Add linux-next specific files for 20110426
[linux-2.6/next.git] / arch / x86 / kvm / paging_tmpl.h
bloba32a1c8091491a29a17e6f260e27eaab73fbeb8c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
26 #if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
38 #else
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
42 #elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
51 #define PT_MAX_FULL_LEVELS 2
52 #define CMPXCHG cmpxchg
53 #else
54 #error Invalid PTTYPE value
55 #endif
57 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
58 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
61 * The guest_walker structure emulates the behavior of the hardware page
62 * table walker.
64 struct guest_walker {
65 int level;
66 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
67 pt_element_t ptes[PT_MAX_FULL_LEVELS];
68 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
69 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
70 unsigned pt_access;
71 unsigned pte_access;
72 gfn_t gfn;
73 struct x86_exception fault;
76 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
78 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
81 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
82 gfn_t table_gfn, unsigned index,
83 pt_element_t orig_pte, pt_element_t new_pte)
85 pt_element_t ret;
86 pt_element_t *table;
87 struct page *page;
88 gpa_t gpa;
90 gpa = mmu->translate_gpa(vcpu, table_gfn << PAGE_SHIFT,
91 PFERR_USER_MASK|PFERR_WRITE_MASK);
92 if (gpa == UNMAPPED_GVA)
93 return -EFAULT;
95 page = gfn_to_page(vcpu->kvm, gpa_to_gfn(gpa));
97 table = kmap_atomic(page, KM_USER0);
98 ret = CMPXCHG(&table[index], orig_pte, new_pte);
99 kunmap_atomic(table, KM_USER0);
101 kvm_release_page_dirty(page);
103 return (ret != orig_pte);
106 static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
108 unsigned access;
110 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
111 #if PTTYPE == 64
112 if (vcpu->arch.mmu.nx)
113 access &= ~(gpte >> PT64_NX_SHIFT);
114 #endif
115 return access;
119 * Fetch a guest pte for a guest virtual address
121 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
122 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
123 gva_t addr, u32 access)
125 pt_element_t pte;
126 pt_element_t __user *ptep_user;
127 gfn_t table_gfn;
128 unsigned index, pt_access, uninitialized_var(pte_access);
129 gpa_t pte_gpa;
130 bool eperm, present, rsvd_fault;
131 int offset, write_fault, user_fault, fetch_fault;
133 write_fault = access & PFERR_WRITE_MASK;
134 user_fault = access & PFERR_USER_MASK;
135 fetch_fault = access & PFERR_FETCH_MASK;
137 trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
138 fetch_fault);
139 walk:
140 present = true;
141 eperm = rsvd_fault = false;
142 walker->level = mmu->root_level;
143 pte = mmu->get_cr3(vcpu);
145 #if PTTYPE == 64
146 if (walker->level == PT32E_ROOT_LEVEL) {
147 pte = kvm_pdptr_read_mmu(vcpu, mmu, (addr >> 30) & 3);
148 trace_kvm_mmu_paging_element(pte, walker->level);
149 if (!is_present_gpte(pte)) {
150 present = false;
151 goto error;
153 --walker->level;
155 #endif
156 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
157 (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
159 pt_access = ACC_ALL;
161 for (;;) {
162 gfn_t real_gfn;
163 unsigned long host_addr;
165 index = PT_INDEX(addr, walker->level);
167 table_gfn = gpte_to_gfn(pte);
168 offset = index * sizeof(pt_element_t);
169 pte_gpa = gfn_to_gpa(table_gfn) + offset;
170 walker->table_gfn[walker->level - 1] = table_gfn;
171 walker->pte_gpa[walker->level - 1] = pte_gpa;
173 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
174 PFERR_USER_MASK|PFERR_WRITE_MASK);
175 if (real_gfn == UNMAPPED_GVA) {
176 present = false;
177 break;
179 real_gfn = gpa_to_gfn(real_gfn);
181 host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
182 if (kvm_is_error_hva(host_addr)) {
183 present = false;
184 break;
187 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
188 if (get_user(pte, ptep_user)) {
189 present = false;
190 break;
193 trace_kvm_mmu_paging_element(pte, walker->level);
