1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2009 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/list.h>
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
60 #define DRV_MODULE_NAME "bnx2"
61 #define PFX DRV_MODULE_NAME ": "
62 #define DRV_MODULE_VERSION "2.0.1"
63 #define DRV_MODULE_RELDATE "May 6, 2009"
64 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-4.6.16.fw"
65 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-4.6.16.fw"
66 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-4.6.17.fw"
67 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-4.6.15.fw"
69 #define RUN_AT(x) (jiffies + (x))
71 /* Time in jiffies before concluding the transmitter is hung. */
72 #define TX_TIMEOUT (5*HZ)
74 static char version
[] __devinitdata
=
75 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
77 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
78 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(DRV_MODULE_VERSION
);
81 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
82 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
83 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
86 static int disable_msi
= 0;
88 module_param(disable_msi
, int, 0);
89 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
105 /* indexed by board_t, above */
108 } board_info
[] __devinitdata
= {
109 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
110 { "HP NC370T Multifunction Gigabit Server Adapter" },
111 { "HP NC370i Multifunction Gigabit Server Adapter" },
112 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
113 { "HP NC370F Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
122 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
123 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
124 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
125 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
126 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
127 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
128 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
129 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
131 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
132 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
133 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
134 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
135 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
136 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
137 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
138 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
139 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
140 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
141 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
142 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
143 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
144 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
148 static struct flash_spec flash_table
[] =
150 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
151 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
153 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
154 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
155 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
157 /* Expansion entry 0001 */
158 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
159 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
160 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
162 /* Saifun SA25F010 (non-buffered flash) */
163 /* strap, cfg1, & write1 need updates */
164 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
165 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
166 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
167 "Non-buffered flash (128kB)"},
168 /* Saifun SA25F020 (non-buffered flash) */
169 /* strap, cfg1, & write1 need updates */
170 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
171 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
172 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
173 "Non-buffered flash (256kB)"},
174 /* Expansion entry 0100 */
175 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
176 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
177 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
179 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
180 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
181 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
182 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
183 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
184 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
185 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
186 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
187 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
188 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
189 /* Saifun SA25F005 (non-buffered flash) */
190 /* strap, cfg1, & write1 need updates */
191 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
192 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
193 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
194 "Non-buffered flash (64kB)"},
196 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
197 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
198 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
200 /* Expansion entry 1001 */
201 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
202 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
203 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
205 /* Expansion entry 1010 */
206 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
208 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
210 /* ATMEL AT45DB011B (buffered flash) */
211 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
212 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
213 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
214 "Buffered flash (128kB)"},
215 /* Expansion entry 1100 */
216 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
218 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
220 /* Expansion entry 1101 */
221 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
223 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
225 /* Ateml Expansion entry 1110 */
226 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
227 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
228 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
229 "Entry 1110 (Atmel)"},
230 /* ATMEL AT45DB021B (buffered flash) */
231 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
232 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
233 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
234 "Buffered flash (256kB)"},
237 static struct flash_spec flash_5709
= {
238 .flags
= BNX2_NV_BUFFERED
,
239 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
240 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
241 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
242 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
243 .name
= "5709 Buffered flash (256kB)",
246 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
248 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
254 /* The ring uses 256 indices for 255 entries, one of them
255 * needs to be skipped.
257 diff
= txr
->tx_prod
- txr
->tx_cons
;
258 if (unlikely(diff
>= TX_DESC_CNT
)) {
260 if (diff
== TX_DESC_CNT
)
261 diff
= MAX_TX_DESC_CNT
;
263 return (bp
->tx_ring_size
- diff
);
267 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
271 spin_lock_bh(&bp
->indirect_lock
);
272 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
273 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
274 spin_unlock_bh(&bp
->indirect_lock
);
279 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
281 spin_lock_bh(&bp
->indirect_lock
);
282 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
283 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
284 spin_unlock_bh(&bp
->indirect_lock
);
288 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
290 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
294 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
296 return (bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
));
300 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
303 spin_lock_bh(&bp
->indirect_lock
);
304 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
307 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
308 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
309 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
310 for (i
= 0; i
< 5; i
++) {
311 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
312 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
317 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
318 REG_WR(bp
, BNX2_CTX_DATA
, val
);
320 spin_unlock_bh(&bp
->indirect_lock
);
325 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
327 struct bnx2
*bp
= netdev_priv(dev
);
328 struct drv_ctl_io
*io
= &info
->data
.io
;
331 case DRV_CTL_IO_WR_CMD
:
332 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
334 case DRV_CTL_IO_RD_CMD
:
335 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
337 case DRV_CTL_CTX_WR_CMD
:
338 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
346 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
348 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
349 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
352 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
353 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
354 bnapi
->cnic_present
= 0;
355 sb_id
= bp
->irq_nvecs
;
356 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
358 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
359 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
360 bnapi
->cnic_present
= 1;
362 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
365 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
366 cp
->irq_arr
[0].status_blk
= (void *)
367 ((unsigned long) bnapi
->status_blk
.msi
+
368 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
369 cp
->irq_arr
[0].status_blk_num
= sb_id
;
373 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
376 struct bnx2
*bp
= netdev_priv(dev
);
377 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
382 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
385 bp
->cnic_data
= data
;
386 rcu_assign_pointer(bp
->cnic_ops
, ops
);
389 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
391 bnx2_setup_cnic_irq_info(bp
);
396 static int bnx2_unregister_cnic(struct net_device
*dev
)
398 struct bnx2
*bp
= netdev_priv(dev
);
399 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
400 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
403 bnapi
->cnic_present
= 0;
404 rcu_assign_pointer(bp
->cnic_ops
, NULL
);
409 struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
411 struct bnx2
*bp
= netdev_priv(dev
);
412 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
414 cp
->drv_owner
= THIS_MODULE
;
415 cp
->chip_id
= bp
->chip_id
;
417 cp
->io_base
= bp
->regview
;
418 cp
->drv_ctl
= bnx2_drv_ctl
;
419 cp
->drv_register_cnic
= bnx2_register_cnic
;
420 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
424 EXPORT_SYMBOL(bnx2_cnic_probe
);
427 bnx2_cnic_stop(struct bnx2
*bp
)
429 struct cnic_ops
*c_ops
;
430 struct cnic_ctl_info info
;
433 c_ops
= rcu_dereference(bp
->cnic_ops
);
435 info
.cmd
= CNIC_CTL_STOP_CMD
;
436 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
442 bnx2_cnic_start(struct bnx2
*bp
)
444 struct cnic_ops
*c_ops
;
445 struct cnic_ctl_info info
;
448 c_ops
= rcu_dereference(bp
->cnic_ops
);
450 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
451 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
453 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
455 info
.cmd
= CNIC_CTL_START_CMD
;
456 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
464 bnx2_cnic_stop(struct bnx2
*bp
)
469 bnx2_cnic_start(struct bnx2
*bp
)
476 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
481 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
482 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
483 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
485 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
486 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
491 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
492 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
493 BNX2_EMAC_MDIO_COMM_START_BUSY
;
494 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
496 for (i
= 0; i
< 50; i
++) {
499 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
500 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
503 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
504 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
510 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
519 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
520 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
521 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
523 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
524 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
533 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
538 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
539 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
540 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
542 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
543 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
548 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
549 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
550 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
551 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
553 for (i
= 0; i
< 50; i
++) {
556 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
557 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
563 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
568 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
569 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
570 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
572 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
573 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
582 bnx2_disable_int(struct bnx2
*bp
)
585 struct bnx2_napi
*bnapi
;
587 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
588 bnapi
= &bp
->bnx2_napi
[i
];
589 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
590 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
592 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
596 bnx2_enable_int(struct bnx2
*bp
)
599 struct bnx2_napi
*bnapi
;
601 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
602 bnapi
= &bp
->bnx2_napi
[i
];
604 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
605 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
606 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
607 bnapi
->last_status_idx
);
609 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
610 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
611 bnapi
->last_status_idx
);
613 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
617 bnx2_disable_int_sync(struct bnx2
*bp
)
621 atomic_inc(&bp
->intr_sem
);
622 bnx2_disable_int(bp
);
623 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
624 synchronize_irq(bp
->irq_tbl
[i
].vector
);
628 bnx2_napi_disable(struct bnx2
*bp
)
632 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
633 napi_disable(&bp
->bnx2_napi
[i
].napi
);
637 bnx2_napi_enable(struct bnx2
*bp
)
641 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
642 napi_enable(&bp
->bnx2_napi
[i
].napi
);
646 bnx2_netif_stop(struct bnx2
*bp
)
649 bnx2_disable_int_sync(bp
);
650 if (netif_running(bp
->dev
)) {
651 bnx2_napi_disable(bp
);
652 netif_tx_disable(bp
->dev
);
653 bp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
658 bnx2_netif_start(struct bnx2
*bp
)
660 if (atomic_dec_and_test(&bp
->intr_sem
)) {
661 if (netif_running(bp
->dev
)) {
662 netif_tx_wake_all_queues(bp
->dev
);
663 bnx2_napi_enable(bp
);
671 bnx2_free_tx_mem(struct bnx2
*bp
)
675 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
676 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
677 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
679 if (txr
->tx_desc_ring
) {
680 pci_free_consistent(bp
->pdev
, TXBD_RING_SIZE
,
682 txr
->tx_desc_mapping
);
683 txr
->tx_desc_ring
= NULL
;
685 kfree(txr
->tx_buf_ring
);
686 txr
->tx_buf_ring
= NULL
;
691 bnx2_free_rx_mem(struct bnx2
*bp
)
695 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
696 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
697 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
700 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
701 if (rxr
->rx_desc_ring
[j
])
702 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
703 rxr
->rx_desc_ring
[j
],
704 rxr
->rx_desc_mapping
[j
]);
705 rxr
->rx_desc_ring
[j
] = NULL
;
707 vfree(rxr
->rx_buf_ring
);
708 rxr
->rx_buf_ring
= NULL
;
710 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
711 if (rxr
->rx_pg_desc_ring
[j
])
712 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
713 rxr
->rx_pg_desc_ring
[j
],
714 rxr
->rx_pg_desc_mapping
[j
]);
715 rxr
->rx_pg_desc_ring
[j
] = NULL
;
717 vfree(rxr
->rx_pg_ring
);
718 rxr
->rx_pg_ring
= NULL
;
723 bnx2_alloc_tx_mem(struct bnx2
*bp
)
727 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
728 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
729 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
731 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
732 if (txr
->tx_buf_ring
== NULL
)
736 pci_alloc_consistent(bp
->pdev
, TXBD_RING_SIZE
,
737 &txr
->tx_desc_mapping
);
738 if (txr
->tx_desc_ring
== NULL
)
745 bnx2_alloc_rx_mem(struct bnx2
*bp
)
749 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
750 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
751 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
755 vmalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
756 if (rxr
->rx_buf_ring
== NULL
)
759 memset(rxr
->rx_buf_ring
, 0,
760 SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
762 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
763 rxr
->rx_desc_ring
[j
] =
764 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
765 &rxr
->rx_desc_mapping
[j
]);
766 if (rxr
->rx_desc_ring
[j
] == NULL
)
771 if (bp
->rx_pg_ring_size
) {
772 rxr
->rx_pg_ring
= vmalloc(SW_RXPG_RING_SIZE
*
774 if (rxr
->rx_pg_ring
== NULL
)
777 memset(rxr
->rx_pg_ring
, 0, SW_RXPG_RING_SIZE
*
781 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
782 rxr
->rx_pg_desc_ring
[j
] =
783 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
784 &rxr
->rx_pg_desc_mapping
[j
]);
785 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
794 bnx2_free_mem(struct bnx2
*bp
)
797 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
799 bnx2_free_tx_mem(bp
);
800 bnx2_free_rx_mem(bp
);
802 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
803 if (bp
->ctx_blk
[i
]) {
804 pci_free_consistent(bp
->pdev
, BCM_PAGE_SIZE
,
806 bp
->ctx_blk_mapping
[i
]);
807 bp
->ctx_blk
[i
] = NULL
;
810 if (bnapi
->status_blk
.msi
) {
811 pci_free_consistent(bp
->pdev
, bp
->status_stats_size
,
812 bnapi
->status_blk
.msi
,
813 bp
->status_blk_mapping
);
814 bnapi
->status_blk
.msi
= NULL
;
815 bp
->stats_blk
= NULL
;
820 bnx2_alloc_mem(struct bnx2
*bp
)
822 int i
, status_blk_size
, err
;
823 struct bnx2_napi
*bnapi
;
826 /* Combine status and statistics blocks into one allocation. */
827 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
828 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
829 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
830 BNX2_SBLK_MSIX_ALIGN_SIZE
);
831 bp
->status_stats_size
= status_blk_size
+
832 sizeof(struct statistics_block
);
834 status_blk
= pci_alloc_consistent(bp
->pdev
, bp
->status_stats_size
,
835 &bp
->status_blk_mapping
);
836 if (status_blk
== NULL
)
839 memset(status_blk
, 0, bp
->status_stats_size
);
841 bnapi
= &bp
->bnx2_napi
[0];
842 bnapi
->status_blk
.msi
= status_blk
;
843 bnapi
->hw_tx_cons_ptr
=
844 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
845 bnapi
->hw_rx_cons_ptr
=
846 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
847 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
848 for (i
= 1; i
< BNX2_MAX_MSIX_VEC
; i
++) {
849 struct status_block_msix
*sblk
;
851 bnapi
= &bp
->bnx2_napi
[i
];
853 sblk
= (void *) (status_blk
+
854 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
855 bnapi
->status_blk
.msix
= sblk
;
856 bnapi
->hw_tx_cons_ptr
=
857 &sblk
->status_tx_quick_consumer_index
;
858 bnapi
->hw_rx_cons_ptr
=
859 &sblk
->status_rx_quick_consumer_index
;
860 bnapi
->int_num
= i
<< 24;
864 bp
->stats_blk
= status_blk
+ status_blk_size
;
866 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
868 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
869 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
870 if (bp
->ctx_pages
== 0)
872 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
873 bp
->ctx_blk
[i
] = pci_alloc_consistent(bp
->pdev
,
875 &bp
->ctx_blk_mapping
[i
]);
876 if (bp
->ctx_blk
[i
] == NULL
)
881 err
= bnx2_alloc_rx_mem(bp
);
885 err
= bnx2_alloc_tx_mem(bp
);
897 bnx2_report_fw_link(struct bnx2
*bp
)
899 u32 fw_link_status
= 0;
901 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
907 switch (bp
->line_speed
) {
909 if (bp
->duplex
== DUPLEX_HALF
)
910 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
912 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
915 if (bp
->duplex
== DUPLEX_HALF
)
916 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
918 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
921 if (bp
->duplex
== DUPLEX_HALF
)
922 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
924 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
927 if (bp
->duplex
== DUPLEX_HALF
)
928 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
930 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
934 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
937 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
939 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
940 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
942 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
943 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
944 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
946 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
950 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
952 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
956 bnx2_xceiver_str(struct bnx2
*bp
)
958 return ((bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
959 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
964 bnx2_report_link(struct bnx2
*bp
)
967 netif_carrier_on(bp
->dev
);
968 printk(KERN_INFO PFX
"%s NIC %s Link is Up, ", bp
->dev
->name
,
969 bnx2_xceiver_str(bp
));
971 printk("%d Mbps ", bp
->line_speed
);
973 if (bp
->duplex
== DUPLEX_FULL
)
974 printk("full duplex");
976 printk("half duplex");
979 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
980 printk(", receive ");
981 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
982 printk("& transmit ");
985 printk(", transmit ");
987 printk("flow control ON");
992 netif_carrier_off(bp
->dev
);
993 printk(KERN_ERR PFX
"%s NIC %s Link is Down\n", bp
->dev
->name
,
994 bnx2_xceiver_str(bp
));
997 bnx2_report_fw_link(bp
);
1001 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1003 u32 local_adv
, remote_adv
;
1006 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1007 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1009 if (bp
->duplex
== DUPLEX_FULL
) {
1010 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1015 if (bp
->duplex
!= DUPLEX_FULL
) {
1019 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1020 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
1023 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1024 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1025 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1026 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1027 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1031 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1032 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1034 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1035 u32 new_local_adv
= 0;
1036 u32 new_remote_adv
= 0;
1038 if (local_adv
& ADVERTISE_1000XPAUSE
)
1039 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1040 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1041 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1042 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1043 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1044 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1045 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1047 local_adv
= new_local_adv
;
1048 remote_adv
= new_remote_adv
;
1051 /* See Table 28B-3 of 802.3ab-1999 spec. */
1052 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1053 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1054 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1055 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1057 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1058 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1062 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1063 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1067 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1068 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1069 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1071 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1077 bnx2_5709s_linkup(struct bnx2
*bp
)
1083 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1084 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1085 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1087 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1088 bp
->line_speed
= bp
->req_line_speed
;
1089 bp
->duplex
= bp
->req_duplex
;
1092 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1094 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1095 bp
->line_speed
= SPEED_10
;
1097 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1098 bp
->line_speed
= SPEED_100
;
1100 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1101 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1102 bp
