2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
24 #include "free-space-cache.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "inode-map.h"
30 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
31 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
33 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
34 struct btrfs_free_space
*info
);
36 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
37 struct btrfs_path
*path
,
41 struct btrfs_key location
;
42 struct btrfs_disk_key disk_key
;
43 struct btrfs_free_space_header
*header
;
44 struct extent_buffer
*leaf
;
45 struct inode
*inode
= NULL
;
48 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
52 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
56 btrfs_release_path(path
);
57 return ERR_PTR(-ENOENT
);
60 leaf
= path
->nodes
[0];
61 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
62 struct btrfs_free_space_header
);
63 btrfs_free_space_key(leaf
, header
, &disk_key
);
64 btrfs_disk_key_to_cpu(&location
, &disk_key
);
65 btrfs_release_path(path
);
67 inode
= btrfs_iget(root
->fs_info
->sb
, &location
, root
, NULL
);
69 return ERR_PTR(-ENOENT
);
72 if (is_bad_inode(inode
)) {
74 return ERR_PTR(-ENOENT
);
77 inode
->i_mapping
->flags
&= ~__GFP_FS
;
82 struct inode
*lookup_free_space_inode(struct btrfs_root
*root
,
83 struct btrfs_block_group_cache
84 *block_group
, struct btrfs_path
*path
)
86 struct inode
*inode
= NULL
;
88 spin_lock(&block_group
->lock
);
89 if (block_group
->inode
)
90 inode
= igrab(block_group
->inode
);
91 spin_unlock(&block_group
->lock
);
95 inode
= __lookup_free_space_inode(root
, path
,
96 block_group
->key
.objectid
);
100 spin_lock(&block_group
->lock
);
101 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
) {
102 printk(KERN_INFO
"Old style space inode found, converting.\n");
103 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NODATASUM
;
104 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
107 if (!btrfs_fs_closing(root
->fs_info
)) {
108 block_group
->inode
= igrab(inode
);
109 block_group
->iref
= 1;
111 spin_unlock(&block_group
->lock
);
116 int __create_free_space_inode(struct btrfs_root
*root
,
117 struct btrfs_trans_handle
*trans
,
118 struct btrfs_path
*path
, u64 ino
, u64 offset
)
120 struct btrfs_key key
;
121 struct btrfs_disk_key disk_key
;
122 struct btrfs_free_space_header
*header
;
123 struct btrfs_inode_item
*inode_item
;
124 struct extent_buffer
*leaf
;
127 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
131 leaf
= path
->nodes
[0];
132 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
133 struct btrfs_inode_item
);
134 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
135 memset_extent_buffer(leaf
, 0, (unsigned long)inode_item
,
136 sizeof(*inode_item
));
137 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
138 btrfs_set_inode_size(leaf
, inode_item
, 0);
139 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
140 btrfs_set_inode_uid(leaf
, inode_item
, 0);
141 btrfs_set_inode_gid(leaf
, inode_item
, 0);
142 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
143 btrfs_set_inode_flags(leaf
, inode_item
, BTRFS_INODE_NOCOMPRESS
|
144 BTRFS_INODE_PREALLOC
);
145 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
146 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
147 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
148 btrfs_mark_buffer_dirty(leaf
);
149 btrfs_release_path(path
);
151 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
155 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
156 sizeof(struct btrfs_free_space_header
));
158 btrfs_release_path(path
);
161 leaf
= path
->nodes
[0];
162 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
163 struct btrfs_free_space_header
);
164 memset_extent_buffer(leaf
, 0, (unsigned long)header
, sizeof(*header
));
165 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
166 btrfs_mark_buffer_dirty(leaf
);
167 btrfs_release_path(path
);
172 int create_free_space_inode(struct btrfs_root
*root
,
173 struct btrfs_trans_handle
*trans
,
174 struct btrfs_block_group_cache
*block_group
,
175 struct btrfs_path
*path
)
180 ret
= btrfs_find_free_objectid(root
, &ino
);
184 return __create_free_space_inode(root
, trans
, path
, ino
,
185 block_group
->key
.objectid
);
188 int btrfs_truncate_free_space_cache(struct btrfs_root
*root
,
189 struct btrfs_trans_handle
*trans
,
190 struct btrfs_path
*path
,
196 trans
->block_rsv
= root
->orphan_block_rsv
;
197 ret
= btrfs_block_rsv_check(trans
, root
,
198 root
->orphan_block_rsv
,
203 oldsize
= i_size_read(inode
);
204 btrfs_i_size_write(inode
, 0);
205 truncate_pagecache(inode
, oldsize
, 0);
208 * We don't need an orphan item because truncating the free space cache
209 * will never be split across transactions.
