->s_first_error_block = es->s_last_error_block;
372 * Start the daily error reporting function if it hasn't been
373 * started already
375 if (!es->s_error_count)
376 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
377 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
380 static void save_error_info(struct super_block *sb, const char *func,
381 unsigned int line)
383 __save_error_info(sb, func, line);
384 ext4_commit_super(sb, 1);
388 /* Deal with the reporting of failure conditions on a filesystem such as
389 * inconsistencies detected or read IO failures.
391 * On ext2, we can store the error state of the filesystem in the
392 * superblock. That is not possible on ext4, because we may have other
393 * write ordering constraints on the superblock which prevent us from
394 * writing it out straight away; and given that the journal is about to
395 * be aborted, we can't rely on the current, or future, transactions to
396 * write out the superblock safely.
398 * We'll just use the jbd2_journal_abort() error code to record an error in
399 * the journal instead. On recovery, the journal will complain about
400 * that error until we've noted it down and cleared it.
403 static void ext4_handle_error(struct super_block *sb)
405 if (sb->s_flags & MS_RDONLY)
406 return;
408 if (!test_opt(sb, ERRORS_CONT)) {
409 journal_t *journal = EXT4_SB(sb)->s_journal;
411 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
412 if (journal)
413 jbd2_journal_abort(journal, -EIO);
415 if (test_opt(sb, ERRORS_RO)) {
416 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
417 sb->s_flags |= MS_RDONLY;
419 if (test_opt(sb, ERRORS_PANIC))
420 panic("EXT4-fs (device %s): panic forced after error\n",
421 sb->s_id);
424 void __ext4_error(struct super_block *sb, const char *function,
425 unsigned int line, const char *fmt, ...)
427 struct va_format vaf;
428 va_list args;
430 va_start(args, fmt);
431 vaf.fmt = fmt;
432 vaf.va = &args;
433 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
434 sb->s_id, function, line, current->comm, &vaf);
435 va_end(args);
437 ext4_handle_error(sb);
440 void ext4_error_inode(struct inode *inode, const char *function,
441 unsigned int line, ext4_fsblk_t block,
442 const char *fmt, ...)
444 va_list args;
445 struct va_format vaf;
446 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
448 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
449 es->s_last_error_block = cpu_to_le64(block);
450 save_error_info(inode->i_sb, function, line);
451 va_start(args, fmt);
452 vaf.fmt = fmt;
453 vaf.va = &args;
454 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
455 inode->i_sb->s_id, function, line, inode->i_ino);
456 if (block)
457 printk(KERN_CONT "block %llu: ", block);
458 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
459 va_end(args);
461 ext4_handle_error(inode->i_sb);
464 void ext4_error_file(struct file *file, const char *function,
465 unsigned int line, ext4_fsblk_t block,
466 const char *fmt, ...)
468 va_list args;
469 struct va_format vaf;
470 struct ext4_super_block *es;
471 struct inode *inode = file->f_dentry->d_inode;
472 char pathname[80], *path;
474 es = EXT4_SB(inode->i_sb)->s_es;
475 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
476 save_error_info(inode->i_sb, function, line);
477 path = d_path(&(file->f_path), pathname, sizeof(pathname));
478 if (IS_ERR(path))
479 path = "(unknown)";
480 printk(KERN_CRIT
481 "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
482 inode->i_sb->s_id, function, line, inode->i_ino);
483 if (block)
484 printk(KERN_CONT "block %llu: ", block);
485 va_start(args, fmt);
486 vaf.fmt = fmt;
487 vaf.va = &args;
488 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
489 va_end(args);
491 ext4_handle_error(inode->i_sb);
494 static const char *ext4_decode_error(struct super_block *sb, int errno,
495 char nbuf[16])
497 char *errstr = NULL;
499 switch (errno) {
500 case -EIO:
501 errstr = "IO failure";
502 break;
503 case -ENOMEM:
504 errstr = "Out of memory";
505 break;
506 case -EROFS:
507 if (!sb || (EXT4_SB(sb)->s_journal &&
508 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
509 errstr = "Journal has aborted";
510 else
511 errstr = "Readonly filesystem";
512 break;
513 default:
514 /* If the caller passed in an extra buffer for unknown
515 * errors, textualise them now. Else we just return
516 * NULL. */
517 if (nbuf) {
518 /* Check for truncated error codes... */
519 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
520 errstr = nbuf;
522 break;
525 return errstr;
528 /* __ext4_std_error decodes expected errors from journaling functions
529 * automatically and invokes the appropriate error response. */
531 void __ext4_std_error(struct super_block *sb, const char *function,
532 unsigned int line, int errno)
534 char nbuf[16];
535 const char *errstr;
537 /* Special case: if the error is EROFS, and we're not already
538 * inside a transaction, then there's really no point in logging
539 * an error. */
540 if (errno == -EROFS && journal_current_handle() == NULL &&
541 (sb->s_flags & MS_RDONLY))
542 return;
544 errstr = ext4_decode_error(sb, errno, nbuf);
545 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
546 sb->s_id, function, line, errstr);
547 save_error_info(sb, function, line);
549 ext4_handle_error(sb);
553 * ext4_abort is a much stronger failure handler than ext4_error. The
554 * abort function may be used to deal with unrecoverable failures such
555 * as journal IO errors or ENOMEM at a critical moment in log management.
557 * We unconditionally force the filesystem into an ABORT|READONLY state,
558 * unless the error response on the fs has been set to panic in which
559 * case we take the easy way out and panic immediately.
562 void __ext4_abort(struct super_block *sb, const char *function,
563 unsigned int line, const char *fmt, ...)
565 va_list args;
567 save_error_info(sb, function, line);
568 va_start(args, fmt);
569 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
570 function, line);
571 vprintk(fmt, args);
572 printk("\n");
573 va_end(args);
575 if ((sb->s_flags & MS_RDONLY) == 0) {
576 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
577 sb->s_flags |= MS_RDONLY;
578 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
579 if (EXT4_SB(sb)->s_journal)
580 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
581 save_error_info(sb, function, line);
583 if (test_opt(sb, ERRORS_PANIC))
584 panic("EXT4-fs panic from previous error\n");
587 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
589 struct va_format vaf;
590 va_list args;
592 va_start(args, fmt);
593 vaf.fmt = fmt;
594 vaf.va = &args;
595 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
596 va_end(args);
599 void __ext4_warning(struct super_block *sb, const char *function,
600 unsigned int line, const char *fmt, ...)
602 struct va_format vaf;
603 va_list args;
605 va_start(args, fmt);
606 vaf.fmt = fmt;
607 vaf.va = &args;
608 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
609 sb->s_id, function, line, &vaf);
610 va_end(args);
613 void __ext4_grp_locked_error(const char *function, unsigned int line,
614 struct super_block *sb, ext4_group_t grp,
615 unsigned long ino, ext4_fsblk_t block,
616 const char *fmt, ...)
617 __releases(bitlock)
618 __acquires(bitlock)
620 struct va_format vaf;
621 va_list args;
622 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
624 es->s_last_error_ino = cpu_to_le32(ino);
625 es->s_last_error_block = cpu_to_le64(block);
626 __save_error_info(sb, function, line);
628 va_start(args, fmt);
630 vaf.fmt = fmt;
631 vaf.va = &args;
632 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
633 sb->s_id, function, line, grp);
634 if (ino)
635 printk(KERN_CONT "inode %lu: ", ino);
636 if (block)
637 printk(KERN_CONT "block %llu:", (unsigned long long) block);
638 printk(KERN_CONT "%pV\n", &vaf);
639 va_end(args);
641 if (test_opt(sb, ERRORS_CONT)) {
642 ext4_commit_super(sb, 0);
643 return;
646 ext4_unlock_group(sb, grp);
647 ext4_handle_error(sb);
649 * We only get here in the ERRORS_RO case; relocking the group
650 * may be dangerous, but nothing bad will happen since the
651 * filesystem will have already been marked read/only and the
652 * journal has been aborted. We return 1 as a hint to callers
653 * who might what to use the return value from
654 * ext4_grp_locked_error() to distinguish between the
655 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
656 * aggressively from the ext4 function in question, with a
657 * more appropriate error code.
659 ext4_lock_group(sb, grp);
660 return;
663 void ext4_update_dynamic_rev(struct super_block *sb)
665 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
667 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
668 return;
670 ext4_warning(sb,
671 "updating to rev %d because of new feature flag, "
672 "running e2fsck is recommended",
673 EXT4_DYNAMIC_REV);
675 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
676 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
677 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
678 /* leave es->s_feature_*compat flags alone */
679 /* es->s_uuid will be set by e2fsck if empty */
682 * The rest of the superblock fields should be zero, and if not it
683 * means they are likely already in use, so leave them alone. We
684 * can leave it up to e2fsck to clean up any inconsistencies there.
689 * Open the external journal device
691 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
693 struct block_device *bdev;
694 char b[BDEVNAME_SIZE];
696 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
697 if (IS_ERR(bdev))
698 goto fail;
699 return bdev;
701 fail:
702 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
703 __bdevname(dev, b), PTR_ERR(bdev));
704 return NULL;
708 * Release the journal device
710 static int ext4_blkdev_put(struct block_device *bdev)
712 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
715 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
717 struct block_device *bdev;
718 int ret = -ENODEV;
720 bdev = sbi->journal_bdev;
721 if (bdev) {
722 ret = ext4_blkdev_put(bdev);
723 sbi->journal_bdev = NULL;
725 return ret;
728 static inline struct inode *orphan_list_entry(struct list_head *l)
730 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
733 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
735 struct list_head *l;
737 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
738 le32_to_cpu(sbi->s_es->s_last_orphan));
740 printk(KERN_ERR "sb_info orphan list:\n");
741 list_for_each(l, &sbi->s_orphan) {
742 struct inode *inode = orphan_list_entry(l);
743 printk(KERN_ERR " "
744 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
745 inode->i_sb->s_id, inode->i_ino, inode,
746 inode->i_mode, inode->i_nlink,
747 NEXT_ORPHAN(inode));
751 static void ext4_put_super(struct super_block *sb)
753 struct ext4_sb_info *sbi = EXT4_SB(sb);
754 struct ext4_super_block *es = sbi->s_es;
755 int i, err;
757 ext4_unregister_li_request(sb);
758 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
760 flush_workqueue(sbi->dio_unwritten_wq);
761 destroy_workqueue(sbi->dio_unwritten_wq);
763 lock_super(sb);
764 if (sb->s_dirt)
765 ext4_commit_super(sb, 1);
767 if (sbi->s_journal) {
768 err = jbd2_journal_destroy(sbi->s_journal);
769 sbi->s_journal = NULL;
770 if (err < 0)
771 ext4_abort(sb, "Couldn't clean up the journal");
774 del_timer(&sbi->s_err_report);
775 ext4_release_system_zone(sb);
776 ext4_mb_release(sb);
777 ext4_ext_release(sb);
778 ext4_xattr_put_super(sb);
780 if (!(sb->s_flags & MS_RDONLY)) {
781 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
782 es->s_state = cpu_to_le16(sbi->s_mount_state);
783 ext4_commit_super(sb, 1);
785 if (sbi->s_proc) {
786 remove_proc_entry(sb->s_id, ext4_proc_root);
788 kobject_del(&sbi->s_kobj);
790 for (i = 0; i < sbi->s_gdb_count; i++)
791 brelse(sbi->s_group_desc[i]);
792 kfree(sbi->s_group_desc);
793 if (is_vmalloc_addr(sbi->s_flex_groups))
794 vfree(sbi->s_flex_groups);
795 else
796 kfree(sbi->s_flex_groups);
797 percpu_counter_destroy(&sbi->s_freeblocks_counter);
798 percpu_counter_destroy(&sbi->s_freeinodes_counter);
799 percpu_counter_destroy(&sbi->s_dirs_counter);
800 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
801 brelse(sbi->s_sbh);
802 #ifdef CONFIG_QUOTA
803 for (i = 0; i < MAXQUOTAS; i++)
804 kfree(sbi->s_qf_names[i]);
805 #endif
807 /* Debugging code just in case the in-memory inode orphan list
808 * isn't empty. The on-disk one can be non-empty if we've
809 * detected an error and taken the fs readonly, but the
810 * in-memory list had better be clean by this point. */
811 if (!list_empty(&sbi->s_orphan))
812 dump_orphan_list(sb, sbi);
813 J_ASSERT(list_empty(&sbi->s_orphan));
815 invalidate_bdev(sb->s_bdev);
816 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
818 * Invalidate the journal device's buffers. We don't want them
819 * floating about in memory - the physical journal device may
820 * hotswapped, and it breaks the `ro-after' testing code.
822 sync_blockdev(sbi->journal_bdev);
823 invalidate_bdev(sbi->journal_bdev);
824 ext4_blkdev_remove(sbi);
826 if (sbi->s_mmp_tsk)
827 kthread_stop(sbi->s_mmp_tsk);
828 sb->s_fs_info = NULL;
830 * Now that we are completely done shutting down the
831 * superblock, we need to actually destroy the kobject.
833 unlock_super(sb);
834 kobject_put(&sbi->s_kobj);
835 wait_for_completion(&sbi->s_kobj_unregister);
836 kfree(sbi->s_blockgroup_lock);
837 kfree(sbi);
840 static struct kmem_cache *ext4_inode_cachep;
843 * Called inside transaction, so use GFP_NOFS
845 static struct inode *ext4_alloc_inode(struct super_block *sb)
847 struct ext4_inode_info *ei;
849 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
850 if (!ei)
851 return NULL;
853 ei->vfs_inode.i_version = 1;
854 ei->vfs_inode.i_data.writeback_index = 0;
855 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
856 INIT_LIST_HEAD(&ei->i_prealloc_list);
857 spin_lock_init(&ei->i_prealloc_lock);
858 ei->i_reserved_data_blocks = 0;
859 ei->i_reserved_meta_blocks = 0;
860 ei->i_allocated_meta_blocks = 0;
861 ei->i_da_metadata_calc_len = 0;
862 spin_lock_init(&(ei->i_block_reservation_lock));
863 #ifdef CONFIG_QUOTA
864 ei->i_reserved_quota = 0;
865 #endif
866 ei->jinode = NULL;
867 INIT_LIST_HEAD(&ei->i_completed_io_list);
868 spin_lock_init(&ei->i_completed_io_lock);
869 ei->cur_aio_dio = NULL;
870 ei->i_sync_tid = 0;
871 ei->i_datasync_tid = 0;
872 atomic_set(&ei->i_ioend_count, 0);
873 atomic_set(&ei->i_aiodio_unwritten, 0);
875 return &ei->vfs_inode;
878 static int ext4_drop_inode(struct inode *inode)
880 int drop = generic_drop_inode(inode);
882 trace_ext4_drop_inode(inode, drop);
883 return drop;
886 static void ext4_i_callback(struct rcu_head *head)
888 struct inode *inode = container_of(head, struct inode, i_rcu);
889 INIT_LIST_HEAD(&inode->i_dentry);
890 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
893 static void ext4_destroy_inode(struct inode *inode)
895 ext4_ioend_wait(inode);
896 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
897 ext4_msg(inode->i_sb, KERN_ERR,
898 "Inode %lu (%p): orphan list check failed!",
899 inode->i_ino, EXT4_I(inode));
900 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
901 EXT4_I(inode), sizeof(struct ext4_inode_info),
902 true);
903 dump_stack();
905 call_rcu(&inode->i_rcu, ext4_i_callback);
908 static void init_once(void *foo)
910 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
912 INIT_LIST_HEAD(&ei->i_orphan);
913 #ifdef CONFIG_EXT4_FS_XATTR
914 init_rwsem(&ei->xattr_sem);
915 #endif
916 init_rwsem(&ei->i_data_sem);
917 inode_init_once(&ei->vfs_inode);
920 static int init_inodecache(void)
922 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
923 sizeof(struct ext4_inode_info),
924 0, (SLAB_RECLAIM_ACCOUNT|
925 SLAB_MEM_SPREAD),
926 init_once);
927 if (ext4_inode_cachep == NULL)
928 return -ENOMEM;
929 return 0;
932 static void destroy_inodecache(void)
934 kmem_cache_destroy(ext4_inode_cachep);
937 void ext4_clear_inode(struct inode *inode)
939 invalidate_inode_buffers(inode);
940 end_writeback(inode);
941 dquot_drop(inode);
942 ext4_discard_preallocations(inode);
943 if (EXT4_I(inode)->jinode) {
944 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
945 EXT4_I(inode)->jinode);
946 jbd2_free_inode(EXT4_I(inode)->jinode);
947 EXT4_I(inode)->jinode = NULL;
951 static inline void ext4_show_quota_options(struct seq_file *seq,
952 struct super_block *sb)
954 #if defined(CONFIG_QUOTA)
955 struct ext4_sb_info *sbi = EXT4_SB(sb);
957 if (sbi->s_jquota_fmt) {
958 char *fmtname = "";
960 switch (sbi->s_jquota_fmt) {
961 case QFMT_VFS_OLD:
962 fmtname = "vfsold";
963 break;
964 case QFMT_VFS_V0:
965 fmtname = "vfsv0";
966 break;
967 case QFMT_VFS_V1:
968 fmtname = "vfsv1";
969 break;
971 seq_printf(seq, ",jqfmt=%s", fmtname);
974 if (sbi->s_qf_names[USRQUOTA])
975 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
977 if (sbi->s_qf_names[GRPQUOTA])
978 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
980 if (test_opt(sb, USRQUOTA))
981 seq_puts(seq, ",usrquota");
983 if (test_opt(sb, GRPQUOTA))
984 seq_puts(seq, ",grpquota");
985 #endif
989 * Show an option if
990 * - it's set to a non-default value OR
991 * - if the per-sb default is different from the global default
993 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
995 int def_errors;
996 unsigned long def_mount_opts;
997 struct super_block *sb = vfs->mnt_sb;
998 struct ext4_sb_info *sbi = EXT4_SB(sb);
999 struct ext4_super_block *es = sbi->s_es;
1001 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
1002 def_errors = le16_to_cpu(es->s_errors);
1004 if (sbi->s_sb_block != 1)
1005 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
1006 if (test_opt(sb, MINIX_DF))
1007 seq_puts(seq, ",minixdf");
1008 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
1009 seq_puts(seq, ",grpid");
1010 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
1011 seq_puts(seq, ",nogrpid");
1012 if (sbi->s_resuid != EXT4_DEF_RESUID ||
1013 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
1014 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
1016 if (sbi->s_resgid != EXT4_DEF_RESGID ||
1017 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
1018 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
1020 if (test_opt(sb, ERRORS_RO)) {
1021 if (def_errors == EXT4_ERRORS_PANIC ||
1022 def_errors == EXT4_ERRORS_CONTINUE) {
1023 seq_puts(seq, ",errors=remount-ro");
1026 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1027 seq_puts(seq, ",errors=continue");
1028 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1029 seq_puts(seq, ",errors=panic");
1030 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
1031 seq_puts(seq, ",nouid32");
1032 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
1033 seq_puts(seq, ",debug");
1034 if (test_opt(sb, OLDALLOC))
1035 seq_puts(seq, ",oldalloc");
1036 #ifdef CONFIG_EXT4_FS_XATTR
1037 if (test_opt(sb, XATTR_USER))
1038 seq_puts(seq, ",user_xattr");
1039 if (!test_opt(sb, XATTR_USER))
1040 seq_puts(seq, ",nouser_xattr");
1041 #endif
1042 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1043 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1044 seq_puts(seq, ",acl");
1045 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1046 seq_puts(seq, ",noacl");
1047 #endif
1048 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1049 seq_printf(seq, ",commit=%u",
1050 (unsigned) (sbi->s_commit_interval / HZ));
1052 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1053 seq_printf(seq, ",min_batch_time=%u",
1054 (unsigned) sbi->s_min_batch_time);
1056 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1057 seq_printf(seq, ",max_batch_time=%u",
1058 (unsigned) sbi->s_min_batch_time);
1062 * We're changing the default of barrier mount option, so
1063 * let's always display its mount state so it's clear what its
1064 * status is.