->line_speed
= SPEED_1000
;
1104 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1105 bp
->line_speed
= SPEED_2500
;
1108 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1109 bp
->duplex
= DUPLEX_FULL
;
1111 bp
->duplex
= DUPLEX_HALF
;
1116 bnx2_5708s_linkup(struct bnx2
*bp
)
1121 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1122 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1123 case BCM5708S_1000X_STAT1_SPEED_10
:
1124 bp
->line_speed
= SPEED_10
;
1126 case BCM5708S_1000X_STAT1_SPEED_100
:
1127 bp
->line_speed
= SPEED_100
;
1129 case BCM5708S_1000X_STAT1_SPEED_1G
:
1130 bp
->line_speed
= SPEED_1000
;
1132 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1133 bp
->line_speed
= SPEED_2500
;
1136 if (val
& BCM5708S_1000X_STAT1_FD
)
1137 bp
->duplex
= DUPLEX_FULL
;
1139 bp
->duplex
= DUPLEX_HALF
;
1145 bnx2_5706s_linkup(struct bnx2
*bp
)
1147 u32 bmcr
, local_adv
, remote_adv
, common
;
1150 bp
->line_speed
= SPEED_1000
;
1152 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1153 if (bmcr
& BMCR_FULLDPLX
) {
1154 bp
->duplex
= DUPLEX_FULL
;
1157 bp
->duplex
= DUPLEX_HALF
;
1160 if (!(bmcr
& BMCR_ANENABLE
)) {
1164 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1165 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1167 common
= local_adv
& remote_adv
;
1168 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1170 if (common
& ADVERTISE_1000XFULL
) {
1171 bp
->duplex
= DUPLEX_FULL
;
1174 bp
->duplex
= DUPLEX_HALF
;
1182 bnx2_copper_linkup(struct bnx2
*bp
)
1186 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1187 if (bmcr
& BMCR_ANENABLE
) {
1188 u32 local_adv
, remote_adv
, common
;
1190 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1191 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1193 common
= local_adv
& (remote_adv
>> 2);
1194 if (common
& ADVERTISE_1000FULL
) {
1195 bp
->line_speed
= SPEED_1000
;
1196 bp
->duplex
= DUPLEX_FULL
;
1198 else if (common
& ADVERTISE_1000HALF
) {
1199 bp
->line_speed
= SPEED_1000
;
1200 bp
->duplex
= DUPLEX_HALF
;
1203 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1204 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1206 common
= local_adv
& remote_adv
;
1207 if (common
& ADVERTISE_100FULL
) {
1208 bp
->line_speed
= SPEED_100
;
1209 bp
->duplex
= DUPLEX_FULL
;
1211 else if (common
& ADVERTISE_100HALF
) {
1212 bp
->line_speed
= SPEED_100
;
1213 bp
->duplex
= DUPLEX_HALF
;
1215 else if (common
& ADVERTISE_10FULL
) {
1216 bp
->line_speed
= SPEED_10
;
1217 bp
->duplex
= DUPLEX_FULL
;
1219 else if (common
& ADVERTISE_10HALF
) {
1220 bp
->line_speed
= SPEED_10
;
1221 bp
->duplex
= DUPLEX_HALF
;
1230 if (bmcr
& BMCR_SPEED100
) {
1231 bp
->line_speed
= SPEED_100
;
1234 bp
->line_speed
= SPEED_10
;
1236 if (bmcr
& BMCR_FULLDPLX
) {
1237 bp
->duplex
= DUPLEX_FULL
;
1240 bp
->duplex
= DUPLEX_HALF
;
1248 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1250 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1252 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1253 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1256 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1257 u32 lo_water
, hi_water
;
1259 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1260 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DEFAULT
;
1262 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DIS
;
1263 if (lo_water
>= bp
->rx_ring_size
)
1266 hi_water
= bp
->rx_ring_size
/ 4;
1268 if (hi_water
<= lo_water
)
1271 hi_water
/= BNX2_L2CTX_HI_WATER_MARK_SCALE
;
1272 lo_water
/= BNX2_L2CTX_LO_WATER_MARK_SCALE
;
1276 else if (hi_water
== 0)
1278 val
|= lo_water
| (hi_water
<< BNX2_L2CTX_HI_WATER_MARK_SHIFT
);
1280 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1284 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1289 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1292 bnx2_init_rx_context(bp
, cid
);
1297 bnx2_set_mac_link(struct bnx2
*bp
)
1301 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1302 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1303 (bp
->duplex
== DUPLEX_HALF
)) {
1304 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1307 /* Configure the EMAC mode register. */
1308 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1310 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1311 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1312 BNX2_EMAC_MODE_25G_MODE
);
1315 switch (bp
->line_speed
) {
1317 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1318 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1323 val
|= BNX2_EMAC_MODE_PORT_MII
;
1326 val
|= BNX2_EMAC_MODE_25G_MODE
;
1329 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1334 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1337 /* Set the MAC to operate in the appropriate duplex mode. */
1338 if (bp
->duplex
== DUPLEX_HALF
)
1339 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1340 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1342 /* Enable/disable rx PAUSE. */
1343 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1345 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1346 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1347 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1349 /* Enable/disable tx PAUSE. */
1350 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1351 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1353 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1354 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1355 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1357 /* Acknowledge the interrupt. */
1358 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1360 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1361 bnx2_init_all_rx_contexts(bp
);
1365 bnx2_enable_bmsr1(struct bnx2
*bp
)
1367 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1368 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1369 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1370 MII_BNX2_BLK_ADDR_GP_STATUS
);
1374 bnx2_disable_bmsr1(struct bnx2
*bp
)
1376 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1377 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1378 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1379 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1383 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1388 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1391 if (bp
->autoneg
& AUTONEG_SPEED
)
1392 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1394 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1395 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1397 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1398 if (!(up1
& BCM5708S_UP1_2G5
)) {
1399 up1
|= BCM5708S_UP1_2G5
;
1400 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1404 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1405 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1406 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1412 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1417 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1420 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1421 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1423 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1424 if (up1
& BCM5708S_UP1_2G5
) {
1425 up1
&= ~BCM5708S_UP1_2G5
;
1426 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1430 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1431 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1432 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1438 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1442 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1445 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1448 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1449 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1450 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1451 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1452 val
|= MII_BNX2_SD_MISC1_FORCE
| MII_BNX2_SD_MISC1_FORCE_2_5G
;
1453 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1455 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1456 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1457 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1459 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1460 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1461 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1464 if (bp
->autoneg
& AUTONEG_SPEED
) {
1465 bmcr
&= ~BMCR_ANENABLE
;
1466 if (bp
->req_duplex
== DUPLEX_FULL
)
1467 bmcr
|= BMCR_FULLDPLX
;
1469 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1473 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1477 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1480 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1483 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1484 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1485 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1486 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1487 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1489 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1490 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1491 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1493 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1494 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1495 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1498 if (bp
->autoneg
& AUTONEG_SPEED
)
1499 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1500 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1504 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1508 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1509 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1511 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1513 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1517 bnx2_set_link(struct bnx2
*bp
)
1522 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1527 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1530 link_up
= bp
->link_up
;
1532 bnx2_enable_bmsr1(bp
);
1533 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1534 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1535 bnx2_disable_bmsr1(bp
);
1537 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1538 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1541 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1542 bnx2_5706s_force_link_dn(bp
, 0);
1543 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1545 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1547 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1548 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1549 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1551 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1552 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1553 bmsr
|= BMSR_LSTATUS
;
1555 bmsr
&= ~BMSR_LSTATUS
;
1558 if (bmsr
& BMSR_LSTATUS
) {
1561 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1562 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1563 bnx2_5706s_linkup(bp
);
1564 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1565 bnx2_5708s_linkup(bp
);
1566 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1567 bnx2_5709s_linkup(bp
);
1570 bnx2_copper_linkup(bp
);
1572 bnx2_resolve_flow_ctrl(bp
);
1575 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1576 (bp
->autoneg
& AUTONEG_SPEED
))
1577 bnx2_disable_forced_2g5(bp
);
1579 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1582 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1583 bmcr
|= BMCR_ANENABLE
;
1584 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1586 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1591 if (bp
->link_up
!= link_up
) {
1592 bnx2_report_link(bp
);
1595 bnx2_set_mac_link(bp
);
1601 bnx2_reset_phy(struct bnx2
*bp
)
1606 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1608 #define PHY_RESET_MAX_WAIT 100
1609 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1612 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1613 if (!(reg
& BMCR_RESET
)) {
1618 if (i
== PHY_RESET_MAX_WAIT
) {
1625 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1629 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1630 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1632 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1633 adv
= ADVERTISE_1000XPAUSE
;
1636 adv
= ADVERTISE_PAUSE_CAP
;
1639 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1640 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1641 adv
= ADVERTISE_1000XPSE_ASYM
;
1644 adv
= ADVERTISE_PAUSE_ASYM
;
1647 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1648 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1649 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1652 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1658 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1661 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1662 __releases(&bp
->phy_lock
)
1663 __acquires(&bp
->phy_lock
)
1665 u32 speed_arg
= 0, pause_adv
;
1667 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1669 if (bp
->autoneg
& AUTONEG_SPEED
) {
1670 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1671 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1672 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1673 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1674 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1675 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1676 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1677 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1678 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1679 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1680 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1681 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1682 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1684 if (bp
->req_line_speed
== SPEED_2500
)
1685 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1686 else if (bp
->req_line_speed
== SPEED_1000
)
1687 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1688 else if (bp
->req_line_speed
== SPEED_100
) {
1689 if (bp
->req_duplex
== DUPLEX_FULL
)
1690 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1692 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1693 } else if (bp
->req_line_speed
== SPEED_10
) {
1694 if (bp
->req_duplex
== DUPLEX_FULL
)
1695 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1697 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1701 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1702 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1703 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1704 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1706 if (port
== PORT_TP
)
1707 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1708 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1710 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1712 spin_unlock_bh(&bp
->phy_lock
);
1713 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1714 spin_lock_bh(&bp
->phy_lock
);
1720 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1721 __releases(&bp
->phy_lock
)
1722 __acquires(&bp
->phy_lock
)
1727 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1728 return (bnx2_setup_remote_phy(bp
, port
));
1730 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1732 int force_link_down
= 0;
1734 if (bp
->req_line_speed
== SPEED_2500
) {
1735 if (!bnx2_test_and_enable_2g5(bp
))
1736 force_link_down
= 1;
1737 } else if (bp
->req_line_speed
== SPEED_1000
) {
1738 if (bnx2_test_and_disable_2g5(bp
))
1739 force_link_down
= 1;
1741 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1742 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1744 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1745 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1746 new_bmcr
|= BMCR_SPEED1000
;
1748 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1749 if (bp
->req_line_speed
== SPEED_2500
)
1750 bnx2_enable_forced_2g5(bp
);
1751 else if (bp
->req_line_speed
== SPEED_1000
) {
1752 bnx2_disable_forced_2g5(bp
);
1753 new_bmcr
&= ~0x2000;
1756 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1757 if (bp
->req_line_speed
== SPEED_2500
)
1758 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1760 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1763 if (bp
->req_duplex
== DUPLEX_FULL
) {
1764 adv
|= ADVERTISE_1000XFULL
;
1765 new_bmcr
|= BMCR_FULLDPLX
;
1768 adv
|= ADVERTISE_1000XHALF
;
1769 new_bmcr
&= ~BMCR_FULLDPLX
;
1771 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1772 /* Force a link down visible on the other side */
1774 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1775 ~(ADVERTISE_1000XFULL
|
1776 ADVERTISE_1000XHALF
));
1777 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1778 BMCR_ANRESTART
| BMCR_ANENABLE
);
1781 netif_carrier_off(bp
->dev
);
1782 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1783 bnx2_report_link(bp
);
1785 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1786 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1788 bnx2_resolve_flow_ctrl(bp
);
1789 bnx2_set_mac_link(bp
);
1794 bnx2_test_and_enable_2g5(bp
);
1796 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1797 new_adv
|= ADVERTISE_1000XFULL
;
1799 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1801 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1802 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1804 bp
->serdes_an_pending
= 0;
1805 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1806 /* Force a link down visible on the other side */
1808 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1809 spin_unlock_bh(&bp
->phy_lock
);
1811 spin_lock_bh(&bp
->phy_lock
);
1814 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1815 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1817 /* Speed up link-up time when the link partner
1818 * does not autonegotiate which is very common
1819 * in blade servers. Some blade servers use
1820 * IPMI for kerboard input and it's important
1821 * to minimize link disruptions. Autoneg. involves
1822 * exchanging base pages plus 3 next pages and
1823 * normally completes in about 120 msec.
1825 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1826 bp
->serdes_an_pending
= 1;
1827 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1829 bnx2_resolve_flow_ctrl(bp
);
1830 bnx2_set_mac_link(bp
);
1836 #define ETHTOOL_ALL_FIBRE_SPEED \
1837 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1838 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1839 (ADVERTISED_1000baseT_Full)
1841 #define ETHTOOL_ALL_COPPER_SPEED \
1842 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1843 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1844 ADVERTISED_1000baseT_Full)
1846 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1847 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1849 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1852 bnx2_set_default_remote_link(struct bnx2
*bp
)
1856 if (bp
->phy_port
== PORT_TP
)
1857 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1859 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1861 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1862 bp
->req_line_speed
= 0;
1863 bp
->autoneg
|= AUTONEG_SPEED
;
1864 bp
->advertising
= ADVERTISED_Autoneg
;
1865 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1866 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1867 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1868 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1869 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1870 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1871 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1872 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1873 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1874 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1875 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1876 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1879 bp
->advertising
= 0;
1880 bp
->req_duplex
= DUPLEX_FULL
;
1881 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1882 bp
->req_line_speed
= SPEED_10
;
1883 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1884 bp
->req_duplex
= DUPLEX_HALF
;
1886 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1887 bp
->req_line_speed
= SPEED_100
;
1888 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1889 bp
->req_duplex
= DUPLEX_HALF
;
1891 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1892 bp
->req_line_speed
= SPEED_1000
;
1893 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1894 bp
->req_line_speed
= SPEED_2500
;
1899 bnx2_set_default_link(struct bnx2
*bp
)
1901 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1902 bnx2_set_default_remote_link(bp
);
1906 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1907 bp
->req_line_speed
= 0;
1908 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1911 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1913 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1914 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1915 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1917 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1918 bp
->req_duplex
= DUPLEX_FULL
;
1921 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1925 bnx2_send_heart_beat(struct bnx2
*bp
)
1930 spin_lock(&bp
->indirect_lock
);
1931 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1932 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1933 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1934 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1935 spin_unlock(&bp
->indirect_lock
);
1939 bnx2_remote_phy_event(struct bnx2
*bp
)
1942 u8 link_up
= bp
->link_up
;
1945 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1947 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1948 bnx2_send_heart_beat(bp
);
1950 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1952 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1958 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1959 bp
->duplex
= DUPLEX_FULL
;
1961 case BNX2_LINK_STATUS_10HALF
:
1962 bp
->duplex
= DUPLEX_HALF
;
1963 case BNX2_LINK_STATUS_10FULL
:
1964 bp
->line_speed
= SPEED_10
;
1966 case BNX2_LINK_STATUS_100HALF
:
1967 bp
->duplex
= DUPLEX_HALF
;
1968 case BNX2_LINK_STATUS_100BASE_T4
:
1969 case BNX2_LINK_STATUS_100FULL
:
1970 bp
->line_speed
= SPEED_100
;
1972 case BNX2_LINK_STATUS_1000HALF
:
1973 bp
->duplex
= DUPLEX_HALF
;
1974 case BNX2_LINK_STATUS_1000FULL
:
1975 bp
->line_speed
= SPEED_1000
;
1977 case BNX2_LINK_STATUS_2500HALF
:
1978 bp
->duplex
= DUPLEX_HALF
;
1979 case BNX2_LINK_STATUS_2500FULL
:
1980 bp
->line_speed
= SPEED_2500
;
1988 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1989 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1990 if (bp
->duplex
== DUPLEX_FULL
)
1991 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1993 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
1994 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1995 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
1996 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1999 old_port
= bp
->phy_port
;
2000 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2001 bp
->phy_port
= PORT_FIBRE
;
2003 bp
->phy_port
= PORT_TP
;
2005 if (old_port
!= bp
->phy_port
)
2006 bnx2_set_default_link(bp
);
2009 if (bp
->link_up
!= link_up
)
2010 bnx2_report_link(bp
);
2012 bnx2_set_mac_link(bp
);
2016 bnx2_set_remote_link(struct bnx2
*bp
)
2020 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2022 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2023 bnx2_remote_phy_event(bp
);
2025 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2027 bnx2_send_heart_beat(bp
);
2034 bnx2_setup_copper_phy(struct bnx2
*bp
)
2035 __releases(&bp
->phy_lock
)
2036 __acquires(&bp
->phy_lock
)
2041 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2043 if (bp
->autoneg
& AUTONEG_SPEED
) {
2044 u32 adv_reg
, adv1000_reg
;
2045 u32 new_adv_reg
= 0;
2046 u32 new_adv1000_reg
= 0;
2048 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2049 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2050 ADVERTISE_PAUSE_ASYM
);
2052 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2053 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2055 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
2056 new_adv_reg
|= ADVERTISE_10HALF
;
2057 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
2058 new_adv_reg
|= ADVERTISE_10FULL
;
2059 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
2060 new_adv_reg
|= ADVERTISE_100HALF
;
2061 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
2062 new_adv_reg
|= ADVERTISE_100FULL
;
2063 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
2064 new_adv1000_reg
|= ADVERTISE_1000FULL
;
2066 new_adv_reg
|= ADVERTISE_CSMA
;
2068 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
2070 if ((adv1000_reg
!= new_adv1000_reg
) ||
2071 (adv_reg
!= new_adv_reg
) ||
2072 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2074 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
2075 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
2076 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2079 else if (bp
->link_up
) {
2080 /* Flow ctrl may have changed from auto to forced */
2081 /* or vice-versa. */
2083 bnx2_resolve_flow_ctrl(bp
);
2084 bnx2_set_mac_link(bp
);
2090 if (bp
->req_line_speed
== SPEED_100
) {
2091 new_bmcr
|= BMCR_SPEED100
;
2093 if (bp
->req_duplex
== DUPLEX_FULL
) {
2094 new_bmcr
|= BMCR_FULLDPLX
;
2096 if (new_bmcr
!= bmcr
) {
2099 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2100 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2102 if (bmsr
& BMSR_LSTATUS
) {
2103 /* Force link down */
2104 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2105 spin_unlock_bh(&bp
->phy_lock
);
2107 spin_lock_bh(&bp
->phy_lock
);
2109 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2110 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2113 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2115 /* Normally, the new speed is setup after the link has
2116 * gone down and up again. In some cases, link will not go
2117 * down so we need to set up the new speed here.