211 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
212 0, BTRFS_EXTENT_DATA_KEY
);
218 ret
= btrfs_update_inode(trans
, root
, inode
);
222 static int readahead_cache(struct inode
*inode
)
224 struct file_ra_state
*ra
;
225 unsigned long last_index
;
227 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
231 file_ra_state_init(ra
, inode
->i_mapping
);
232 last_index
= (i_size_read(inode
) - 1) >> PAGE_CACHE_SHIFT
;
234 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
241 int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
242 struct btrfs_free_space_ctl
*ctl
,
243 struct btrfs_path
*path
, u64 offset
)
245 struct btrfs_free_space_header
*header
;
246 struct extent_buffer
*leaf
;
248 struct btrfs_key key
;
249 struct list_head bitmaps
;
256 INIT_LIST_HEAD(&bitmaps
);
258 /* Nothing in the space cache, goodbye */
259 if (!i_size_read(inode
))
262 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
266 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
270 btrfs_release_path(path
);
277 leaf
= path
->nodes
[0];
278 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
279 struct btrfs_free_space_header
);
280 num_entries
= btrfs_free_space_entries(leaf
, header
);
281 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
282 generation
= btrfs_free_space_generation(leaf
, header
);
283 btrfs_release_path(path
);
285 if (BTRFS_I(inode
)->generation
!= generation
) {
286 printk(KERN_ERR
"btrfs: free space inode generation (%llu) did"
287 " not match free space cache generation (%llu)\n",
288 (unsigned long long)BTRFS_I(inode
)->generation
,
289 (unsigned long long)generation
);
296 ret
= readahead_cache(inode
);
301 struct btrfs_free_space_entry
*entry
;
302 struct btrfs_free_space
*e
;
304 unsigned long offset
= 0;
307 if (!num_entries
&& !num_bitmaps
)
310 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
314 if (!PageUptodate(page
)) {
315 btrfs_readpage(NULL
, page
);
317 if (!PageUptodate(page
)) {
319 page_cache_release(page
);
320 printk(KERN_ERR
"btrfs: error reading free "
331 * We put a bogus crc in the front of the first page in
332 * case old kernels try to mount a fs with the new
333 * format to make sure they discard the cache.
336 offset
+= sizeof(u64
);
339 if (*gen
!= BTRFS_I(inode
)->generation
) {
340 printk(KERN_ERR
"btrfs: space cache generation"
341 " (%llu) does not match inode (%llu)\n",
342 (unsigned long long)*gen
,
344 BTRFS_I(inode
)->generation
);
347 page_cache_release(page
);
351 offset
+= sizeof(u64
);
360 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
365 page_cache_release(page
);
369 e
->offset
= le64_to_cpu(entry
->offset
);
370 e
->bytes
= le64_to_cpu(entry
->bytes
);
373 kmem_cache_free(btrfs_free_space_cachep
, e
);
375 page_cache_release(page
);
379 if (entry
->type
== BTRFS_FREE_SPACE_EXTENT
) {
380 spin_lock(&ctl
->tree_lock
);
381 ret
= link_free_space(ctl
, e
);
382 spin_unlock(&ctl
->tree_lock
);
384 printk(KERN_ERR
"Duplicate entries in "
385 "free space cache, dumping\n");
388 page_cache_release(page
);
392 e
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
396 btrfs_free_space_cachep
, e
);
398 page_cache_release(page
);
401 spin_lock(&ctl
->tree_lock
);
402 ret
= link_free_space(ctl
, e
);
403 ctl
->total_bitmaps
++;
404 ctl
->op
->recalc_thresholds(ctl
);
405 spin_unlock(&ctl
->tree_lock
);
407 printk(KERN_ERR
"Duplicate entries in "
408 "free space cache, dumping\n");
411 page_cache_release(page
);
414 list_add_tail(&e
->list
, &bitmaps
);
418 offset
+= sizeof(struct btrfs_free_space_entry
);
419 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
426 * We read an entry out of this page, we need to move on to the
435 * We add the bitmaps at the end of the entries in order that
436 * the bitmap entries are added to the cache.