1066 seq_puts(seq, ",barrier=");
1067 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1068 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1069 seq_puts(seq, ",journal_async_commit");
1070 else if (test_opt(sb, JOURNAL_CHECKSUM))
1071 seq_puts(seq, ",journal_checksum");
1072 if (test_opt(sb, I_VERSION))
1073 seq_puts(seq, ",i_version");
1074 if (!test_opt(sb, DELALLOC) &&
1075 !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1076 seq_puts(seq, ",nodelalloc");
1078 if (!test_opt(sb, MBLK_IO_SUBMIT))
1079 seq_puts(seq, ",nomblk_io_submit");
1080 if (sbi->s_stripe)
1081 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1083 * journal mode get enabled in different ways
1084 * So just print the value even if we didn't specify it
1086 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1087 seq_puts(seq, ",data=journal");
1088 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1089 seq_puts(seq, ",data=ordered");
1090 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1091 seq_puts(seq, ",data=writeback");
1093 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1094 seq_printf(seq, ",inode_readahead_blks=%u",
1095 sbi->s_inode_readahead_blks);
1097 if (test_opt(sb, DATA_ERR_ABORT))
1098 seq_puts(seq, ",data_err=abort");
1100 if (test_opt(sb, NO_AUTO_DA_ALLOC))
1101 seq_puts(seq, ",noauto_da_alloc");
1103 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1104 seq_puts(seq, ",discard");
1106 if (test_opt(sb, NOLOAD))
1107 seq_puts(seq, ",norecovery");
1109 if (test_opt(sb, DIOREAD_NOLOCK))
1110 seq_puts(seq, ",dioread_nolock");
1112 if (test_opt(sb, BLOCK_VALIDITY) &&
1113 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1114 seq_puts(seq, ",block_validity");
1116 if (!test_opt(sb, INIT_INODE_TABLE))
1117 seq_puts(seq, ",noinit_inode_table");
1118 else if (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)
1119 seq_printf(seq, ",init_inode_table=%u",
1120 (unsigned) sbi->s_li_wait_mult);
1122 ext4_show_quota_options(seq, sb);
1124 return 0;
1127 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1128 u64 ino, u32 generation)
1130 struct inode *inode;
1132 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1133 return ERR_PTR(-ESTALE);
1134 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1135 return ERR_PTR(-ESTALE);
1137 /* iget isn't really right if the inode is currently unallocated!!
1139 * ext4_read_inode will return a bad_inode if the inode had been
1140 * deleted, so we should be safe.
1142 * Currently we don't know the generation for parent directory, so
1143 * a generation of 0 means "accept any"
1145 inode = ext4_iget(sb, ino);
1146 if (IS_ERR(inode))
1147 return ERR_CAST(inode);
1148 if (generation && inode->i_generation != generation) {
1149 iput(inode);
1150 return ERR_PTR(-ESTALE);
1153 return inode;
1156 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1157 int fh_len, int fh_type)
1159 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1160 ext4_nfs_get_inode);
1163 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1164 int fh_len, int fh_type)
1166 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1167 ext4_nfs_get_inode);
1171 * Try to release metadata pages (indirect blocks, directories) which are
1172 * mapped via the block device. Since these pages could have journal heads
1173 * which would prevent try_to_free_buffers() from freeing them, we must use
1174 * jbd2 layer's try_to_free_buffers() function to release them.
1176 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1177 gfp_t wait)
1179 journal_t *journal = EXT4_SB(sb)->s_journal;
1181 WARN_ON(PageChecked(page));
1182 if (!page_has_buffers(page))
1183 return 0;
1184 if (journal)
1185 return jbd2_journal_try_to_free_buffers(journal, page,
1186 wait & ~__GFP_WAIT);
1187 return try_to_free_buffers(page);
1190 #ifdef CONFIG_QUOTA
1191 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1192 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1194 static int ext4_write_dquot(struct dquot *dquot);
1195 static int ext4_acquire_dquot(struct dquot *dquot);
1196 static int ext4_release_dquot(struct dquot *dquot);
1197 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1198 static int ext4_write_info(struct super_block *sb, int type);
1199 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1200 struct path *path);
1201 static int ext4_quota_off(struct super_block *sb, int type);
1202 static int ext4_quota_on_mount(struct super_block *sb, int type);
1203 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1204 size_t len, loff_t off);
1205 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1206 const char *data, size_t len, loff_t off);
1208 static const struct dquot_operations ext4_quota_operations = {
1209 .get_reserved_space = ext4_get_reserved_space,
1210 .write_dquot = ext4_write_dquot,
1211 .acquire_dquot = ext4_acquire_dquot,
1212 .release_dquot = ext4_release_dquot,
1213 .mark_dirty = ext4_mark_dquot_dirty,
1214 .write_info = ext4_write_info,
1215 .alloc_dquot = dquot_alloc,
1216 .destroy_dquot = dquot_destroy,
1219 static const struct quotactl_ops ext4_qctl_operations = {
1220 .quota_on = ext4_quota_on,
1221 .quota_off = ext4_quota_off,
1222 .quota_sync = dquot_quota_sync,
1223 .get_info = dquot_get_dqinfo,
1224 .set_info = dquot_set_dqinfo,
1225 .get_dqblk = dquot_get_dqblk,
1226 .set_dqblk = dquot_set_dqblk
1228 #endif
1230 static const struct super_operations ext4_sops = {
1231 .alloc_inode = ext4_alloc_inode,
1232 .destroy_inode = ext4_destroy_inode,
1233 .write_inode = ext4_write_inode,
1234 .dirty_inode = ext4_dirty_inode,
1235 .drop_inode = ext4_drop_inode,
1236 .evict_inode = ext4_evict_inode,
1237 .put_super = ext4_put_super,
1238 .sync_fs = ext4_sync_fs,
1239 .freeze_fs = ext4_freeze,
1240 .unfreeze_fs = ext4_unfreeze,
1241 .statfs = ext4_statfs,
1242 .remount_fs = ext4_remount,
1243 .show_options = ext4_show_options,
1244 #ifdef CONFIG_QUOTA
1245 .quota_read = ext4_quota_read,
1246 .quota_write = ext4_quota_write,
1247 #endif
1248 .bdev_try_to_free_page = bdev_try_to_free_page,
1251 static const struct super_operations ext4_nojournal_sops = {
1252 .alloc_inode = ext4_alloc_inode,
1253 .destroy_inode = ext4_destroy_inode,
1254 .write_inode = ext4_write_inode,
1255 .dirty_inode = ext4_dirty_inode,
1256 .drop_inode = ext4_drop_inode,
1257 .evict_inode = ext4_evict_inode,
1258 .write_super = ext4_write_super,
1259 .put_super = ext4_put_super,
1260 .statfs = ext4_statfs,
1261 .remount_fs = ext4_remount,
1262 .show_options = ext4_show_options,
1263 #ifdef CONFIG_QUOTA
1264 .quota_read = ext4_quota_read,
1265 .quota_write = ext4_quota_write,
1266 #endif
1267 .bdev_try_to_free_page = bdev_try_to_free_page,
1270 static const struct export_operations ext4_export_ops = {
1271 .fh_to_dentry = ext4_fh_to_dentry,
1272 .fh_to_parent = ext4_fh_to_parent,
1273 .get_parent = ext4_get_parent,
1276 enum {
1277 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1278 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1279 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1280 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1281 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1282 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1283 Opt_journal_update, Opt_journal_dev,
1284 Opt_journal_checksum, Opt_journal_async_commit,
1285 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1286 Opt_data_err_abort, Opt_data_err_ignore,
1287 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1288 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1289 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1290 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1291 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1292 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1293 Opt_inode_readahead_blks, Opt_journal_ioprio,
1294 Opt_dioread_nolock, Opt_dioread_lock,
1295 Opt_discard, Opt_nodiscard,
1296 Opt_init_inode_table, Opt_noinit_inode_table,
1299 static const match_table_t tokens = {
1300 {Opt_bsd_df, "bsddf"},
1301 {Opt_minix_df, "minixdf"},
1302 {Opt_grpid, "grpid"},
1303 {Opt_grpid, "bsdgroups"},
1304 {Opt_nogrpid, "nogrpid"},
1305 {Opt_nogrpid, "sysvgroups"},
1306 {Opt_resgid, "resgid=%u"},
1307 {Opt_resuid, "resuid=%u"},
1308 {Opt_sb, "sb=%u"},
1309 {Opt_err_cont, "errors=continue"},
1310 {Opt_err_panic, "errors=panic"},
1311 {Opt_err_ro, "errors=remount-ro"},
1312 {Opt_nouid32, "nouid32"},
1313 {Opt_debug, "debug"},
1314 {Opt_oldalloc, "oldalloc"},
1315 {Opt_orlov, "orlov"},
1316 {Opt_user_xattr, "user_xattr"},
1317 {Opt_nouser_xattr, "nouser_xattr"},
1318 {Opt_acl, "acl"},
1319 {Opt_noacl, "noacl"},
1320 {Opt_noload, "noload"},
1321 {Opt_noload, "norecovery"},
1322 {Opt_nobh, "nobh"},
1323 {Opt_bh, "bh"},
1324 {Opt_commit, "commit=%u"},
1325 {Opt_min_batch_time, "min_batch_time=%u"},
1326 {Opt_max_batch_time, "max_batch_time=%u"},
1327 {Opt_journal_update, "journal=update"},
1328 {Opt_journal_dev, "journal_dev=%u"},
1329 {Opt_journal_checksum, "journal_checksum"},
1330 {Opt_journal_async_commit, "journal_async_commit"},
1331 {Opt_abort, "abort"},
1332 {Opt_data_journal, "data=journal"},
1333 {Opt_data_ordered, "data=ordered"},
1334 {Opt_data_writeback, "data=writeback"},
1335 {Opt_data_err_abort, "data_err=abort"},
1336 {Opt_data_err_ignore, "data_err=ignore"},
1337 {Opt_offusrjquota, "usrjquota="},
1338 {Opt_usrjquota, "usrjquota=%s"},
1339 {Opt_offgrpjquota, "grpjquota="},
1340 {Opt_grpjquota, "grpjquota=%s"},
1341 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1342 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1343 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1344 {Opt_grpquota, "grpquota"},
1345 {Opt_noquota, "noquota"},
1346 {Opt_quota, "quota"},
1347 {Opt_usrquota, "usrquota"},
1348 {Opt_barrier, "barrier=%u"},
1349 {Opt_barrier, "barrier"},
1350 {Opt_nobarrier, "nobarrier"},
1351 {Opt_i_version, "i_version"},
1352 {Opt_stripe, "stripe=%u"},
1353 {Opt_resize, "resize"},
1354 {Opt_delalloc, "delalloc"},
1355 {Opt_nodelalloc, "nodelalloc"},
1356 {Opt_mblk_io_submit, "mblk_io_submit"},
1357 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1358 {Opt_block_validity, "block_validity"},
1359 {Opt_noblock_validity, "noblock_validity"},
1360 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1361 {Opt_journal_ioprio, "journal_ioprio=%u"},
1362 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1363 {Opt_auto_da_alloc, "auto_da_alloc"},
1364 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1365 {Opt_dioread_nolock, "dioread_nolock"},
1366 {Opt_dioread_lock, "dioread_lock"},
1367 {Opt_discard, "discard"},
1368 {Opt_nodiscard, "nodiscard"},
1369 {Opt_init_inode_table, "init_itable=%u"},
1370 {Opt_init_inode_table, "init_itable"},
1371 {Opt_noinit_inode_table, "noinit_itable"},
1372 {Opt_err, NULL},
1375 static ext4_fsblk_t get_sb_block(void **data)
1377 ext4_fsblk_t sb_block;
1378 char *options = (char *) *data;
1380 if (!options || strncmp(options, "sb=", 3) != 0)
1381 return 1; /* Default location */
1383 options += 3;
1384 /* TODO: use simple_strtoll with >32bit ext4 */
1385 sb_block = simple_strtoul(options, &options, 0);
1386 if (*options && *options != ',') {
1387 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1388 (char *) *data);
1389 return 1;
1391 if (*options == ',')
1392 options++;
1393 *data = (void *) options;
1395 return sb_block;
1398 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1399 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1400 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1402 #ifdef CONFIG_QUOTA
1403 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1405 struct ext4_sb_info *sbi = EXT4_SB(sb);
1406 char *qname;
1408 if (sb_any_quota_loaded(sb) &&
1409 !sbi->s_qf_names[qtype]) {
1410 ext4_msg(sb, KERN_ERR,
1411 "Cannot change journaled "
1412 "quota options when quota turned on");
1413 return 0;
1415 qname = match_strdup(args);
1416 if (!qname) {
1417 ext4_msg(sb, KERN_ERR,
1418 "Not enough memory for storing quotafile name");
1419 return 0;
1421 if (sbi->s_qf_names[qtype] &&
1422 strcmp(sbi->s_qf_names[qtype], qname)) {
1423 ext4_msg(sb, KERN_ERR,
1424 "%s quota file already specified", QTYPE2NAME(qtype));
1425 kfree(qname);
1426 return 0;
1428 sbi->s_qf_names[qtype] = qname;
1429 if (strchr(sbi->s_qf_names[qtype], '/')) {
1430 ext4_msg(sb, KERN_ERR,
1431 "quotafile must be on filesystem root");
1432 kfree(sbi->s_qf_names[qtype]);
1433 sbi->s_qf_names[qtype] = NULL;
1434 return 0;
1436 set_opt(sb, QUOTA);
1437 return 1;
1440 static int clear_qf_name(struct super_block *sb, int qtype)
1443 struct ext4_sb_info *sbi = EXT4_SB(sb);
1445 if (sb_any_quota_loaded(sb) &&
1446 sbi->s_qf_names[qtype]) {
1447 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1448 " when quota turned on");
1449 return 0;
1452 * The space will be released later when all options are confirmed
1453 * to be correct
1455 sbi->s_qf_names[qtype] = NULL;
1456 return 1;
1458 #endif
1460 static int parse_options(char *options, struct super_block *sb,
1461 unsigned long *journal_devnum,
1462 unsigned int *journal_ioprio,
1463 ext4_fsblk_t *n_blocks_count, int is_remount)
1465 struct ext4_sb_info *sbi = EXT4_SB(sb);
1466 char *p;
1467 substring_t args[MAX_OPT_ARGS];
1468 int data_opt = 0;
1469 int option;
1470 #ifdef CONFIG_QUOTA
1471 int qfmt;
1472 #endif
1474 if (!options)
1475 return 1;
1477 while ((p = strsep(&options, ",")) != NULL) {
1478 int token;
1479 if (!*p)
1480 continue;
1483 * Initialize args struct so we know whether arg was
1484 * found; some options take optional arguments.