2119 if (bmsr
& BMSR_LSTATUS
) {
2120 bp
->line_speed
= bp
->req_line_speed
;
2121 bp
->duplex
= bp
->req_duplex
;
2122 bnx2_resolve_flow_ctrl(bp
);
2123 bnx2_set_mac_link(bp
);
2126 bnx2_resolve_flow_ctrl(bp
);
2127 bnx2_set_mac_link(bp
);
2133 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2134 __releases(&bp
->phy_lock
)
2135 __acquires(&bp
->phy_lock
)
2137 if (bp
->loopback
== MAC_LOOPBACK
)
2140 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2141 return (bnx2_setup_serdes_phy(bp
, port
));
2144 return (bnx2_setup_copper_phy(bp
));
2149 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2153 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2154 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2155 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2156 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2157 bp
->mii_lpa
= MII_LPA
+ 0x10;
2158 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2160 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2161 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2163 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2167 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2169 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2170 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2171 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2172 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2174 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2175 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2176 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2177 val
|= BCM5708S_UP1_2G5
;
2179 val
&= ~BCM5708S_UP1_2G5
;
2180 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2182 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2183 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2184 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2185 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2187 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2189 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2190 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2191 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2193 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2199 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2206 bp
->mii_up1
= BCM5708S_UP1
;
2208 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2209 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2210 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2212 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2213 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2214 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2216 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2217 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2218 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2220 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2221 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2222 val
|= BCM5708S_UP1_2G5
;
2223 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2226 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2227 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2228 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2229 /* increase tx signal amplitude */
2230 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2231 BCM5708S_BLK_ADDR_TX_MISC
);
2232 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2233 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2234 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2235 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2238 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2239 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2244 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2245 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2246 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2247 BCM5708S_BLK_ADDR_TX_MISC
);
2248 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2249 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2250 BCM5708S_BLK_ADDR_DIG
);
2257 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2262 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2264 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2265 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2267 if (bp
->dev
->mtu
> 1500) {
2270 /* Set extended packet length bit */
2271 bnx2_write_phy(bp
, 0x18, 0x7);
2272 bnx2_read_phy(bp
, 0x18, &val
);
2273 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2275 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2276 bnx2_read_phy(bp
, 0x1c, &val
);
2277 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2282 bnx2_write_phy(bp
, 0x18, 0x7);
2283 bnx2_read_phy(bp
, 0x18, &val
);
2284 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2286 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2287 bnx2_read_phy(bp
, 0x1c, &val
);
2288 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2295 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2302 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2303 bnx2_write_phy(bp
, 0x18, 0x0c00);
2304 bnx2_write_phy(bp
, 0x17, 0x000a);
2305 bnx2_write_phy(bp
, 0x15, 0x310b);
2306 bnx2_write_phy(bp
, 0x17, 0x201f);
2307 bnx2_write_phy(bp
, 0x15, 0x9506);
2308 bnx2_write_phy(bp
, 0x17, 0x401f);
2309 bnx2_write_phy(bp
, 0x15, 0x14e2);
2310 bnx2_write_phy(bp
, 0x18, 0x0400);
2313 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2314 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2315 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2316 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2318 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2321 if (bp
->dev
->mtu
> 1500) {
2322 /* Set extended packet length bit */
2323 bnx2_write_phy(bp
, 0x18, 0x7);
2324 bnx2_read_phy(bp
, 0x18, &val
);
2325 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2327 bnx2_read_phy(bp
, 0x10, &val
);
2328 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2331 bnx2_write_phy(bp
, 0x18, 0x7);
2332 bnx2_read_phy(bp
, 0x18, &val
);
2333 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2335 bnx2_read_phy(bp
, 0x10, &val
);
2336 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2339 /* ethernet@wirespeed */
2340 bnx2_write_phy(bp
, 0x18, 0x7007);
2341 bnx2_read_phy(bp
, 0x18, &val
);
2342 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2348 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2349 __releases(&bp
->phy_lock
)
2350 __acquires(&bp
->phy_lock
)
2355 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2356 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2358 bp
->mii_bmcr
= MII_BMCR
;
2359 bp
->mii_bmsr
= MII_BMSR
;
2360 bp
->mii_bmsr1
= MII_BMSR
;
2361 bp
->mii_adv
= MII_ADVERTISE
;
2362 bp
->mii_lpa
= MII_LPA
;
2364 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2366 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2369 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2370 bp
->phy_id
= val
<< 16;
2371 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2372 bp
->phy_id
|= val
& 0xffff;
2374 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2375 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2376 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2377 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2378 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2379 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2380 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2383 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2388 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2394 bnx2_set_mac_loopback(struct bnx2
*bp
)
2398 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2399 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2400 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2401 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2406 static int bnx2_test_link(struct bnx2
*);
2409 bnx2_set_phy_loopback(struct bnx2
*bp
)
2414 spin_lock_bh(&bp
->phy_lock
);
2415 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2417 spin_unlock_bh(&bp
->phy_lock
);
2421 for (i
= 0; i
< 10; i
++) {
2422 if (bnx2_test_link(bp
) == 0)
2427 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2428 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2429 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2430 BNX2_EMAC_MODE_25G_MODE
);
2432 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2433 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2439 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2445 msg_data
|= bp
->fw_wr_seq
;
2447 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2452 /* wait for an acknowledgement. */
2453 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2456 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2458 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2461 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2464 /* If we timed out, inform the firmware that this is the case. */
2465 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2467 printk(KERN_ERR PFX
"fw sync timeout, reset code = "
2470 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2471 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2473 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2478 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2485 bnx2_init_5709_context(struct bnx2
*bp
)
2490 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2491 val
|= (BCM_PAGE_BITS
- 8) << 16;
2492 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2493 for (i
= 0; i
< 10; i
++) {
2494 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2495 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2499 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2502 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2506 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2510 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2511 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2512 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2513 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2514 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2515 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2516 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2517 for (j
= 0; j
< 10; j
++) {
2519 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2520 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2524 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2533 bnx2_init_context(struct bnx2
*bp
)
2539 u32 vcid_addr
, pcid_addr
, offset
;
2544 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2547 vcid_addr
= GET_PCID_ADDR(vcid
);
2549 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2554 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2557 vcid_addr
= GET_CID_ADDR(vcid
);
2558 pcid_addr
= vcid_addr
;
2561 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2562 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2563 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2565 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2566 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2568 /* Zero out the context. */
2569 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2570 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2576 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2582 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2583 if (good_mbuf
== NULL
) {
2584 printk(KERN_ERR PFX
"Failed to allocate memory in "
2585 "bnx2_alloc_bad_rbuf\n");
2589 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2590 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2594 /* Allocate a bunch of mbufs and save the good ones in an array. */
2595 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2596 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2597 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2598 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2600 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2602 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2604 /* The addresses with Bit 9 set are bad memory blocks. */
2605 if (!(val
& (1 << 9))) {
2606 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2610 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2613 /* Free the good ones back to the mbuf pool thus discarding
2614 * all the bad ones. */
2615 while (good_mbuf_cnt
) {
2618 val
= good_mbuf
[good_mbuf_cnt
];
2619 val
= (val
<< 9) | val
| 1;
2621 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2628 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2632 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2634 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2636 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2637 (mac_addr
[4] << 8) | mac_addr
[5];
2639 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2643 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2646 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2647 struct rx_bd
*rxbd
=
2648 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2649 struct page
*page
= alloc_page(GFP_ATOMIC
);
2653 mapping
= pci_map_page(bp
->pdev
, page
, 0, PAGE_SIZE
,
2654 PCI_DMA_FROMDEVICE
);
2655 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2661 pci_unmap_addr_set(rx_pg
, mapping
, mapping
);
2662 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2663 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2668 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2670 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2671 struct page
*page
= rx_pg
->page
;
2676 pci_unmap_page(bp
->pdev
, pci_unmap_addr(rx_pg
, mapping
), PAGE_SIZE
,
2677 PCI_DMA_FROMDEVICE
);
2684 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2686 struct sk_buff
*skb
;
2687 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2689 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2690 unsigned long align
;
2692 skb
= netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
);
2697 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2698 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2700 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
2701 PCI_DMA_FROMDEVICE
);
2702 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2708 pci_unmap_addr_set(rx_buf
, mapping
, mapping
);
2710 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2711 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2713 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2719 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2721 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2722 u32 new_link_state
, old_link_state
;
2725 new_link_state
= sblk
->status_attn_bits
& event
;
2726 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2727 if (new_link_state
!= old_link_state
) {
2729 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2731 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2739 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2741 spin_lock(&bp
->phy_lock
);
2743 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2745 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2746 bnx2_set_remote_link(bp
);
2748 spin_unlock(&bp
->phy_lock
);
2753 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2757 /* Tell compiler that status block fields can change. */
2759 cons
= *bnapi
->hw_tx_cons_ptr
;
2761 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2767 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2769 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2770 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2771 int tx_pkt
= 0, index
;
2772 struct netdev_queue
*txq
;
2774 index
= (bnapi
- bp
->bnx2_napi
);
2775 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2777 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2778 sw_cons
= txr
->tx_cons
;
2780 while (sw_cons
!= hw_cons
) {
2781 struct sw_tx_bd
*tx_buf
;
2782 struct sk_buff
*skb
;
2785 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2787 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2790 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2791 prefetch(&skb
->end
);
2793 /* partial BD completions possible with TSO packets */
2794 if (tx_buf
->is_gso
) {
2795 u16 last_idx
, last_ring_idx
;
2797 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2798 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2799 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2802 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2807 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
2810 last
= tx_buf
->nr_frags
;
2812 for (i
= 0; i
< last
; i
++) {
2813 sw_cons
= NEXT_TX_BD(sw_cons
);
2816 sw_cons
= NEXT_TX_BD(sw_cons
);
2820 if (tx_pkt
== budget
)
2823 if (hw_cons
== sw_cons
)
2824 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2827 txr
->hw_tx_cons
= hw_cons
;
2828 txr
->tx_cons
= sw_cons
;
2830 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2831 * before checking for netif_tx_queue_stopped(). Without the
2832 * memory barrier, there is a small possibility that bnx2_start_xmit()
2833 * will miss it and cause the queue to be stopped forever.
2837 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2838 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2839 __netif_tx_lock(txq
, smp_processor_id());
2840 if ((netif_tx_queue_stopped(txq
)) &&
2841 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2842 netif_tx_wake_queue(txq
);
2843 __netif_tx_unlock(txq
);
2850 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2851 struct sk_buff
*skb
, int count
)
2853 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2854 struct rx_bd
*cons_bd
, *prod_bd
;
2857 u16 cons
= rxr
->rx_pg_cons
;
2859 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2861 /* The caller was unable to allocate a new page to replace the
2862 * last one in the frags array, so we need to recycle that page
2863 * and then free the skb.
2867 struct skb_shared_info
*shinfo
;
2869 shinfo
= skb_shinfo(skb
);
2871 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2872 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2874 cons_rx_pg
->page
= page
;
2878 hw_prod
= rxr
->rx_pg_prod
;
2880 for (i
= 0; i
< count
; i
++) {
2881 prod
= RX_PG_RING_IDX(hw_prod
);
2883 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2884 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2885 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2886 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2889 prod_rx_pg
->page
= cons_rx_pg
->page
;
2890 cons_rx_pg
->page
= NULL
;
2891 pci_unmap_addr_set(prod_rx_pg
, mapping
,
2892 pci_unmap_addr(cons_rx_pg
, mapping
));
2894 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2895 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2898 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2899 hw_prod
= NEXT_RX_BD(hw_prod
);
2901 rxr
->rx_pg_prod
= hw_prod
;
2902 rxr
->rx_pg_cons
= cons
;
2906 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2907 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2909 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2910 struct rx_bd
*cons_bd
, *prod_bd
;
2912 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2913 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2915 pci_dma_sync_single_for_device(bp
->pdev
,
2916 pci_unmap_addr(cons_rx_buf
, mapping
),
2917 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2919 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2921 prod_rx_buf
->skb
= skb
;
2926 pci_unmap_addr_set(prod_rx_buf
, mapping
,
2927 pci_unmap_addr(cons_rx_buf
, mapping
));
2929 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2930 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2931 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2932 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2936 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
2937 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2941 u16 prod
= ring_idx
& 0xffff;
2943 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
);
2944 if (unlikely(err
)) {
2945 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
2947 unsigned int raw_len
= len
+ 4;
2948 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2950 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2955 skb_reserve(skb
, BNX2_RX_OFFSET
);
2956 pci_unmap_single(bp
->pdev
, dma_addr
, bp
->rx_buf_use_size
,
2957 PCI_DMA_FROMDEVICE
);
2963 unsigned int i
, frag_len
, frag_size
, pages
;
2964 struct sw_pg
*rx_pg
;
2965 u16 pg_cons
= rxr
->rx_pg_cons
;
2966 u16 pg_prod
= rxr
->rx_pg_prod
;
2968 frag_size
= len
+ 4 - hdr_len
;
2969 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
2970 skb_put(skb
, hdr_len
);
2972 for (i
= 0; i
< pages
; i
++) {
2973 dma_addr_t mapping_old
;
2975 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
2976 if (unlikely(frag_len
<= 4)) {
2977 unsigned int tail
= 4 - frag_len
;
2979 rxr
->rx_pg_cons
= pg_cons
;
2980 rxr
->rx_pg_prod
= pg_prod
;
2981 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
2988 &skb_shinfo(skb
)->frags
[i
- 1];
2990 skb
->data_len
-= tail
;
2991 skb
->truesize
-= tail
;
2995 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
2997 /* Don't unmap yet. If we're unable to allocate a new
2998 * page, we need to recycle the page and the DMA addr.
3000 mapping_old
= pci_unmap_addr(rx_pg
, mapping
);
3004 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3007 err
= bnx2_alloc_rx_page(bp
, rxr
,
3008 RX_PG_RING_IDX(pg_prod
));
3009 if (unlikely(err
)) {
3010 rxr
->rx_pg_cons
= pg_cons
;
3011 rxr
->rx_pg_prod
= pg_prod
;
3012 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3017 pci_unmap_page(bp
->pdev
, mapping_old
,
3018 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3020 frag_size
-= frag_len
;
3021 skb
->data_len
+= frag_len
;
3022 skb
->truesize
+= frag_len
;
3023 skb
->len
+= frag_len
;
3025 pg_prod
= NEXT_RX_BD(pg_prod
);
3026 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
3028 rxr
->rx_pg_prod
= pg_prod
;
3029 rxr
->rx_pg_cons
= pg_cons
;
3035 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3039 /* Tell compiler that status block fields can change. */
3041 cons
= *bnapi
->hw_rx_cons_ptr
;
3043 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
3049 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3051 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3052 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3053 struct l2_fhdr
*rx_hdr
;
3054 int rx_pkt
= 0, pg_ring_used
= 0;
3056 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3057 sw_cons
= rxr
->rx_cons
;
3058 sw_prod
= rxr
->rx_prod
;
3060 /* Memory barrier necessary as speculative reads of the rx
3061 * buffer can be ahead of the index in the status block
3064 while (sw_cons
!= hw_cons
) {
3065 unsigned int len
, hdr_len
;
3067 struct sw_bd
*rx_buf
;
3068 struct sk_buff
*skb
;
3069 dma_addr_t dma_addr
;
3071 int hw_vlan __maybe_unused
= 0;
3073 sw_ring_cons
= RX_RING_IDX(sw_cons
);
3074 sw_ring_prod
= RX_RING_IDX(sw_prod
);
3076 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3081 dma_addr
= pci_unmap_addr(rx_buf
, mapping
);
3083 pci_dma_sync_single_for_cpu(bp
->pdev
, dma_addr
,
3084 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3085 PCI_DMA_FROMDEVICE
);
3087 rx_hdr
= (struct l2_fhdr
*) skb
->data
;
3088 len
= rx_hdr
->l2_fhdr_pkt_len
;
3089 status
= rx_hdr
->l2_fhdr_status
;
3092 if (status
& L2_FHDR_STATUS_SPLIT
) {
3093 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3095 } else if (len
> bp
->rx_jumbo_thresh
) {
3096 hdr_len
= bp
->rx_jumbo_thresh
;
3100 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3101 L2_FHDR_ERRORS_PHY_DECODE
|
3102 L2_FHDR_ERRORS_ALIGNMENT
|
3103 L2_FHDR_ERRORS_TOO_SHORT
|
3104 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3106 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3111 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3113 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3120 if (len
<= bp
->rx_copy_thresh
) {
3121 struct sk_buff
*new_skb
;
3123 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3124 if (new_skb
== NULL
) {
3125 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3131 skb_copy_from_linear_data_offset(skb
,
3133 new_skb
->data
, len
+ 6);
3134 skb_reserve(new_skb
, 6);
3135 skb_put(new_skb
, len
);
3137 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
3138 sw_ring_cons
, sw_ring_prod
);
3141 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
3142 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
3145 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3146 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) {
3147 vtag
= rx_hdr
->l2_fhdr_vlan_tag
;
3154 struct vlan_ethhdr
*ve
= (struct vlan_ethhdr
*)
3157 memmove(ve
, skb
->data
+ 4, ETH_ALEN
* 2);
3158 ve
->h_vlan_proto
= htons(ETH_P_8021Q
);
3159 ve
->h_vlan_TCI
= htons(vtag
);
3164 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3166 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
3167 (ntohs(skb
->protocol
) != 0x8100)) {
3174 skb
->ip_summed
= CHECKSUM_NONE
;
3176 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3177 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3179 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3180 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3181 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3184 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3188 vlan_hwaccel_receive_skb(skb
, bp
->vlgrp
, vtag
);
3191 netif_receive_skb(skb
);
3196 sw_cons
= NEXT_RX_BD(sw_cons
);
3197 sw_prod
= NEXT_RX_BD(sw_prod
);
3199 if ((rx_pkt
== budget
))
3202 /* Refresh hw_cons to see if there is new work */
3203 if (sw_cons
== hw_cons
) {
3204 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3208 rxr
->rx_cons
= sw_cons
;
3209 rxr
->rx_prod
= sw_prod
;
3212 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3214 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3216 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3224 /* MSI ISR - The only difference between this and the INTx ISR
3225 * is that the MSI interrupt is always serviced.
3228 bnx2_msi(int irq
, void *dev_instance
)
3230 struct bnx2_napi
*bnapi
= dev_instance
;
3231 struct bnx2
*bp
= bnapi
->bp
;
3233 prefetch(bnapi
->status_blk
.msi
);
3234 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3235 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3236 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3238 /* Return here if interrupt is disabled. */
3239 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3242 napi_schedule(&bnapi
->napi
);
3248 bnx2_msi_1shot(int irq
, void *dev_instance
)
3250 struct bnx2_napi
*bnapi
= dev_instance
;
3251 struct bnx2
*bp
= bnapi
->bp
;
3253 prefetch(bnapi
->status_blk
.msi
);
3255 /* Return here if interrupt is disabled. */
3256 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3259 napi_schedule(&bnapi
->napi
);
3265 bnx2_interrupt(int irq
, void *dev_instance
)
3267 struct bnx2_napi
*bnapi
= dev_instance
;
3268 struct bnx2
*bp
= bnapi
->bp
;
3269 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3271 /* When using INTx, it is possible for the interrupt to arrive
3272 * at the CPU before the status block posted prior to the
3273 * interrupt. Reading a register will flush the status block.
3274 * When using MSI, the MSI message will always complete after
3275 * the status block write.
3277 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3278 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3279 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3282 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3283 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3284 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3286 /* Read back to deassert IRQ immediately to avoid too many
3287 * spurious interrupts.