438 e
= list_entry(bitmaps
.next
, struct btrfs_free_space
, list
);
439 list_del_init(&e
->list
);
440 memcpy(e
->bitmap
, addr
, PAGE_CACHE_SIZE
);
445 page_cache_release(page
);
453 __btrfs_remove_free_space_cache(ctl
);
457 int load_free_space_cache(struct btrfs_fs_info
*fs_info
,
458 struct btrfs_block_group_cache
*block_group
)
460 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
461 struct btrfs_root
*root
= fs_info
->tree_root
;
463 struct btrfs_path
*path
;
466 u64 used
= btrfs_block_group_used(&block_group
->item
);
469 * If we're unmounting then just return, since this does a search on the
470 * normal root and not the commit root and we could deadlock.
472 if (btrfs_fs_closing(fs_info
))
476 * If this block group has been marked to be cleared for one reason or
477 * another then we can't trust the on disk cache, so just return.
479 spin_lock(&block_group
->lock
);
480 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
481 spin_unlock(&block_group
->lock
);
484 spin_unlock(&block_group
->lock
);
486 path
= btrfs_alloc_path();
490 inode
= lookup_free_space_inode(root
, block_group
, path
);
492 btrfs_free_path(path
);
496 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
497 path
, block_group
->key
.objectid
);
498 btrfs_free_path(path
);
502 spin_lock(&ctl
->tree_lock
);
503 matched
= (ctl
->free_space
== (block_group
->key
.offset
- used
-
504 block_group
->bytes_super
));
505 spin_unlock(&ctl
->tree_lock
);
508 __btrfs_remove_free_space_cache(ctl
);
509 printk(KERN_ERR
"block group %llu has an wrong amount of free "
510 "space\n", block_group
->key
.objectid
);
515 /* This cache is bogus, make sure it gets cleared */
516 spin_lock(&block_group
->lock
);
517 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
518 spin_unlock(&block_group
->lock
);
521 printk(KERN_ERR
"btrfs: failed to load free space cache "
522 "for block group %llu\n", block_group
->key
.objectid
);
529 int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
530 struct btrfs_free_space_ctl
*ctl
,
531 struct btrfs_block_group_cache
*block_group
,
532 struct btrfs_trans_handle
*trans
,
533 struct btrfs_path
*path
, u64 offset
)
535 struct btrfs_free_space_header
*header
;
536 struct extent_buffer
*leaf
;
537 struct rb_node
*node
;
538 struct list_head
*pos
, *n
;
541 struct extent_state
*cached_state
= NULL
;
542 struct btrfs_free_cluster
*cluster
= NULL
;
543 struct extent_io_tree
*unpin
= NULL
;
544 struct list_head bitmap_list
;
545 struct btrfs_key key
;
549 int index
= 0, num_pages
= 0;
553 bool next_page
= false;
554 bool out_of_space
= false;
556 INIT_LIST_HEAD(&bitmap_list
);
558 node
= rb_first(&ctl
->free_space_offset
);
562 if (!i_size_read(inode
))
565 num_pages
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >>
568 filemap_write_and_wait(inode
->i_mapping
);
569 btrfs_wait_ordered_range(inode
, inode
->i_size
&
570 ~(root
->sectorsize
- 1), (u64
)-1);
572 pages
= kzalloc(sizeof(struct page
*) * num_pages
, GFP_NOFS
);
576 /* Get the cluster for this block_group if it exists */
577 if (block_group
&& !list_empty(&block_group
->cluster_list
))
578 cluster
= list_entry(block_group
->cluster_list
.next
,
579 struct btrfs_free_cluster
,
583 * We shouldn't have switched the pinned extents yet so this is the
586 unpin
= root
->fs_info
->pinned_extents
;
589 * Lock all pages first so we can lock the extent safely.
591 * NOTE: Because we hold the ref the entire time we're going to write to
592 * the page find_get_page should never fail, so we don't do a check
593 * after find_get_page at this point. Just putting this here so people
594 * know and don't freak out.
