2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
51 #define PT_MAX_FULL_LEVELS 2
52 #define CMPXCHG cmpxchg
54 #error Invalid PTTYPE value
57 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
58 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
61 * The guest_walker structure emulates the behavior of the hardware page
66 gfn_t table_gfn
[PT_MAX_FULL_LEVELS
];
67 pt_element_t ptes
[PT_MAX_FULL_LEVELS
];
68 pt_element_t prefetch_ptes
[PTE_PREFETCH_NUM
];
69 gpa_t pte_gpa
[PT_MAX_FULL_LEVELS
];
73 struct x86_exception fault
;
76 static gfn_t
gpte_to_gfn_lvl(pt_element_t gpte
, int lvl
)
78 return (gpte
& PT_LVL_ADDR_MASK(lvl
)) >> PAGE_SHIFT
;
81 static int FNAME(cmpxchg_gpte
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
82 gfn_t table_gfn
, unsigned index
,
83 pt_element_t orig_pte
, pt_element_t new_pte
)
90 gpa
= mmu
->translate_gpa(vcpu
, table_gfn
<< PAGE_SHIFT
,
91 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
92 if (gpa
== UNMAPPED_GVA
)
95 page
= gfn_to_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
97 table
= kmap_atomic(page
, KM_USER0
);
98 ret
= CMPXCHG(&table
[index
], orig_pte
, new_pte
);
99 kunmap_atomic(table
, KM_USER0
);
101 kvm_release_page_dirty(page
);
103 return (ret
!= orig_pte
);
106 static unsigned FNAME(gpte_access
)(struct kvm_vcpu
*vcpu
, pt_element_t gpte
)
110 access
= (gpte
& (PT_WRITABLE_MASK
| PT_USER_MASK
)) | ACC_EXEC_MASK
;
112 if (vcpu
->arch
.mmu
.nx
)
113 access
&= ~(gpte
>> PT64_NX_SHIFT
);
119 * Fetch a guest pte for a guest virtual address
121 static int FNAME(walk_addr_generic
)(struct guest_walker
*walker
,
122 struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
123 gva_t addr
, u32 access
)
126 pt_element_t __user
*ptep_user
;
128 unsigned index
, pt_access
, uninitialized_var(pte_access
);
130 bool eperm
, present
, rsvd_fault
;
131 int offset
, write_fault
, user_fault
, fetch_fault
;
133 write_fault
= access
& PFERR_WRITE_MASK
;
134 user_fault
= access
& PFERR_USER_MASK
;
135 fetch_fault
= access
& PFERR_FETCH_MASK
;
137 trace_kvm_mmu_pagetable_walk(addr
, write_fault
, user_fault
,
141 eperm
= rsvd_fault
= false;
142 walker
->level
= mmu
->root_level
;
143 pte
= mmu
->get_cr3(vcpu
);
146 if (walker
->level
== PT32E_ROOT_LEVEL
) {
147 pte
= kvm_pdptr_read_mmu(vcpu
, mmu
, (addr
>> 30) & 3);
148 trace_kvm_mmu_paging_element(pte
, walker
->level
);
149 if (!is_present_gpte(pte
)) {
156 ASSERT((!is_long_mode(vcpu
) && is_pae(vcpu
)) ||
157 (mmu
->get_cr3(vcpu
) & CR3_NONPAE_RESERVED_BITS
) == 0);
163 unsigned long host_addr
;
165 index
= PT_INDEX(addr
, walker
->level
);
167 table_gfn
= gpte_to_gfn(pte
);
168 offset
= index
* sizeof(pt_element_t
);
169 pte_gpa
= gfn_to_gpa(table_gfn
) + offset
;
170 walker
->table_gfn
[walker
->level
- 1] = table_gfn
;
171 walker
->pte_gpa
[walker
->level
- 1] = pte_gpa
;
173 real_gfn
= mmu
->translate_gpa(vcpu
, gfn_to_gpa(table_gfn
),
174 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
175 if (real_gfn
== UNMAPPED_GVA
) {