3289 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3291 /* Return here if interrupt is shared and is disabled. */
3292 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3295 if (napi_schedule_prep(&bnapi
->napi
)) {
3296 bnapi
->last_status_idx
= sblk
->status_idx
;
3297 __napi_schedule(&bnapi
->napi
);
3304 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3306 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3307 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3309 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3310 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3315 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3316 STATUS_ATTN_BITS_TIMER_ABORT)
3319 bnx2_has_work(struct bnx2_napi
*bnapi
)
3321 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3323 if (bnx2_has_fast_work(bnapi
))
3327 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3331 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3332 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3339 bnx2_chk_missed_msi(struct bnx2
*bp
)
3341 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3344 if (bnx2_has_work(bnapi
)) {
3345 msi_ctrl
= REG_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3346 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3349 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3350 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3351 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3352 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3353 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3357 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3361 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3363 struct cnic_ops
*c_ops
;
3365 if (!bnapi
->cnic_present
)
3369 c_ops
= rcu_dereference(bp
->cnic_ops
);
3371 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3372 bnapi
->status_blk
.msi
);
3377 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3379 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3380 u32 status_attn_bits
= sblk
->status_attn_bits
;
3381 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3383 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3384 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3386 bnx2_phy_int(bp
, bnapi
);
3388 /* This is needed to take care of transient status
3389 * during link changes.
3391 REG_WR(bp
, BNX2_HC_COMMAND
,
3392 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3393 REG_RD(bp
, BNX2_HC_COMMAND
);
3397 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3398 int work_done
, int budget
)
3400 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3401 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3403 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3404 bnx2_tx_int(bp
, bnapi
, 0);
3406 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3407 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3412 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3414 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3415 struct bnx2
*bp
= bnapi
->bp
;
3417 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3420 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3421 if (unlikely(work_done
>= budget
))
3424 bnapi
->last_status_idx
= sblk
->status_idx
;
3425 /* status idx must be read before checking for more work. */
3427 if (likely(!bnx2_has_fast_work(bnapi
))) {
3429 napi_complete(napi
);
3430 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3431 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3432 bnapi
->last_status_idx
);
3439 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3441 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3442 struct bnx2
*bp
= bnapi
->bp
;
3444 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3447 bnx2_poll_link(bp
, bnapi
);
3449 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3452 bnx2_poll_cnic(bp
, bnapi
);
3455 /* bnapi->last_status_idx is used below to tell the hw how
3456 * much work has been processed, so we must read it before
3457 * checking for more work.
3459 bnapi
->last_status_idx
= sblk
->status_idx
;
3461 if (unlikely(work_done
>= budget
))
3465 if (likely(!bnx2_has_work(bnapi
))) {
3466 napi_complete(napi
);
3467 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3468 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3469 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3470 bnapi
->last_status_idx
);
3473 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3474 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3475 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3476 bnapi
->last_status_idx
);
3478 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3479 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3480 bnapi
->last_status_idx
);
3488 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3489 * from set_multicast.
3492 bnx2_set_rx_mode(struct net_device
*dev
)
3494 struct bnx2
*bp
= netdev_priv(dev
);
3495 u32 rx_mode
, sort_mode
;
3496 struct netdev_hw_addr
*ha
;
3499 if (!netif_running(dev
))
3502 spin_lock_bh(&bp
->phy_lock
);
3504 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3505 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3506 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3508 if (!bp
->vlgrp
&& (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3509 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3511 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
3512 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3514 if (dev
->flags
& IFF_PROMISC
) {
3515 /* Promiscuous mode. */
3516 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3517 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3518 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3520 else if (dev
->flags
& IFF_ALLMULTI
) {
3521 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3522 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3525 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3528 /* Accept one or more multicast(s). */
3529 struct dev_mc_list
*mclist
;
3530 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3535 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3537 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
3538 i
++, mclist
= mclist
->next
) {
3540 crc
= ether_crc_le(ETH_ALEN
, mclist
->dmi_addr
);
3542 regidx
= (bit
& 0xe0) >> 5;
3544 mc_filter
[regidx
] |= (1 << bit
);
3547 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3548 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3552 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3555 if (dev
->uc
.count
> BNX2_MAX_UNICAST_ADDRESSES
) {
3556 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3557 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3558 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3559 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3560 /* Add all entries into to the match filter list */
3562 list_for_each_entry(ha
, &dev
->uc
.list
, list
) {
3563 bnx2_set_mac_addr(bp
, ha
->addr
,
3564 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3566 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3572 if (rx_mode
!= bp
->rx_mode
) {
3573 bp
->rx_mode
= rx_mode
;
3574 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3577 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3578 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3579 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3581 spin_unlock_bh(&bp
->phy_lock
);
3584 static int __devinit
3585 check_fw_section(const struct firmware
*fw
,
3586 const struct bnx2_fw_file_section
*section
,
3587 u32 alignment
, bool non_empty
)
3589 u32 offset
= be32_to_cpu(section
->offset
);
3590 u32 len
= be32_to_cpu(section
->len
);
3592 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3594 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3595 len
& (alignment
- 1))
3600 static int __devinit
3601 check_mips_fw_entry(const struct firmware
*fw
,
3602 const struct bnx2_mips_fw_file_entry
*entry
)
3604 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3605 check_fw_section(fw
, &entry
->data
, 4, false) ||
3606 check_fw_section(fw
, &entry
->rodata
, 4, false))
3611 static int __devinit
3612 bnx2_request_firmware(struct bnx2
*bp
)
3614 const char *mips_fw_file
, *rv2p_fw_file
;
3615 const struct bnx2_mips_fw_file
*mips_fw
;
3616 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3619 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3620 mips_fw_file
= FW_MIPS_FILE_09
;
3621 rv2p_fw_file
= FW_RV2P_FILE_09
;
3623 mips_fw_file
= FW_MIPS_FILE_06
;
3624 rv2p_fw_file
= FW_RV2P_FILE_06
;
3627 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3629 printk(KERN_ERR PFX
"Can't load firmware file \"%s\"\n",
3634 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3636 printk(KERN_ERR PFX
"Can't load firmware file \"%s\"\n",
3640 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3641 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3642 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3643 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3644 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3645 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3646 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3647 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3648 printk(KERN_ERR PFX
"Firmware file \"%s\" is invalid\n",
3652 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3653 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3654 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3655 printk(KERN_ERR PFX
"Firmware file \"%s\" is invalid\n",
3664 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3667 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3668 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3669 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3676 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3677 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3679 u32 rv2p_code_len
, file_offset
;
3684 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3685 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3687 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3689 if (rv2p_proc
== RV2P_PROC1
) {
3690 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3691 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3693 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3694 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3697 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3698 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3700 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3703 val
= (i
/ 8) | cmd
;
3704 REG_WR(bp
, addr
, val
);
3707 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3708 for (i
= 0; i
< 8; i
++) {
3711 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3712 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3713 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3714 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3715 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3716 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3717 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3719 val
= (loc
/ 2) | cmd
;
3720 REG_WR(bp
, addr
, val
);
3724 /* Reset the processor, un-stall is done later. */
3725 if (rv2p_proc
== RV2P_PROC1
) {
3726 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3729 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3736 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3737 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3739 u32 addr
, len
, file_offset
;
3745 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3746 val
|= cpu_reg
->mode_value_halt
;
3747 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3748 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3750 /* Load the Text area. */
3751 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3752 len
= be32_to_cpu(fw_entry
->text
.len
);
3753 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3754 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3756 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3760 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3761 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3764 /* Load the Data area. */
3765 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3766 len
= be32_to_cpu(fw_entry
->data
.len
);
3767 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3768 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3770 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3774 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3775 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3778 /* Load the Read-Only area. */
3779 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3780 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3781 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3782 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3784 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3788 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3789 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3792 /* Clear the pre-fetch instruction. */
3793 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3795 val
= be32_to_cpu(fw_entry
->start_addr
);
3796 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3798 /* Start the CPU. */
3799 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3800 val
&= ~cpu_reg
->mode_value_halt
;
3801 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3802 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3808 bnx2_init_cpus(struct bnx2
*bp
)
3810 const struct bnx2_mips_fw_file
*mips_fw
=
3811 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3812 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3813 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3816 /* Initialize the RV2P processor. */
3817 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3818 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3820 /* Initialize the RX Processor. */
3821 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3825 /* Initialize the TX Processor. */
3826 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3830 /* Initialize the TX Patch-up Processor. */
3831 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3835 /* Initialize the Completion Processor. */
3836 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3840 /* Initialize the Command Processor. */
3841 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3848 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3852 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3858 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3859 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3860 PCI_PM_CTRL_PME_STATUS
);
3862 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3863 /* delay required during transition out of D3hot */
3866 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3867 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3868 val
&= ~BNX2_EMAC_MODE_MPKT
;
3869 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3871 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3872 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3873 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3884 autoneg
= bp
->autoneg
;
3885 advertising
= bp
->advertising
;
3887 if (bp
->phy_port
== PORT_TP
) {
3888 bp
->autoneg
= AUTONEG_SPEED
;
3889 bp
->advertising
= ADVERTISED_10baseT_Half
|
3890 ADVERTISED_10baseT_Full
|
3891 ADVERTISED_100baseT_Half
|
3892 ADVERTISED_100baseT_Full
|
3896 spin_lock_bh(&bp
->phy_lock
);
3897 bnx2_setup_phy(bp
, bp
->phy_port
);
3898 spin_unlock_bh(&bp
->phy_lock
);
3900 bp
->autoneg
= autoneg
;
3901 bp
->advertising
= advertising
;
3903 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3905 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3907 /* Enable port mode. */
3908 val
&= ~BNX2_EMAC_MODE_PORT
;
3909 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3910 BNX2_EMAC_MODE_ACPI_RCVD
|
3911 BNX2_EMAC_MODE_MPKT
;
3912 if (bp
->phy_port
== PORT_TP
)
3913 val
|= BNX2_EMAC_MODE_PORT_MII
;
3915 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3916 if (bp
->line_speed
== SPEED_2500
)
3917 val
|= BNX2_EMAC_MODE_25G_MODE
;
3920 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3922 /* receive all multicast */
3923 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3924 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3927 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3928 BNX2_EMAC_RX_MODE_SORT_MODE
);
3930 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3931 BNX2_RPM_SORT_USER0_MC_EN
;
3932 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3933 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3934 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3935 BNX2_RPM_SORT_USER0_ENA
);
3937 /* Need to enable EMAC and RPM for WOL. */
3938 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3939 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3940 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3941 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3943 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3944 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3945 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3947 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3950 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3953 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
3954 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
3957 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3958 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3959 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3968 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3970 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3973 /* No more memory access after this point until
3974 * device is brought back to D0.
3986 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
3991 /* Request access to the flash interface. */
3992 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
3993 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3994 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3995 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
4001 if (j
>= NVRAM_TIMEOUT_COUNT
)
4008 bnx2_release_nvram_lock(struct bnx2
*bp
)
4013 /* Relinquish nvram interface. */
4014 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4016 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4017 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4018 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4024 if (j
>= NVRAM_TIMEOUT_COUNT
)
4032 bnx2_enable_nvram_write(struct bnx2
*bp
)
4036 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4037 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4039 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4042 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4043 REG_WR(bp
, BNX2_NVM_COMMAND
,
4044 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4046 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4049 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4050 if (val
& BNX2_NVM_COMMAND_DONE
)
4054 if (j
>= NVRAM_TIMEOUT_COUNT
)
4061 bnx2_disable_nvram_write(struct bnx2
*bp
)
4065 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4066 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4071 bnx2_enable_nvram_access(struct bnx2
*bp
)
4075 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4076 /* Enable both bits, even on read. */
4077 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4078 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4082 bnx2_disable_nvram_access(struct bnx2
*bp
)
4086 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4087 /* Disable both bits, even after read. */
4088 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4089 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4090 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4094 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4099 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4100 /* Buffered flash, no erase needed */
4103 /* Build an erase command */
4104 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4105 BNX2_NVM_COMMAND_DOIT
;
4107 /* Need to clear DONE bit separately. */
4108 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4110 /* Address of the NVRAM to read from. */
4111 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4113 /* Issue an erase command. */
4114 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4116 /* Wait for completion. */
4117 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4122 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4123 if (val
& BNX2_NVM_COMMAND_DONE
)
4127 if (j
>= NVRAM_TIMEOUT_COUNT
)
4134 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4139 /* Build the command word. */
4140 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4142 /* Calculate an offset of a buffered flash, not needed for 5709. */
4143 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4144 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4145 bp
->flash_info
->page_bits
) +
4146 (offset
% bp
->flash_info
->page_size
);
4149 /* Need to clear DONE bit separately. */
4150 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4152 /* Address of the NVRAM to read from. */
4153 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4155 /* Issue a read command. */
4156 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4158 /* Wait for completion. */
4159 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4164 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4165 if (val
& BNX2_NVM_COMMAND_DONE
) {
4166 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
4167 memcpy(ret_val
, &v
, 4);
4171 if (j
>= NVRAM_TIMEOUT_COUNT
)
4179 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4185 /* Build the command word. */
4186 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4188 /* Calculate an offset of a buffered flash, not needed for 5709. */
4189 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4190 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4191 bp
->flash_info
->page_bits
) +
4192 (offset
% bp
->flash_info
->page_size
);
4195 /* Need to clear DONE bit separately. */
4196 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4198 memcpy(&val32
, val
, 4);
4200 /* Write the data. */
4201 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4203 /* Address of the NVRAM to write to. */
4204 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4206 /* Issue the write command. */
4207 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4209 /* Wait for completion. */
4210 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4213 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4216 if (j
>= NVRAM_TIMEOUT_COUNT
)
4223 bnx2_init_nvram(struct bnx2
*bp
)
4226 int j
, entry_count
, rc
= 0;
4227 struct flash_spec
*flash
;
4229 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4230 bp
->flash_info
= &flash_5709
;
4231 goto get_flash_size
;
4234 /* Determine the selected interface. */
4235 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
4237 entry_count
= ARRAY_SIZE(flash_table
);
4239 if (val
& 0x40000000) {
4241 /* Flash interface has been reconfigured */
4242 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4244 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4245 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4246 bp
->flash_info
= flash
;
4253 /* Not yet been reconfigured */
4255 if (val
& (1 << 23))
4256 mask
= FLASH_BACKUP_STRAP_MASK
;
4258 mask
= FLASH_STRAP_MASK
;
4260 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4263 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4264 bp
->flash_info
= flash
;
4266 /* Request access to the flash interface. */
4267 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4270 /* Enable access to flash interface */
4271 bnx2_enable_nvram_access(bp
);
4273 /* Reconfigure the flash interface */
4274 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4275 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4276 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4277 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4279 /* Disable access to flash interface */
4280 bnx2_disable_nvram_access(bp
);
4281 bnx2_release_nvram_lock(bp
);
4286 } /* if (val & 0x40000000) */
4288 if (j
== entry_count
) {
4289 bp
->flash_info
= NULL
;
4290 printk(KERN_ALERT PFX
"Unknown flash/EEPROM type.\n");
4295 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4296 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4298 bp
->flash_size
= val
;
4300 bp
->flash_size
= bp
->flash_info
->total_size
;
4306 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4310 u32 cmd_flags
, offset32
, len32
, extra
;
4315 /* Request access to the flash interface. */
4316 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4319 /* Enable access to flash interface */
4320 bnx2_enable_nvram_access(bp
);
4333 pre_len
= 4 - (offset
& 3);
4335 if (pre_len
>= len32
) {
4337 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4338 BNX2_NVM_COMMAND_LAST
;
4341 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4344 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4349 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4356 extra
= 4 - (len32
& 3);
4357 len32
= (len32
+ 4) & ~3;
4364 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4366 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4367 BNX2_NVM_COMMAND_LAST
;
4369 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4371 memcpy(ret_buf
, buf
, 4 - extra
);
4373 else if (len32
> 0) {
4376 /* Read the first word. */
4380 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4382 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4384 /* Advance to the next dword. */
4389 while (len32
> 4 && rc
== 0) {
4390 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4392 /* Advance to the next dword. */
4401 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4402 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4404 memcpy(ret_buf
, buf
, 4 - extra
);
4407 /* Disable access to flash interface */
4408 bnx2_disable_nvram_access(bp
);
4410 bnx2_release_nvram_lock(bp
);
4416 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4419 u32 written
, offset32
, len32
;
4420 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4422 int align_start
, align_end
;
4427 align_start
= align_end
= 0;
4429 if ((align_start
= (offset32
& 3))) {
4431 len32
+= align_start
;
4434 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4439 align_end
= 4 - (len32
& 3);
4441 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4445 if (align_start
|| align_end
) {
4446 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4447 if (align_buf
== NULL
)
4450 memcpy(align_buf
, start
, 4);
4453 memcpy(align_buf
+ len32
- 4, end
, 4);
4455 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4459 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4460 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4461 if (flash_buffer
== NULL
) {
4463 goto nvram_write_end
;
4468 while ((written
< len32
) && (rc
== 0)) {
4469 u32 page_start
, page_end
, data_start
, data_end
;
4470 u32 addr
, cmd_flags
;
4473 /* Find the page_start addr */
4474 page_start
= offset32
+ written
;
4475 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4476 /* Find the page_end addr */
4477 page_end
= page_start
+ bp
->flash_info
->page_size
;
4478 /* Find the data_start addr */
4479 data_start
= (written
== 0) ? offset32
: page_start
;
4480 /* Find the data_end addr */
4481 data_end
= (page_end
> offset32
+ len32
) ?