1486 args[0].to = args[0].from = NULL;
1487 token = match_token(p, tokens, args);
1488 switch (token) {
1489 case Opt_bsd_df:
1490 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1491 clear_opt(sb, MINIX_DF);
1492 break;
1493 case Opt_minix_df:
1494 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1495 set_opt(sb, MINIX_DF);
1497 break;
1498 case Opt_grpid:
1499 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1500 set_opt(sb, GRPID);
1502 break;
1503 case Opt_nogrpid:
1504 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1505 clear_opt(sb, GRPID);
1507 break;
1508 case Opt_resuid:
1509 if (match_int(&args[0], &option))
1510 return 0;
1511 sbi->s_resuid = option;
1512 break;
1513 case Opt_resgid:
1514 if (match_int(&args[0], &option))
1515 return 0;
1516 sbi->s_resgid = option;
1517 break;
1518 case Opt_sb:
1519 /* handled by get_sb_block() instead of here */
1520 /* *sb_block = match_int(&args[0]); */
1521 break;
1522 case Opt_err_panic:
1523 clear_opt(sb, ERRORS_CONT);
1524 clear_opt(sb, ERRORS_RO);
1525 set_opt(sb, ERRORS_PANIC);
1526 break;
1527 case Opt_err_ro:
1528 clear_opt(sb, ERRORS_CONT);
1529 clear_opt(sb, ERRORS_PANIC);
1530 set_opt(sb, ERRORS_RO);
1531 break;
1532 case Opt_err_cont:
1533 clear_opt(sb, ERRORS_RO);
1534 clear_opt(sb, ERRORS_PANIC);
1535 set_opt(sb, ERRORS_CONT);
1536 break;
1537 case Opt_nouid32:
1538 set_opt(sb, NO_UID32);
1539 break;
1540 case Opt_debug:
1541 set_opt(sb, DEBUG);
1542 break;
1543 case Opt_oldalloc:
1544 set_opt(sb, OLDALLOC);
1545 break;
1546 case Opt_orlov:
1547 clear_opt(sb, OLDALLOC);
1548 break;
1549 #ifdef CONFIG_EXT4_FS_XATTR
1550 case Opt_user_xattr:
1551 set_opt(sb, XATTR_USER);
1552 break;
1553 case Opt_nouser_xattr:
1554 clear_opt(sb, XATTR_USER);
1555 break;
1556 #else
1557 case Opt_user_xattr:
1558 case Opt_nouser_xattr:
1559 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1560 break;
1561 #endif
1562 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1563 case Opt_acl:
1564 set_opt(sb, POSIX_ACL);
1565 break;
1566 case Opt_noacl:
1567 clear_opt(sb, POSIX_ACL);
1568 break;
1569 #else
1570 case Opt_acl:
1571 case Opt_noacl:
1572 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1573 break;
1574 #endif
1575 case Opt_journal_update:
1576 /* @@@ FIXME */
1577 /* Eventually we will want to be able to create
1578 a journal file here. For now, only allow the
1579 user to specify an existing inode to be the
1580 journal file. */
1581 if (is_remount) {
1582 ext4_msg(sb, KERN_ERR,
1583 "Cannot specify journal on remount");
1584 return 0;
1586 set_opt(sb, UPDATE_JOURNAL);
1587 break;
1588 case Opt_journal_dev:
1589 if (is_remount) {
1590 ext4_msg(sb, KERN_ERR,
1591 "Cannot specify journal on remount");
1592 return 0;
1594 if (match_int(&args[0], &option))
1595 return 0;
1596 *journal_devnum = option;
1597 break;
1598 case Opt_journal_checksum:
1599 set_opt(sb, JOURNAL_CHECKSUM);
1600 break;
1601 case Opt_journal_async_commit:
1602 set_opt(sb, JOURNAL_ASYNC_COMMIT);
1603 set_opt(sb, JOURNAL_CHECKSUM);
1604 break;
1605 case Opt_noload:
1606 set_opt(sb, NOLOAD);
1607 break;
1608 case Opt_commit:
1609 if (match_int(&args[0], &option))
1610 return 0;
1611 if (option < 0)
1612 return 0;
1613 if (option == 0)
1614 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1615 sbi->s_commit_interval = HZ * option;
1616 break;
1617 case Opt_max_batch_time:
1618 if (match_int(&args[0], &option))
1619 return 0;
1620 if (option < 0)
1621 return 0;
1622 if (option == 0)
1623 option = EXT4_DEF_MAX_BATCH_TIME;
1624 sbi->s_max_batch_time = option;
1625 break;
1626 case Opt_min_batch_time:
1627 if (match_int(&args[0], &option))
1628 return 0;
1629 if (option < 0)
1630 return 0;
1631 sbi->s_min_batch_time = option;
1632 break;
1633 case Opt_data_journal:
1634 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1635 goto datacheck;
1636 case Opt_data_ordered:
1637 data_opt = EXT4_MOUNT_ORDERED_DATA;
1638 goto datacheck;
1639 case Opt_data_writeback:
1640 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1641 datacheck:
1642 if (is_remount) {
1643 if (test_opt(sb, DATA_FLAGS) != data_opt) {
1644 ext4_msg(sb, KERN_ERR,
1645 "Cannot change data mode on remount");
1646 return 0;
1648 } else {
1649 clear_opt(sb, DATA_FLAGS);
1650 sbi->s_mount_opt |= data_opt;
1652 break;
1653 case Opt_data_err_abort:
1654 set_opt(sb, DATA_ERR_ABORT);
1655 break;
1656 case Opt_data_err_ignore:
1657 clear_opt(sb, DATA_ERR_ABORT);
1658 break;
1659 #ifdef CONFIG_QUOTA
1660 case Opt_usrjquota:
1661 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1662 return 0;
1663 break;
1664 case Opt_grpjquota:
1665 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1666 return 0;
1667 break;
1668 case Opt_offusrjquota:
1669 if (!clear_qf_name(sb, USRQUOTA))
1670 return 0;
1671 break;
1672 case Opt_offgrpjquota:
1673 if (!clear_qf_name(sb, GRPQUOTA))
1674 return 0;
1675 break;
1677 case Opt_jqfmt_vfsold:
1678 qfmt = QFMT_VFS_OLD;
1679 goto set_qf_format;
1680 case Opt_jqfmt_vfsv0:
1681 qfmt = QFMT_VFS_V0;
1682 goto set_qf_format;
1683 case Opt_jqfmt_vfsv1:
1684 qfmt = QFMT_VFS_V1;
1685 set_qf_format:
1686 if (sb_any_quota_loaded(sb) &&
1687 sbi->s_jquota_fmt != qfmt) {
1688 ext4_msg(sb, KERN_ERR, "Cannot change "
1689 "journaled quota options when "
1690 "quota turned on");
1691 return 0;
1693 sbi->s_jquota_fmt = qfmt;
1694 break;
1695 case Opt_quota:
1696 case Opt_usrquota:
1697 set_opt(sb, QUOTA);
1698 set_opt(sb, USRQUOTA);
1699 break;
1700 case Opt_grpquota:
1701 set_opt(sb, QUOTA);
1702 set_opt(sb, GRPQUOTA);
1703 break;
1704 case Opt_noquota:
1705 if (sb_any_quota_loaded(sb)) {
1706 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1707 "options when quota turned on");
1708 return 0;
1710 clear_opt(sb, QUOTA);
1711 clear_opt(sb, USRQUOTA);
1712 clear_opt(sb, GRPQUOTA);
1713 break;
1714 #else
1715 case Opt_quota:
1716 case Opt_usrquota:
1717 case Opt_grpquota:
1718 ext4_msg(sb, KERN_ERR,
1719 "quota options not supported");
1720 break;
1721 case Opt_usrjquota:
1722 case Opt_grpjquota:
1723 case Opt_offusrjquota:
1724 case Opt_offgrpjquota:
1725 case Opt_jqfmt_vfsold:
1726 case Opt_jqfmt_vfsv0:
1727 case Opt_jqfmt_vfsv1:
1728 ext4_msg(sb, KERN_ERR,
1729 "journaled quota options not supported");
1730 break;
1731 case Opt_noquota:
1732 break;
1733 #endif
1734 case Opt_abort:
1735 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1736 break;
1737 case Opt_nobarrier:
1738 clear_opt(sb, BARRIER);
1739 break;
1740 case Opt_barrier:
1741 if (args[0].from) {
1742 if (match_int(&args[0], &option))
1743 return 0;
1744 } else
1745 option = 1; /* No argument, default to 1 */
1746 if (option)
1747 set_opt(sb, BARRIER);
1748 else
1749 clear_opt(sb, BARRIER);
1750 break;
1751 case Opt_ignore:
1752 break;
1753 case Opt_resize:
1754 if (!is_remount) {
1755 ext4_msg(sb, KERN_ERR,
1756 "resize option only available "
1757 "for remount");
1758 return 0;
1760 if (match_int(&args[0], &option) != 0)
1761 return 0;
1762 *n_blocks_count = option;
1763 break;
1764 case Opt_nobh:
1765 ext4_msg(sb, KERN_WARNING,
1766 "Ignoring deprecated nobh option");
1767 break;
1768 case Opt_bh:
1769 ext4_msg(sb, KERN_WARNING,
1770 "Ignoring deprecated bh option");
1771 break;
1772 case Opt_i_version:
1773 set_opt(sb, I_VERSION);
1774 sb->s_flags |= MS_I_VERSION;
1775 break;
1776 case Opt_nodelalloc:
1777 clear_opt(sb, DELALLOC);
1778 break;
1779 case Opt_mblk_io_submit:
1780 set_opt(sb, MBLK_IO_SUBMIT);
1781 break;
1782 case Opt_nomblk_io_submit:
1783 clear_opt(sb, MBLK_IO_SUBMIT);
1784 break;
1785 case Opt_stripe:
1786 if (match_int(&args[0], &option))
1787 return 0;
1788 if (option < 0)
1789 return 0;
1790 sbi->s_stripe = option;
1791 break;
1792 case Opt_delalloc:
1793 set_opt(sb, DELALLOC);
1794 break;
1795 case Opt_block_validity:
1796 set_opt(sb, BLOCK_VALIDITY);
1797 break;
1798 case Opt_noblock_validity:
1799 clear_opt(sb, BLOCK_VALIDITY);
1800 break;
1801 case Opt_inode_readahead_blks:
1802 if (match_int(&args[0], &option))
1803 return 0;
1804 if (option < 0 || option > (1 << 30))
1805 return 0;
1806 if (option && !is_power_of_2(option)) {
1807 ext4_msg(sb, KERN_ERR,
1808 "EXT4-fs: inode_readahead_blks"
1809 " must be a power of 2");
1810 return 0;
1812 sbi->s_inode_readahead_blks = option;
1813 break;
1814 case Opt_journal_ioprio:
1815 if (match_int(&args[0], &option))
1816 return 0;
1817 if (option < 0 || option > 7)
1818 break;
1819 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1820 option);
1821 break;
1822 case Opt_noauto_da_alloc:
1823 set_opt(sb, NO_AUTO_DA_ALLOC);
1824 break;
1825 case Opt_auto_da_alloc:
1826 if (args[0].from) {
1827 if (match_int(&args[0], &option))
1828 return 0;
1829 } else
1830 option = 1; /* No argument, default to 1 */
1831 if (option)
1832 clear_opt(sb, NO_AUTO_DA_ALLOC);
1833 else
1834 set_opt(sb,NO_AUTO_DA_ALLOC);
1835 break;
1836 case Opt_discard:
1837 set_opt(sb, DISCARD);
1838 break;
1839 case Opt_nodiscard:
1840 clear_opt(sb, DISCARD);
1841 break;
1842 case Opt_dioread_nolock:
1843 set_opt(sb, DIOREAD_NOLOCK);
1844 break;
1845 case Opt_dioread_lock:
1846 clear_opt(sb, DIOREAD_NOLOCK);
1847 break;
1848 case Opt_init_inode_table:
1849 set_opt(sb, INIT_INODE_TABLE);
1850 if (args[0].from) {
1851 if (match_int(&args[0], &option))
1852 return 0;
1853 } else
1854 option = EXT4_DEF_LI_WAIT_MULT;
1855 if (option < 0)
1856 return 0;
1857 sbi->s_li_wait_mult = option;
1858 break;
1859 case Opt_noinit_inode_table:
1860 clear_opt(sb, INIT_INODE_TABLE);
1861 break;
1862 default:
1863 ext4_msg(sb, KERN_ERR,
1864 "Unrecognized mount option \"%s\" "
1865 "or missing value", p);
1866 return 0;
1869 #ifdef CONFIG_QUOTA
1870 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1871 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1872 clear_opt(sb, USRQUOTA);
1874 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1875 clear_opt(sb, GRPQUOTA);
1877 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1878 ext4_msg(sb, KERN_ERR, "old and new quota "
1879 "format mixing");
1880 return 0;
1883 if (!sbi->s_jquota_fmt) {
1884 ext4_msg(sb, KERN_ERR, "journaled quota format "
1885 "not specified");
1886 return 0;
1888 } else {
1889 if (sbi->s_jquota_fmt) {
1890 ext4_msg(sb, KERN_ERR, "journaled quota format "
1891 "specified with no journaling "
1892 "enabled");
1893 return 0;
1896 #endif
1897 return 1;
1900 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1901 int read_only)
1903 struct ext4_sb_info *sbi = EXT4_SB(sb);
1904 int res = 0;
1906 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1907 ext4_msg(sb, KERN_ERR, "revision level too high, "
1908 "forcing read-only mode");
1909 res = MS_RDONLY;
1911 if (read_only)
1912 return res;
1913 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1914 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1915 "running e2fsck is recommended");
1916 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1917 ext4_msg(sb, KERN_WARNING,
1918 "warning: mounting fs with errors, "
1919 "running e2fsck is recommended");
1920 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1921 le16_to_cpu(es->s_mnt_count) >=
1922 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1923 ext4_msg(sb, KERN_WARNING,
1924 "warning: maximal mount count reached, "
1925 "running e2fsck is recommended");
1926 else if (le32_to_cpu(es->s_checkinterval) &&
1927 (le32_to_cpu(es->s_lastcheck) +
1928 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1929 ext4_msg(sb, KERN_WARNING,
1930 "warning: checktime reached, "
1931 "running e2fsck is recommended");
1932 if (!sbi->s_journal)
1933 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1934 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1935 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1936 le16_add_cpu(&es->s_mnt_count, 1);
1937 es->s_mtime = cpu_to_le32(get_seconds());
1938 ext4_update_dynamic_rev(sb);
1939 if (sbi->s_journal)
1940 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1942 ext4_commit_super(sb, 1);
1943 if (test_opt(sb, DEBUG))
1944 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1945 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1946 sb->s_blocksize,
1947 sbi->s_groups_count,
1948 EXT4_BLOCKS_PER_GROUP(sb),
1949 EXT4_INODES_PER_GROUP(sb),
1950 sbi->s_mount_opt, sbi->s_mount_opt2);
1952 cleancache_init_fs(sb);
1953 return res;
1956 static int ext4_fill_flex_info(struct super_block *sb)
1958 struct ext4_sb_info *sbi = EXT4_SB(sb);
1959 struct ext4_group_desc *gdp = NULL;
1960 ext4_group_t flex_group_count;
1961 ext4_group_t flex_group;
1962 int groups_per_flex = 0;
1963 size_t size;
1964 int i;
1966 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1967 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1969 if (groups_per_flex < 2) {
1970 sbi->s_log_groups_per_flex = 0;
1971 return 1;
1974 /* We allocate both existing and potentially added groups */
1975 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1976 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1977 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1978 size = flex_group_count * sizeof(struct flex_groups);
1979 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1980 if (sbi->s_flex_groups == NULL) {
1981 sbi->s_flex_groups = vzalloc(size);
1982 if (sbi->s_flex_groups == NULL) {
1983 ext4_msg(sb, KERN_ERR,
1984 "not enough memory for %u flex groups",
1985 flex_group_count);
1986 goto failed;
1990 for (i = 0; i < sbi->s_groups_count; i++) {
1991 gdp = ext4_get_group_desc(sb, i, NULL);
1993 flex_group = ext4_flex_group(sbi, i);
1994 atomic_add(ext4_free_inodes_count(sb, gdp),
1995 &sbi->s_flex_groups[flex_group].free_inodes);
1996 atomic_add(ext4_free_blks_count(sb, gdp),
1997 &sbi->s_flex_groups[flex_group].free_blocks);
1998 atomic_add(ext4_used_dirs_count(sb, gdp),
1999 &sbi->s_flex_groups[flex_group].used_dirs);
2002 return 1;
2003 failed:
2004 return 0;
2007 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2008 struct ext4_group_desc *gdp)
2010 __u16 crc = 0;
2012 if (sbi->s_es->s_feature_ro_compat &
2013 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
2014 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2015 __le32 le_group = cpu_to_le32(block_group);
2017 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2018 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2019 crc = crc16(crc, (__u8 *)gdp, offset);
2020 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2021 /* for checksum of struct ext4_group_desc do the rest...*/
2022 if ((sbi->s_es->s_feature_incompat &
2023 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2024 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2025 crc = crc16(crc, (__u8 *)gdp + offset,
2026 le16_to_cpu(sbi->s_es->s_desc_size) -
2027 offset);
2030 return cpu_to_le16(crc);
2033 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
2034 struct ext4_group_desc *gdp)
2036 if ((sbi->s_es->s_feature_ro_compat &
2037 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
2038 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
2039 return 0;
2041 return 1;
2044 /* Called at mount-time, super-block is locked */
2045 static int ext4_check_descriptors(struct super_block *sb,
2046 ext4_group_t *first_not_zeroed)
2048 struct ext4_sb_info *sbi = EXT4_SB(sb);
2049 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2050 ext4_fsblk_t last_block;
2051 ext4_fsblk_t block_bitmap;
2052 ext4_fsblk_t inode_bitmap;
2053 ext4_fsblk_t inode_table;
2054 int flexbg_flag = 0;
2055 ext4_group_t i, grp = sbi->s_groups_count;
2057 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2058 flexbg_flag = 1;
2060 ext4_debug("Checking group descriptors");
2062 for (i = 0; i < sbi->s_groups_count; i++) {
2063 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2065 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2066 last_block = ext4_blocks_count(sbi->s_es) - 1;
2067 else
2068 last_block = first_block +
2069 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2071 if ((grp == sbi->s_groups_count) &&
2072 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2073 grp = i;
2075 block_bitmap = ext4_block_bitmap(sb, gdp);
2076 if (block_bitmap < first_block || block_bitmap > last_block) {
2077 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2078 "Block bitmap for group %u not in group "
2079 "(block %llu)!", i, block_bitmap);
2080 return 0;
2082 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2083 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2084 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2085 "Inode bitmap for group %u not in group "
2086 "(block %llu)!", i, inode_bitmap);
2087 return 0;
2089 inode_table = ext4_inode_table(sb, gdp);
2090 if (inode_table < first_block ||
2091 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2092 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2093 "Inode table for group %u not in group "
2094 "(block %llu)!", i, inode_table);
2095 return 0;
2097 ext4_lock_group(sb, i);
2098 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2099 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2100 "Checksum for group %u failed (%u!=%u)",
2101 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2102 gdp)), le16_to_cpu(gdp->bg_checksum));
2103 if (!(sb->s_flags & MS_RDONLY)) {
2104 ext4_unlock_group(sb, i);
2105 return 0;
2108 ext4_unlock_group(sb, i);
2109 if (!flexbg_flag)
2110 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2112 if (NULL != first_not_zeroed)
2113 *first_not_zeroed = grp;
2115 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2116 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2117 return 1;
2120 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2121 * the superblock) which were deleted from all directories, but held open by
2122 * a process at the time of a crash. We walk the list and try to delete these
2123 * inodes at recovery time (only with a read-write filesystem).