179 real_gfn
= gpa_to_gfn(real_gfn
);
181 host_addr
= gfn_to_hva(vcpu
->kvm
, real_gfn
);
182 if (kvm_is_error_hva(host_addr
)) {
187 ptep_user
= (pt_element_t __user
*)((void *)host_addr
+ offset
);
188 if (get_user(pte
, ptep_user
)) {
193 trace_kvm_mmu_paging_element(pte
, walker
->level
);
195 if (!is_present_gpte(pte
)) {
200 if (is_rsvd_bits_set(&vcpu
->arch
.mmu
, pte
, walker
->level
)) {
205 if (write_fault
&& !is_writable_pte(pte
))
206 if (user_fault
|| is_write_protection(vcpu
))
209 if (user_fault
&& !(pte
& PT_USER_MASK
))
213 if (fetch_fault
&& (pte
& PT64_NX_MASK
))
217 if (!eperm
&& !rsvd_fault
&& !(pte
& PT_ACCESSED_MASK
)) {
219 trace_kvm_mmu_set_accessed_bit(table_gfn
, index
,
221 ret
= FNAME(cmpxchg_gpte
)(vcpu
, mmu
, table_gfn
,
222 index
, pte
, pte
|PT_ACCESSED_MASK
);
229 mark_page_dirty(vcpu
->kvm
, table_gfn
);
230 pte
|= PT_ACCESSED_MASK
;
233 pte_access
= pt_access
& FNAME(gpte_access
)(vcpu
, pte
);
235 walker
->ptes
[walker
->level
- 1] = pte
;
237 if ((walker
->level
== PT_PAGE_TABLE_LEVEL
) ||
238 ((walker
->level
== PT_DIRECTORY_LEVEL
) &&
240 (PTTYPE
== 64 || is_pse(vcpu
))) ||
241 ((walker
->level
== PT_PDPE_LEVEL
) &&
243 mmu
->root_level
== PT64_ROOT_LEVEL
)) {
244 int lvl
= walker
->level
;
249 gfn
= gpte_to_gfn_lvl(pte
, lvl
);
250 gfn
+= (addr
& PT_LVL_OFFSET_MASK(lvl
)) >> PAGE_SHIFT
;
253 walker
->level
== PT_DIRECTORY_LEVEL
&&
255 gfn
+= pse36_gfn_delta(pte
);
257 ac
= write_fault
| fetch_fault
| user_fault
;
259 real_gpa
= mmu
->translate_gpa(vcpu
, gfn_to_gpa(gfn
),
261 if (real_gpa
== UNMAPPED_GVA
)
264 walker
->gfn
= real_gpa
>> PAGE_SHIFT
;
269 pt_access
= pte_access
;
273 if (!present
|| eperm
|| rsvd_fault
)
276 if (write_fault
&& !is_dirty_gpte(pte
)) {
279 trace_kvm_mmu_set_dirty_bit(table_gfn
, index
, sizeof(pte
));
280 ret
= FNAME(cmpxchg_gpte
)(vcpu
, mmu
, table_gfn
, index
, pte
,
288 mark_page_dirty(vcpu
->kvm
, table_gfn
);
289 pte
|= PT_DIRTY_MASK
;
290 walker
->ptes
[walker
->level
- 1] = pte
;
293 walker
->pt_access
= pt_access
;
294 walker
->pte_access
= pte_access
;
295 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
296 __func__
, (u64
)pte
, pte_access
, pt_access
);
300 walker
->fault
.vector
= PF_VECTOR
;
301 walker
->fault
.error_code_valid
= true;
302 walker
->fault
.error_code
= 0;
304 walker
->fault
.error_code
|= PFERR_PRESENT_MASK
;
306 walker
->fault
.error_code
|= write_fault
| user_fault
;
308 if (fetch_fault
&& mmu
->nx
)
309 walker
->fault
.error_code
|= PFERR_FETCH_MASK
;
311 walker
->fault
.error_code
|= PFERR_RSVD_MASK
;
313 walker
->fault
.address
= addr
;
314 walker
->fault
.nested_page_fault
= mmu
!= vcpu
->arch
.walk_mmu
;
316 trace_kvm_mmu_walker_error(walker
->fault
.error_code
);
320 static int FNAME(walk_addr
)(struct guest_walker
*walker
,
321 struct kvm_vcpu
*vcpu
, gva_t addr
, u32 access
)
323 return FNAME(walk_addr_generic
)(walker
, vcpu
, &vcpu
->arch
.mmu
, addr
,
327 static int FNAME(walk_addr_nested
)(struct guest_walker
*walker
,