596 while (index
< num_pages
) {
597 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
601 for (i
= 0; i
< num_pages
; i
++) {
602 unlock_page(pages
[i
]);
603 page_cache_release(pages
[i
]);
612 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
613 0, &cached_state
, GFP_NOFS
);
616 * When searching for pinned extents, we need to start at our start
620 start
= block_group
->key
.objectid
;
622 /* Write out the extent entries */
624 struct btrfs_free_space_entry
*entry
;
626 unsigned long offset
= 0;
630 if (index
>= num_pages
) {
637 orig
= addr
= kmap(page
);
642 * We're going to put in a bogus crc for this page to
643 * make sure that old kernels who aren't aware of this
644 * format will be sure to discard the cache.
647 offset
+= sizeof(u64
);
650 *gen
= trans
->transid
;
652 offset
+= sizeof(u64
);
656 memset(addr
, 0, PAGE_CACHE_SIZE
- offset
);
657 while (node
&& !next_page
) {
658 struct btrfs_free_space
*e
;
660 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
663 entry
->offset
= cpu_to_le64(e
->offset
);
664 entry
->bytes
= cpu_to_le64(e
->bytes
);
666 entry
->type
= BTRFS_FREE_SPACE_BITMAP
;
667 list_add_tail(&e
->list
, &bitmap_list
);
670 entry
->type
= BTRFS_FREE_SPACE_EXTENT
;
672 node
= rb_next(node
);
673 if (!node
&& cluster
) {
674 node
= rb_first(&cluster
->root
);
677 offset
+= sizeof(struct btrfs_free_space_entry
);
678 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
685 * We want to add any pinned extents to our free space cache
686 * so we don't leak the space
688 while (block_group
&& !next_page
&&
689 (start
< block_group
->key
.objectid
+
690 block_group
->key
.offset
)) {
691 ret
= find_first_extent_bit(unpin
, start
, &start
, &end
,
698 /* This pinned extent is out of our range */
699 if (start
>= block_group
->key
.objectid
+
700 block_group
->key
.offset
)
703 len
= block_group
->key
.objectid
+
704 block_group
->key
.offset
- start
;
705 len
= min(len
, end
+ 1 - start
);
708 entry
->offset
= cpu_to_le64(start
);
709 entry
->bytes
= cpu_to_le64(len
);
710 entry
->type
= BTRFS_FREE_SPACE_EXTENT
;
713 offset
+= sizeof(struct btrfs_free_space_entry
);
714 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
720 /* Generate bogus crc value */
723 crc
= btrfs_csum_data(root
, orig
+ sizeof(u64
), crc
,
724 PAGE_CACHE_SIZE
- sizeof(u64
));
725 btrfs_csum_final(crc
, (char *)&crc
);
733 bytes
+= PAGE_CACHE_SIZE
;
736 } while (node
|| next_page
);
738 /* Write out the bitmaps */
739 list_for_each_safe(pos
, n
, &bitmap_list
) {
741 struct btrfs_free_space
*entry
=
742 list_entry(pos
, struct btrfs_free_space
, list
);
744 if (index
>= num_pages
) {
751 memcpy(addr
, entry
->bitmap
, PAGE_CACHE_SIZE
);
753 bytes
+= PAGE_CACHE_SIZE
;
755 list_del_init(&entry
->list
);
760 btrfs_drop_pages(pages
, num_pages
);
761 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
762 i_size_read(inode
) - 1, &cached_state
,
768 /* Zero out the rest of the pages just to make sure */
769 while (index
< num_pages
) {
774 memset(addr
, 0, PAGE_CACHE_SIZE
);
776 bytes
+= PAGE_CACHE_SIZE
;
780 ret
= btrfs_dirty_pages(root
, inode
, pages
, num_pages
, 0,
781 bytes
, &cached_state
);
782 btrfs_drop_pages(pages
, num_pages
);
783 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
784 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
791 BTRFS_I(inode
)->generation
= trans
->transid
;
793 filemap_write_and_wait(inode
->i_mapping
);
795 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
799 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 1, 1);
802 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, bytes
- 1,
803 EXTENT_DIRTY
| EXTENT_DELALLOC
|
804 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, GFP_NOFS
);
807 leaf
= path
->nodes
[0];
809 struct btrfs_key found_key
;
810 BUG_ON(!path
->slots
[0]);
812 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
813 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
814 found_key
.offset