195 if (!is_present_gpte(pte)) {
196 present = false;
197 break;
200 if (is_rsvd_bits_set(&vcpu->arch.mmu, pte, walker->level)) {
201 rsvd_fault = true;
202 break;
205 if (write_fault && !is_writable_pte(pte))
206 if (user_fault || is_write_protection(vcpu))
207 eperm = true;
209 if (user_fault && !(pte & PT_USER_MASK))
210 eperm = true;
212 #if PTTYPE == 64
213 if (fetch_fault && (pte & PT64_NX_MASK))
214 eperm = true;
215 #endif
217 if (!eperm && !rsvd_fault && !(pte & PT_ACCESSED_MASK)) {
218 int ret;
219 trace_kvm_mmu_set_accessed_bit(table_gfn, index,
220 sizeof(pte));
221 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, table_gfn,
222 index, pte, pte|PT_ACCESSED_MASK);
223 if (ret < 0) {
224 present = false;
225 break;
226 } else if (ret)
227 goto walk;
229 mark_page_dirty(vcpu->kvm, table_gfn);
230 pte |= PT_ACCESSED_MASK;
233 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
235 walker->ptes[walker->level - 1] = pte;
237 if ((walker->level == PT_PAGE_TABLE_LEVEL) ||
238 ((walker->level == PT_DIRECTORY_LEVEL) &&
239 is_large_pte(pte) &&
240 (PTTYPE == 64 || is_pse(vcpu))) ||
241 ((walker->level == PT_PDPE_LEVEL) &&
242 is_large_pte(pte) &&
243 mmu->root_level == PT64_ROOT_LEVEL)) {
244 int lvl = walker->level;
245 gpa_t real_gpa;
246 gfn_t gfn;
247 u32 ac;
249 gfn = gpte_to_gfn_lvl(pte, lvl);
250 gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
252 if (PTTYPE == 32 &&
253 walker->level == PT_DIRECTORY_LEVEL &&
254 is_cpuid_PSE36())
255 gfn += pse36_gfn_delta(pte);
257 ac = write_fault | fetch_fault | user_fault;
259 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
260 ac);
261 if (real_gpa == UNMAPPED_GVA)
262 return 0;
264 walker->gfn = real_gpa >> PAGE_SHIFT;
266 break;
269 pt_access = pte_access;
270 --walker->level;
273 if (!present || eperm || rsvd_fault)
274 goto error;
276 if (write_fault && !is_dirty_gpte(pte)) {
277 int ret;
279 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
280 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, table_gfn, index, pte,
281 pte|PT_DIRTY_MASK);
282 if (ret < 0) {
283 present = false;
284 goto error;
285 } else if (ret)
286 goto walk;
288 mark_page_dirty(vcpu->kvm, table_gfn);
289 pte |= PT_DIRTY_MASK;
290 walker->ptes[walker->level - 1] = pte;
293 walker->pt_access = pt_access;
294 walker->pte_access = pte_access;
295 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
296 __func__, (u64)pte, pte_access, pt_access);
297 return 1;
299 error:
300 walker->fault.vector = PF_VECTOR;
301 walker->fault.error_code_valid = true;
302 walker->fault.error_code = 0;
303 if (present)
304 walker->fault.error_code |= PFERR_PRESENT_MASK;
306 walker->fault.error_code |= write_fault | user_fault;
308 if (fetch_fault && mmu->nx)
309 walker->fault.error_code |= PFERR_FETCH_MASK;
310 if (rsvd_fault)
311 walker->fault.error_code |= PFERR_RSVD_MASK;
313 walker->fault.address = addr;
314 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
316 trace_kvm_mmu_walker_error(walker->fault.error_code);
317 return 0;
320 static int FNAME(walk_addr)(struct guest_walker *walker,
321 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
323 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
324 access);
327 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
328 struct kvm_vcpu *vcpu, gva_t addr,
329 u32 access)
331 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
332 addr, access);
335 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
336 struct kvm_mmu_page *sp, u64 *spte,
337 pt_element_t gpte)
339 u64 nonpresent = shadow_trap_nonpresent_pte;
341 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
342 goto no_present;
344 if (!is_present_gpte(gpte)) {
345 if (!sp->unsync)
346 nonpresent = shadow_notrap_nonpresent_pte;
347 goto no_present;
350 if (!(gpte & PT_ACCESSED_MASK))
351 goto no_present;
353 return false;
355 no_present:
356 drop_spte(vcpu->kvm, spte, nonpresent);
357 return true;
360 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
361 u64 *spte, const void *pte)
363 pt_element_t gpte;
364 unsigned pte_access;
365 pfn_t pfn;
367 gpte = *(const pt_element_t *)pte;