2125 * In order to keep the orphan inode chain consistent during traversal (in
2126 * case of crash during recovery), we link each inode into the superblock
2127 * orphan list_head and handle it the same way as an inode deletion during
2128 * normal operation (which journals the operations for us).
2130 * We only do an iget() and an iput() on each inode, which is very safe if we
2131 * accidentally point at an in-use or already deleted inode. The worst that
2132 * can happen in this case is that we get a "bit already cleared" message from
2133 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2134 * e2fsck was run on this filesystem, and it must have already done the orphan
2135 * inode cleanup for us, so we can safely abort without any further action.
2137 static void ext4_orphan_cleanup(struct super_block *sb,
2138 struct ext4_super_block *es)
2140 unsigned int s_flags = sb->s_flags;
2141 int nr_orphans = 0, nr_truncates = 0;
2142 #ifdef CONFIG_QUOTA
2143 int i;
2144 #endif
2145 if (!es->s_last_orphan) {
2146 jbd_debug(4, "no orphan inodes to clean up\n");
2147 return;
2150 if (bdev_read_only(sb->s_bdev)) {
2151 ext4_msg(sb, KERN_ERR, "write access "
2152 "unavailable, skipping orphan cleanup");
2153 return;
2156 /* Check if feature set would not allow a r/w mount */
2157 if (!ext4_feature_set_ok(sb, 0)) {
2158 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2159 "unknown ROCOMPAT features");
2160 return;
2163 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2164 if (es->s_last_orphan)
2165 jbd_debug(1, "Errors on filesystem, "
2166 "clearing orphan list.\n");
2167 es->s_last_orphan = 0;
2168 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2169 return;
2172 if (s_flags & MS_RDONLY) {
2173 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2174 sb->s_flags &= ~MS_RDONLY;
2176 #ifdef CONFIG_QUOTA
2177 /* Needed for iput() to work correctly and not trash data */
2178 sb->s_flags |= MS_ACTIVE;
2179 /* Turn on quotas so that they are updated correctly */
2180 for (i = 0; i < MAXQUOTAS; i++) {
2181 if (EXT4_SB(sb)->s_qf_names[i]) {
2182 int ret = ext4_quota_on_mount(sb, i);
2183 if (ret < 0)
2184 ext4_msg(sb, KERN_ERR,
2185 "Cannot turn on journaled "
2186 "quota: error %d", ret);
2189 #endif
2191 while (es->s_last_orphan) {
2192 struct inode *inode;
2194 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2195 if (IS_ERR(inode)) {
2196 es->s_last_orphan = 0;
2197 break;
2200 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2201 dquot_initialize(inode);
2202 if (inode->i_nlink) {
2203 ext4_msg(sb, KERN_DEBUG,
2204 "%s: truncating inode %lu to %lld bytes",
2205 __func__, inode->i_ino, inode->i_size);
2206 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2207 inode->i_ino, inode->i_size);
2208 ext4_truncate(inode);
2209 nr_truncates++;
2210 } else {
2211 ext4_msg(sb, KERN_DEBUG,
2212 "%s: deleting unreferenced inode %lu",
2213 __func__, inode->i_ino);
2214 jbd_debug(2, "deleting unreferenced inode %lu\n",
2215 inode->i_ino);
2216 nr_orphans++;
2218 iput(inode); /* The delete magic happens here! */
2221 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2223 if (nr_orphans)
2224 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2225 PLURAL(nr_orphans));
2226 if (nr_truncates)
2227 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2228 PLURAL(nr_truncates));
2229 #ifdef CONFIG_QUOTA
2230 /* Turn quotas off */
2231 for (i = 0; i < MAXQUOTAS; i++) {
2232 if (sb_dqopt(sb)->files[i])
2233 dquot_quota_off(sb, i);
2235 #endif
2236 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2240 * Maximal extent format file size.
2241 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2242 * extent format containers, within a sector_t, and within i_blocks
2243 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2244 * so that won't be a limiting factor.
2246 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2248 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2250 loff_t res;
2251 loff_t upper_limit = MAX_LFS_FILESIZE;
2253 /* small i_blocks in vfs inode? */
2254 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2256 * CONFIG_LBDAF is not enabled implies the inode
2257 * i_block represent total blocks in 512 bytes
2258 * 32 == size of vfs inode i_blocks * 8
2260 upper_limit = (1LL << 32) - 1;
2262 /* total blocks in file system block size */
2263 upper_limit >>= (blkbits - 9);
2264 upper_limit <<= blkbits;
2267 /* 32-bit extent-start container, ee_block */
2268 res = 1LL << 32;
2269 res <<= blkbits;
2270 res -= 1;
2272 /* Sanity check against vm- & vfs- imposed limits */
2273 if (res > upper_limit)
2274 res = upper_limit;
2276 return res;
2280 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2281 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2282 * We need to be 1 filesystem block less than the 2^48 sector limit.
2284 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2286 loff_t res = EXT4_NDIR_BLOCKS;
2287 int meta_blocks;
2288 loff_t upper_limit;
2289 /* This is calculated to be the largest file size for a dense, block
2290 * mapped file such that the file's total number of 512-byte sectors,
2291 * including data and all indirect blocks, does not exceed (2^48 - 1).
2293 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2294 * number of 512-byte sectors of the file.
2297 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2299 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2300 * the inode i_block field represents total file blocks in
2301 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2303 upper_limit = (1LL << 32) - 1;
2305 /* total blocks in file system block size */
2306 upper_limit >>= (bits - 9);
2308 } else {
2310 * We use 48 bit ext4_inode i_blocks
2311 * With EXT4_HUGE_FILE_FL set the i_blocks
2312 * represent total number of blocks in
2313 * file system block size
2315 upper_limit = (1LL << 48) - 1;
2319 /* indirect blocks */
2320 meta_blocks = 1;
2321 /* double indirect blocks */
2322 meta_blocks += 1 + (1LL << (bits-2));
2323 /* tripple indirect blocks */
2324 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2326 upper_limit -= meta_blocks;
2327 upper_limit <<= bits;
2329 res += 1LL << (bits-2);
2330 res += 1LL << (2*(bits-2));
2331 res += 1LL << (3*(bits-2));
2332 res <<= bits;
2333 if (res > upper_limit)
2334 res = upper_limit;
2336 if (res > MAX_LFS_FILESIZE)
2337 res = MAX_LFS_FILESIZE;
2339 return res;
2342 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2343 ext4_fsblk_t logical_sb_block, int nr)
2345 struct ext4_sb_info *sbi = EXT4_SB(sb);
2346 ext4_group_t bg, first_meta_bg;
2347 int has_super = 0;
2349 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2351 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2352 nr < first_meta_bg)
2353 return logical_sb_block + nr + 1;
2354 bg = sbi->s_desc_per_block * nr;
2355 if (ext4_bg_has_super(sb, bg))
2356 has_super = 1;
2358 return (has_super + ext4_group_first_block_no(sb, bg));
2362 * ext4_get_stripe_size: Get the stripe size.
2363 * @sbi: In memory super block info
2365 * If we have specified it via mount option, then
2366 * use the mount option value. If the value specified at mount time is
2367 * greater than the blocks per group use the super block value.
2368 * If the super block value is greater than blocks per group return 0.
2369 * Allocator needs it be less than blocks per group.
2372 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2374 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2375 unsigned long stripe_width =
2376 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2378 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2379 return sbi->s_stripe;
2381 if (stripe_width <= sbi->s_blocks_per_group)
2382 return stripe_width;
2384 if (stride <= sbi->s_blocks_per_group)
2385 return stride;
2387 return 0;
2390 /* sysfs supprt */
2392 struct ext4_attr {
2393 struct attribute attr;
2394 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2395 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2396 const char *, size_t);
2397 int offset;
2400 static int parse_strtoul(const char *buf,
2401 unsigned long max, unsigned long *value)
2403 char *endp;
2405 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2406 endp = skip_spaces(endp);
2407 if (*endp || *value > max)
2408 return -EINVAL;
2410 return 0;
2413 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2414 struct ext4_sb_info *sbi,
2415 char *buf)
2417 return snprintf(buf, PAGE_SIZE, "%llu\n",
2418 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2421 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2422 struct ext4_sb_info *sbi, char *buf)
2424 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2426 if (!sb->s_bdev->bd_part)
2427 return snprintf(buf, PAGE_SIZE, "0\n");
2428 return snprintf(buf, PAGE_SIZE, "%lu\n",
2429 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2430 sbi->s_sectors_written_start) >> 1);
2433 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2434 struct ext4_sb_info *sbi, char *buf)
2436 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2438 if (!sb->s_bdev->bd_part)
2439 return snprintf(buf, PAGE_SIZE, "0\n");
2440 return snprintf(buf, PAGE_SIZE, "%llu\n",
2441 (unsigned long long)(sbi->s_kbytes_written +
2442 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2443 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2446 static ssize_t extent_cache_hits_show(struct ext4_attr *a,
2447 struct ext4_sb_info *sbi, char *buf)
2449 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_hits);
2452 static ssize_t extent_cache_misses_show(struct ext4_attr *a,
2453 struct ext4_sb_info *sbi, char *buf)
2455 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_misses);
2458 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2459 struct ext4_sb_info *sbi,
2460 const char *buf, size_t count)
2462 unsigned long t;
2464 if (parse_strtoul(buf, 0x40000000, &t))
2465 return -EINVAL;
2467 if (t && !is_power_of_2(t))
2468 return -EINVAL;
2470 sbi->s_inode_readahead_blks = t;
2471 return count;
2474 static ssize_t sbi_ui_show(struct ext4_attr *a,
2475 struct ext4_sb_info *sbi, char *buf)
2477 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2479 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2482 static ssize_t sbi_ui_store(struct ext4_attr *a,
2483 struct ext4_sb_info *sbi,
2484 const char *buf, size_t count)
2486 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2487 unsigned long t;
2489 if (parse_strtoul(buf, 0xffffffff, &t))
2490 return -EINVAL;
2491 *ui = t;
2492 return count;
2495 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2496 static struct ext4_attr ext4_attr_##_name = { \
2497 .attr = {.name = __stringify(_name), .mode = _mode }, \
2498 .show = _show, \
2499 .store = _store, \
2500 .offset = offsetof(struct ext4_sb_info, _elname), \
2502 #define EXT4_ATTR(name, mode, show, store) \
2503 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2505 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2506 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2507 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2508 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2509 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2510 #define ATTR_LIST(name) &ext4_attr_##name.attr
2512 EXT4_RO_ATTR(delayed_allocation_blocks);
2513 EXT4_RO_ATTR(session_write_kbytes);
2514 EXT4_RO_ATTR(lifetime_write_kbytes);
2515 EXT4_RO_ATTR(extent_cache_hits);
2516 EXT4_RO_ATTR(extent_cache_misses);
2517 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2518 inode_readahead_blks_store, s_inode_readahead_blks);
2519 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2520 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2521 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2522 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2523 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2524 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2525 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2526 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2528 static struct attribute *ext4_attrs[] = {
2529 ATTR_LIST(delayed_allocation_blocks),
2530 ATTR_LIST(session_write_kbytes),
2531 ATTR_LIST(lifetime_write_kbytes),
2532 ATTR_LIST(extent_cache_hits),
2533 ATTR_LIST(extent_cache_misses),
2534 ATTR_LIST(inode_readahead_blks),
2535 ATTR_LIST(inode_goal),
2536 ATTR_LIST(mb_stats),
2537 ATTR_LIST(mb_max_to_scan),
2538 ATTR_LIST(mb_min_to_scan),
2539 ATTR_LIST(mb_order2_req),
2540 ATTR_LIST(mb_stream_req),
2541 ATTR_LIST(mb_group_prealloc),
2542 ATTR_LIST(max_writeback_mb_bump),
2543 NULL,
2546 /* Features this copy of ext4 supports */
2547 EXT4_INFO_ATTR(lazy_itable_init);
2548 EXT4_INFO_ATTR(batched_discard);
2550 static struct attribute *ext4_feat_attrs[] = {
2551 ATTR_LIST(lazy_itable_init),
2552 ATTR_LIST(batched_discard),
2553 NULL,
2556 static ssize_t ext4_attr_show(struct kobject *kobj,
2557 struct attribute *attr, char *buf)
2559 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2560 s_kobj);
2561 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2563 return a->show ? a->show(a, sbi, buf) : 0;
2566 static ssize_t ext4_attr_store(struct kobject *kobj,
2567 struct attribute *attr,
2568 const char *buf, size_t len)
2570 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2571 s_kobj);
2572 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2574 return a->store ? a->store(a, sbi, buf, len) : 0;
2577 static void ext4_sb_release(struct kobject *kobj)
2579 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2580 s_kobj);
2581 complete(&sbi->s_kobj_unregister);
2584 static const struct sysfs_ops ext4_attr_ops = {
2585 .show = ext4_attr_show,
2586 .store = ext4_attr_store,
2589 static struct kobj_type ext4_ktype = {
2590 .default_attrs = ext4_attrs,
2591 .sysfs_ops = &ext4_attr_ops,
2592 .release = ext4_sb_release,
2595 static void ext4_feat_release(struct kobject *kobj)
2597 complete(&ext4_feat->f_kobj_unregister);
2600 static struct kobj_type ext4_feat_ktype = {
2601 .default_attrs = ext4_feat_attrs,
2602 .sysfs_ops = &ext4_attr_ops,
2603 .release = ext4_feat_release,
2607 * Check whether this filesystem can be mounted based on
2608 * the features present and the RDONLY/RDWR mount requested.