328 struct kvm_vcpu
*vcpu
, gva_t addr
,
331 return FNAME(walk_addr_generic
)(walker
, vcpu
, &vcpu
->arch
.nested_mmu
,
335 static bool FNAME(prefetch_invalid_gpte
)(struct kvm_vcpu
*vcpu
,
336 struct kvm_mmu_page
*sp
, u64
*spte
,
339 u64 nonpresent
= shadow_trap_nonpresent_pte
;
341 if (is_rsvd_bits_set(&vcpu
->arch
.mmu
, gpte
, PT_PAGE_TABLE_LEVEL
))
344 if (!is_present_gpte(gpte
)) {
346 nonpresent
= shadow_notrap_nonpresent_pte
;
350 if (!(gpte
& PT_ACCESSED_MASK
))
356 drop_spte(vcpu
->kvm
, spte
, nonpresent
);
360 static void FNAME(update_pte
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
361 u64
*spte
, const void *pte
)
367 gpte
= *(const pt_element_t
*)pte
;
368 if (FNAME(prefetch_invalid_gpte
)(vcpu
, sp
, spte
, gpte
))
371 pgprintk("%s: gpte %llx spte %p\n", __func__
, (u64
)gpte
, spte
);
372 pte_access
= sp
->role
.access
& FNAME(gpte_access
)(vcpu
, gpte
);
373 pfn
= gfn_to_pfn_atomic(vcpu
->kvm
, gpte_to_gfn(gpte
));
374 if (is_error_pfn(pfn
)) {
375 kvm_release_pfn_clean(pfn
);
380 * we call mmu_set_spte() with host_writable = true because that
381 * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
383 mmu_set_spte(vcpu
, spte
, sp
->role
.access
, pte_access
, 0, 0,
384 is_dirty_gpte(gpte
), NULL
, PT_PAGE_TABLE_LEVEL
,
385 gpte_to_gfn(gpte
), pfn
, true, true);
388 static bool FNAME(gpte_changed
)(struct kvm_vcpu
*vcpu
,
389 struct guest_walker
*gw
, int level
)
391 pt_element_t curr_pte
;
392 gpa_t base_gpa
, pte_gpa
= gw
->pte_gpa
[level
- 1];
396 if (level
== PT_PAGE_TABLE_LEVEL
) {
397 mask
= PTE_PREFETCH_NUM
* sizeof(pt_element_t
) - 1;
398 base_gpa
= pte_gpa
& ~mask
;
399 index
= (pte_gpa
- base_gpa
) / sizeof(pt_element_t
);
401 r
= kvm_read_guest_atomic(vcpu
->kvm
, base_gpa
,
402 gw
->prefetch_ptes
, sizeof(gw
->prefetch_ptes
));
403 curr_pte
= gw
->prefetch_ptes
[index
];
405 r
= kvm_read_guest_atomic(vcpu
->kvm
, pte_gpa
,
406 &curr_pte
, sizeof(curr_pte
));
408 return r
|| curr_pte
!= gw
->ptes
[level
- 1];
411 static void FNAME(pte_prefetch
)(struct kvm_vcpu
*vcpu
, struct guest_walker
*gw
,
414 struct kvm_mmu_page
*sp
;
415 pt_element_t
*gptep
= gw
->prefetch_ptes
;
419 sp
= page_header(__pa(sptep
));
421 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
425 return __direct_pte_prefetch(vcpu
, sp
, sptep
);
427 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
430 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
440 if (*spte
!= shadow_trap_nonpresent_pte
)
445 if (FNAME(prefetch_invalid_gpte
)(vcpu
, sp
, spte
, gpte
))
448 pte_access
= sp
->role
.access
& FNAME(gpte_access
)(vcpu
, gpte
);
449 gfn
= gpte_to_gfn(gpte
);
450 dirty
= is_dirty_gpte(gpte
);
451 pfn
= pte_prefetch_gfn_to_pfn(vcpu
, gfn
,
452 (pte_access
& ACC_WRITE_MASK
) && dirty
);
453 if (is_error_pfn(pfn
)) {
454 kvm_release_pfn_clean(pfn
);
458 mmu_set_spte(vcpu
, spte
, sp
->role
.access
, pte_access
, 0, 0,
459 dirty
, NULL
, PT_PAGE_TABLE_LEVEL
, gfn
,
465 * Fetch a shadow pte for a specific level in the paging hierarchy.