368 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
369 return;
371 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
372 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
373 pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
374 if (is_error_pfn(pfn)) {
375 kvm_release_pfn_clean(pfn);
376 return;
380 * we call mmu_set_spte() with host_writable = true because that
381 * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
383 mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
384 is_dirty_gpte(gpte), NULL, PT_PAGE_TABLE_LEVEL,
385 gpte_to_gfn(gpte), pfn, true, true);
388 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
389 struct guest_walker *gw, int level)
391 pt_element_t curr_pte;
392 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
393 u64 mask;
394 int r, index;
396 if (level == PT_PAGE_TABLE_LEVEL) {
397 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
398 base_gpa = pte_gpa & ~mask;
399 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
401 r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
402 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
403 curr_pte = gw->prefetch_ptes[index];
404 } else
405 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
406 &curr_pte, sizeof(curr_pte));
408 return r || curr_pte != gw->ptes[level - 1];
411 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
412 u64 *sptep)
414 struct kvm_mmu_page *sp;
415 pt_element_t *gptep = gw->prefetch_ptes;
416 u64 *spte;
417 int i;
419 sp = page_header(__pa(sptep));
421 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
422 return;
424 if (sp->role.direct)
425 return __direct_pte_prefetch(vcpu, sp, sptep);
427 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
428 spte = sp->spt + i;
430 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
431 pt_element_t gpte;
432 unsigned pte_access;
433 gfn_t gfn;
434 pfn_t pfn;
435 bool dirty;
437 if (spte == sptep)
438 continue;
440 if (*spte != shadow_trap_nonpresent_pte)
441 continue;
443 gpte = gptep[i];
445 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
446 continue;
448 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
449 gfn = gpte_to_gfn(gpte);
450 dirty = is_dirty_gpte(gpte);
451 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
452 (pte_access & ACC_WRITE_MASK) && dirty);
453 if (is_error_pfn(pfn)) {
454 kvm_release_pfn_clean(pfn);
455 break;
458 mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
459 dirty, NULL, PT_PAGE_TABLE_LEVEL, gfn,
460 pfn, true, true);
465 * Fetch a shadow pte for a specific level in the paging hierarchy.
467 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
468 struct guest_walker *gw,
469 int user_fault, int write_fault, int hlevel,
470 int *ptwrite, pfn_t pfn, bool map_writable,
471 bool prefault)
473 unsigned access = gw->pt_access;
474 struct kvm_mmu_page *sp = NULL;
475 bool dirty = is_dirty_gpte(gw->ptes[gw->level - 1]);
476 int top_level;
477 unsigned direct_access;
478 struct kvm_shadow_walk_iterator it;
480 if (!is_present_gpte(gw->ptes[gw->level - 1]))
481 return NULL;
483 direct_access = gw->pt_access & gw->pte_access;
484 if (!dirty)
485 direct_access &= ~ACC_WRITE_MASK;
487 top_level = vcpu->arch.mmu.root_level;
488 if (top_level == PT32E_ROOT_LEVEL)
489 top_level = PT32_ROOT_LEVEL;
491 * Verify that the top-level gpte is still there. Since the page
492 * is a root page, it is either write protected (and cannot be
493 * changed from now on) or it is invalid (in which case, we don't
494 * really care if it changes underneath us after this point).
496 if (FNAME(gpte_changed)(vcpu, gw, top_level))
497 goto out_gpte_changed;
499 for (shadow_walk_init(&it, vcpu, addr);
500 shadow_walk_okay(&it) && it.level > gw->level;
501 shadow_walk_next(&it)) {
502 gfn_t table_gfn;
504 drop_large_spte(vcpu, it.sptep);
506 sp = NULL;
507 if (!is_shadow_present_pte(*it.sptep)) {
508 table_gfn = gw->table_gfn[it.level - 2];
509 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
510 false, access, it.sptep);
514 * Verify that the gpte in the page we've just write
515 * protected is still there.