!= offset
) {
816 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, bytes
- 1,
817 EXTENT_DIRTY
| EXTENT_DELALLOC
|
818 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
,
820 btrfs_release_path(path
);
824 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
825 struct btrfs_free_space_header
);
826 btrfs_set_free_space_entries(leaf
, header
, entries
);
827 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
828 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
829 btrfs_mark_buffer_dirty(leaf
);
830 btrfs_release_path(path
);
837 invalidate_inode_pages2_range(inode
->i_mapping
, 0, index
);
838 BTRFS_I(inode
)->generation
= 0;
840 btrfs_update_inode(trans
, root
, inode
);
844 int btrfs_write_out_cache(struct btrfs_root
*root
,
845 struct btrfs_trans_handle
*trans
,
846 struct btrfs_block_group_cache
*block_group
,
847 struct btrfs_path
*path
)
849 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
853 root
= root
->fs_info
->tree_root
;
855 spin_lock(&block_group
->lock
);
856 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
857 spin_unlock(&block_group
->lock
);
860 spin_unlock(&block_group
->lock
);
862 inode
= lookup_free_space_inode(root
, block_group
, path
);
866 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, block_group
, trans
,
867 path
, block_group
->key
.objectid
);
869 spin_lock(&block_group
->lock
);
870 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
871 spin_unlock(&block_group
->lock
);
874 printk(KERN_ERR
"btrfs: failed to write free space cace "
875 "for block group %llu\n", block_group
->key
.objectid
);
882 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
885 BUG_ON(offset
< bitmap_start
);
886 offset
-= bitmap_start
;
887 return (unsigned long)(div_u64(offset
, unit
));
890 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
892 return (unsigned long)(div_u64(bytes
, unit
));
895 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
899 u64 bytes_per_bitmap
;
901 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
902 bitmap_start
= offset
- ctl
->start
;
903 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
904 bitmap_start
*= bytes_per_bitmap
;
905 bitmap_start
+= ctl
->start
;
910 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
911 struct rb_node
*node
, int bitmap
)
913 struct rb_node
**p
= &root
->rb_node
;
914 struct rb_node
*parent
= NULL
;
915 struct btrfs_free_space
*info
;
919 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
921 if (offset
< info
->offset
) {
923 } else if (offset
> info
->offset
) {
927 * we could have a bitmap entry and an extent entry
928 * share the same offset. If this is the case, we want
929 * the extent entry to always be found first if we do a
930 * linear search through the tree, since we want to have
931 * the quickest allocation time, and allocating from an
932 * extent is faster than allocating from a bitmap. So
933 * if we're inserting a bitmap and we find an entry at
934 * this offset, we want to go right, or after this entry
935 * logically. If we are inserting an extent and we've
936 * found a bitmap, we want to go left, or before
955 rb_link_node(node
, parent
, p
);
956 rb_insert_color(node
, root
);
962 * searches the tree for the given offset.
964 * fuzzy - If this is set, then we are trying to make an allocation, and we just
965 * want a section that has at least bytes size and comes at or after the given
968 static struct btrfs_free_space
*
969 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
970 u64 offset
, int bitmap_only
, int fuzzy
)
972 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
973 struct btrfs_free_space
*entry
, *prev
= NULL
;
975 /* find entry that is closest to the 'offset' */
982 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
985 if (offset
< entry
->offset
)
987 else if (offset
> entry
->offset
)
1000 * bitmap entry and extent entry may share same offset,
1001 * in that case, bitmap entry comes after extent entry.