4482 (offset32
+ len32
) : page_end
;
4484 /* Request access to the flash interface. */
4485 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4486 goto nvram_write_end
;
4488 /* Enable access to flash interface */
4489 bnx2_enable_nvram_access(bp
);
4491 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4492 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4495 /* Read the whole page into the buffer
4496 * (non-buffer flash only) */
4497 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4498 if (j
== (bp
->flash_info
->page_size
- 4)) {
4499 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4501 rc
= bnx2_nvram_read_dword(bp
,
4507 goto nvram_write_end
;
4513 /* Enable writes to flash interface (unlock write-protect) */
4514 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4515 goto nvram_write_end
;
4517 /* Loop to write back the buffer data from page_start to
4520 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4521 /* Erase the page */
4522 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4523 goto nvram_write_end
;
4525 /* Re-enable the write again for the actual write */
4526 bnx2_enable_nvram_write(bp
);
4528 for (addr
= page_start
; addr
< data_start
;
4529 addr
+= 4, i
+= 4) {
4531 rc
= bnx2_nvram_write_dword(bp
, addr
,
4532 &flash_buffer
[i
], cmd_flags
);
4535 goto nvram_write_end
;
4541 /* Loop to write the new data from data_start to data_end */
4542 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4543 if ((addr
== page_end
- 4) ||
4544 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4545 (addr
== data_end
- 4))) {
4547 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4549 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4553 goto nvram_write_end
;
4559 /* Loop to write back the buffer data from data_end
4561 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4562 for (addr
= data_end
; addr
< page_end
;
4563 addr
+= 4, i
+= 4) {
4565 if (addr
== page_end
-4) {
4566 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4568 rc
= bnx2_nvram_write_dword(bp
, addr
,
4569 &flash_buffer
[i
], cmd_flags
);
4572 goto nvram_write_end
;
4578 /* Disable writes to flash interface (lock write-protect) */
4579 bnx2_disable_nvram_write(bp
);
4581 /* Disable access to flash interface */
4582 bnx2_disable_nvram_access(bp
);
4583 bnx2_release_nvram_lock(bp
);
4585 /* Increment written */
4586 written
+= data_end
- data_start
;
4590 kfree(flash_buffer
);
4596 bnx2_init_fw_cap(struct bnx2
*bp
)
4600 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4601 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4603 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4604 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4606 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4607 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4610 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4611 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4612 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4615 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4616 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4619 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4621 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4622 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4623 bp
->phy_port
= PORT_FIBRE
;
4625 bp
->phy_port
= PORT_TP
;
4627 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4628 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4631 if (netif_running(bp
->dev
) && sig
)
4632 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4636 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4638 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4640 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4641 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4645 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4651 /* Wait for the current PCI transaction to complete before
4652 * issuing a reset. */
4653 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4654 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4655 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4656 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4657 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4658 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4661 /* Wait for the firmware to tell us it is ok to issue a reset. */
4662 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4664 /* Deposit a driver reset signature so the firmware knows that
4665 * this is a soft reset. */
4666 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4667 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4669 /* Do a dummy read to force the chip to complete all current transaction
4670 * before we issue a reset. */
4671 val
= REG_RD(bp
, BNX2_MISC_ID
);
4673 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4674 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4675 REG_RD(bp
, BNX2_MISC_COMMAND
);
4678 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4679 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4681 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
4684 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4685 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4686 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4689 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4691 /* Reading back any register after chip reset will hang the
4692 * bus on 5706 A0 and A1. The msleep below provides plenty
4693 * of margin for write posting.
4695 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4696 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4699 /* Reset takes approximate 30 usec */
4700 for (i
= 0; i
< 10; i
++) {
4701 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4702 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4703 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4708 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4709 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4710 printk(KERN_ERR PFX
"Chip reset did not complete\n");
4715 /* Make sure byte swapping is properly configured. */
4716 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4717 if (val
!= 0x01020304) {
4718 printk(KERN_ERR PFX
"Chip not in correct endian mode\n");
4722 /* Wait for the firmware to finish its initialization. */
4723 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4727 spin_lock_bh(&bp
->phy_lock
);
4728 old_port
= bp
->phy_port
;
4729 bnx2_init_fw_cap(bp
);
4730 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4731 old_port
!= bp
->phy_port
)
4732 bnx2_set_default_remote_link(bp
);
4733 spin_unlock_bh(&bp
->phy_lock
);
4735 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4736 /* Adjust the voltage regular to two steps lower. The default
4737 * of this register is 0x0000000e. */
4738 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4740 /* Remove bad rbuf memory from the free pool. */
4741 rc
= bnx2_alloc_bad_rbuf(bp
);
4744 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
4745 bnx2_setup_msix_tbl(bp
);
4751 bnx2_init_chip(struct bnx2
*bp
)
4756 /* Make sure the interrupt is not active. */
4757 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4759 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4760 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4762 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4764 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4765 DMA_READ_CHANS
<< 12 |
4766 DMA_WRITE_CHANS
<< 16;
4768 val
|= (0x2 << 20) | (1 << 11);
4770 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4773 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4774 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4775 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4777 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4779 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4780 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4781 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4782 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4785 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4788 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4790 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4791 val16
& ~PCI_X_CMD_ERO
);
4794 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4795 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4796 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4797 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4799 /* Initialize context mapping and zero out the quick contexts. The
4800 * context block must have already been enabled. */
4801 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4802 rc
= bnx2_init_5709_context(bp
);
4806 bnx2_init_context(bp
);
4808 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4811 bnx2_init_nvram(bp
);
4813 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4815 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4816 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4817 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4818 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4819 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4820 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
4821 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4824 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4826 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4827 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4828 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4830 val
= (BCM_PAGE_BITS
- 8) << 24;
4831 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4833 /* Configure page size. */
4834 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4835 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4836 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4837 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4839 val
= bp
->mac_addr
[0] +
4840 (bp
->mac_addr
[1] << 8) +
4841 (bp
->mac_addr
[2] << 16) +
4843 (bp
->mac_addr
[4] << 8) +
4844 (bp
->mac_addr
[5] << 16);
4845 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4847 /* Program the MTU. Also include 4 bytes for CRC32. */
4849 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4850 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4851 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4852 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4857 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4858 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4859 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4861 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4862 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4864 bp
->idle_chk_status_idx
= 0xffff;
4866 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4868 /* Set up how to generate a link change interrupt. */
4869 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4871 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4872 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4873 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4875 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4876 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4877 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4878 (u64
) bp
->stats_blk_mapping
>> 32);
4880 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4881 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4883 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4884 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4886 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4887 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4889 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4891 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4893 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4894 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4896 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4897 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4899 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
4900 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4902 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4903 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4905 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4906 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4908 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4909 BNX2_HC_CONFIG_COLLECT_STATS
;
4912 if (bp
->irq_nvecs
> 1) {
4913 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4914 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4916 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4919 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4920 val
|= BNX2_HC_CONFIG_ONE_SHOT
;
4922 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4924 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
4925 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
4926 BNX2_HC_SB_CONFIG_1
;
4929 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4930 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
4931 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4933 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
4934 (bp
->tx_quick_cons_trip_int
<< 16) |
4935 bp
->tx_quick_cons_trip
);
4937 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
4938 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4940 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
4941 (bp
->rx_quick_cons_trip_int
<< 16) |
4942 bp
->rx_quick_cons_trip
);
4944 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
4945 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4948 /* Clear internal stats counters. */
4949 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4951 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4953 /* Initialize the receive filter. */
4954 bnx2_set_rx_mode(bp
->dev
);
4956 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4957 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4958 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4959 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4961 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4964 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4965 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
4969 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
4975 bnx2_clear_ring_states(struct bnx2
*bp
)
4977 struct bnx2_napi
*bnapi
;
4978 struct bnx2_tx_ring_info
*txr
;
4979 struct bnx2_rx_ring_info
*rxr
;
4982 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
4983 bnapi
= &bp
->bnx2_napi
[i
];
4984 txr
= &bnapi
->tx_ring
;
4985 rxr
= &bnapi
->rx_ring
;
4988 txr
->hw_tx_cons
= 0;
4989 rxr
->rx_prod_bseq
= 0;
4992 rxr
->rx_pg_prod
= 0;
4993 rxr
->rx_pg_cons
= 0;
4998 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5000 u32 val
, offset0
, offset1
, offset2
, offset3
;
5001 u32 cid_addr
= GET_CID_ADDR(cid
);
5003 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5004 offset0
= BNX2_L2CTX_TYPE_XI
;
5005 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5006 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5007 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5009 offset0
= BNX2_L2CTX_TYPE
;
5010 offset1
= BNX2_L2CTX_CMD_TYPE
;
5011 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5012 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5014 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5015 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5017 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5018 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5020 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5021 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5023 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5024 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5028 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5032 struct bnx2_napi
*bnapi
;
5033 struct bnx2_tx_ring_info
*txr
;
5035 bnapi
= &bp
->bnx2_napi
[ring_num
];
5036 txr
= &bnapi
->tx_ring
;
5041 cid
= TX_TSS_CID
+ ring_num
- 1;
5043 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5045 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
5047 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5048 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5051 txr
->tx_prod_bseq
= 0;
5053 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5054 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5056 bnx2_init_tx_context(bp
, cid
, txr
);
5060 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
5066 for (i
= 0; i
< num_rings
; i
++) {
5069 rxbd
= &rx_ring
[i
][0];
5070 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5071 rxbd
->rx_bd_len
= buf_size
;
5072 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5074 if (i
== (num_rings
- 1))
5078 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5079 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5084 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5087 u16 prod
, ring_prod
;
5088 u32 cid
, rx_cid_addr
, val
;
5089 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5090 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5095 cid
= RX_RSS_CID
+ ring_num
- 1;
5097 rx_cid_addr
= GET_CID_ADDR(cid
);
5099 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5100 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5102 bnx2_init_rx_context(bp
, cid
);
5104 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5105 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
5106 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5109 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5110 if (bp
->rx_pg_ring_size
) {
5111 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5112 rxr
->rx_pg_desc_mapping
,
5113 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5114 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5115 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5116 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5117 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5119 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5120 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5122 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5123 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5125 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5126 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5129 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5130 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5132 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5133 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5135 ring_prod
= prod
= rxr
->rx_pg_prod
;
5136 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5137 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
) < 0)
5139 prod
= NEXT_RX_BD(prod
);
5140 ring_prod
= RX_PG_RING_IDX(prod
);
5142 rxr
->rx_pg_prod
= prod
;
5144 ring_prod
= prod
= rxr
->rx_prod
;
5145 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5146 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
) < 0)
5148 prod
= NEXT_RX_BD(prod
);
5149 ring_prod
= RX_RING_IDX(prod
);
5151 rxr
->rx_prod
= prod
;
5153 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5154 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5155 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5157 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5158 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5160 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5164 bnx2_init_all_rings(struct bnx2
*bp
)
5169 bnx2_clear_ring_states(bp
);
5171 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5172 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5173 bnx2_init_tx_ring(bp
, i
);
5175 if (bp
->num_tx_rings
> 1)
5176 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5179 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5180 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5182 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5183 bnx2_init_rx_ring(bp
, i
);
5185 if (bp
->num_rx_rings
> 1) {
5187 u8
*tbl
= (u8
*) &tbl_32
;
5189 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
,
5190 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
);
5192 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5193 tbl
[i
% 4] = i
% (bp
->num_rx_rings
- 1);
5196 BNX2_RXP_SCRATCH_RSS_TBL
+ i
,
5197 cpu_to_be32(tbl_32
));
5200 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5201 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5203 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5208 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5210 u32 max
, num_rings
= 1;
5212 while (ring_size
> MAX_RX_DESC_CNT
) {
5213 ring_size
-= MAX_RX_DESC_CNT
;
5216 /* round to next power of 2 */
5218 while ((max
& num_rings
) == 0)
5221 if (num_rings
!= max
)
5228 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5230 u32 rx_size
, rx_space
, jumbo_size
;
5232 /* 8 for CRC and VLAN */
5233 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5235 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5236 sizeof(struct skb_shared_info
);
5238 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5239 bp
->rx_pg_ring_size
= 0;
5240 bp
->rx_max_pg_ring
= 0;
5241 bp
->rx_max_pg_ring_idx
= 0;
5242 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5243 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5245 jumbo_size
= size
* pages
;
5246 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
5247 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
5249 bp
->rx_pg_ring_size
= jumbo_size
;
5250 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5252 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
5253 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5254 bp
->rx_copy_thresh
= 0;
5257 bp
->rx_buf_use_size
= rx_size
;
5259 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
5260 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5261 bp
->rx_ring_size
= size
;
5262 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
5263 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
5267 bnx2_free_tx_skbs(struct bnx2
*bp
)
5271 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5272 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5273 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5276 if (txr
->tx_buf_ring
== NULL
)
5279 for (j
= 0; j
< TX_DESC_CNT
; ) {
5280 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5281 struct sk_buff
*skb
= tx_buf
->skb
;
5288 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
5292 j
+= skb_shinfo(skb
)->nr_frags
+ 1;
5299 bnx2_free_rx_skbs(struct bnx2
*bp
)
5303 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5304 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5305 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5308 if (rxr
->rx_buf_ring
== NULL
)
5311 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5312 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5313 struct sk_buff
*skb
= rx_buf
->skb
;
5318 pci_unmap_single(bp
->pdev
,
5319 pci_unmap_addr(rx_buf
, mapping
),
5320 bp
->rx_buf_use_size
,
5321 PCI_DMA_FROMDEVICE
);
5327 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5328 bnx2_free_rx_page(bp
, rxr
, j
);
5333 bnx2_free_skbs(struct bnx2
*bp
)
5335 bnx2_free_tx_skbs(bp
);
5336 bnx2_free_rx_skbs(bp
);
5340 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5344 rc
= bnx2_reset_chip(bp
, reset_code
);
5349 if ((rc
= bnx2_init_chip(bp
)) != 0)
5352 bnx2_init_all_rings(bp
);
5357 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5361 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5364 spin_lock_bh(&bp
->phy_lock
);
5365 bnx2_init_phy(bp
, reset_phy
);
5367 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5368 bnx2_remote_phy_event(bp
);
5369 spin_unlock_bh(&bp
->phy_lock
);
5374 bnx2_shutdown_chip(struct bnx2
*bp
)
5378 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5379 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5381 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5383 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5385 return bnx2_reset_chip(bp
, reset_code
);
5389 bnx2_test_registers(struct bnx2
*bp
)
5393 static const struct {
5396 #define BNX2_FL_NOT_5709 1
5400 { 0x006c, 0, 0x00000000, 0x0000003f },
5401 { 0x0090, 0, 0xffffffff, 0x00000000 },
5402 { 0x0094, 0, 0x00000000, 0x00000000 },
5404 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5405 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5406 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5407 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5408 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5409 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5410 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5411 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5412 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5414 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5415 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5416 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5417 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5418 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5419 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5421 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5422 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5423 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5425 { 0x1000, 0, 0x00000000, 0x00000001 },
5426 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5428 { 0x1408, 0, 0x01c00800, 0x00000000 },
5429 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5430 { 0x14a8, 0, 0x00000000, 0x000001ff },
5431 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5432 { 0x14b0, 0, 0x00000002, 0x00000001 },
5433 { 0x14b8, 0, 0x00000000, 0x00000000 },
5434 { 0x14c0, 0, 0x00000000, 0x00000009 },
5435 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5436 { 0x14cc, 0, 0x00000000, 0x00000001 },
5437 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5439 { 0x1800, 0, 0x00000000, 0x00000001 },
5440 { 0x1804, 0, 0x00000000, 0x00000003 },
5442 { 0x2800, 0, 0x00000000, 0x00000001 },
5443 { 0x2804, 0, 0x00000000, 0x00003f01 },
5444 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5445 { 0x2810, 0, 0xffff0000, 0x00000000 },
5446 { 0x2814, 0, 0xffff0000, 0x00000000 },
5447 { 0x2818, 0, 0xffff0000, 0x00000000 },
5448 { 0x281c, 0, 0xffff0000, 0x00000000 },
5449 { 0x2834, 0, 0xffffffff, 0x00000000 },
5450 { 0x2840, 0, 0x00000000, 0xffffffff },
5451 { 0x2844, 0, 0x00000000, 0xffffffff },
5452 { 0x2848, 0, 0xffffffff, 0x00000000 },
5453 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5455 { 0x2c00, 0, 0x00000000, 0x00000011 },
5456 { 0x2c04, 0, 0x00000000, 0x00030007 },
5458 { 0x3c00, 0, 0x00000000, 0x00000001 },
5459 { 0x3c04, 0, 0x00000000, 0x00070000 },
5460 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5461 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5462 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5463 { 0x3c14, 0, 0x00000000, 0xffffffff },