467 static u64
*FNAME(fetch
)(struct kvm_vcpu
*vcpu
, gva_t addr
,
468 struct guest_walker
*gw
,
469 int user_fault
, int write_fault
, int hlevel
,
470 int *ptwrite
, pfn_t pfn
, bool map_writable
,
473 unsigned access
= gw
->pt_access
;
474 struct kvm_mmu_page
*sp
= NULL
;
475 bool dirty
= is_dirty_gpte(gw
->ptes
[gw
->level
- 1]);
477 unsigned direct_access
;
478 struct kvm_shadow_walk_iterator it
;
480 if (!is_present_gpte(gw
->ptes
[gw
->level
- 1]))
483 direct_access
= gw
->pt_access
& gw
->pte_access
;
485 direct_access
&= ~ACC_WRITE_MASK
;
487 top_level
= vcpu
->arch
.mmu
.root_level
;
488 if (top_level
== PT32E_ROOT_LEVEL
)
489 top_level
= PT32_ROOT_LEVEL
;
491 * Verify that the top-level gpte is still there. Since the page
492 * is a root page, it is either write protected (and cannot be
493 * changed from now on) or it is invalid (in which case, we don't
494 * really care if it changes underneath us after this point).
496 if (FNAME(gpte_changed
)(vcpu
, gw
, top_level
))
497 goto out_gpte_changed
;
499 for (shadow_walk_init(&it
, vcpu
, addr
);
500 shadow_walk_okay(&it
) && it
.level
> gw
->level
;
501 shadow_walk_next(&it
)) {
504 drop_large_spte(vcpu
, it
.sptep
);
507 if (!is_shadow_present_pte(*it
.sptep
)) {
508 table_gfn
= gw
->table_gfn
[it
.level
- 2];
509 sp
= kvm_mmu_get_page(vcpu
, table_gfn
, addr
, it
.level
-1,
510 false, access
, it
.sptep
);
514 * Verify that the gpte in the page we've just write
515 * protected is still there.
517 if (FNAME(gpte_changed
)(vcpu
, gw
, it
.level
- 1))
518 goto out_gpte_changed
;
521 link_shadow_page(it
.sptep
, sp
);
525 shadow_walk_okay(&it
) && it
.level
> hlevel
;
526 shadow_walk_next(&it
)) {
529 validate_direct_spte(vcpu
, it
.sptep
, direct_access
);
531 drop_large_spte(vcpu
, it
.sptep
);
533 if (is_shadow_present_pte(*it
.sptep
))
536 direct_gfn
= gw
->gfn
& ~(KVM_PAGES_PER_HPAGE(it
.level
) - 1);
538 sp
= kvm_mmu_get_page(vcpu
, direct_gfn
, addr
, it
.level
-1,
539 true, direct_access
, it
.sptep
);
540 link_shadow_page(it
.sptep
, sp
);
543 mmu_set_spte(vcpu
, it
.sptep
, access
, gw
->pte_access
& access
,
544 user_fault
, write_fault
, dirty
, ptwrite
, it
.level
,
545 gw
->gfn
, pfn
, prefault
, map_writable
);
546 FNAME(pte_prefetch
)(vcpu
, gw
, it
.sptep
);
552 kvm_mmu_put_page(sp
, it
.sptep
);
553 kvm_release_pfn_clean(pfn
);
558 * Page fault handler. There are several causes for a page fault:
559 * - there is no shadow pte for the guest pte
560 * - write access through a shadow pte marked read only so that we can set
562 * - write access to a shadow pte marked read only so we can update the page
563 * dirty bitmap, when userspace requests it
564 * - mmio access; in this case we will never install a present shadow pte
565 * - normal guest page fault due to the guest pte marked not present, not
566 * writable, or not executable
568 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
569 * a negative value on error.
571 static int FNAME(page_fault
)(struct kvm_vcpu
*vcpu
, gva_t addr
, u32 error_code
,
574 int write_fault
= error_code
& PFERR_WRITE_MASK
;
575 int user_fault
= error_code
& PFERR_USER_MASK
;
576 struct guest_walker walker
;
581 int level
= PT_PAGE_TABLE_LEVEL
;
583 unsigned long mmu_seq
;
586 pgprintk("%s: addr %lx err %x\n", __func__
, addr
, error_code
);
588 r
= mmu_topup_memory_caches(vcpu
);
593 * Look up the guest pte for the faulting address.