1006 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1007 if (entry
->offset
!= offset
)
1010 WARN_ON(!entry
->bitmap
);
1013 if (entry
->bitmap
) {
1015 * if previous extent entry covers the offset,
1016 * we should return it instead of the bitmap entry
1018 n
= &entry
->offset_index
;
1023 prev
= rb_entry(n
, struct btrfs_free_space
,
1025 if (!prev
->bitmap
) {
1026 if (prev
->offset
+ prev
->bytes
> offset
)
1038 /* find last entry before the 'offset' */
1040 if (entry
->offset
> offset
) {
1041 n
= rb_prev(&entry
->offset_index
);
1043 entry
= rb_entry(n
, struct btrfs_free_space
,
1045 BUG_ON(entry
->offset
> offset
);
1054 if (entry
->bitmap
) {
1055 n
= &entry
->offset_index
;
1060 prev
= rb_entry(n
, struct btrfs_free_space
,
1062 if (!prev
->bitmap
) {
1063 if (prev
->offset
+ prev
->bytes
> offset
)
1068 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1070 } else if (entry
->offset
+ entry
->bytes
> offset
)
1077 if (entry
->bitmap
) {
1078 if (entry
->offset
+ BITS_PER_BITMAP
*
1082 if (entry
->offset
+ entry
->bytes
> offset
)
1086 n
= rb_next(&entry
->offset_index
);
1089 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1095 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1096 struct btrfs_free_space
*info
)
1098 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1099 ctl
->free_extents
--;
1102 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1103 struct btrfs_free_space
*info
)
1105 __unlink_free_space(ctl
, info
);
1106 ctl
->free_space
-= info
->bytes
;
1109 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1110 struct btrfs_free_space
*info
)
1114 BUG_ON(!info
->bitmap
&& !info
->bytes
);
1115 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1116 &info
->offset_index
, (info
->bitmap
!= NULL
));
1120 ctl
->free_space
+= info
->bytes
;
1121 ctl
->free_extents
++;
1125 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1127 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1131 u64 size
= block_group
->key
.offset
;
1132 u64 bytes_per_bg
= BITS_PER_BITMAP
* block_group
->sectorsize
;
1133 int max_bitmaps
= div64_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1135 BUG_ON(ctl
->total_bitmaps
> max_bitmaps
);
1138 * The goal is to keep the total amount of memory used per 1gb of space
1139 * at or below 32k, so we need to adjust how much memory we allow to be
1140 * used by extent based free space tracking
1142 if (size
< 1024 * 1024 * 1024)
1143 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1145 max_bytes
= MAX_CACHE_BYTES_PER_GIG
*
1146 div64_u64(size
, 1024 * 1024 * 1024);
1149 * we want to account for 1 more bitmap than what we have so we can make
1150 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1151 * we add more bitmaps.
1153 bitmap_bytes
= (ctl
->total_bitmaps
+ 1) * PAGE_CACHE_SIZE
;
1155 if (bitmap_bytes
>= max_bytes
) {
1156 ctl
->extents_thresh
= 0;
1161 * we want the extent entry threshold to always be at most 1/2 the maxw
1162 * bytes we can have, or whatever is less than that.
1164 extent_bytes
= max_bytes
- bitmap_bytes
;
1165 extent_bytes
= min_t(u64
, extent_bytes
, div64_u64(max_bytes
, 2));
1167 ctl
->extents_thresh
=
1168 div64_u64(extent_bytes
, (sizeof(struct btrfs_free_space
)));
1171 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1172 struct btrfs_free_space
*info
,
1173 u64 offset
, u64 bytes
)
1175 unsigned long start
, count
;
1177 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1178 count
= bytes_to_bits(bytes
, ctl
->unit
);
1179 BUG_ON(start
+ count
> BITS_PER_BITMAP
);
1181 bitmap_clear(info
->bitmap
, start
, count
);
1183 info
->bytes
-= bytes
;
1186 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1187 struct btrfs_free_space
*info
, u64 offset
,
1190 __bitmap_clear_bits(ctl
, info
, offset
, bytes
);
1191 ctl
->free_space
-= bytes
;
1194 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1195 struct btrfs_free_space
*info
, u64 offset
,
1198 unsigned long start
, count
;
1200 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1201 count
= bytes_to_bits(bytes
, ctl
->unit
);
1202 BUG_ON(start
+ count
> BITS_PER_BITMAP
);
1204 bitmap_set(info
->bitmap
, start
, count
);
1206 info
->bytes
+= bytes
;
1207 ctl
->free_space
+= bytes
;
1210 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1211 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1214 unsigned long found_bits
= 0;
1215 unsigned long bits
, i
;
1216 unsigned long next_zero
;
1218 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1219 max_t(u64
, *offset
, bitmap_info
->offset
));
1220 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1222 for (i
= find_next_bit(bitmap_info
->bitmap
, BITS_PER_BITMAP