2609 * Returns 1 if this filesystem can be mounted as requested,
2610 * 0 if it cannot be.
2612 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2614 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2615 ext4_msg(sb, KERN_ERR,
2616 "Couldn't mount because of "
2617 "unsupported optional features (%x)",
2618 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2619 ~EXT4_FEATURE_INCOMPAT_SUPP));
2620 return 0;
2623 if (readonly)
2624 return 1;
2626 /* Check that feature set is OK for a read-write mount */
2627 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2628 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2629 "unsupported optional features (%x)",
2630 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2631 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2632 return 0;
2635 * Large file size enabled file system can only be mounted
2636 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2638 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2639 if (sizeof(blkcnt_t) < sizeof(u64)) {
2640 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2641 "cannot be mounted RDWR without "
2642 "CONFIG_LBDAF");
2643 return 0;
2646 return 1;
2650 * This function is called once a day if we have errors logged
2651 * on the file system
2653 static void print_daily_error_info(unsigned long arg)
2655 struct super_block *sb = (struct super_block *) arg;
2656 struct ext4_sb_info *sbi;
2657 struct ext4_super_block *es;
2659 sbi = EXT4_SB(sb);
2660 es = sbi->s_es;
2662 if (es->s_error_count)
2663 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2664 le32_to_cpu(es->s_error_count));
2665 if (es->s_first_error_time) {
2666 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2667 sb->s_id, le32_to_cpu(es->s_first_error_time),
2668 (int) sizeof(es->s_first_error_func),
2669 es->s_first_error_func,
2670 le32_to_cpu(es->s_first_error_line));
2671 if (es->s_first_error_ino)
2672 printk(": inode %u",
2673 le32_to_cpu(es->s_first_error_ino));
2674 if (es->s_first_error_block)
2675 printk(": block %llu", (unsigned long long)
2676 le64_to_cpu(es->s_first_error_block));
2677 printk("\n");
2679 if (es->s_last_error_time) {
2680 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2681 sb->s_id, le32_to_cpu(es->s_last_error_time),
2682 (int) sizeof(es->s_last_error_func),
2683 es->s_last_error_func,
2684 le32_to_cpu(es->s_last_error_line));
2685 if (es->s_last_error_ino)
2686 printk(": inode %u",
2687 le32_to_cpu(es->s_last_error_ino));
2688 if (es->s_last_error_block)
2689 printk(": block %llu", (unsigned long long)
2690 le64_to_cpu(es->s_last_error_block));
2691 printk("\n");
2693 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2696 /* Find next suitable group and run ext4_init_inode_table */
2697 static int ext4_run_li_request(struct ext4_li_request *elr)
2699 struct ext4_group_desc *gdp = NULL;
2700 ext4_group_t group, ngroups;
2701 struct super_block *sb;
2702 unsigned long timeout = 0;
2703 int ret = 0;
2705 sb = elr->lr_super;
2706 ngroups = EXT4_SB(sb)->s_groups_count;
2708 for (group = elr->lr_next_group; group < ngroups; group++) {
2709 gdp = ext4_get_group_desc(sb, group, NULL);
2710 if (!gdp) {
2711 ret = 1;
2712 break;
2715 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2716 break;
2719 if (group == ngroups)
2720 ret = 1;
2722 if (!ret) {
2723 timeout = jiffies;
2724 ret = ext4_init_inode_table(sb, group,
2725 elr->lr_timeout ? 0 : 1);
2726 if (elr->lr_timeout == 0) {
2727 timeout = (jiffies - timeout) *
2728 elr->lr_sbi->s_li_wait_mult;
2729 elr->lr_timeout = timeout;
2731 elr->lr_next_sched = jiffies + elr->lr_timeout;
2732 elr->lr_next_group = group + 1;
2735 return ret;
2739 * Remove lr_request from the list_request and free the
2740 * request structure. Should be called with li_list_mtx held
2742 static void ext4_remove_li_request(struct ext4_li_request *elr)
2744 struct ext4_sb_info *sbi;
2746 if (!elr)
2747 return;
2749 sbi = elr->lr_sbi;
2751 list_del(&elr->lr_request);
2752 sbi->s_li_request = NULL;
2753 kfree(elr);
2756 static void ext4_unregister_li_request(struct super_block *sb)
2758 mutex_lock(&ext4_li_mtx);
2759 if (!ext4_li_info) {
2760 mutex_unlock(&ext4_li_mtx);
2761 return;
2764 mutex_lock(&ext4_li_info->li_list_mtx);
2765 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2766 mutex_unlock(&ext4_li_info->li_list_mtx);
2767 mutex_unlock(&ext4_li_mtx);
2770 static struct task_struct *ext4_lazyinit_task;
2773 * This is the function where ext4lazyinit thread lives. It walks
2774 * through the request list searching for next scheduled filesystem.
2775 * When such a fs is found, run the lazy initialization request
2776 * (ext4_rn_li_request) and keep track of the time spend in this
2777 * function. Based on that time we compute next schedule time of
2778 * the request. When walking through the list is complete, compute
2779 * next waking time and put itself into sleep.
2781 static int ext4_lazyinit_thread(void *arg)
2783 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2784 struct list_head *pos, *n;
2785 struct ext4_li_request *elr;
2786 unsigned long next_wakeup, cur;
2788 BUG_ON(NULL == eli);
2790 cont_thread:
2791 while (true) {
2792 next_wakeup = MAX_JIFFY_OFFSET;
2794 mutex_lock(&eli->li_list_mtx);
2795 if (list_empty(&eli->li_request_list)) {
2796 mutex_unlock(&eli->li_list_mtx);
2797 goto exit_thread;
2800 list_for_each_safe(pos, n, &eli->li_request_list) {
2801 elr = list_entry(pos, struct ext4_li_request,
2802 lr_request);
2804 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2805 if (ext4_run_li_request(elr) != 0) {
2806 /* error, remove the lazy_init job */
2807 ext4_remove_li_request(elr);
2808 continue;
2812 if (time_before(elr->lr_next_sched, next_wakeup))
2813 next_wakeup = elr->lr_next_sched;
2815 mutex_unlock(&eli->li_list_mtx);
2817 if (freezing(current))
2818 refrigerator();
2820 cur = jiffies;
2821 if ((time_after_eq(cur, next_wakeup)) ||
2822 (MAX_JIFFY_OFFSET == next_wakeup)) {
2823 cond_resched();
2824 continue;
2827 schedule_timeout_interruptible(next_wakeup - cur);
2829 if (kthread_should_stop()) {
2830 ext4_clear_request_list();
2831 goto exit_thread;
2835 exit_thread:
2837 * It looks like the request list is empty, but we need
2838 * to check it under the li_list_mtx lock, to prevent any
2839 * additions into it, and of course we should lock ext4_li_mtx
2840 * to atomically free the list and ext4_li_info, because at
2841 * this point another ext4 filesystem could be registering
2842 * new one.
2844 mutex_lock(&ext4_li_mtx);
2845 mutex_lock(&eli->li_list_mtx);
2846 if (!list_empty(&eli->li_request_list)) {
2847 mutex_unlock(&eli->li_list_mtx);
2848 mutex_unlock(&ext4_li_mtx);
2849 goto cont_thread;
2851 mutex_unlock(&eli->li_list_mtx);
2852 kfree(ext4_li_info);
2853 ext4_li_info = NULL;
2854 mutex_unlock(&ext4_li_mtx);
2856 return 0;
2859 static void ext4_clear_request_list(void)
2861 struct list_head *pos, *n;
2862 struct ext4_li_request *elr;
2864 mutex_lock(&ext4_li_info->li_list_mtx);
2865 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2866 elr = list_entry(pos, struct ext4_li_request,
2867 lr_request);
2868 ext4_remove_li_request(elr);
2870 mutex_unlock(&ext4_li_info->li_list_mtx);
2873 static int ext4_run_lazyinit_thread(void)
2875 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2876 ext4_li_info, "ext4lazyinit");
2877 if (IS_ERR(ext4_lazyinit_task)) {
2878 int err = PTR_ERR(ext4_lazyinit_task);
2879 ext4_clear_request_list();
2880 kfree(ext4_li_info);
2881 ext4_li_info = NULL;
2882 printk(KERN_CRIT "EXT4: error %d creating inode table "
2883 "initialization thread\n",
2884 err);
2885 return err;
2887 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2888 return 0;
2892 * Check whether it make sense to run itable init. thread or not.
2893 * If there is at least one uninitialized inode table, return
2894 * corresponding group number, else the loop goes through all
2895 * groups and return total number of groups.
2897 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2899 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2900 struct ext4_group_desc *gdp = NULL;
2902 for (group = 0; group < ngroups; group++) {
2903 gdp = ext4_get_group_desc(sb, group, NULL);
2904 if (!gdp)
2905 continue;
2907 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2908 break;
2911 return group;
2914 static int ext4_li_info_new(void)
2916 struct ext4_lazy_init *eli = NULL;
2918 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2919 if (!eli)
2920 return -ENOMEM;
2922 INIT_LIST_HEAD(&eli->li_request_list);
2923 mutex_init(&eli->li_list_mtx);
2925 eli->li_state |= EXT4_LAZYINIT_QUIT;
2927 ext4_li_info = eli;
2929 return 0;
2932 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2933 ext4_group_t start)
2935 struct ext4_sb_info *sbi = EXT4_SB(sb);
2936 struct ext4_li_request *elr;
2937 unsigned long rnd;
2939 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2940 if (!elr)
2941 return NULL;
2943 elr->lr_super = sb;
2944 elr->lr_sbi = sbi;
2945 elr->lr_next_group = start;
2948 * Randomize first schedule time of the request to
2949 * spread the inode table initialization requests
2950 * better.
2952 get_random_bytes(&rnd, sizeof(rnd));
2953 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2954 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2956 return elr;
2959 static int ext4_register_li_request(struct super_block *sb,
2960 ext4_group_t first_not_zeroed)
2962 struct ext4_sb_info *sbi = EXT4_SB(sb);
2963 struct ext4_li_request *elr;
2964 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2965 int ret = 0;
2967 if (sbi->s_li_request != NULL) {
2969 * Reset timeout so it can be computed again, because
2970 * s_li_wait_mult might have changed.
2972 sbi->s_li_request->lr_timeout = 0;
2973 return 0;
2976 if (first_not_zeroed == ngroups ||
2977 (sb->s_flags & MS_RDONLY) ||
2978 !test_opt(sb, INIT_INODE_TABLE))
2979 return 0;
2981 elr = ext4_li_request_new(sb, first_not_zeroed);
2982 if (!elr)
2983 return -ENOMEM;
2985 mutex_lock(&ext4_li_mtx);
2987 if (NULL == ext4_li_info) {
2988 ret = ext4_li_info_new();
2989 if (ret)
2990 goto out;
2993 mutex_lock(&ext4_li_info->li_list_mtx);
2994 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2995 mutex_unlock(&ext4_li_info->li_list_mtx);
2997 sbi->s_li_request = elr;
2999 * set elr to NULL here since it has been inserted to
3000 * the request_list and the removal and free of it is
3001 * handled by ext4_clear_request_list from now on.
3003 elr = NULL;
3005 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3006 ret = ext4_run_lazyinit_thread();
3007 if (ret)
3008 goto out;
3010 out:
3011 mutex_unlock(&ext4_li_mtx);
3012 if (ret)
3013 kfree(elr);
3014 return ret;
3018 * We do not need to lock anything since this is called on
3019 * module unload.
3021 static void ext4_destroy_lazyinit_thread(void)
3024 * If thread exited earlier
3025 * there's nothing to be done.
3027 if (!ext4_li_info || !ext4_lazyinit_task)
3028 return;
3030 kthread_stop(ext4_lazyinit_task);
3033 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3034 __releases(kernel_lock)
3035 __acquires(kernel_lock)
3037 char *orig_data = kstrdup(data, GFP_KERNEL);
3038 struct buffer_head *bh;
3039 struct ext4_super_block *es = NULL;
3040 struct ext4_sb_info *sbi;
3041 ext4_fsblk_t block;
3042 ext4_fsblk_t sb_block = get_sb_block(&data);
3043 ext4_fsblk_t logical_sb_block;
3044 unsigned long offset = 0;
3045 unsigned long journal_devnum = 0;
3046 unsigned long def_mount_opts;
3047 struct inode *root;
3048 char *cp;
3049 const char *descr;
3050 int ret = -ENOMEM;
3051 int blocksize;
3052 unsigned int db_count;
3053 unsigned int i;
3054 int needs_recovery, has_huge_files;
3055 __u64 blocks_count;
3056 int err;
3057 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3058 ext4_group_t first_not_zeroed;
3060 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3061 if (!sbi)
3062 goto out_free_orig;
3064 sbi->s_blockgroup_lock =
3065 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3066 if (!sbi->s_blockgroup_lock) {
3067 kfree(sbi);
3068 goto out_free_orig;
3070 sb->s_fs_info = sbi;
3071 sbi->s_mount_opt = 0;
3072 sbi->s_resuid = EXT4_DEF_RESUID;
3073 sbi->s_resgid = EXT4_DEF_RESGID;
3074 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3075 sbi->s_sb_block = sb_block;
3076 if (sb->s_bdev->bd_part)
3077 sbi->s_sectors_written_start =
3078 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3080 /* Cleanup superblock name */
3081 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3082 *cp = '!';
3084 ret = -EINVAL;
3085 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3086 if (!blocksize) {
3087 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3088 goto out_fail;
3092 * The ext4 superblock will not be buffer aligned for other than 1kB
3093 * block sizes. We need to calculate the offset from buffer start.
3095 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3096 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3097 offset = do_div(logical_sb_block, blocksize);
3098 } else {
3099 logical_sb_block = sb_block;
3102 if (!(bh = sb_bread(sb, logical_sb_block))) {
3103 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3104 goto out_fail;
3107 * Note: s_es must be initialized as soon as possible because
3108 * some ext4 macro-instructions depend on its value
3110 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3111 sbi->s_es = es;
3112 sb->s_magic = le16_to_cpu(es->s_magic);
3113 if (sb->s_magic != EXT4_SUPER_MAGIC)
3114 goto cantfind_ext4;
3115 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3117 /* Set defaults before we parse the mount options */
3118 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3119 set_opt(sb, INIT_INODE_TABLE);
3120 if (def_mount_opts & EXT4_DEFM_DEBUG)
3121 set_opt(sb, DEBUG);
3122 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3123 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3124 "2.6.38");
3125 set_opt(sb, GRPID);
3127 if (def_mount_opts & EXT4_DEFM_UID16)
3128 set_opt(sb, NO_UID32);
3129 /* xattr user namespace & acls are now defaulted on */
3130 #ifdef CONFIG_EXT4_FS_XATTR
3131 set_opt(sb, XATTR_USER);
3132 #endif
3133 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3134 set_opt(sb, POSIX_ACL);
3135 #endif
3136 set_opt(sb, MBLK_IO_SUBMIT);
3137 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3138 set_opt(sb, JOURNAL_DATA);
3139 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3140 set_opt(sb, ORDERED_DATA);
3141 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3142 set_opt(sb, WRITEBACK_DATA);
3144 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3145 set_opt(sb, ERRORS_PANIC);
3146 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3147 set_opt(sb, ERRORS_CONT);
3148 else
3149 set_opt(sb, ERRORS_RO);
3150 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3151 set_opt(sb, BLOCK_VALIDITY);
3152 if (def_mount_opts & EXT4_DEFM_DISCARD)
3153 set_opt(sb, DISCARD);
3155 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3156 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3157 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3158 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3159 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3161 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3162 set_opt(sb, BARRIER);
3165 * enable delayed allocation by default
3166 * Use -o nodelalloc to turn it off
3168 if (!IS_EXT3_SB(sb) &&
3169 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3170 set_opt(sb, DELALLOC);
3173 * set default s_li_wait_mult for lazyinit, for the case there is
3174 * no mount option specified.