5464 { 0x3c18, 0, 0x00000000, 0xffffffff },
5465 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5466 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5468 { 0x5004, 0, 0x00000000, 0x0000007f },
5469 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5471 { 0x5c00, 0, 0x00000000, 0x00000001 },
5472 { 0x5c04, 0, 0x00000000, 0x0003000f },
5473 { 0x5c08, 0, 0x00000003, 0x00000000 },
5474 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5475 { 0x5c10, 0, 0x00000000, 0xffffffff },
5476 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5477 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5478 { 0x5c88, 0, 0x00000000, 0x00077373 },
5479 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5481 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5482 { 0x680c, 0, 0xffffffff, 0x00000000 },
5483 { 0x6810, 0, 0xffffffff, 0x00000000 },
5484 { 0x6814, 0, 0xffffffff, 0x00000000 },
5485 { 0x6818, 0, 0xffffffff, 0x00000000 },
5486 { 0x681c, 0, 0xffffffff, 0x00000000 },
5487 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5488 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5489 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5490 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5491 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5492 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5493 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5494 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5495 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5496 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5497 { 0x684c, 0, 0xffffffff, 0x00000000 },
5498 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5499 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5500 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5501 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5502 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5503 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5505 { 0xffff, 0, 0x00000000, 0x00000000 },
5510 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5513 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5514 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5515 u16 flags
= reg_tbl
[i
].flags
;
5517 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5520 offset
= (u32
) reg_tbl
[i
].offset
;
5521 rw_mask
= reg_tbl
[i
].rw_mask
;
5522 ro_mask
= reg_tbl
[i
].ro_mask
;
5524 save_val
= readl(bp
->regview
+ offset
);
5526 writel(0, bp
->regview
+ offset
);
5528 val
= readl(bp
->regview
+ offset
);
5529 if ((val
& rw_mask
) != 0) {
5533 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5537 writel(0xffffffff, bp
->regview
+ offset
);
5539 val
= readl(bp
->regview
+ offset
);
5540 if ((val
& rw_mask
) != rw_mask
) {
5544 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5548 writel(save_val
, bp
->regview
+ offset
);
5552 writel(save_val
, bp
->regview
+ offset
);
5560 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5562 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5563 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5566 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5569 for (offset
= 0; offset
< size
; offset
+= 4) {
5571 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5573 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5583 bnx2_test_memory(struct bnx2
*bp
)
5587 static struct mem_entry
{
5590 } mem_tbl_5706
[] = {
5591 { 0x60000, 0x4000 },
5592 { 0xa0000, 0x3000 },
5593 { 0xe0000, 0x4000 },
5594 { 0x120000, 0x4000 },
5595 { 0x1a0000, 0x4000 },
5596 { 0x160000, 0x4000 },
5600 { 0x60000, 0x4000 },
5601 { 0xa0000, 0x3000 },
5602 { 0xe0000, 0x4000 },
5603 { 0x120000, 0x4000 },
5604 { 0x1a0000, 0x4000 },
5607 struct mem_entry
*mem_tbl
;
5609 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5610 mem_tbl
= mem_tbl_5709
;
5612 mem_tbl
= mem_tbl_5706
;
5614 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5615 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5616 mem_tbl
[i
].len
)) != 0) {
5624 #define BNX2_MAC_LOOPBACK 0
5625 #define BNX2_PHY_LOOPBACK 1
5628 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5630 unsigned int pkt_size
, num_pkts
, i
;
5631 struct sk_buff
*skb
, *rx_skb
;
5632 unsigned char *packet
;
5633 u16 rx_start_idx
, rx_idx
;
5636 struct sw_bd
*rx_buf
;
5637 struct l2_fhdr
*rx_hdr
;
5639 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5640 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5641 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5645 txr
= &tx_napi
->tx_ring
;
5646 rxr
= &bnapi
->rx_ring
;
5647 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5648 bp
->loopback
= MAC_LOOPBACK
;
5649 bnx2_set_mac_loopback(bp
);
5651 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5652 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5655 bp
->loopback
= PHY_LOOPBACK
;
5656 bnx2_set_phy_loopback(bp
);
5661 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5662 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5665 packet
= skb_put(skb
, pkt_size
);
5666 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5667 memset(packet
+ 6, 0x0, 8);
5668 for (i
= 14; i
< pkt_size
; i
++)
5669 packet
[i
] = (unsigned char) (i
& 0xff);
5671 if (skb_dma_map(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
5675 map
= skb_shinfo(skb
)->dma_head
;
5677 REG_WR(bp
, BNX2_HC_COMMAND
,
5678 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5680 REG_RD(bp
, BNX2_HC_COMMAND
);
5683 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5687 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5689 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5690 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5691 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5692 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5695 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5696 txr
->tx_prod_bseq
+= pkt_size
;
5698 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5699 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5703 REG_WR(bp
, BNX2_HC_COMMAND
,
5704 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5706 REG_RD(bp
, BNX2_HC_COMMAND
);
5710 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
5713 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5714 goto loopback_test_done
;
5716 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5717 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5718 goto loopback_test_done
;
5721 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5722 rx_skb
= rx_buf
->skb
;
5724 rx_hdr
= (struct l2_fhdr
*) rx_skb
->data
;
5725 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5727 pci_dma_sync_single_for_cpu(bp
->pdev
,
5728 pci_unmap_addr(rx_buf
, mapping
),
5729 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5731 if (rx_hdr
->l2_fhdr_status
&
5732 (L2_FHDR_ERRORS_BAD_CRC
|
5733 L2_FHDR_ERRORS_PHY_DECODE
|
5734 L2_FHDR_ERRORS_ALIGNMENT
|
5735 L2_FHDR_ERRORS_TOO_SHORT
|
5736 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5738 goto loopback_test_done
;
5741 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5742 goto loopback_test_done
;
5745 for (i
= 14; i
< pkt_size
; i
++) {
5746 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5747 goto loopback_test_done
;
5758 #define BNX2_MAC_LOOPBACK_FAILED 1
5759 #define BNX2_PHY_LOOPBACK_FAILED 2
5760 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5761 BNX2_PHY_LOOPBACK_FAILED)
5764 bnx2_test_loopback(struct bnx2
*bp
)
5768 if (!netif_running(bp
->dev
))
5769 return BNX2_LOOPBACK_FAILED
;
5771 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5772 spin_lock_bh(&bp
->phy_lock
);
5773 bnx2_init_phy(bp
, 1);
5774 spin_unlock_bh(&bp
->phy_lock
);
5775 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5776 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5777 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5778 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5782 #define NVRAM_SIZE 0x200
5783 #define CRC32_RESIDUAL 0xdebb20e3
5786 bnx2_test_nvram(struct bnx2
*bp
)
5788 __be32 buf
[NVRAM_SIZE
/ 4];
5789 u8
*data
= (u8
*) buf
;
5793 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5794 goto test_nvram_done
;
5796 magic
= be32_to_cpu(buf
[0]);
5797 if (magic
!= 0x669955aa) {
5799 goto test_nvram_done
;
5802 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5803 goto test_nvram_done
;
5805 csum
= ether_crc_le(0x100, data
);
5806 if (csum
!= CRC32_RESIDUAL
) {
5808 goto test_nvram_done
;
5811 csum
= ether_crc_le(0x100, data
+ 0x100);
5812 if (csum
!= CRC32_RESIDUAL
) {
5821 bnx2_test_link(struct bnx2
*bp
)
5825 if (!netif_running(bp
->dev
))
5828 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5833 spin_lock_bh(&bp
->phy_lock
);
5834 bnx2_enable_bmsr1(bp
);
5835 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5836 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5837 bnx2_disable_bmsr1(bp
);
5838 spin_unlock_bh(&bp
->phy_lock
);
5840 if (bmsr
& BMSR_LSTATUS
) {
5847 bnx2_test_intr(struct bnx2
*bp
)
5852 if (!netif_running(bp
->dev
))
5855 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5857 /* This register is not touched during run-time. */
5858 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5859 REG_RD(bp
, BNX2_HC_COMMAND
);
5861 for (i
= 0; i
< 10; i
++) {
5862 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5868 msleep_interruptible(10);
5876 /* Determining link for parallel detection. */
5878 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5880 u32 mode_ctl
, an_dbg
, exp
;
5882 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5885 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5886 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5888 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5891 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5892 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5893 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5895 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
5898 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5899 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5900 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5902 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5909 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5913 spin_lock(&bp
->phy_lock
);
5914 if (bp
->serdes_an_pending
) {
5915 bp
->serdes_an_pending
--;
5917 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5920 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5922 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5924 if (bmcr
& BMCR_ANENABLE
) {
5925 if (bnx2_5706_serdes_has_link(bp
)) {
5926 bmcr
&= ~BMCR_ANENABLE
;
5927 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5928 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5929 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
5933 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
5934 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
5937 bnx2_write_phy(bp
, 0x17, 0x0f01);
5938 bnx2_read_phy(bp
, 0x15, &phy2
);
5942 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5943 bmcr
|= BMCR_ANENABLE
;
5944 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5946 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
5949 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5954 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5955 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5956 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5958 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
5959 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
5960 bnx2_5706s_force_link_dn(bp
, 1);
5961 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
5964 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
5967 spin_unlock(&bp
->phy_lock
);
5971 bnx2_5708_serdes_timer(struct bnx2
*bp
)
5973 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5976 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
5977 bp
->serdes_an_pending
= 0;
5981 spin_lock(&bp
->phy_lock
);
5982 if (bp
->serdes_an_pending
)
5983 bp
->serdes_an_pending
--;
5984 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5987 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5988 if (bmcr
& BMCR_ANENABLE
) {
5989 bnx2_enable_forced_2g5(bp
);
5990 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
5992 bnx2_disable_forced_2g5(bp
);
5993 bp
->serdes_an_pending
= 2;
5994 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5998 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6000 spin_unlock(&bp
->phy_lock
);
6004 bnx2_timer(unsigned long data
)
6006 struct bnx2
*bp
= (struct bnx2
*) data
;
6008 if (!netif_running(bp
->dev
))
6011 if (atomic_read(&bp
->intr_sem
) != 0)
6012 goto bnx2_restart_timer
;
6014 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6015 BNX2_FLAG_USING_MSI
)
6016 bnx2_chk_missed_msi(bp
);
6018 bnx2_send_heart_beat(bp
);
6020 bp
->stats_blk
->stat_FwRxDrop
=
6021 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6023 /* workaround occasional corrupted counters */
6024 if (CHIP_NUM(bp
) == CHIP_NUM_5708
&& bp
->stats_ticks
)
6025 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6026 BNX2_HC_COMMAND_STATS_NOW
);
6028 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6029 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
6030 bnx2_5706_serdes_timer(bp
);
6032 bnx2_5708_serdes_timer(bp
);
6036 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6040 bnx2_request_irq(struct bnx2
*bp
)
6042 unsigned long flags
;
6043 struct bnx2_irq
*irq
;
6046 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6049 flags
= IRQF_SHARED
;
6051 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6052 irq
= &bp
->irq_tbl
[i
];
6053 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6063 bnx2_free_irq(struct bnx2
*bp
)
6065 struct bnx2_irq
*irq
;
6068 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6069 irq
= &bp
->irq_tbl
[i
];
6071 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6074 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6075 pci_disable_msi(bp
->pdev
);
6076 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6077 pci_disable_msix(bp
->pdev
);
6079 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6083 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6086 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6087 struct net_device
*dev
= bp
->dev
;
6088 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6090 bnx2_setup_msix_tbl(bp
);
6091 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6092 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6093 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6095 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6096 msix_ent
[i
].entry
= i
;
6097 msix_ent
[i
].vector
= 0;
6100 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, BNX2_MAX_MSIX_VEC
);
6104 bp
->irq_nvecs
= msix_vecs
;
6105 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6106 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6107 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6108 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6109 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6114 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6116 int cpus
= num_online_cpus();
6117 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
6119 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6120 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6122 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6124 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
&& cpus
> 1)
6125 bnx2_enable_msix(bp
, msix_vecs
);
6127 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6128 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6129 if (pci_enable_msi(bp
->pdev
) == 0) {
6130 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6131 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6132 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6133 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6135 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6137 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6141 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6142 bp
->dev
->real_num_tx_queues
= bp
->num_tx_rings
;
6144 bp
->num_rx_rings
= bp
->irq_nvecs
;
6147 /* Called with rtnl_lock */
6149 bnx2_open(struct net_device
*dev
)
6151 struct bnx2
*bp
= netdev_priv(dev
);
6154 netif_carrier_off(dev
);
6156 bnx2_set_power_state(bp
, PCI_D0
);
6157 bnx2_disable_int(bp
);
6159 bnx2_setup_int_mode(bp
, disable_msi
);
6160 bnx2_napi_enable(bp
);
6161 rc
= bnx2_alloc_mem(bp
);
6165 rc
= bnx2_request_irq(bp
);
6169 rc
= bnx2_init_nic(bp
, 1);
6173 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6175 atomic_set(&bp
->intr_sem
, 0);
6177 bnx2_enable_int(bp
);
6179 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6180 /* Test MSI to make sure it is working
6181 * If MSI test fails, go back to INTx mode
6183 if (bnx2_test_intr(bp
) != 0) {
6184 printk(KERN_WARNING PFX
"%s: No interrupt was generated"
6185 " using MSI, switching to INTx mode. Please"
6186 " report this failure to the PCI maintainer"
6187 " and include system chipset information.\n",
6190 bnx2_disable_int(bp
);
6193 bnx2_setup_int_mode(bp
, 1);
6195 rc
= bnx2_init_nic(bp
, 0);
6198 rc
= bnx2_request_irq(bp
);
6201 del_timer_sync(&bp
->timer
);
6204 bnx2_enable_int(bp
);
6207 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6208 printk(KERN_INFO PFX
"%s: using MSI\n", dev
->name
);
6209 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6210 printk(KERN_INFO PFX
"%s: using MSIX\n", dev
->name
);
6212 netif_tx_start_all_queues(dev
);
6217 bnx2_napi_disable(bp
);
6225 bnx2_reset_task(struct work_struct
*work
)
6227 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6229 if (!netif_running(bp
->dev
))
6232 bnx2_netif_stop(bp
);
6234 bnx2_init_nic(bp
, 1);
6236 atomic_set(&bp
->intr_sem
, 1);
6237 bnx2_netif_start(bp
);
6241 bnx2_tx_timeout(struct net_device
*dev
)
6243 struct bnx2
*bp
= netdev_priv(dev
);
6245 /* This allows the netif to be shutdown gracefully before resetting */
6246 schedule_work(&bp
->reset_task
);
6250 /* Called with rtnl_lock */
6252 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
6254 struct bnx2
*bp
= netdev_priv(dev
);
6256 bnx2_netif_stop(bp
);
6259 bnx2_set_rx_mode(dev
);
6260 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
6261 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
6263 bnx2_netif_start(bp
);
6267 /* Called with netif_tx_lock.
6268 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6269 * netif_wake_queue().
6272 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6274 struct bnx2
*bp
= netdev_priv(dev
);
6277 struct sw_tx_bd
*tx_buf
;
6278 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6279 u16 prod
, ring_prod
;
6281 struct bnx2_napi
*bnapi
;
6282 struct bnx2_tx_ring_info
*txr
;
6283 struct netdev_queue
*txq
;
6284 struct skb_shared_info
*sp
;
6286 /* Determine which tx ring we will be placed on */
6287 i
= skb_get_queue_mapping(skb
);
6288 bnapi
= &bp
->bnx2_napi
[i
];
6289 txr
= &bnapi
->tx_ring
;
6290 txq
= netdev_get_tx_queue(dev
, i
);
6292 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6293 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6294 netif_tx_stop_queue(txq
);
6295 printk(KERN_ERR PFX
"%s: BUG! Tx ring full when queue awake!\n",
6298 return NETDEV_TX_BUSY
;
6300 len
= skb_headlen(skb
);
6301 prod
= txr
->tx_prod
;
6302 ring_prod
= TX_RING_IDX(prod
);
6305 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6306 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6310 if (bp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
6312 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6315 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6319 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6321 tcp_opt_len
= tcp_optlen(skb
);
6323 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6324 u32 tcp_off
= skb_transport_offset(skb
) -
6325 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6327 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6328 TX_BD_FLAGS_SW_FLAGS
;
6329 if (likely(tcp_off
== 0))
6330 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6333 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6334 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6335 ((tcp_off
& 0x10) <<
6336 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6337 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6341 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6342 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6343 (tcp_opt_len
>> 2)) << 8;
6349 if (skb_dma_map(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
6351 return NETDEV_TX_OK
;
6354 sp
= skb_shinfo(skb
);
6355 mapping
= sp
->dma_head
;
6357 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6360 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6362 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6363 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6364 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6365 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6367 last_frag
= skb_shinfo(skb
)->nr_frags
;
6368 tx_buf
->nr_frags
= last_frag
;
6369 tx_buf
->is_gso
= skb_is_gso(skb
);
6371 for (i
= 0; i
< last_frag
; i
++) {
6372 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6374 prod
= NEXT_TX_BD(prod
);
6375 ring_prod
= TX_RING_IDX(prod
);
6376 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6379 mapping
= sp
->dma_maps
[i
];
6381 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6382 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6383 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6384 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6387 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6389 prod
= NEXT_TX_BD(prod
);
6390 txr
->tx_prod_bseq
+= skb
->len
;
6392 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6393 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6397 txr
->tx_prod
= prod
;
6399 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6400 netif_tx_stop_queue(txq
);
6401 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6402 netif_tx_wake_queue(txq
);
6405 return NETDEV_TX_OK
;
6408 /* Called with rtnl_lock */
6410 bnx2_close(struct net_device
*dev
)
6412 struct bnx2
*bp
= netdev_priv(dev
);
6414 cancel_work_sync(&bp
->reset_task
);
6416 bnx2_disable_int_sync(bp
);
6417 bnx2_napi_disable(bp
);
6418 del_timer_sync(&bp
->timer
);
6419 bnx2_shutdown_chip(bp
);
6424 netif_carrier_off(bp
->dev
);
6425 bnx2_set_power_state(bp
, PCI_D3hot
);
6429 #define GET_NET_STATS64(ctr) \
6430 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6431 (unsigned long) (ctr##_lo)
6433 #define GET_NET_STATS32(ctr) \
6436 #if (BITS_PER_LONG == 64)
6437 #define GET_NET_STATS GET_NET_STATS64
6439 #define GET_NET_STATS GET_NET_STATS32
6442 static struct net_device_stats
*
6443 bnx2_get_stats(struct net_device
*dev
)
6445 struct bnx2
*bp
= netdev_priv(dev
);
6446 struct statistics_block
*stats_blk
= bp
->stats_blk
;
6447 struct net_device_stats
*net_stats
= &dev
->stats
;
6449 if (bp
->stats_blk
== NULL
) {
6452 net_stats
->rx_packets
=
6453 GET_NET_STATS(stats_blk
->stat_IfHCInUcastPkts
) +
6454 GET_NET_STATS(stats_blk
->stat_IfHCInMulticastPkts
) +
6455 GET_NET_STATS(stats_blk
->stat_IfHCInBroadcastPkts
);
6457 net_stats
->tx_packets
=
6458 GET_NET_STATS(stats_blk
->stat_IfHCOutUcastPkts
) +
6459 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
) +
6460 GET_NET_STATS(stats_blk
->stat_IfHCOutBroadcastPkts
);
6462 net_stats
->rx_bytes
=
6463 GET_NET_STATS(stats_blk
->stat_IfHCInOctets
);
6465 net_stats
->tx_bytes
=
6466 GET_NET_STATS(stats_blk
->stat_IfHCOutOctets
);
6468 net_stats
->multicast
=
6469 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
);
6471 net_stats
->collisions
=
6472 (unsigned long) stats_blk
->stat_EtherStatsCollisions
;
6474 net_stats
->rx_length_errors
=
6475 (unsigned long) (stats_blk
->stat_EtherStatsUndersizePkts
+
6476 stats_blk
->stat_EtherStatsOverrsizePkts
);
6478 net_stats
->rx_over_errors
=
6479 (unsigned long) stats_blk
->stat_IfInMBUFDiscards
;
6481 net_stats
->rx_frame_errors
=
6482 (unsigned long) stats_blk
->stat_Dot3StatsAlignmentErrors
;
6484 net_stats
->rx_crc_errors
=
6485 (unsigned long) stats_blk
->stat_Dot3StatsFCSErrors
;
6487 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6488 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6489 net_stats
->rx_crc_errors
;
6491 net_stats
->tx_aborted_errors
=
6492 (unsigned long) (stats_blk
->stat_Dot3StatsExcessiveCollisions
+
6493 stats_blk
->stat_Dot3StatsLateCollisions
);
6495 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6496 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6497 net_stats
->tx_carrier_errors
= 0;
6499 net_stats
->tx_carrier_errors
=
6501 stats_blk
->stat_Dot3StatsCarrierSenseErrors
;
6504 net_stats
->tx_errors
=
6506 stats_blk
->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6508 net_stats
->tx_aborted_errors
+
6509 net_stats
->tx_carrier_errors
;
6511 net_stats
->rx_missed_errors
=
6512 (unsigned long) (stats_blk
->stat_IfInMBUFDiscards
+
6513 stats_blk
->stat_FwRxDrop
);
6518 /* All ethtool functions called with rtnl_lock */
6521 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6523 struct bnx2
*bp
= netdev_priv(dev
);
6524 int support_serdes
= 0, support_copper
= 0;
6526 cmd
->supported
= SUPPORTED_Autoneg
;
6527 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6530 } else if (bp
->phy_port
== PORT_FIBRE
)
6535 if (support_serdes
) {
6536 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6538 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6539 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6542 if (support_copper
) {
6543 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6544 SUPPORTED_10baseT_Full
|
6545 SUPPORTED_100baseT_Half
|
6546 SUPPORTED_100baseT_Full
|
6547 SUPPORTED_1000baseT_Full
|
6552 spin_lock_bh(&bp
->phy_lock
);
6553 cmd
->port
= bp
->phy_port
;
6554 cmd
->advertising
= bp
->advertising
;
6556 if (bp
->autoneg
& AUTONEG_SPEED
) {
6557 cmd
->autoneg
= AUTONEG_ENABLE
;
6560 cmd
->autoneg
= AUTONEG_DISABLE
;
6563 if (netif_carrier_ok(dev
)) {
6564 cmd
->speed
= bp
->line_speed
;
6565 cmd
->duplex
= bp
->duplex
;
6571 spin_unlock_bh(&bp
->phy_lock
);
6573 cmd
->transceiver
= XCVR_INTERNAL
;
6574 cmd
->phy_address
= bp
->phy_addr
;
6580 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6582 struct bnx2
*bp
= netdev_priv(dev
);
6583 u8 autoneg
= bp
->autoneg
;
6584 u8 req_duplex
= bp
->req_duplex
;
6585 u16 req_line_speed
= bp
->req_line_speed
;
6586 u32 advertising
= bp
->advertising
;
6589 spin_lock_bh(&bp
->phy_lock
);
6591 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6592 goto err_out_unlock
;
6594 if (cmd
->port
!= bp
->phy_port
&&
6595 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6596 goto err_out_unlock
;
6598 /* If device is down, we can store the settings only if the user
6599 * is setting the currently active port.