595 r
= FNAME(walk_addr
)(&walker
, vcpu
, addr
, error_code
);
598 * The page is not mapped by the guest. Let the guest handle it.
601 pgprintk("%s: guest page fault\n", __func__
);
603 inject_page_fault(vcpu
, &walker
.fault
);
604 /* reset fork detector */
605 vcpu
->arch
.last_pt_write_count
= 0;
610 if (walker
.level
>= PT_DIRECTORY_LEVEL
)
611 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, walker
.gfn
);
614 if (!force_pt_level
) {
615 level
= min(walker
.level
, mapping_level(vcpu
, walker
.gfn
));
616 walker
.gfn
= walker
.gfn
& ~(KVM_PAGES_PER_HPAGE(level
) - 1);
619 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
622 if (try_async_pf(vcpu
, prefault
, walker
.gfn
, addr
, &pfn
, write_fault
,
627 if (is_error_pfn(pfn
))
628 return kvm_handle_bad_page(vcpu
->kvm
, walker
.gfn
, pfn
);
630 spin_lock(&vcpu
->kvm
->mmu_lock
);
631 if (mmu_notifier_retry(vcpu
, mmu_seq
))
634 trace_kvm_mmu_audit(vcpu
, AUDIT_PRE_PAGE_FAULT
);
635 kvm_mmu_free_some_pages(vcpu
);
637 transparent_hugepage_adjust(vcpu
, &walker
.gfn
, &pfn
, &level
);
638 sptep
= FNAME(fetch
)(vcpu
, addr
, &walker
, user_fault
, write_fault
,
639 level
, &write_pt
, pfn
, map_writable
, prefault
);
641 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__
,
642 sptep
, *sptep
, write_pt
);
645 vcpu
->arch
.last_pt_write_count
= 0; /* reset fork detector */
647 ++vcpu
->stat
.pf_fixed
;
648 trace_kvm_mmu_audit(vcpu
, AUDIT_POST_PAGE_FAULT
);
649 spin_unlock(&vcpu
->kvm
->mmu_lock
);
654 spin_unlock(&vcpu
->kvm
->mmu_lock
);
655 kvm_release_pfn_clean(pfn
);
659 static void FNAME(invlpg
)(struct kvm_vcpu
*vcpu
, gva_t gva
)
661 struct kvm_shadow_walk_iterator iterator
;
662 struct kvm_mmu_page
*sp
;
668 spin_lock(&vcpu
->kvm
->mmu_lock
);
670 for_each_shadow_entry(vcpu
, gva
, iterator
) {
671 level
= iterator
.level
;
672 sptep
= iterator
.sptep
;
674 sp
= page_header(__pa(sptep
));
675 if (is_last_spte(*sptep
, level
)) {
682 (PT_LEVEL_BITS
- PT64_LEVEL_BITS
) * level
;
683 offset
= sp
->role
.quadrant
<< shift
;
685 pte_gpa
= (sp
->gfn
<< PAGE_SHIFT
) + offset
;
686 pte_gpa
+= (sptep
- sp
->spt
) * sizeof(pt_element_t
);
688 if (is_shadow_present_pte(*sptep
)) {
689 if (is_large_pte(*sptep
))
690 --vcpu
->kvm
->stat
.lpages
;
691 drop_spte(vcpu
->kvm
, sptep
,
692 shadow_trap_nonpresent_pte
);
695 __set_spte(sptep
, shadow_trap_nonpresent_pte
);
699 if (!is_shadow_present_pte(*sptep
) || !sp
->unsync_children
)
704 kvm_flush_remote_tlbs(vcpu
->kvm
);
706 atomic_inc(&vcpu
->kvm
->arch
.invlpg_counter
);
708 spin_unlock(&vcpu
->kvm
->mmu_lock
);
713 if (mmu_topup_memory_caches(vcpu
))
715 kvm_mmu_pte_write(vcpu
, pte_gpa
, NULL
, sizeof(pt_element_t
), 0);
718 static gpa_t
FNAME(gva_to_gpa
)(struct kvm_vcpu
*vcpu
, gva_t vaddr
, u32 access
,
719 struct x86_exception
*exception
)
721 struct guest_walker walker
;
722 gpa_t gpa
= UNMAPPED_GVA
;
725 r
= FNAME(walk_addr
)(&walker
, vcpu
, vaddr
, access
);
728 gpa
= gfn_to_gpa(walker
.gfn
);
729 gpa
|= vaddr
& ~PAGE_MASK
;
730 } else if (exception
)
731 *exception