3176 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3178 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3179 &journal_devnum, &journal_ioprio, NULL, 0)) {
3180 ext4_msg(sb, KERN_WARNING,
3181 "failed to parse options in superblock: %s",
3182 sbi->s_es->s_mount_opts);
3184 if (!parse_options((char *) data, sb, &journal_devnum,
3185 &journal_ioprio, NULL, 0))
3186 goto failed_mount;
3188 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3189 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3191 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3192 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3193 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3194 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3195 ext4_msg(sb, KERN_WARNING,
3196 "feature flags set on rev 0 fs, "
3197 "running e2fsck is recommended");
3199 if (IS_EXT2_SB(sb)) {
3200 if (ext2_feature_set_ok(sb))
3201 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3202 "using the ext4 subsystem");
3203 else {
3204 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3205 "to feature incompatibilities");
3206 goto failed_mount;
3210 if (IS_EXT3_SB(sb)) {
3211 if (ext3_feature_set_ok(sb))
3212 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3213 "using the ext4 subsystem");
3214 else {
3215 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3216 "to feature incompatibilities");
3217 goto failed_mount;
3222 * Check feature flags regardless of the revision level, since we
3223 * previously didn't change the revision level when setting the flags,
3224 * so there is a chance incompat flags are set on a rev 0 filesystem.
3226 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3227 goto failed_mount;
3229 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3231 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3232 blocksize > EXT4_MAX_BLOCK_SIZE) {
3233 ext4_msg(sb, KERN_ERR,
3234 "Unsupported filesystem blocksize %d", blocksize);
3235 goto failed_mount;
3238 if (sb->s_blocksize != blocksize) {
3239 /* Validate the filesystem blocksize */
3240 if (!sb_set_blocksize(sb, blocksize)) {
3241 ext4_msg(sb, KERN_ERR, "bad block size %d",
3242 blocksize);
3243 goto failed_mount;
3246 brelse(bh);
3247 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3248 offset = do_div(logical_sb_block, blocksize);
3249 bh = sb_bread(sb, logical_sb_block);
3250 if (!bh) {
3251 ext4_msg(sb, KERN_ERR,
3252 "Can't read superblock on 2nd try");
3253 goto failed_mount;
3255 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3256 sbi->s_es = es;
3257 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3258 ext4_msg(sb, KERN_ERR,
3259 "Magic mismatch, very weird!");
3260 goto failed_mount;
3264 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3265 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3266 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3267 has_huge_files);
3268 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3270 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3271 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3272 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3273 } else {
3274 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3275 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3276 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3277 (!is_power_of_2(sbi->s_inode_size)) ||
3278 (sbi->s_inode_size > blocksize)) {
3279 ext4_msg(sb, KERN_ERR,
3280 "unsupported inode size: %d",
3281 sbi->s_inode_size);
3282 goto failed_mount;
3284 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3285 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3288 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3289 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3290 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3291 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3292 !is_power_of_2(sbi->s_desc_size)) {
3293 ext4_msg(sb, KERN_ERR,
3294 "unsupported descriptor size %lu",
3295 sbi->s_desc_size);
3296 goto failed_mount;
3298 } else
3299 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3301 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3302 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3303 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3304 goto cantfind_ext4;
3306 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3307 if (sbi->s_inodes_per_block == 0)
3308 goto cantfind_ext4;
3309 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3310 sbi->s_inodes_per_block;
3311 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3312 sbi->s_sbh = bh;
3313 sbi->s_mount_state = le16_to_cpu(es->s_state);
3314 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3315 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3317 for (i = 0; i < 4; i++)
3318 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3319 sbi->s_def_hash_version = es->s_def_hash_version;
3320 i = le32_to_cpu(es->s_flags);
3321 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3322 sbi->s_hash_unsigned = 3;
3323 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3324 #ifdef __CHAR_UNSIGNED__
3325 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3326 sbi->s_hash_unsigned = 3;
3327 #else
3328 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3329 #endif
3330 sb->s_dirt = 1;
3333 if (sbi->s_blocks_per_group > blocksize * 8) {
3334 ext4_msg(sb, KERN_ERR,
3335 "#blocks per group too big: %lu",
3336 sbi->s_blocks_per_group);
3337 goto failed_mount;
3339 if (sbi->s_inodes_per_group > blocksize * 8) {
3340 ext4_msg(sb, KERN_ERR,
3341 "#inodes per group too big: %lu",
3342 sbi->s_inodes_per_group);
3343 goto failed_mount;
3347 * Test whether we have more sectors than will fit in sector_t,
3348 * and whether the max offset is addressable by the page cache.
3350 err = generic_check_addressable(sb->s_blocksize_bits,
3351 ext4_blocks_count(es));
3352 if (err) {
3353 ext4_msg(sb, KERN_ERR, "filesystem"
3354 " too large to mount safely on this system");
3355 if (sizeof(sector_t) < 8)
3356 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3357 ret = err;
3358 goto failed_mount;
3361 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3362 goto cantfind_ext4;
3364 /* check blocks count against device size */
3365 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3366 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3367 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3368 "exceeds size of device (%llu blocks)",
3369 ext4_blocks_count(es), blocks_count);
3370 goto failed_mount;
3374 * It makes no sense for the first data block to be beyond the end
3375 * of the filesystem.
3377 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3378 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3379 "block %u is beyond end of filesystem (%llu)",
3380 le32_to_cpu(es->s_first_data_block),
3381 ext4_blocks_count(es));
3382 goto failed_mount;
3384 blocks_count = (ext4_blocks_count(es) -
3385 le32_to_cpu(es->s_first_data_block) +
3386 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3387 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3388 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3389 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3390 "(block count %llu, first data block %u, "
3391 "blocks per group %lu)", sbi->s_groups_count,
3392 ext4_blocks_count(es),
3393 le32_to_cpu(es->s_first_data_block),
3394 EXT4_BLOCKS_PER_GROUP(sb));
3395 goto failed_mount;
3397 sbi->s_groups_count = blocks_count;
3398 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3399 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3400 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3401 EXT4_DESC_PER_BLOCK(sb);
3402 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
3403 GFP_KERNEL);
3404 if (sbi->s_group_desc == NULL) {
3405 ext4_msg(sb, KERN_ERR, "not enough memory");
3406 goto failed_mount;
3409 #ifdef CONFIG_PROC_FS
3410 if (ext4_proc_root)
3411 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3412 #endif
3414 bgl_lock_init(sbi->s_blockgroup_lock);
3416 for (i = 0; i < db_count; i++) {
3417 block = descriptor_loc(sb, logical_sb_block, i);
3418 sbi->s_group_desc[i] = sb_bread(sb, block);
3419 if (!sbi->s_group_desc[i]) {
3420 ext4_msg(sb, KERN_ERR,
3421 "can't read group descriptor %d", i);
3422 db_count = i;
3423 goto failed_mount2;
3426 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3427 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3428 goto failed_mount2;
3430 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3431 if (!ext4_fill_flex_info(sb)) {
3432 ext4_msg(sb, KERN_ERR,
3433 "unable to initialize "
3434 "flex_bg meta info!");
3435 goto failed_mount2;
3438 sbi->s_gdb_count = db_count;
3439 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3440 spin_lock_init(&sbi->s_next_gen_lock);
3442 init_timer(&sbi->s_err_report);
3443 sbi->s_err_report.function = print_daily_error_info;
3444 sbi->s_err_report.data = (unsigned long) sb;
3446 err = percpu_counter_init(&sbi->s_freeblocks_counter,
3447 ext4_count_free_blocks(sb));
3448 if (!err) {
3449 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3450 ext4_count_free_inodes(sb));
3452 if (!err) {
3453 err = percpu_counter_init(&sbi->s_dirs_counter,
3454 ext4_count_dirs(sb));
3456 if (!err) {
3457 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3459 if (err) {
3460 ext4_msg(sb, KERN_ERR, "insufficient memory");
3461 goto failed_mount3;
3464 sbi->s_stripe = ext4_get_stripe_size(sbi);
3465 sbi->s_max_writeback_mb_bump = 128;
3468 * set up enough so that it can read an inode
3470 if (!test_opt(sb, NOLOAD) &&
3471 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3472 sb->s_op = &ext4_sops;
3473 else
3474 sb->s_op = &ext4_nojournal_sops;
3475 sb->s_export_op = &ext4_export_ops;
3476 sb->s_xattr = ext4_xattr_handlers;
3477 #ifdef CONFIG_QUOTA
3478 sb->s_qcop = &ext4_qctl_operations;
3479 sb->dq_op = &ext4_quota_operations;
3480 #endif
3481 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3483 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3484 mutex_init(&sbi->s_orphan_lock);
3485 mutex_init(&sbi->s_resize_lock);
3487 sb->s_root = NULL;
3489 needs_recovery = (es->s_last_orphan != 0 ||
3490 EXT4_HAS_INCOMPAT_FEATURE(sb,
3491 EXT4_FEATURE_INCOMPAT_RECOVER));
3493 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3494 !(sb->s_flags & MS_RDONLY))
3495 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3496 goto failed_mount3;
3499 * The first inode we look at is the journal inode. Don't try
3500 * root first: it may be modified in the journal!
3502 if (!test_opt(sb, NOLOAD) &&
3503 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3504 if (ext4_load_journal(sb, es, journal_devnum))
3505 goto failed_mount3;
3506 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3507 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3508 ext4_msg(sb, KERN_ERR, "required journal recovery "
3509 "suppressed and not mounted read-only");
3510 goto failed_mount_wq;
3511 } else {
3512 clear_opt(sb, DATA_FLAGS);
3513 sbi->s_journal = NULL;
3514 needs_recovery = 0;
3515 goto no_journal;
3518 if (ext4_blocks_count(es) > 0xffffffffULL &&
3519 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3520 JBD2_FEATURE_INCOMPAT_64BIT)) {
3521 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3522 goto failed_mount_wq;
3525 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3526 jbd2_journal_set_features(sbi->s_journal,
3527 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3528 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3529 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3530 jbd2_journal_set_features(sbi->s_journal,
3531 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3532 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3533 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3534 } else {
3535 jbd2_journal_clear_features(sbi->s_journal,
3536 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3537 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3540 /* We have now updated the journal if required, so we can
3541 * validate the data journaling mode. */
3542 switch (test_opt(sb, DATA_FLAGS)) {
3543 case 0:
3544 /* No mode set, assume a default based on the journal
3545 * capabilities: ORDERED_DATA if the journal can
3546 * cope, else JOURNAL_DATA
3548 if (jbd2_journal_check_available_features
3549 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3550 set_opt(sb, ORDERED_DATA);
3551 else
3552 set_opt(sb, JOURNAL_DATA);
3553 break;
3555 case EXT4_MOUNT_ORDERED_DATA:
3556 case EXT4_MOUNT_WRITEBACK_DATA:
3557 if (!jbd2_journal_check_available_features
3558 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3559 ext4_msg(sb, KERN_ERR, "Journal does not support "
3560 "requested data journaling mode");
3561 goto failed_mount_wq;
3563 default:
3564 break;
3566 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3569 * The journal may have updated the bg summary counts, so we
3570 * need to update the global counters.
3572 percpu_counter_set(&sbi->s_freeblocks_counter,
3573 ext4_count_free_blocks(sb));
3574 percpu_counter_set(&sbi->s_freeinodes_counter,
3575 ext4_count_free_inodes(sb));
3576 percpu_counter_set(&sbi->s_dirs_counter,
3577 ext4_count_dirs(sb));
3578 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3580 no_journal:
3582 * The maximum number of concurrent works can be high and
3583 * concurrency isn't really necessary. Limit it to 1.
3585 EXT4_SB(sb)->dio_unwritten_wq =
3586 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3587 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3588 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3589 goto failed_mount_wq;
3593 * The jbd2_journal_load will have done any necessary log recovery,
3594 * so we can safely mount the rest of the filesystem now.
3597 root = ext4_iget(sb, EXT4_ROOT_INO);
3598 if (IS_ERR(root)) {
3599 ext4_msg(sb, KERN_ERR, "get root inode failed");
3600 ret = PTR_ERR(root);
3601 root = NULL;
3602 goto failed_mount4;
3604 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3605 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3606 goto failed_mount4;
3608 sb->s_root = d_alloc_root(root);
3609 if (!sb->s_root) {
3610 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3611 ret = -ENOMEM;
3612 goto failed_mount4;
3615 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3617 /* determine the minimum size of new large inodes, if present */
3618 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3619 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3620 EXT4_GOOD_OLD_INODE_SIZE;
3621 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3622 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3623 if (sbi->s_want_extra_isize <
3624 le16_to_cpu(es->s_want_extra_isize))
3625 sbi->s_want_extra_isize =
3626 le16_to_cpu(es->s_want_extra_isize);
3627 if (sbi->s_want_extra_isize <
3628 le16_to_cpu(es->s_min_extra_isize))
3629 sbi->s_want_extra_isize =
3630 le16_to_cpu(es->s_min_extra_isize);
3633 /* Check if enough inode space is available */
3634 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3635 sbi->s_inode_size) {
3636 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3637 EXT4_GOOD_OLD_INODE_SIZE;
3638 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3639 "available");
3642 if (test_opt(sb, DELALLOC) &&
3643 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3644 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3645 "requested data journaling mode");
3646 clear_opt(sb, DELALLOC);
3648 if (test_opt(sb, DIOREAD_NOLOCK)) {
3649 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3650 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3651 "option - requested data journaling mode");
3652 clear_opt(sb, DIOREAD_NOLOCK);
3654 if (sb->s_blocksize < PAGE_SIZE) {
3655 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3656 "option - block size is too small");
3657 clear_opt(sb, DIOREAD_NOLOCK);
3661 err = ext4_setup_system_zone(sb);
3662 if (err) {
3663 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3664 "zone (%d)", err);
3665 goto failed_mount4;
3668 ext4_ext_init(sb);
3669 err = ext4_mb_init(sb, needs_recovery);
3670 if (err) {
3671 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3672 err);
3673 goto failed_mount4;
3676 err = ext4_register_li_request(sb, first_not_zeroed);
3677 if (err)
3678 goto failed_mount4;
3680 sbi->s_kobj.kset = ext4_kset;
3681 init_completion(&sbi->s_kobj_unregister);
3682 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3683 "%s", sb->s_id);
3684 if (err) {
3685 ext4_mb_release(sb);
3686 ext4_ext_release(sb);
3687 goto failed_mount4;
3690 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3691 ext4_orphan_cleanup(sb, es);
3692 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3693 if (needs_recovery) {
3694 ext4_msg(sb, KERN_INFO, "recovery complete");
3695 ext4_mark_recovery_complete(sb, es);
3697 if (EXT4_SB(sb)->s_journal) {
3698 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3699 descr = " journalled data mode";
3700 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3701 descr = " ordered data mode";
3702 else
3703 descr = " writeback data mode";
3704 } else
3705 descr = "out journal";
3707 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3708 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3709 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3711 if (es->s_error_count)
3712 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3714 kfree(orig_data);
3715 return 0;
3717 cantfind_ext4:
3718 if (!silent)
3719 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3720 goto failed_mount;
3722 failed_mount4:
3723 iput(root);
3724 sb->s_root = NULL;
3725 ext4_msg(sb, KERN_ERR, "mount failed");
3726 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3727 failed_mount_wq:
3728 ext4_release_system_zone(sb);
3729 if (sbi->s_journal) {
3730 jbd2_journal_destroy(sbi->s_journal);
3731 sbi->s_journal = NULL;
3733 failed_mount3:
3734 del_timer(&sbi->s_err_report);
3735 if (sbi->s_flex_groups) {
3736 if (is_vmalloc_addr(sbi->s_flex_groups))
3737 vfree(sbi->s_flex_groups);
3738 else
3739 kfree(sbi->s_flex_groups);
3741 percpu_counter_destroy(&sbi->s_freeblocks_counter);
3742 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3743 percpu_counter_destroy(&sbi->s_dirs_counter);
3744 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3745 if (sbi->s_mmp_tsk)
3746 kthread_stop(sbi->s_mmp_tsk);
3747 failed_mount2:
3748 for (i = 0; i < db_count; i++)
3749 brelse(sbi->s_group_desc[i]);
3750 kfree(sbi->s_group_desc);
3751 failed_mount:
3752 if (sbi->s_proc) {
3753 remove_proc_entry(sb->s_id, ext4_proc_root);
3755 #ifdef CONFIG_QUOTA
3756 for (i = 0; i < MAXQUOTAS; i++)
3757 kfree(sbi->s_qf_names[i]);
3758 #endif
3759 ext4_blkdev_remove(sbi);
3760 brelse(bh);
3761 out_fail:
3762 sb->s_fs_info = NULL;
3763 kfree(sbi->s_blockgroup_lock);
3764 kfree(sbi);
3765 out_free_orig:
3766 kfree(orig_data);
3767 return ret;
3771 * Setup any per-fs journal parameters now. We'll do this both on
3772 * initial mount, once the journal has been initialised but before we've
3773 * done any recovery; and again on any subsequent remount.