6601 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6602 goto err_out_unlock
;
6604 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6605 autoneg
|= AUTONEG_SPEED
;
6607 cmd
->advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6609 /* allow advertising 1 speed */
6610 if ((cmd
->advertising
== ADVERTISED_10baseT_Half
) ||
6611 (cmd
->advertising
== ADVERTISED_10baseT_Full
) ||
6612 (cmd
->advertising
== ADVERTISED_100baseT_Half
) ||
6613 (cmd
->advertising
== ADVERTISED_100baseT_Full
)) {
6615 if (cmd
->port
== PORT_FIBRE
)
6616 goto err_out_unlock
;
6618 advertising
= cmd
->advertising
;
6620 } else if (cmd
->advertising
== ADVERTISED_2500baseX_Full
) {
6621 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) ||
6622 (cmd
->port
== PORT_TP
))
6623 goto err_out_unlock
;
6624 } else if (cmd
->advertising
== ADVERTISED_1000baseT_Full
)
6625 advertising
= cmd
->advertising
;
6626 else if (cmd
->advertising
== ADVERTISED_1000baseT_Half
)
6627 goto err_out_unlock
;
6629 if (cmd
->port
== PORT_FIBRE
)
6630 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6632 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6634 advertising
|= ADVERTISED_Autoneg
;
6637 if (cmd
->port
== PORT_FIBRE
) {
6638 if ((cmd
->speed
!= SPEED_1000
&&
6639 cmd
->speed
!= SPEED_2500
) ||
6640 (cmd
->duplex
!= DUPLEX_FULL
))
6641 goto err_out_unlock
;
6643 if (cmd
->speed
== SPEED_2500
&&
6644 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6645 goto err_out_unlock
;
6647 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
6648 goto err_out_unlock
;
6650 autoneg
&= ~AUTONEG_SPEED
;
6651 req_line_speed
= cmd
->speed
;
6652 req_duplex
= cmd
->duplex
;
6656 bp
->autoneg
= autoneg
;
6657 bp
->advertising
= advertising
;
6658 bp
->req_line_speed
= req_line_speed
;
6659 bp
->req_duplex
= req_duplex
;
6662 /* If device is down, the new settings will be picked up when it is
6665 if (netif_running(dev
))
6666 err
= bnx2_setup_phy(bp
, cmd
->port
);
6669 spin_unlock_bh(&bp
->phy_lock
);
6675 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6677 struct bnx2
*bp
= netdev_priv(dev
);
6679 strcpy(info
->driver
, DRV_MODULE_NAME
);
6680 strcpy(info
->version
, DRV_MODULE_VERSION
);
6681 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6682 strcpy(info
->fw_version
, bp
->fw_version
);
6685 #define BNX2_REGDUMP_LEN (32 * 1024)
6688 bnx2_get_regs_len(struct net_device
*dev
)
6690 return BNX2_REGDUMP_LEN
;
6694 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6696 u32
*p
= _p
, i
, offset
;
6698 struct bnx2
*bp
= netdev_priv(dev
);
6699 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6700 0x0800, 0x0880, 0x0c00, 0x0c10,
6701 0x0c30, 0x0d08, 0x1000, 0x101c,
6702 0x1040, 0x1048, 0x1080, 0x10a4,
6703 0x1400, 0x1490, 0x1498, 0x14f0,
6704 0x1500, 0x155c, 0x1580, 0x15dc,
6705 0x1600, 0x1658, 0x1680, 0x16d8,
6706 0x1800, 0x1820, 0x1840, 0x1854,
6707 0x1880, 0x1894, 0x1900, 0x1984,
6708 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6709 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6710 0x2000, 0x2030, 0x23c0, 0x2400,
6711 0x2800, 0x2820, 0x2830, 0x2850,
6712 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6713 0x3c00, 0x3c94, 0x4000, 0x4010,
6714 0x4080, 0x4090, 0x43c0, 0x4458,
6715 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6716 0x4fc0, 0x5010, 0x53c0, 0x5444,
6717 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6718 0x5fc0, 0x6000, 0x6400, 0x6428,
6719 0x6800, 0x6848, 0x684c, 0x6860,
6720 0x6888, 0x6910, 0x8000 };
6724 memset(p
, 0, BNX2_REGDUMP_LEN
);
6726 if (!netif_running(bp
->dev
))
6730 offset
= reg_boundaries
[0];
6732 while (offset
< BNX2_REGDUMP_LEN
) {
6733 *p
++ = REG_RD(bp
, offset
);
6735 if (offset
== reg_boundaries
[i
+ 1]) {
6736 offset
= reg_boundaries
[i
+ 2];
6737 p
= (u32
*) (orig_p
+ offset
);
6744 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6746 struct bnx2
*bp
= netdev_priv(dev
);
6748 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6753 wol
->supported
= WAKE_MAGIC
;
6755 wol
->wolopts
= WAKE_MAGIC
;
6759 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6763 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6765 struct bnx2
*bp
= netdev_priv(dev
);
6767 if (wol
->wolopts
& ~WAKE_MAGIC
)
6770 if (wol
->wolopts
& WAKE_MAGIC
) {
6771 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6783 bnx2_nway_reset(struct net_device
*dev
)
6785 struct bnx2
*bp
= netdev_priv(dev
);
6788 if (!netif_running(dev
))
6791 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6795 spin_lock_bh(&bp
->phy_lock
);
6797 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6800 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6801 spin_unlock_bh(&bp
->phy_lock
);
6805 /* Force a link down visible on the other side */
6806 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6807 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6808 spin_unlock_bh(&bp
->phy_lock
);
6812 spin_lock_bh(&bp
->phy_lock
);
6814 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
6815 bp
->serdes_an_pending
= 1;
6816 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6819 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6820 bmcr
&= ~BMCR_LOOPBACK
;
6821 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6823 spin_unlock_bh(&bp
->phy_lock
);
6829 bnx2_get_link(struct net_device
*dev
)
6831 struct bnx2
*bp
= netdev_priv(dev
);
6837 bnx2_get_eeprom_len(struct net_device
*dev
)
6839 struct bnx2
*bp
= netdev_priv(dev
);
6841 if (bp
->flash_info
== NULL
)
6844 return (int) bp
->flash_size
;
6848 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6851 struct bnx2
*bp
= netdev_priv(dev
);
6854 if (!netif_running(dev
))
6857 /* parameters already validated in ethtool_get_eeprom */
6859 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6865 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6868 struct bnx2
*bp
= netdev_priv(dev
);
6871 if (!netif_running(dev
))
6874 /* parameters already validated in ethtool_set_eeprom */
6876 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6882 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6884 struct bnx2
*bp
= netdev_priv(dev
);
6886 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
6888 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
6889 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
6890 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
6891 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
6893 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
6894 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
6895 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
6896 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
6898 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
6904 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6906 struct bnx2
*bp
= netdev_priv(dev
);
6908 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
6909 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
6911 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
6912 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
6914 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
6915 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
6917 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
6918 if (bp
->rx_quick_cons_trip_int
> 0xff)
6919 bp
->rx_quick_cons_trip_int
= 0xff;
6921 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
6922 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
6924 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
6925 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
6927 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
6928 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
6930 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
6931 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
6934 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
6935 if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
6936 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
6937 bp
->stats_ticks
= USEC_PER_SEC
;
6939 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
6940 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6941 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6943 if (netif_running(bp
->dev
)) {
6944 bnx2_netif_stop(bp
);
6945 bnx2_init_nic(bp
, 0);
6946 bnx2_netif_start(bp
);
6953 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6955 struct bnx2
*bp
= netdev_priv(dev
);
6957 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
6958 ering
->rx_mini_max_pending
= 0;
6959 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
6961 ering
->rx_pending
= bp
->rx_ring_size
;
6962 ering
->rx_mini_pending
= 0;
6963 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
6965 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
6966 ering
->tx_pending
= bp
->tx_ring_size
;
6970 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
6972 if (netif_running(bp
->dev
)) {
6973 bnx2_netif_stop(bp
);
6974 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
6979 bnx2_set_rx_ring_size(bp
, rx
);
6980 bp
->tx_ring_size
= tx
;
6982 if (netif_running(bp
->dev
)) {
6985 rc
= bnx2_alloc_mem(bp
);
6988 bnx2_init_nic(bp
, 0);
6989 bnx2_netif_start(bp
);
6995 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6997 struct bnx2
*bp
= netdev_priv(dev
);
7000 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
7001 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
7002 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7006 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
7011 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7013 struct bnx2
*bp
= netdev_priv(dev
);
7015 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7016 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7017 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7021 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7023 struct bnx2
*bp
= netdev_priv(dev
);
7025 bp
->req_flow_ctrl
= 0;
7026 if (epause
->rx_pause
)
7027 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7028 if (epause
->tx_pause
)
7029 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7031 if (epause
->autoneg
) {
7032 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7035 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7038 if (netif_running(dev
)) {
7039 spin_lock_bh(&bp
->phy_lock
);
7040 bnx2_setup_phy(bp
, bp
->phy_port
);
7041 spin_unlock_bh(&bp
->phy_lock
);
7048 bnx2_get_rx_csum(struct net_device
*dev
)
7050 struct bnx2
*bp
= netdev_priv(dev
);
7056 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
7058 struct bnx2
*bp
= netdev_priv(dev
);
7065 bnx2_set_tso(struct net_device
*dev
, u32 data
)
7067 struct bnx2
*bp
= netdev_priv(dev
);
7070 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
7071 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7072 dev
->features
|= NETIF_F_TSO6
;
7074 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
7079 #define BNX2_NUM_STATS 46
7082 char string
[ETH_GSTRING_LEN
];
7083 } bnx2_stats_str_arr
[BNX2_NUM_STATS
] = {
7085 { "rx_error_bytes" },
7087 { "tx_error_bytes" },
7088 { "rx_ucast_packets" },
7089 { "rx_mcast_packets" },
7090 { "rx_bcast_packets" },
7091 { "tx_ucast_packets" },
7092 { "tx_mcast_packets" },
7093 { "tx_bcast_packets" },
7094 { "tx_mac_errors" },
7095 { "tx_carrier_errors" },
7096 { "rx_crc_errors" },
7097 { "rx_align_errors" },
7098 { "tx_single_collisions" },
7099 { "tx_multi_collisions" },
7101 { "tx_excess_collisions" },
7102 { "tx_late_collisions" },
7103 { "tx_total_collisions" },
7106 { "rx_undersize_packets" },
7107 { "rx_oversize_packets" },
7108 { "rx_64_byte_packets" },
7109 { "rx_65_to_127_byte_packets" },
7110 { "rx_128_to_255_byte_packets" },
7111 { "rx_256_to_511_byte_packets" },
7112 { "rx_512_to_1023_byte_packets" },
7113 { "rx_1024_to_1522_byte_packets" },
7114 { "rx_1523_to_9022_byte_packets" },
7115 { "tx_64_byte_packets" },
7116 { "tx_65_to_127_byte_packets" },
7117 { "tx_128_to_255_byte_packets" },
7118 { "tx_256_to_511_byte_packets" },
7119 { "tx_512_to_1023_byte_packets" },
7120 { "tx_1024_to_1522_byte_packets" },
7121 { "tx_1523_to_9022_byte_packets" },
7122 { "rx_xon_frames" },
7123 { "rx_xoff_frames" },
7124 { "tx_xon_frames" },
7125 { "tx_xoff_frames" },
7126 { "rx_mac_ctrl_frames" },
7127 { "rx_filtered_packets" },
7129 { "rx_fw_discards" },
7132 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7134 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7135 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7136 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7137 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7138 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7139 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7140 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7141 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7142 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7143 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7144 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7145 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7146 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7147 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7148 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7149 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7150 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7151 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7152 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7153 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7154 STATS_OFFSET32(stat_EtherStatsCollisions
),
7155 STATS_OFFSET32(stat_EtherStatsFragments
),
7156 STATS_OFFSET32(stat_EtherStatsJabbers
),
7157 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7158 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7159 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7160 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7161 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7162 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7163 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7164 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7165 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7166 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7167 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7168 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7169 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7170 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7171 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7172 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7173 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7174 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7175 STATS_OFFSET32(stat_OutXonSent
),
7176 STATS_OFFSET32(stat_OutXoffSent
),
7177 STATS_OFFSET32(stat_MacControlFramesReceived
),
7178 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7179 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7180 STATS_OFFSET32(stat_FwRxDrop
),
7183 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7184 * skipped because of errata.
7186 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7187 8,0,8,8,8,8,8,8,8,8,
7188 4,0,4,4,4,4,4,4,4,4,
7189 4,4,4,4,4,4,4,4,4,4,
7190 4,4,4,4,4,4,4,4,4,4,
7194 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7195 8,0,8,8,8,8,8,8,8,8,
7196 4,4,4,4,4,4,4,4,4,4,
7197 4,4,4,4,4,4,4,4,4,4,
7198 4,4,4,4,4,4,4,4,4,4,
7202 #define BNX2_NUM_TESTS 6
7205 char string
[ETH_GSTRING_LEN
];
7206 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7207 { "register_test (offline)" },
7208 { "memory_test (offline)" },
7209 { "loopback_test (offline)" },
7210 { "nvram_test (online)" },
7211 { "interrupt_test (online)" },
7212 { "link_test (online)" },
7216 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7220 return BNX2_NUM_TESTS
;
7222 return BNX2_NUM_STATS
;
7229 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7231 struct bnx2
*bp
= netdev_priv(dev
);
7233 bnx2_set_power_state(bp
, PCI_D0
);
7235 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7236 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7239 bnx2_netif_stop(bp
);
7240 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7243 if (bnx2_test_registers(bp
) != 0) {
7245 etest
->flags
|= ETH_TEST_FL_FAILED
;
7247 if (bnx2_test_memory(bp
) != 0) {
7249 etest
->flags
|= ETH_TEST_FL_FAILED
;
7251 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7252 etest
->flags
|= ETH_TEST_FL_FAILED
;
7254 if (!netif_running(bp
->dev
))
7255 bnx2_shutdown_chip(bp
);
7257 bnx2_init_nic(bp
, 1);
7258 bnx2_netif_start(bp
);
7261 /* wait for link up */
7262 for (i
= 0; i
< 7; i
++) {
7265 msleep_interruptible(1000);
7269 if (bnx2_test_nvram(bp
) != 0) {
7271 etest
->flags
|= ETH_TEST_FL_FAILED
;
7273 if (bnx2_test_intr(bp
) != 0) {
7275 etest
->flags
|= ETH_TEST_FL_FAILED
;
7278 if (bnx2_test_link(bp
) != 0) {
7280 etest
->flags
|= ETH_TEST_FL_FAILED
;
7283 if (!netif_running(bp
->dev
))
7284 bnx2_set_power_state(bp
, PCI_D3hot
);
7288 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7290 switch (stringset
) {
7292 memcpy(buf
, bnx2_stats_str_arr
,
7293 sizeof(bnx2_stats_str_arr
));
7296 memcpy(buf
, bnx2_tests_str_arr
,
7297 sizeof(bnx2_tests_str_arr
));
7303 bnx2_get_ethtool_stats(struct net_device
*dev
,
7304 struct ethtool_stats
*stats
, u64
*buf
)
7306 struct bnx2
*bp
= netdev_priv(dev
);
7308 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7309 u8
*stats_len_arr
= NULL
;
7311 if (hw_stats
== NULL
) {
7312 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7316 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7317 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7318 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7319 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7320 stats_len_arr
= bnx2_5706_stats_len_arr
;
7322 stats_len_arr
= bnx2_5708_stats_len_arr
;
7324 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7325 if (stats_len_arr
[i
] == 0) {
7326 /* skip this counter */
7330 if (stats_len_arr
[i
] == 4) {
7331 /* 4-byte counter */
7333 *(hw_stats
+ bnx2_stats_offset_arr
[i
]);
7336 /* 8-byte counter */
7337 buf
[i
] = (((u64
) *(hw_stats
+
7338 bnx2_stats_offset_arr
[i
])) << 32) +
7339 *(hw_stats
+ bnx2_stats_offset_arr
[i
] + 1);
7344 bnx2_phys_id(struct net_device
*dev
, u32 data
)
7346 struct bnx2
*bp
= netdev_priv(dev
);
7350 bnx2_set_power_state(bp
, PCI_D0
);
7355 save
= REG_RD(bp
, BNX2_MISC_CFG
);
7356 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7358 for (i
= 0; i
< (data
* 2); i
++) {
7360 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7363 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7364 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7365 BNX2_EMAC_LED_100MB_OVERRIDE
|
7366 BNX2_EMAC_LED_10MB_OVERRIDE
|
7367 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7368 BNX2_EMAC_LED_TRAFFIC
);
7370 msleep_interruptible(500);
7371 if (signal_pending(current
))
7374 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7375 REG_WR(bp
, BNX2_MISC_CFG
, save
);
7377 if (!netif_running(dev
))
7378 bnx2_set_power_state(bp
, PCI_D3hot
);
7384 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
7386 struct bnx2
*bp
= netdev_priv(dev
);
7388 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7389 return (ethtool_op_set_tx_ipv6_csum(dev
, data
));
7391 return (ethtool_op_set_tx_csum(dev
, data
));
7394 static const struct ethtool_ops bnx2_ethtool_ops
= {
7395 .get_settings
= bnx2_get_settings
,
7396 .set_settings
= bnx2_set_settings
,
7397 .get_drvinfo
= bnx2_get_drvinfo
,
7398 .get_regs_len
= bnx2_get_regs_len
,
7399 .get_regs
= bnx2_get_regs
,
7400 .get_wol
= bnx2_get_wol
,
7401 .set_wol
= bnx2_set_wol
,
7402 .nway_reset
= bnx2_nway_reset
,
7403 .get_link
= bnx2_get_link
,
7404 .get_eeprom_len
= bnx2_get_eeprom_len
,
7405 .get_eeprom
= bnx2_get_eeprom
,
7406 .set_eeprom
= bnx2_set_eeprom
,
7407 .get_coalesce
= bnx2_get_coalesce
,
7408 .set_coalesce
= bnx2_set_coalesce
,
7409 .get_ringparam
= bnx2_get_ringparam
,
7410 .set_ringparam
= bnx2_set_ringparam
,
7411 .get_pauseparam
= bnx2_get_pauseparam
,
7412 .set_pauseparam
= bnx2_set_pauseparam
,
7413 .get_rx_csum
= bnx2_get_rx_csum
,
7414 .set_rx_csum
= bnx2_set_rx_csum
,
7415 .set_tx_csum
= bnx2_set_tx_csum
,
7416 .set_sg
= ethtool_op_set_sg
,
7417 .set_tso
= bnx2_set_tso
,
7418 .self_test
= bnx2_self_test
,
7419 .get_strings
= bnx2_get_strings
,
7420 .phys_id
= bnx2_phys_id
,
7421 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7422 .get_sset_count
= bnx2_get_sset_count
,
7425 /* Called with rtnl_lock */
7427 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7429 struct mii_ioctl_data
*data
= if_mii(ifr
);
7430 struct bnx2
*bp
= netdev_priv(dev
);
7435 data
->phy_id
= bp
->phy_addr
;
7441 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7444 if (!netif_running(dev
))
7447 spin_lock_bh(&bp
->phy_lock
);
7448 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7449 spin_unlock_bh(&bp
->phy_lock
);
7451 data
->val_out
= mii_regval
;
7457 if (!capable(CAP_NET_ADMIN
))
7460 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7463 if (!netif_running(dev
))
7466 spin_lock_bh(&bp
->phy_lock
);
7467 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7468 spin_unlock_bh(&bp
->phy_lock
);
7479 /* Called with rtnl_lock */
7481 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7483 struct sockaddr
*addr
= p
;
7484 struct bnx2
*bp
= netdev_priv(dev
);
7486 if (!is_valid_ether_addr(addr
->sa_data
))
7489 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7490 if (netif_running(dev
))
7491 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7496 /* Called with rtnl_lock */
7498 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7500 struct bnx2
*bp
= netdev_priv(dev
);
7502 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7503 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7507 return (bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
));
7510 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7512 poll_bnx2(struct net_device
*dev
)
7514 struct bnx2
*bp
= netdev_priv(dev
);
7517 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7518 disable_irq(bp
->irq_tbl
[i
].vector
);
7519 bnx2_interrupt(bp
->irq_tbl
[i
].vector
, &bp
->bnx2_napi
[i
]);
7520 enable_irq(bp
->irq_tbl
[i
].vector
);
7525 static void __devinit
7526 bnx2_get_5709_media(struct bnx2
*bp
)
7528 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7529 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7532 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7534 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7535 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7539 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7540 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7542 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7544 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7549 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7557 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7563 static void __devinit
7564 bnx2_get_pci_speed(struct bnx2
*bp
)
7568 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7569 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7572 bp
->flags
|= BNX2_FLAG_PCIX
;
7574 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7576 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7578 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7579 bp
->bus_speed_mhz
= 133;
7582 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7583 bp
->bus_speed_mhz
= 100;
7586 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7587 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7588 bp
->bus_speed_mhz
= 66;
7591 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7592 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7593 bp
->bus_speed_mhz
= 50;
7596 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7597 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7598 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7599 bp
->bus_speed_mhz
= 33;
7604 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7605 bp
->bus_speed_mhz
= 66;
7607 bp
->bus_speed_mhz
= 33;
7610 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7611 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7615 static int __devinit
7616 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7619 unsigned long mem_len
;
7622 u64 dma_mask
, persist_dma_mask
;
7624 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7625 bp
= netdev_priv(dev
);
7630 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7631 rc
= pci_enable_device(pdev
);
7633 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting.\n");
7637 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7639 "Cannot find PCI device base address, aborting.\n");
7641 goto err_out_disable
;
7644 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7646 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting.\n");
7647 goto err_out_disable
;
7650 pci_set_master(pdev
);
7651 pci_save_state(pdev
);
7653 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7654 if (bp
->pm_cap
== 0) {
7656 "Cannot find power management capability, aborting.\n");
7658 goto err_out_release
;
7664 spin_lock_init(&bp
->phy_lock
);
7665 spin_lock_init(&bp
->indirect_lock
);
7666 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7668 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7669 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
+ 1);
7670 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7671 dev
->irq
= pdev
->irq
;
7673 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7676 dev_err(&pdev
->dev
, "Cannot map register space, aborting.\n");
7678 goto err_out_release
;
7681 /* Configure byte swap and enable write to the reg_window registers.