= walker
.fault
;
736 static gpa_t
FNAME(gva_to_gpa_nested
)(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
738 struct x86_exception
*exception
)
740 struct guest_walker walker
;
741 gpa_t gpa
= UNMAPPED_GVA
;
744 r
= FNAME(walk_addr_nested
)(&walker
, vcpu
, vaddr
, access
);
747 gpa
= gfn_to_gpa(walker
.gfn
);
748 gpa
|= vaddr
& ~PAGE_MASK
;
749 } else if (exception
)
750 *exception
= walker
.fault
;
755 static void FNAME(prefetch_page
)(struct kvm_vcpu
*vcpu
,
756 struct kvm_mmu_page
*sp
)
759 pt_element_t pt
[256 / sizeof(pt_element_t
)];
763 || (PTTYPE
== 32 && sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)) {
764 nonpaging_prefetch_page(vcpu
, sp
);
768 pte_gpa
= gfn_to_gpa(sp
->gfn
);
770 offset
= sp
->role
.quadrant
<< PT64_LEVEL_BITS
;
771 pte_gpa
+= offset
* sizeof(pt_element_t
);
774 for (i
= 0; i
< PT64_ENT_PER_PAGE
; i
+= ARRAY_SIZE(pt
)) {
775 r
= kvm_read_guest_atomic(vcpu
->kvm
, pte_gpa
, pt
, sizeof pt
);
776 pte_gpa
+= ARRAY_SIZE(pt
) * sizeof(pt_element_t
);
777 for (j
= 0; j
< ARRAY_SIZE(pt
); ++j
)
778 if (r
|| is_present_gpte(pt
[j
]))
779 sp
->spt
[i
+j
] = shadow_trap_nonpresent_pte
;
781 sp
->spt
[i
+j
] = shadow_notrap_nonpresent_pte
;
786 * Using the cached information from sp->gfns is safe because:
787 * - The spte has a reference to the struct page, so the pfn for a given gfn
788 * can't change unless all sptes pointing to it are nuked first.
791 * We should flush all tlbs if spte is dropped even though guest is
792 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
793 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
794 * used by guest then tlbs are not flushed, so guest is allowed to access the
796 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
798 static int FNAME(sync_page
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
800 int i
, offset
, nr_present
;
804 offset
= nr_present
= 0;
806 /* direct kvm_mmu_page can not be unsync. */
807 BUG_ON(sp
->role
.direct
);
810 offset
= sp
->role
.quadrant
<< PT64_LEVEL_BITS
;
812 first_pte_gpa
= gfn_to_gpa(sp
->gfn
) + offset
* sizeof(pt_element_t
);
814 for (i
= 0; i
< PT64_ENT_PER_PAGE
; i
++) {
820 if (!is_shadow_present_pte(sp
->spt
[i
]))
823 pte_gpa
= first_pte_gpa
+ i
* sizeof(pt_element_t
);
825 if (kvm_read_guest_atomic(vcpu
->kvm
, pte_gpa
, &gpte
,
826 sizeof(pt_element_t
)))
829 gfn
= gpte_to_gfn(gpte
);
831 if (FNAME(prefetch_invalid_gpte
)(vcpu
, sp
, &sp
->spt
[i
], gpte
)) {
832 vcpu
->kvm
->tlbs_dirty
++;
836 if (gfn
!= sp
->gfns
[i
]) {
837 drop_spte(vcpu
->kvm
, &sp
->spt
[i
],
838 shadow_trap_nonpresent_pte
);
839 vcpu
->kvm
->tlbs_dirty
++;
844 pte_access
= sp
->role
.access
& FNAME(gpte_access
)(vcpu
, gpte
);
845 host_writable
= sp
->spt
[i
] & SPTE_HOST_WRITEABLE
;
847 set_spte(vcpu
, &sp
->spt
[i
], pte_access
, 0, 0,
848 is_dirty_gpte(gpte
), PT_PAGE_TABLE_LEVEL
, gfn
,
849 spte_to_pfn(sp
->spt
[i
]), true, false,
859 #undef PT_BASE_ADDR_MASK
861 #undef PT_LVL_ADDR_MASK
862 #undef PT_LVL_OFFSET_MASK
864 #undef PT_MAX_FULL_LEVELS
866 #undef gpte_to_gfn_lvl