3775 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3777 struct ext4_sb_info *sbi = EXT4_SB(sb);
3779 journal->j_commit_interval = sbi->s_commit_interval;
3780 journal->j_min_batch_time = sbi->s_min_batch_time;
3781 journal->j_max_batch_time = sbi->s_max_batch_time;
3783 write_lock(&journal->j_state_lock);
3784 if (test_opt(sb, BARRIER))
3785 journal->j_flags |= JBD2_BARRIER;
3786 else
3787 journal->j_flags &= ~JBD2_BARRIER;
3788 if (test_opt(sb, DATA_ERR_ABORT))
3789 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3790 else
3791 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3792 write_unlock(&journal->j_state_lock);
3795 static journal_t *ext4_get_journal(struct super_block *sb,
3796 unsigned int journal_inum)
3798 struct inode *journal_inode;
3799 journal_t *journal;
3801 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3803 /* First, test for the existence of a valid inode on disk. Bad
3804 * things happen if we iget() an unused inode, as the subsequent
3805 * iput() will try to delete it. */
3807 journal_inode = ext4_iget(sb, journal_inum);
3808 if (IS_ERR(journal_inode)) {
3809 ext4_msg(sb, KERN_ERR, "no journal found");
3810 return NULL;
3812 if (!journal_inode->i_nlink) {
3813 make_bad_inode(journal_inode);
3814 iput(journal_inode);
3815 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3816 return NULL;
3819 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3820 journal_inode, journal_inode->i_size);
3821 if (!S_ISREG(journal_inode->i_mode)) {
3822 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3823 iput(journal_inode);
3824 return NULL;
3827 journal = jbd2_journal_init_inode(journal_inode);
3828 if (!journal) {
3829 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3830 iput(journal_inode);
3831 return NULL;
3833 journal->j_private = sb;
3834 ext4_init_journal_params(sb, journal);
3835 return journal;
3838 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3839 dev_t j_dev)
3841 struct buffer_head *bh;
3842 journal_t *journal;
3843 ext4_fsblk_t start;
3844 ext4_fsblk_t len;
3845 int hblock, blocksize;
3846 ext4_fsblk_t sb_block;
3847 unsigned long offset;
3848 struct ext4_super_block *es;
3849 struct block_device *bdev;
3851 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3853 bdev = ext4_blkdev_get(j_dev, sb);
3854 if (bdev == NULL)
3855 return NULL;
3857 blocksize = sb->s_blocksize;
3858 hblock = bdev_logical_block_size(bdev);
3859 if (blocksize < hblock) {
3860 ext4_msg(sb, KERN_ERR,
3861 "blocksize too small for journal device");
3862 goto out_bdev;
3865 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3866 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3867 set_blocksize(bdev, blocksize);
3868 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3869 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3870 "external journal");
3871 goto out_bdev;
3874 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3875 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3876 !(le32_to_cpu(es->s_feature_incompat) &
3877 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3878 ext4_msg(sb, KERN_ERR, "external journal has "
3879 "bad superblock");
3880 brelse(bh);
3881 goto out_bdev;
3884 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3885 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3886 brelse(bh);
3887 goto out_bdev;
3890 len = ext4_blocks_count(es);
3891 start = sb_block + 1;
3892 brelse(bh); /* we're done with the superblock */
3894 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3895 start, len, blocksize);
3896 if (!journal) {
3897 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3898 goto out_bdev;
3900 journal->j_private = sb;
3901 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3902 wait_on_buffer(journal->j_sb_buffer);
3903 if (!buffer_uptodate(journal->j_sb_buffer)) {
3904 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3905 goto out_journal;
3907 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3908 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3909 "user (unsupported) - %d",
3910 be32_to_cpu(journal->j_superblock->s_nr_users));
3911 goto out_journal;
3913 EXT4_SB(sb)->journal_bdev = bdev;
3914 ext4_init_journal_params(sb, journal);
3915 return journal;
3917 out_journal:
3918 jbd2_journal_destroy(journal);
3919 out_bdev:
3920 ext4_blkdev_put(bdev);
3921 return NULL;
3924 static int ext4_load_journal(struct super_block *sb,
3925 struct ext4_super_block *es,
3926 unsigned long journal_devnum)
3928 journal_t *journal;
3929 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3930 dev_t journal_dev;
3931 int err = 0;
3932 int really_read_only;
3934 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3936 if (journal_devnum &&
3937 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3938 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3939 "numbers have changed");
3940 journal_dev = new_decode_dev(journal_devnum);
3941 } else
3942 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3944 really_read_only = bdev_read_only(sb->s_bdev);
3947 * Are we loading a blank journal or performing recovery after a
3948 * crash? For recovery, we need to check in advance whether we
3949 * can get read-write access to the device.
3951 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3952 if (sb->s_flags & MS_RDONLY) {
3953 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3954 "required on readonly filesystem");
3955 if (really_read_only) {
3956 ext4_msg(sb, KERN_ERR, "write access "
3957 "unavailable, cannot proceed");
3958 return -EROFS;
3960 ext4_msg(sb, KERN_INFO, "write access will "
3961 "be enabled during recovery");
3965 if (journal_inum && journal_dev) {
3966 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3967 "and inode journals!");
3968 return -EINVAL;
3971 if (journal_inum) {
3972 if (!(journal = ext4_get_journal(sb, journal_inum)))
3973 return -EINVAL;
3974 } else {
3975 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3976 return -EINVAL;
3979 if (!(journal->j_flags & JBD2_BARRIER))
3980 ext4_msg(sb, KERN_INFO, "barriers disabled");
3982 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3983 err = jbd2_journal_update_format(journal);
3984 if (err) {
3985 ext4_msg(sb, KERN_ERR, "error updating journal");
3986 jbd2_journal_destroy(journal);
3987 return err;
3991 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3992 err = jbd2_journal_wipe(journal, !really_read_only);
3993 if (!err) {
3994 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3995 if (save)
3996 memcpy(save, ((char *) es) +
3997 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3998 err = jbd2_journal_load(journal);
3999 if (save)
4000 memcpy(((char *) es) + EXT4_S_ERR_START,
4001 save, EXT4_S_ERR_LEN);
4002 kfree(save);
4005 if (err) {
4006 ext4_msg(sb, KERN_ERR, "error loading journal");
4007 jbd2_journal_destroy(journal);
4008 return err;
4011 EXT4_SB(sb)->s_journal = journal;
4012 ext4_clear_journal_err(sb, es);
4014 if (!really_read_only && journal_devnum &&
4015 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4016 es->s_journal_dev = cpu_to_le32(journal_devnum);
4018 /* Make sure we flush the recovery flag to disk. */
4019 ext4_commit_super(sb, 1);
4022 return 0;
4025 static int ext4_commit_super(struct super_block *sb, int sync)
4027 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4028 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4029 int error = 0;
4031 if (!sbh)
4032 return error;
4033 if (buffer_write_io_error(sbh)) {
4035 * Oh, dear. A previous attempt to write the
4036 * superblock failed. This could happen because the
4037 * USB device was yanked out. Or it could happen to
4038 * be a transient write error and maybe the block will
4039 * be remapped. Nothing we can do but to retry the
4040 * write and hope for the best.
4042 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4043 "superblock detected");
4044 clear_buffer_write_io_error(sbh);
4045 set_buffer_uptodate(sbh);
4048 * If the file system is mounted read-only, don't update the
4049 * superblock write time. This avoids updating the superblock
4050 * write time when we are mounting the root file system
4051 * read/only but we need to replay the journal; at that point,
4052 * for people who are east of GMT and who make their clock
4053 * tick in localtime for Windows bug-for-bug compatibility,
4054 * the clock is set in the future, and this will cause e2fsck
4055 * to complain and force a full file system check.
4057 if (!(sb->s_flags & MS_RDONLY))
4058 es->s_wtime = cpu_to_le32(get_seconds());
4059 if (sb->s_bdev->bd_part)
4060 es->s_kbytes_written =
4061 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4062 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4063 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4064 else
4065 es->s_kbytes_written =
4066 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4067 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
4068 &EXT4_SB(sb)->s_freeblocks_counter));
4069 es->s_free_inodes_count =
4070 cpu_to_le32(percpu_counter_sum_positive(
4071 &EXT4_SB(sb)->s_freeinodes_counter));
4072 sb->s_dirt = 0;
4073 BUFFER_TRACE(sbh, "marking dirty");
4074 mark_buffer_dirty(sbh);
4075 if (sync) {
4076 error = sync_dirty_buffer(sbh);
4077 if (error)
4078 return error;
4080 error = buffer_write_io_error(sbh);
4081 if (error) {
4082 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4083 "superblock");
4084 clear_buffer_write_io_error(sbh);
4085 set_buffer_uptodate(sbh);
4088 return error;
4092 * Have we just finished recovery? If so, and if we are mounting (or
4093 * remounting) the filesystem readonly, then we will end up with a
4094 * consistent fs on disk. Record that fact.
4096 static void ext4_mark_recovery_complete(struct super_block *sb,
4097 struct ext4_super_block *es)
4099 journal_t *journal = EXT4_SB(sb)->s_journal;
4101 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4102 BUG_ON(journal != NULL);
4103 return;
4105 jbd2_journal_lock_updates(journal);
4106 if (jbd2_journal_flush(journal) < 0)
4107 goto out;
4109 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4110 sb->s_flags & MS_RDONLY) {
4111 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4112 ext4_commit_super(sb, 1);
4115 out:
4116 jbd2_journal_unlock_updates(journal);
4120 * If we are mounting (or read-write remounting) a filesystem whose journal
4121 * has recorded an error from a previous lifetime, move that error to the
4122 * main filesystem now.
4124 static void ext4_clear_journal_err(struct super_block *sb,
4125 struct ext4_super_block *es)
4127 journal_t *journal;
4128 int j_errno;
4129 const char *errstr;
4131 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4133 journal = EXT4_SB(sb)->s_journal;
4136 * Now check for any error status which may have been recorded in the
4137 * journal by a prior ext4_error() or ext4_abort()
4140 j_errno = jbd2_journal_errno(journal);
4141 if (j_errno) {
4142 char nbuf[16];
4144 errstr = ext4_decode_error(sb, j_errno, nbuf);
4145 ext4_warning(sb, "Filesystem error recorded "
4146 "from previous mount: %s", errstr);
4147 ext4_warning(sb, "Marking fs in need of filesystem check.");
4149 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4150 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4151 ext4_commit_super(sb, 1);
4153 jbd2_journal_clear_err(journal);
4158 * Force the running and committing transactions to commit,
4159 * and wait on the commit.
4161 int ext4_force_commit(struct super_block *sb)
4163 journal_t *journal;
4164 int ret = 0;
4166 if (sb->s_flags & MS_RDONLY)
4167 return 0;
4169 journal = EXT4_SB(sb)->s_journal;
4170 if (journal) {
4171 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4172 ret = ext4_journal_force_commit(journal);
4175 return ret;
4178 static void ext4_write_super(struct super_block *sb)
4180 lock_super(sb);
4181 ext4_commit_super(sb, 1);
4182 unlock_super(sb);
4185 static int ext4_sync_fs(struct super_block *sb, int wait)
4187 int ret = 0;
4188 tid_t target;
4189 struct ext4_sb_info *sbi = EXT4_SB(sb);
4191 trace_ext4_sync_fs(sb, wait);
4192 flush_workqueue(sbi->dio_unwritten_wq);
4193 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4194 if (wait)
4195 jbd2_log_wait_commit(sbi->s_journal, target);
4197 return ret;
4201 * LVM calls this function before a (read-only) snapshot is created. This
4202 * gives us a chance to flush the journal completely and mark the fs clean.
4204 * Note that only this function cannot bring a filesystem to be in a clean
4205 * state independently, because ext4 prevents a new handle from being started
4206 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4207 * the upper layer.
4209 static int ext4_freeze(struct super_block *sb)
4211 int error = 0;
4212 journal_t *journal;
4214 if (sb->s_flags & MS_RDONLY)
4215 return 0;
4217 journal = EXT4_SB(sb)->s_journal;
4219 /* Now we set up the journal barrier. */
4220 jbd2_journal_lock_updates(journal);
4223 * Don't clear the needs_recovery flag if we failed to flush
4224 * the journal.
4226 error = jbd2_journal_flush(journal);
4227 if (error < 0)
4228 goto out;
4230 /* Journal blocked and flushed, clear needs_recovery flag. */
4231 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4232 error = ext4_commit_super(sb, 1);
4233 out:
4234 /* we rely on s_frozen to stop further updates */
4235 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4236 return error;
4240 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4241 * flag here, even though the filesystem is not technically dirty yet.
4243 static int ext4_unfreeze(struct super_block *sb)
4245 if (sb->s_flags & MS_RDONLY)
4246 return 0;
4248 lock_super(sb);
4249 /* Reset the needs_recovery flag before the fs is unlocked. */
4250 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4251 ext4_commit_super(sb, 1);
4252 unlock_super(sb);
4253 return 0;
4257 * Structure to save mount options for ext4_remount's benefit
4259 struct ext4_mount_options {
4260 unsigned long s_mount_opt;
4261 unsigned long s_mount_opt2;
4262 uid_t s_resuid;
4263 gid_t s_resgid;
4264 unsigned long s_commit_interval;
4265 u32 s_min_batch_time, s_max_batch_time;
4266 #ifdef CONFIG_QUOTA
4267 int s_jquota_fmt;
4268 char *s_qf_names[MAXQUOTAS];
4269 #endif
4272 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4274 struct ext4_super_block *es;
4275 struct ext4_sb_info *sbi = EXT4_SB(sb);
4276 ext4_fsblk_t n_blocks_count = 0;
4277 unsigned long old_sb_flags;
4278 struct ext4_mount_options old_opts;
4279 int enable_quota = 0;
4280 ext4_group_t g;
4281 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4282 int err = 0;
4283 #ifdef CONFIG_QUOTA
4284 int i;
4285 #endif
4286 char *orig_data = kstrdup(data, GFP_KERNEL);
4288 /* Store the original options */
4289 lock_super(sb);
4290 old_sb_flags = sb->s_flags;
4291 old_opts.s_mount_opt = sbi->s_mount_opt;
4292 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4293 old_opts.s_resuid = sbi->s_resuid;
4294 old_opts.s_resgid = sbi->s_resgid;
4295 old_opts.s_commit_interval = sbi->s_commit_interval;
4296 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4297 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4298 #ifdef CONFIG_QUOTA
4299 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4300 for (i = 0; i < MAXQUOTAS; i++)
4301 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4302 #endif
4303 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4304 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4307 * Allow the "check" option to be passed as a remount option.
4309 if (!parse_options(data, sb, NULL, &journal_ioprio,
4310 &n_blocks_count, 1)) {
4311 err = -EINVAL;
4312 goto restore_opts;
4315 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4316 ext4_abort(sb, "Abort forced by user");
4318 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4319 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4321 es = sbi->s_es;
4323 if (sbi->s_journal) {
4324 ext4_init_journal_params(sb, sbi->s_journal);
4325 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4328 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4329 n_blocks_count > ext4_blocks_count(es)) {
4330 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4331 err = -EROFS;
4332 goto restore_opts;
4335 if (*flags & MS_RDONLY) {
4336 err = dquot_suspend(sb, -1);
4337 if (err < 0)
4338 goto restore_opts;
4341 * First of all, the unconditional stuff we have to do
4342 * to disable replay of the journal when we next remount
4344 sb->s_flags |= MS_RDONLY;
4347 * OK, test if we are remounting a valid rw partition
4348 * readonly, and if so set the rdonly flag and then
4349 * mark the partition as valid again.
4351 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4352 (sbi->s_mount_state & EXT4_VALID_FS))
4353 es->s_state = cpu_to_le16(sbi->s_mount_state);
4355 if (sbi->s_journal)
4356 ext4_mark_recovery_complete(sb, es);
4357 } else {
4358 /* Make sure we can mount this feature set readwrite */
4359 if (!ext4_feature_set_ok(sb, 0)) {
4360 err = -EROFS;
4361 goto restore_opts;
4364 * Make sure the group descriptor checksums
4365 * are sane. If they aren't, refuse to remount r/w.
4367 for (g = 0; g < sbi->s_groups_count; g++) {
4368 struct ext4_group_desc *gdp =
4369 ext4_get_group_desc(sb, g, NULL);
4371 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4372 ext4_msg(sb, KERN_ERR,
4373 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4374 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4375 le16_to_cpu(gdp->bg_checksum));
4376 err = -EINVAL;
4377 goto restore_opts;
4382 * If we have an unprocessed orphan list hanging
4383 * around from a previously readonly bdev mount,
4384 * require a full umount/remount for now.
4386 if (es->s_last_orphan) {
4387 ext4_msg(sb, KERN_WARNING, "Couldn't "
4388 "remount RDWR because of unprocessed "
4389 "orphan inode list. Please "
4390 "umount/remount instead");
4391 err = -EINVAL;
4392 goto restore_opts;
4396 * Mounting a RDONLY partition read-write, so reread
4397 * and store the current valid flag. (It may have
4398 * been changed by e2fsck since we originally mounted
4399 * the partition.)