, i
);
1223 i
< BITS_PER_BITMAP
;
1224 i
= find_next_bit(bitmap_info
->bitmap
, BITS_PER_BITMAP
, i
+ 1)) {
1225 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1226 BITS_PER_BITMAP
, i
);
1227 if ((next_zero
- i
) >= bits
) {
1228 found_bits
= next_zero
- i
;
1235 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1236 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1243 static struct btrfs_free_space
*
1244 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
)
1246 struct btrfs_free_space
*entry
;
1247 struct rb_node
*node
;
1250 if (!ctl
->free_space_offset
.rb_node
)
1253 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1257 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1258 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1259 if (entry
->bytes
< *bytes
)
1262 if (entry
->bitmap
) {
1263 ret
= search_bitmap(ctl
, entry
, offset
, bytes
);
1269 *offset
= entry
->offset
;
1270 *bytes
= entry
->bytes
;
1277 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1278 struct btrfs_free_space
*info
, u64 offset
)
1280 info
->offset
= offset_to_bitmap(ctl
, offset
);
1282 link_free_space(ctl
, info
);
1283 ctl
->total_bitmaps
++;
1285 ctl
->op
->recalc_thresholds(ctl
);
1288 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1289 struct btrfs_free_space
*bitmap_info
)
1291 unlink_free_space(ctl
, bitmap_info
);
1292 kfree(bitmap_info
->bitmap
);
1293 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1294 ctl
->total_bitmaps
--;
1295 ctl
->op
->recalc_thresholds(ctl
);
1298 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1299 struct btrfs_free_space
*bitmap_info
,
1300 u64
*offset
, u64
*bytes
)
1303 u64 search_start
, search_bytes
;
1307 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1310 * XXX - this can go away after a few releases.
1312 * since the only user of btrfs_remove_free_space is the tree logging
1313 * stuff, and the only way to test that is under crash conditions, we
1314 * want to have this debug stuff here just in case somethings not
1315 * working. Search the bitmap for the space we are trying to use to
1316 * make sure its actually there. If its not there then we need to stop
1317 * because something has gone wrong.
1319 search_start
= *offset
;
1320 search_bytes
= *bytes
;
1321 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1322 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
);
1323 BUG_ON(ret
< 0 || search_start
!= *offset
);
1325 if (*offset
> bitmap_info
->offset
&& *offset
+ *bytes
> end
) {
1326 bitmap_clear_bits(ctl
, bitmap_info
, *offset
, end
- *offset
+ 1);
1327 *bytes
-= end
- *offset
+ 1;
1329 } else if (*offset
>= bitmap_info
->offset
&& *offset
+ *bytes
<= end
) {
1330 bitmap_clear_bits(ctl
, bitmap_info
, *offset
, *bytes
);
1335 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
1336 if (!bitmap_info
->bytes
)
1337 free_bitmap(ctl
, bitmap_info
);
1340 * no entry after this bitmap, but we still have bytes to
1341 * remove, so something has gone wrong.
1346 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
1350 * if the next entry isn't a bitmap we need to return to let the
1351 * extent stuff do its work.
1353 if (!bitmap_info
->bitmap
)
1357 * Ok the next item is a bitmap, but it may not actually hold
1358 * the information for the rest of this free space stuff, so
1359 * look for it, and if we don't find it return so we can try
1360 * everything over again.
1362 search_start
= *offset
;
1363 search_bytes
= *bytes
;
1364 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
1366 if (ret
< 0 || search_start
!= *offset
)
1370 } else if (!bitmap_info
->bytes
)
1371 free_bitmap(ctl
, bitmap_info
);
1376 static u64
add_bytes_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1377 struct btrfs_free_space
*info
, u64 offset
,
1380 u64 bytes_to_set
= 0;
1383 end
= info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
1385 bytes_to_set
= min(end
- offset
, bytes
);
1387 bitmap_set_bits(ctl
, info
, offset
, bytes_to_set
);
1389 return bytes_to_set
;
1393 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
1394 struct btrfs_free_space
*info
)
1396 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1399 * If we are below the extents threshold then we can add this as an
1400 * extent, and don't have to deal with the bitmap
1402 if (ctl
->free_extents
< ctl
->extents_thresh
) {
1404 * If this block group has some small extents we don't want to
1405 * use up all of our free slots in the cache with them, we want
1406 * to reserve them to larger extents, however if we have plent
1407 * of cache left then go ahead an dadd them, no sense in adding
1408 * the overhead of a bitmap if we don't have to.