517 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
518 goto out_gpte_changed;
520 if (sp)
521 link_shadow_page(it.sptep, sp);
524 for (;
525 shadow_walk_okay(&it) && it.level > hlevel;
526 shadow_walk_next(&it)) {
527 gfn_t direct_gfn;
529 validate_direct_spte(vcpu, it.sptep, direct_access);
531 drop_large_spte(vcpu, it.sptep);
533 if (is_shadow_present_pte(*it.sptep))
534 continue;
536 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
538 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
539 true, direct_access, it.sptep);
540 link_shadow_page(it.sptep, sp);
543 mmu_set_spte(vcpu, it.sptep, access, gw->pte_access & access,
544 user_fault, write_fault, dirty, ptwrite, it.level,
545 gw->gfn, pfn, prefault, map_writable);
546 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
548 return it.sptep;
550 out_gpte_changed:
551 if (sp)
552 kvm_mmu_put_page(sp, it.sptep);
553 kvm_release_pfn_clean(pfn);
554 return NULL;
558 * Page fault handler. There are several causes for a page fault:
559 * - there is no shadow pte for the guest pte
560 * - write access through a shadow pte marked read only so that we can set
561 * the dirty bit
562 * - write access to a shadow pte marked read only so we can update the page
563 * dirty bitmap, when userspace requests it
564 * - mmio access; in this case we will never install a present shadow pte
565 * - normal guest page fault due to the guest pte marked not present, not
566 * writable, or not executable
568 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
569 * a negative value on error.
571 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
572 bool prefault)
574 int write_fault = error_code & PFERR_WRITE_MASK;
575 int user_fault = error_code & PFERR_USER_MASK;
576 struct guest_walker walker;
577 u64 *sptep;
578 int write_pt = 0;
579 int r;
580 pfn_t pfn;
581 int level = PT_PAGE_TABLE_LEVEL;
582 int force_pt_level;
583 unsigned long mmu_seq;
584 bool map_writable;
586 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
588 r = mmu_topup_memory_caches(vcpu);
589 if (r)
590 return r;
593 * Look up the guest pte for the faulting address.
595 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
598 * The page is not mapped by the guest. Let the guest handle it.
600 if (!r) {
601 pgprintk("%s: guest page fault\n", __func__);
602 if (!prefault) {
603 inject_page_fault(vcpu, &walker.fault);
604 /* reset fork detector */
605 vcpu->arch.last_pt_write_count = 0;
607 return 0;
610 if (walker.level >= PT_DIRECTORY_LEVEL)
611 force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
612 else
613 force_pt_level = 1;
614 if (!force_pt_level) {
615 level = min(walker.level, mapping_level(vcpu, walker.gfn));
616 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
619 mmu_seq = vcpu->kvm->mmu_notifier_seq;
620 smp_rmb();
622 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
623 &map_writable))
624 return 0;
626 /* mmio */
627 if (is_error_pfn(pfn))
628 return kvm_handle_bad_page(vcpu->kvm, walker.gfn, pfn);
630 spin_lock(&vcpu->kvm->mmu_lock);
631 if (mmu_notifier_retry(vcpu, mmu_seq))
632 goto out_unlock;
634 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
635 kvm_mmu_free_some_pages(vcpu);
636 if (!force_pt_level)
637 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
638 sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
639 level, &write_pt, pfn, map_writable, prefault);
640 (void)sptep;
641 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
642 sptep, *sptep, write_pt);
644 if (!write_pt)
645 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
647 ++vcpu->stat.pf_fixed;
648 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
649 spin_unlock(&vcpu->kvm->mmu_lock);
651 return write_pt;
653 out_unlock:
654 spin_unlock(&vcpu->kvm->mmu_lock);
655 kvm_release_pfn_clean(pfn);
656 return 0;
659 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
661 struct kvm_shadow_walk_iterator iterator;
662 struct kvm_mmu_page *sp;
663 gpa_t pte_gpa = -1;
664 int level;
665 u64 *sptep;
666 int need_flush = 0;
668 spin_lock(&vcpu->kvm->mmu_lock);
670 for_each_shadow_entry(vcpu, gva, iterator) {
671 level = iterator.level;
672 sptep = iterator.sptep;
674 sp = page_header(__pa(sptep));
675 if (is_last_spte(*sptep, level)) {
676 int offset, shift;
678 if (!sp->unsync)
679 break;
681 shift = PAGE_SHIFT -
682 (PT_LEVEL_BITS - PT64_LEVEL_BITS) * level;
683 offset = sp->role.quadrant << shift;
685 pte_gpa = (sp->gfn << PAGE_SHIFT) + offset;