4401 if (sbi->s_journal)
4402 ext4_clear_journal_err(sb, es);
4403 sbi->s_mount_state = le16_to_cpu(es->s_state);
4404 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4405 goto restore_opts;
4406 if (!ext4_setup_super(sb, es, 0))
4407 sb->s_flags &= ~MS_RDONLY;
4408 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4409 EXT4_FEATURE_INCOMPAT_MMP))
4410 if (ext4_multi_mount_protect(sb,
4411 le64_to_cpu(es->s_mmp_block))) {
4412 err = -EROFS;
4413 goto restore_opts;
4415 enable_quota = 1;
4420 * Reinitialize lazy itable initialization thread based on
4421 * current settings
4423 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4424 ext4_unregister_li_request(sb);
4425 else {
4426 ext4_group_t first_not_zeroed;
4427 first_not_zeroed = ext4_has_uninit_itable(sb);
4428 ext4_register_li_request(sb, first_not_zeroed);
4431 ext4_setup_system_zone(sb);
4432 if (sbi->s_journal == NULL)
4433 ext4_commit_super(sb, 1);
4435 #ifdef CONFIG_QUOTA
4436 /* Release old quota file names */
4437 for (i = 0; i < MAXQUOTAS; i++)
4438 if (old_opts.s_qf_names[i] &&
4439 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4440 kfree(old_opts.s_qf_names[i]);
4441 #endif
4442 unlock_super(sb);
4443 if (enable_quota)
4444 dquot_resume(sb, -1);
4446 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4447 kfree(orig_data);
4448 return 0;
4450 restore_opts:
4451 sb->s_flags = old_sb_flags;
4452 sbi->s_mount_opt = old_opts.s_mount_opt;
4453 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4454 sbi->s_resuid = old_opts.s_resuid;
4455 sbi->s_resgid = old_opts.s_resgid;
4456 sbi->s_commit_interval = old_opts.s_commit_interval;
4457 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4458 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4459 #ifdef CONFIG_QUOTA
4460 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4461 for (i = 0; i < MAXQUOTAS; i++) {
4462 if (sbi->s_qf_names[i] &&
4463 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4464 kfree(sbi->s_qf_names[i]);
4465 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4467 #endif
4468 unlock_super(sb);
4469 kfree(orig_data);
4470 return err;
4473 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4475 struct super_block *sb = dentry->d_sb;
4476 struct ext4_sb_info *sbi = EXT4_SB(sb);
4477 struct ext4_super_block *es = sbi->s_es;
4478 u64 fsid;
4479 s64 bfree;
4481 if (test_opt(sb, MINIX_DF)) {
4482 sbi->s_overhead_last = 0;
4483 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4484 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4485 ext4_fsblk_t overhead = 0;
4488 * Compute the overhead (FS structures). This is constant
4489 * for a given filesystem unless the number of block groups
4490 * changes so we cache the previous value until it does.
4494 * All of the blocks before first_data_block are
4495 * overhead
4497 overhead = le32_to_cpu(es->s_first_data_block);
4500 * Add the overhead attributed to the superblock and
4501 * block group descriptors. If the sparse superblocks
4502 * feature is turned on, then not all groups have this.
4504 for (i = 0; i < ngroups; i++) {
4505 overhead += ext4_bg_has_super(sb, i) +
4506 ext4_bg_num_gdb(sb, i);
4507 cond_resched();
4511 * Every block group has an inode bitmap, a block
4512 * bitmap, and an inode table.
4514 overhead += ngroups * (2 + sbi->s_itb_per_group);
4515 sbi->s_overhead_last = overhead;
4516 smp_wmb();
4517 sbi->s_blocks_last = ext4_blocks_count(es);
4520 buf->f_type = EXT4_SUPER_MAGIC;
4521 buf->f_bsize = sb->s_blocksize;
4522 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4523 bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4524 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4525 /* prevent underflow in case that few free space is available */
4526 buf->f_bfree = max_t(s64, bfree, 0);
4527 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4528 if (buf->f_bfree < ext4_r_blocks_count(es))
4529 buf->f_bavail = 0;
4530 buf->f_files = le32_to_cpu(es->s_inodes_count);
4531 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4532 buf->f_namelen = EXT4_NAME_LEN;
4533 fsid = le64_to_cpup((void *)es->s_uuid) ^
4534 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4535 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4536 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4538 return 0;
4541 /* Helper function for writing quotas on sync - we need to start transaction
4542 * before quota file is locked for write. Otherwise the are possible deadlocks:
4543 * Process 1 Process 2
4544 * ext4_create() quota_sync()
4545 * jbd2_journal_start() write_dquot()
4546 * dquot_initialize() down(dqio_mutex)
4547 * down(dqio_mutex) jbd2_journal_start()
4551 #ifdef CONFIG_QUOTA
4553 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4555 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4558 static int ext4_write_dquot(struct dquot *dquot)
4560 int ret, err;
4561 handle_t *handle;
4562 struct inode *inode;
4564 inode = dquot_to_inode(dquot);
4565 handle = ext4_journal_start(inode,
4566 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4567 if (IS_ERR(handle))
4568 return PTR_ERR(handle);
4569 ret = dquot_commit(dquot);
4570 err = ext4_journal_stop(handle);
4571 if (!ret)
4572 ret = err;
4573 return ret;
4576 static int ext4_acquire_dquot(struct dquot *dquot)
4578 int ret, err;
4579 handle_t *handle;
4581 handle = ext4_journal_start(dquot_to_inode(dquot),
4582 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4583 if (IS_ERR(handle))
4584 return PTR_ERR(handle);
4585 ret = dquot_acquire(dquot);
4586 err = ext4_journal_stop(handle);
4587 if (!ret)
4588 ret = err;
4589 return ret;
4592 static int ext4_release_dquot(struct dquot *dquot)
4594 int ret, err;
4595 handle_t *handle;
4597 handle = ext4_journal_start(dquot_to_inode(dquot),
4598 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4599 if (IS_ERR(handle)) {
4600 /* Release dquot anyway to avoid endless cycle in dqput() */
4601 dquot_release(dquot);
4602 return PTR_ERR(handle);
4604 ret = dquot_release(dquot);
4605 err = ext4_journal_stop(handle);
4606 if (!ret)
4607 ret = err;
4608 return ret;
4611 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4613 /* Are we journaling quotas? */
4614 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4615 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4616 dquot_mark_dquot_dirty(dquot);
4617 return ext4_write_dquot(dquot);
4618 } else {
4619 return dquot_mark_dquot_dirty(dquot);
4623 static int ext4_write_info(struct super_block *sb, int type)
4625 int ret, err;
4626 handle_t *handle;
4628 /* Data block + inode block */
4629 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4630 if (IS_ERR(handle))
4631 return PTR_ERR(handle);
4632 ret = dquot_commit_info(sb, type);
4633 err = ext4_journal_stop(handle);
4634 if (!ret)
4635 ret = err;
4636 return ret;
4640 * Turn on quotas during mount time - we need to find
4641 * the quota file and such...
4643 static int ext4_quota_on_mount(struct super_block *sb, int type)
4645 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4646 EXT4_SB(sb)->s_jquota_fmt, type);
4650 * Standard function to be called on quota_on
4652 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4653 struct path *path)
4655 int err;
4657 if (!test_opt(sb, QUOTA))
4658 return -EINVAL;
4660 /* Quotafile not on the same filesystem? */
4661 if (path->mnt->mnt_sb != sb)
4662 return -EXDEV;
4663 /* Journaling quota? */
4664 if (EXT4_SB(sb)->s_qf_names[type]) {
4665 /* Quotafile not in fs root? */
4666 if (path->dentry->d_parent != sb->s_root)
4667 ext4_msg(sb, KERN_WARNING,
4668 "Quota file not on filesystem root. "
4669 "Journaled quota will not work");
4673 * When we journal data on quota file, we have to flush journal to see
4674 * all updates to the file when we bypass pagecache...
4676 if (EXT4_SB(sb)->s_journal &&
4677 ext4_should_journal_data(path->dentry->d_inode)) {
4679 * We don't need to lock updates but journal_flush() could
4680 * otherwise be livelocked...
4682 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4683 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4684 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4685 if (err)
4686 return err;
4689 return dquot_quota_on(sb, type, format_id, path);
4692 static int ext4_quota_off(struct super_block *sb, int type)
4694 struct inode *inode = sb_dqopt(sb)->files[type];
4695 handle_t *handle;
4697 /* Force all delayed allocation blocks to be allocated.
4698 * Caller already holds s_umount sem */
4699 if (test_opt(sb, DELALLOC))
4700 sync_filesystem(sb);
4702 if (!inode)
4703 goto out;
4705 /* Update modification times of quota files when userspace can
4706 * start looking at them */
4707 handle = ext4_journal_start(inode, 1);
4708 if (IS_ERR(handle))
4709 goto out;
4710 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4711 ext4_mark_inode_dirty(handle, inode);
4712 ext4_journal_stop(handle);
4714 out:
4715 return dquot_quota_off(sb, type);
4718 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4719 * acquiring the locks... As quota files are never truncated and quota code
4720 * itself serializes the operations (and no one else should touch the files)
4721 * we don't have to be afraid of races */
4722 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4723 size_t len, loff_t off)
4725 struct inode *inode = sb_dqopt(sb)->files[type];
4726 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4727 int err = 0;
4728 int offset = off & (sb->s_blocksize - 1);
4729 int tocopy;
4730 size_t toread;
4731 struct buffer_head *bh;
4732 loff_t i_size = i_size_read(inode);
4734 if (off > i_size)
4735 return 0;
4736 if (off+len > i_size)
4737 len = i_size-off;
4738 toread = len;
4739 while (toread > 0) {
4740 tocopy = sb->s_blocksize - offset < toread ?
4741 sb->s_blocksize - offset : toread;
4742 bh = ext4_bread(NULL, inode, blk, 0, &err);
4743 if (err)
4744 return err;
4745 if (!bh) /* A hole? */
4746 memset(data, 0, tocopy);
4747 else
4748 memcpy(data, bh->b_data+offset, tocopy);
4749 brelse(bh);
4750 offset = 0;
4751 toread -= tocopy;
4752 data += tocopy;
4753 blk++;
4755 return len;
4758 /* Write to quotafile (we know the transaction is already started and has
4759 * enough credits) */
4760 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4761 const char *data, size_t len, loff_t off)
4763 struct inode *inode = sb_dqopt(sb)->files[type];
4764 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4765 int err = 0;
4766 int offset = off & (sb->s_blocksize - 1);
4767 struct buffer_head *bh;
4768 handle_t *handle = journal_current_handle();
4770 if (EXT4_SB(sb)->s_journal && !handle) {
4771 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4772 " cancelled because transaction is not started",
4773 (unsigned long long)off, (unsigned long long)len);
4774 return -EIO;
4777 * Since we account only one data block in transaction credits,
4778 * then it is impossible to cross a block boundary.
4780 if (sb->s_blocksize - offset < len) {
4781 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4782 " cancelled because not block aligned",
4783 (unsigned long long)off, (unsigned long long)len);
4784 return -EIO;
4787 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4788 bh = ext4_bread(handle, inode, blk, 1, &err);
4789 if (!bh)
4790 goto out;
4791 err = ext4_journal_get_write_access(handle, bh);
4792 if (err) {
4793 brelse(bh);
4794 goto out;
4796 lock_buffer(bh);
4797 memcpy(bh->b_data+offset, data, len);
4798 flush_dcache_page(bh->b_page);
4799 unlock_buffer(bh);
4800 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4801 brelse(bh);
4802 out:
4803 if (err) {
4804 mutex_unlock(&inode->i_mutex);
4805 return err;
4807 if (inode->i_size < off + len) {
4808 i_size_write(inode, off + len);
4809 EXT4_I(inode)->i_disksize = inode->i_size;
4810 ext4_mark_inode_dirty(handle, inode);
4812 mutex_unlock(&inode->i_mutex);
4813 return len;
4816 #endif
4818 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4819 const char *dev_name, void *data)
4821 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4824 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4825 static inline void register_as_ext2(void)
4827 int err = register_filesystem(&ext2_fs_type);
4828 if (err)
4829 printk(KERN_WARNING
4830 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4833 static inline void unregister_as_ext2(void)
4835 unregister_filesystem(&ext2_fs_type);
4838 static inline int ext2_feature_set_ok(struct super_block *sb)
4840 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4841 return 0;
4842 if (sb->s_flags & MS_RDONLY)
4843 return 1;
4844 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4845 return 0;
4846 return 1;
4848 MODULE_ALIAS("ext2");
4849 #else
4850 static inline void register_as_ext2(void) { }
4851 static inline void unregister_as_ext2(void) { }
4852 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4853 #endif
4855 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4856 static inline void register_as_ext3(void)
4858 int err = register_filesystem(&ext3_fs_type);
4859 if (err)
4860 printk(KERN_WARNING
4861 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4864 static inline void unregister_as_ext3(void)
4866 unregister_filesystem(&ext3_fs_type);
4869 static inline int ext3_feature_set_ok(struct super_block *sb)
4871 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4872 return 0;
4873 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4874 return 0;
4875 if (sb->s_flags & MS_RDONLY)
4876 return 1;
4877 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
4878 return 0;
4879 return 1;
4881 MODULE_ALIAS("ext3");
4882 #else
4883 static inline void register_as_ext3(void) { }
4884 static inline void unregister_as_ext3(void) { }
4885 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
4886 #endif
4888 static struct file_system_type ext4_fs_type = {
4889 .owner = THIS_MODULE,
4890 .name = "ext4",
4891 .mount = ext4_mount,
4892 .kill_sb = kill_block_super,
4893 .fs_flags = FS_REQUIRES_DEV,
4896 static int __init ext4_init_feat_adverts(void)
4898 struct ext4_features *ef;
4899 int ret = -ENOMEM;
4901 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4902 if (!ef)
4903 goto out;
4905 ef->f_kobj.kset = ext4_kset;
4906 init_completion(&ef->f_kobj_unregister);
4907 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4908 "features");
4909 if (ret) {
4910 kfree(ef);
4911 goto out;
4914 ext4_feat = ef;
4915 ret = 0;
4916 out:
4917 return ret;
4920 static void ext4_exit_feat_adverts(void)
4922 kobject_put(&ext4_feat->f_kobj);
4923 wait_for_completion(&ext4_feat->f_kobj_unregister);
4924 kfree(ext4_feat);
4927 /* Shared across all ext4 file systems */
4928 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4929 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4931 static int __init ext4_init_fs(void)
4933 int i, err;
4935 ext4_check_flag_values();
4937 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
4938 mutex_init(&ext4__aio_mutex[i]);
4939 init_waitqueue_head(&ext4__ioend_wq[i]);
4942 err = ext4_init_pageio();
4943 if (err)
4944 return err;
4945 err = ext4_init_system_zone();
4946 if (err)
4947 goto out7;
4948 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4949 if (!ext4_kset)
4950 goto out6;
4951 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4952 if (!ext4_proc_root)
4953 goto out5;
4955 err = ext4_init_feat_adverts();
4956 if (err)
4957 goto out4;
4959 err = ext4_init_mballoc();
4960 if (err)
4961 goto out3;
4963 err = ext4_init_xattr();
4964 if (err)
4965 goto out2;
4966 err = init_inodecache();
4967 if (err)
4968 goto out1;
4969 register_as_ext3();
4970 register_as_ext2();
4971 err = register_filesystem(&ext4_fs_type);
4972 if (err)
4973 goto out;
4975 ext4_li_info = NULL;
4976 mutex_init(&ext4_li_mtx);
4977 return 0;
4978 out:
4979 unregister_as_ext2();
4980 unregister_as_ext3();
4981 destroy_inodecache();
4982 out1:
4983 ext4_exit_xattr();
4984 out2:
4985 ext4_exit_mballoc();
4986 out3:
4987 ext4_exit_feat_adverts();
4988 out4:
4989 remove_proc_entry("fs/ext4", NULL);
4990 out5:
4991 kset_unregister(ext4_kset);
4992 out6:
4993 ext4_exit_system_zone();
4994 out7:
4995 ext4_exit_pageio();
4996 return err;
4999 static void __exit ext4_exit_fs(void)
5001 ext4_destroy_lazyinit_thread();
5002 unregister_as_ext2();
5003 unregister_as_ext3();
5004 unregister_filesystem(&ext4_fs_type);
5005 destroy_inodecache();
5006 ext4_exit_xattr();
5007 ext4_exit_mballoc();
5008 ext4_exit_feat_adverts();
5009 remove_proc_entry("fs/ext4", NULL);
5010 kset_unregister(ext4_kset);
5011 ext4_exit_system_zone();
5012 ext4_exit_pageio();
5015 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5016 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5017 MODULE_LICENSE("GPL");
5018 module_init(ext4_init_fs)
5019 module_exit(ext4_exit_fs)