7682 * Rely on CPU to do target byte swapping on big endian systems
7683 * The chip's target access swapping will not swap all accesses
7685 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
7686 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7687 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7689 bnx2_set_power_state(bp
, PCI_D0
);
7691 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7693 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7694 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7696 "Cannot find PCIE capability, aborting.\n");
7700 bp
->flags
|= BNX2_FLAG_PCIE
;
7701 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7702 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7704 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7705 if (bp
->pcix_cap
== 0) {
7707 "Cannot find PCIX capability, aborting.\n");
7713 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7714 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7715 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
7718 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
7719 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
7720 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
7723 /* 5708 cannot support DMA addresses > 40-bit. */
7724 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
7725 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
7727 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
7729 /* Configure DMA attributes. */
7730 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
7731 dev
->features
|= NETIF_F_HIGHDMA
;
7732 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
7735 "pci_set_consistent_dma_mask failed, aborting.\n");
7738 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
7739 dev_err(&pdev
->dev
, "System does not support DMA, aborting.\n");
7743 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
7744 bnx2_get_pci_speed(bp
);
7746 /* 5706A0 may falsely detect SERR and PERR. */
7747 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7748 reg
= REG_RD(bp
, PCI_COMMAND
);
7749 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
7750 REG_WR(bp
, PCI_COMMAND
, reg
);
7752 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
7753 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
7756 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7760 bnx2_init_nvram(bp
);
7762 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
7764 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
7765 BNX2_SHM_HDR_SIGNATURE_SIG
) {
7766 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
7768 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
7770 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
7772 /* Get the permanent MAC address. First we need to make sure the
7773 * firmware is actually running.
7775 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
7777 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
7778 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
7779 dev_err(&pdev
->dev
, "Firmware not running, aborting.\n");
7784 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
7785 for (i
= 0, j
= 0; i
< 3; i
++) {
7788 num
= (u8
) (reg
>> (24 - (i
* 8)));
7789 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
7790 if (num
>= k
|| !skip0
|| k
== 1) {
7791 bp
->fw_version
[j
++] = (num
/ k
) + '0';
7796 bp
->fw_version
[j
++] = '.';
7798 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
7799 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
7802 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
7803 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
7805 for (i
= 0; i
< 30; i
++) {
7806 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7807 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
7812 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7813 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
7814 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
7815 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
7816 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
7818 bp
->fw_version
[j
++] = ' ';
7819 for (i
= 0; i
< 3; i
++) {
7820 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
7822 memcpy(&bp
->fw_version
[j
], ®
, 4);
7827 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
7828 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
7829 bp
->mac_addr
[1] = (u8
) reg
;
7831 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
7832 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
7833 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
7834 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
7835 bp
->mac_addr
[5] = (u8
) reg
;
7837 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
7838 bnx2_set_rx_ring_size(bp
, 255);
7842 bp
->tx_quick_cons_trip_int
= 20;
7843 bp
->tx_quick_cons_trip
= 20;
7844 bp
->tx_ticks_int
= 80;
7847 bp
->rx_quick_cons_trip_int
= 6;
7848 bp
->rx_quick_cons_trip
= 6;
7849 bp
->rx_ticks_int
= 18;
7852 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7854 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
7858 /* Disable WOL support if we are running on a SERDES chip. */
7859 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7860 bnx2_get_5709_media(bp
);
7861 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
7862 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7864 bp
->phy_port
= PORT_TP
;
7865 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7866 bp
->phy_port
= PORT_FIBRE
;
7867 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
7868 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
7869 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7872 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
7873 /* Don't do parallel detect on this board because of
7874 * some board problems. The link will not go down
7875 * if we do parallel detect.
7877 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
7878 pdev
->subsystem_device
== 0x310c)
7879 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
7882 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
7883 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
7885 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
7886 CHIP_NUM(bp
) == CHIP_NUM_5708
)
7887 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
7888 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
7889 (CHIP_REV(bp
) == CHIP_REV_Ax
||
7890 CHIP_REV(bp
) == CHIP_REV_Bx
))
7891 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
7893 bnx2_init_fw_cap(bp
);
7895 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
7896 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
7897 (CHIP_ID(bp
) == CHIP_ID_5708_B1
) ||
7898 !(REG_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
7899 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7903 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7904 bp
->tx_quick_cons_trip_int
=
7905 bp
->tx_quick_cons_trip
;
7906 bp
->tx_ticks_int
= bp
->tx_ticks
;
7907 bp
->rx_quick_cons_trip_int
=
7908 bp
->rx_quick_cons_trip
;
7909 bp
->rx_ticks_int
= bp
->rx_ticks
;
7910 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
7911 bp
->com_ticks_int
= bp
->com_ticks
;
7912 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
7915 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7917 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7918 * with byte enables disabled on the unused 32-bit word. This is legal
7919 * but causes problems on the AMD 8132 which will eventually stop
7920 * responding after a while.
7922 * AMD believes this incompatibility is unique to the 5706, and
7923 * prefers to locally disable MSI rather than globally disabling it.
7925 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
7926 struct pci_dev
*amd_8132
= NULL
;
7928 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
7929 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
7932 if (amd_8132
->revision
>= 0x10 &&
7933 amd_8132
->revision
<= 0x13) {
7935 pci_dev_put(amd_8132
);
7941 bnx2_set_default_link(bp
);
7942 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
7944 init_timer(&bp
->timer
);
7945 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
7946 bp
->timer
.data
= (unsigned long) bp
;
7947 bp
->timer
.function
= bnx2_timer
;
7953 iounmap(bp
->regview
);
7958 pci_release_regions(pdev
);
7961 pci_disable_device(pdev
);
7962 pci_set_drvdata(pdev
, NULL
);
7968 static char * __devinit
7969 bnx2_bus_string(struct bnx2
*bp
, char *str
)
7973 if (bp
->flags
& BNX2_FLAG_PCIE
) {
7974 s
+= sprintf(s
, "PCI Express");
7976 s
+= sprintf(s
, "PCI");
7977 if (bp
->flags
& BNX2_FLAG_PCIX
)
7978 s
+= sprintf(s
, "-X");
7979 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
7980 s
+= sprintf(s
, " 32-bit");
7982 s
+= sprintf(s
, " 64-bit");
7983 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
7988 static void __devinit
7989 bnx2_init_napi(struct bnx2
*bp
)
7993 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
7994 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
7995 int (*poll
)(struct napi_struct
*, int);
8000 poll
= bnx2_poll_msix
;
8002 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8007 static const struct net_device_ops bnx2_netdev_ops
= {
8008 .ndo_open
= bnx2_open
,
8009 .ndo_start_xmit
= bnx2_start_xmit
,
8010 .ndo_stop
= bnx2_close
,
8011 .ndo_get_stats
= bnx2_get_stats
,
8012 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8013 .ndo_do_ioctl
= bnx2_ioctl
,
8014 .ndo_validate_addr
= eth_validate_addr
,
8015 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8016 .ndo_change_mtu
= bnx2_change_mtu
,
8017 .ndo_tx_timeout
= bnx2_tx_timeout
,
8019 .ndo_vlan_rx_register
= bnx2_vlan_rx_register
,
8021 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
8022 .ndo_poll_controller
= poll_bnx2
,
8026 static int __devinit
8027 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8029 static int version_printed
= 0;
8030 struct net_device
*dev
= NULL
;
8035 if (version_printed
++ == 0)
8036 printk(KERN_INFO
"%s", version
);
8038 /* dev zeroed in init_etherdev */
8039 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8044 rc
= bnx2_init_board(pdev
, dev
);
8050 dev
->netdev_ops
= &bnx2_netdev_ops
;
8051 dev
->watchdog_timeo
= TX_TIMEOUT
;
8052 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8054 bp
= netdev_priv(dev
);
8057 pci_set_drvdata(pdev
, dev
);
8059 rc
= bnx2_request_firmware(bp
);
8063 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
8064 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
8066 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
8067 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8068 dev
->features
|= NETIF_F_IPV6_CSUM
;
8071 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8073 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
8074 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8075 dev
->features
|= NETIF_F_TSO6
;
8077 if ((rc
= register_netdev(dev
))) {
8078 dev_err(&pdev
->dev
, "Cannot register net device\n");
8082 printk(KERN_INFO
"%s: %s (%c%d) %s found at mem %lx, "
8083 "IRQ %d, node addr %pM\n",
8085 board_info
[ent
->driver_data
].name
,
8086 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8087 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
8088 bnx2_bus_string(bp
, str
),
8090 bp
->pdev
->irq
, dev
->dev_addr
);
8095 if (bp
->mips_firmware
)
8096 release_firmware(bp
->mips_firmware
);
8097 if (bp
->rv2p_firmware
)
8098 release_firmware(bp
->rv2p_firmware
);
8101 iounmap(bp
->regview
);
8102 pci_release_regions(pdev
);
8103 pci_disable_device(pdev
);
8104 pci_set_drvdata(pdev
, NULL
);
8109 static void __devexit
8110 bnx2_remove_one(struct pci_dev
*pdev
)
8112 struct net_device
*dev
= pci_get_drvdata(pdev
);
8113 struct bnx2
*bp
= netdev_priv(dev
);
8115 flush_scheduled_work();
8117 unregister_netdev(dev
);
8119 if (bp
->mips_firmware
)
8120 release_firmware(bp
->mips_firmware
);
8121 if (bp
->rv2p_firmware
)
8122 release_firmware(bp
->rv2p_firmware
);
8125 iounmap(bp
->regview
);
8128 pci_release_regions(pdev
);
8129 pci_disable_device(pdev
);
8130 pci_set_drvdata(pdev
, NULL
);
8134 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
8136 struct net_device
*dev
= pci_get_drvdata(pdev
);
8137 struct bnx2
*bp
= netdev_priv(dev
);
8139 /* PCI register 4 needs to be saved whether netif_running() or not.
8140 * MSI address and data need to be saved if using MSI and
8143 pci_save_state(pdev
);
8144 if (!netif_running(dev
))
8147 flush_scheduled_work();
8148 bnx2_netif_stop(bp
);
8149 netif_device_detach(dev
);
8150 del_timer_sync(&bp
->timer
);
8151 bnx2_shutdown_chip(bp
);
8153 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
8158 bnx2_resume(struct pci_dev
*pdev
)
8160 struct net_device
*dev
= pci_get_drvdata(pdev
);
8161 struct bnx2
*bp
= netdev_priv(dev
);
8163 pci_restore_state(pdev
);
8164 if (!netif_running(dev
))
8167 bnx2_set_power_state(bp
, PCI_D0
);
8168 netif_device_attach(dev
);
8169 bnx2_init_nic(bp
, 1);
8170 bnx2_netif_start(bp
);
8175 * bnx2_io_error_detected - called when PCI error is detected
8176 * @pdev: Pointer to PCI device
8177 * @state: The current pci connection state
8179 * This function is called after a PCI bus error affecting
8180 * this device has been detected.
8182 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8183 pci_channel_state_t state
)
8185 struct net_device
*dev
= pci_get_drvdata(pdev
);
8186 struct bnx2
*bp
= netdev_priv(dev
);
8189 netif_device_detach(dev
);
8191 if (netif_running(dev
)) {
8192 bnx2_netif_stop(bp
);
8193 del_timer_sync(&bp
->timer
);
8194 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8197 pci_disable_device(pdev
);
8200 /* Request a slot slot reset. */
8201 return PCI_ERS_RESULT_NEED_RESET
;
8205 * bnx2_io_slot_reset - called after the pci bus has been reset.
8206 * @pdev: Pointer to PCI device
8208 * Restart the card from scratch, as if from a cold-boot.
8210 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8212 struct net_device
*dev
= pci_get_drvdata(pdev
);
8213 struct bnx2
*bp
= netdev_priv(dev
);
8216 if (pci_enable_device(pdev
)) {
8218 "Cannot re-enable PCI device after reset.\n");
8220 return PCI_ERS_RESULT_DISCONNECT
;
8222 pci_set_master(pdev
);
8223 pci_restore_state(pdev
);
8225 if (netif_running(dev
)) {
8226 bnx2_set_power_state(bp
, PCI_D0
);
8227 bnx2_init_nic(bp
, 1);
8231 return PCI_ERS_RESULT_RECOVERED
;
8235 * bnx2_io_resume - called when traffic can start flowing again.
8236 * @pdev: Pointer to PCI device
8238 * This callback is called when the error recovery driver tells us that
8239 * its OK to resume normal operation.
8241 static void bnx2_io_resume(struct pci_dev
*pdev
)
8243 struct net_device
*dev
= pci_get_drvdata(pdev
);
8244 struct bnx2
*bp
= netdev_priv(dev
);
8247 if (netif_running(dev
))
8248 bnx2_netif_start(bp
);
8250 netif_device_attach(dev
);
8254 static struct pci_error_handlers bnx2_err_handler
= {
8255 .error_detected
= bnx2_io_error_detected
,
8256 .slot_reset
= bnx2_io_slot_reset
,
8257 .resume
= bnx2_io_resume
,
8260 static struct pci_driver bnx2_pci_driver
= {
8261 .name
= DRV_MODULE_NAME
,
8262 .id_table
= bnx2_pci_tbl
,
8263 .probe
= bnx2_init_one
,
8264 .remove
= __devexit_p(bnx2_remove_one
),
8265 .suspend
= bnx2_suspend
,
8266 .resume
= bnx2_resume
,
8267 .err_handler
= &bnx2_err_handler
,
8270 static int __init
bnx2_init(void)
8272 return pci_register_driver(&bnx2_pci_driver
);
8275 static void __exit
bnx2_cleanup(void)
8277 pci_unregister_driver(&bnx2_pci_driver
);
8280 module_init(bnx2_init
);
8281 module_exit(bnx2_cleanup
);