686 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
688 if (is_shadow_present_pte(*sptep)) {
689 if (is_large_pte(*sptep))
690 --vcpu->kvm->stat.lpages;
691 drop_spte(vcpu->kvm, sptep,
692 shadow_trap_nonpresent_pte);
693 need_flush = 1;
694 } else
695 __set_spte(sptep, shadow_trap_nonpresent_pte);
696 break;
699 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
700 break;
703 if (need_flush)
704 kvm_flush_remote_tlbs(vcpu->kvm);
706 atomic_inc(&vcpu->kvm->arch.invlpg_counter);
708 spin_unlock(&vcpu->kvm->mmu_lock);
710 if (pte_gpa == -1)
711 return;
713 if (mmu_topup_memory_caches(vcpu))
714 return;
715 kvm_mmu_pte_write(vcpu, pte_gpa, NULL, sizeof(pt_element_t), 0);
718 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
719 struct x86_exception *exception)
721 struct guest_walker walker;
722 gpa_t gpa = UNMAPPED_GVA;
723 int r;
725 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
727 if (r) {
728 gpa = gfn_to_gpa(walker.gfn);
729 gpa |= vaddr & ~PAGE_MASK;
730 } else if (exception)
731 *exception = walker.fault;
733 return gpa;
736 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
737 u32 access,
738 struct x86_exception *exception)
740 struct guest_walker walker;
741 gpa_t gpa = UNMAPPED_GVA;
742 int r;
744 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
746 if (r) {
747 gpa = gfn_to_gpa(walker.gfn);
748 gpa |= vaddr & ~PAGE_MASK;
749 } else if (exception)
750 *exception = walker.fault;
752 return gpa;
755 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
756 struct kvm_mmu_page *sp)
758 int i, j, offset, r;
759 pt_element_t pt[256 / sizeof(pt_element_t)];
760 gpa_t pte_gpa;
762 if (sp->role.direct
763 || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
764 nonpaging_prefetch_page(vcpu, sp);
765 return;
768 pte_gpa = gfn_to_gpa(sp->gfn);
769 if (PTTYPE == 32) {
770 offset = sp->role.quadrant << PT64_LEVEL_BITS;
771 pte_gpa += offset * sizeof(pt_element_t);
774 for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
775 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
776 pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
777 for (j = 0; j < ARRAY_SIZE(pt); ++j)
778 if (r || is_present_gpte(pt[j]))
779 sp->spt[i+j] = shadow_trap_nonpresent_pte;
780 else
781 sp->spt[i+j] = shadow_notrap_nonpresent_pte;
786 * Using the cached information from sp->gfns is safe because:
787 * - The spte has a reference to the struct page, so the pfn for a given gfn
788 * can't change unless all sptes pointing to it are nuked first.
790 * Note:
791 * We should flush all tlbs if spte is dropped even though guest is
792 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
793 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
794 * used by guest then tlbs are not flushed, so guest is allowed to access the
795 * freed pages.
796 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
798 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
800 int i, offset, nr_present;
801 bool host_writable;
802 gpa_t first_pte_gpa;
804 offset = nr_present = 0;
806 /* direct kvm_mmu_page can not be unsync. */
807 BUG_ON(sp->role.direct);
809 if (PTTYPE == 32)
810 offset = sp->role.quadrant << PT64_LEVEL_BITS;
812 first_pte_gpa = gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
814 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
815 unsigned pte_access;
816 pt_element_t gpte;
817 gpa_t pte_gpa;
818 gfn_t gfn;
820 if (!is_shadow_present_pte(sp->spt[i]))
821 continue;
823 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
825 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
826 sizeof(pt_element_t)))
827 return -EINVAL;
829 gfn = gpte_to_gfn(gpte);
831 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
832 vcpu->kvm->tlbs_dirty++;
833 continue;
836 if (gfn != sp->gfns[i]) {
837 drop_spte(vcpu->kvm, &sp->spt[i],
838 shadow_trap_nonpresent_pte);
839 vcpu->kvm->tlbs_dirty++;
840 continue;
843 nr_present++;
844 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
845 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
847 set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
848 is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn,
849 spte_to_pfn(sp->spt[i]), true, false,
850 host_writable);
853 return !nr_present;
856 #undef pt_element_t
857 #undef guest_walker
858 #undef FNAME
859 #undef PT_BASE_ADDR_MASK
860 #undef PT_INDEX
861 #undef PT_LVL_ADDR_MASK
862 #undef PT_LVL_OFFSET_MASK
863 #undef PT_LEVEL_BITS
864 #undef PT_MAX_FULL_LEVELS
865 #undef gpte_to_gfn
866 #undef gpte_to_gfn_lvl
867 #undef CMPXCHG