1410 if (info
->bytes
<= block_group
->sectorsize
* 4) {
1411 if (ctl
->free_extents
* 2 <= ctl
->extents_thresh
)
1419 * some block groups are so tiny they can't be enveloped by a bitmap, so
1420 * don't even bother to create a bitmap for this
1422 if (BITS_PER_BITMAP
* block_group
->sectorsize
>
1423 block_group
->key
.offset
)
1429 static struct btrfs_free_space_op free_space_op
= {
1430 .recalc_thresholds
= recalculate_thresholds
,
1431 .use_bitmap
= use_bitmap
,
1434 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
1435 struct btrfs_free_space
*info
)
1437 struct btrfs_free_space
*bitmap_info
;
1438 struct btrfs_block_group_cache
*block_group
= NULL
;
1440 u64 bytes
, offset
, bytes_added
;
1443 bytes
= info
->bytes
;
1444 offset
= info
->offset
;
1446 if (!ctl
->op
->use_bitmap(ctl
, info
))
1449 if (ctl
->op
== &free_space_op
)
1450 block_group
= ctl
->private;
1453 * Since we link bitmaps right into the cluster we need to see if we
1454 * have a cluster here, and if so and it has our bitmap we need to add
1455 * the free space to that bitmap.
1457 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
1458 struct btrfs_free_cluster
*cluster
;
1459 struct rb_node
*node
;
1460 struct btrfs_free_space
*entry
;
1462 cluster
= list_entry(block_group
->cluster_list
.next
,
1463 struct btrfs_free_cluster
,
1465 spin_lock(&cluster
->lock
);
1466 node
= rb_first(&cluster
->root
);
1468 spin_unlock(&cluster
->lock
);
1469 goto no_cluster_bitmap
;
1472 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1473 if (!entry
->bitmap
) {
1474 spin_unlock(&cluster
->lock
);
1475 goto no_cluster_bitmap
;
1478 if (entry
->offset
== offset_to_bitmap(ctl
, offset
)) {
1479 bytes_added
= add_bytes_to_bitmap(ctl
, entry
,
1481 bytes
-= bytes_added
;
1482 offset
+= bytes_added
;
1484 spin_unlock(&cluster
->lock
);
1492 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1499 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
1500 bytes
-= bytes_added
;
1501 offset
+= bytes_added
;
1511 if (info
&& info
->bitmap
) {
1512 add_new_bitmap(ctl
, info
, offset
);
1517 spin_unlock(&ctl
->tree_lock
);
1519 /* no pre-allocated info, allocate a new one */
1521 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
1524 spin_lock(&ctl
->tree_lock
);
1530 /* allocate the bitmap */
1531 info
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
1532 spin_lock(&ctl
->tree_lock
);
1533 if (!info
->bitmap
) {
1543 kfree(info
->bitmap
);
1544 kmem_cache_free(btrfs_free_space_cachep
, info
);
1550 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
1551 struct btrfs_free_space
*info
, bool update_stat
)
1553 struct btrfs_free_space
*left_info
;
1554 struct btrfs_free_space
*right_info
;
1555 bool merged
= false;
1556 u64 offset
= info
->offset
;
1557 u64 bytes
= info
->bytes
;
1560 * first we want to see if there is free space adjacent to the range we
1561 * are adding, if there is remove that struct and add a new one to
1562 * cover the entire range
1564 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
1565 if (right_info
&& rb_prev(&right_info
->offset_index
))
1566 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
1567 struct btrfs_free_space
, offset_index
);
1569 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
1571 if (right_info
&& !right_info
->bitmap
) {
1573 unlink_free_space(ctl
, right_info
);
1575 __unlink_free_space(ctl
, right_info
);
1576 info
->bytes
+= right_info
->bytes
;
1577 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
1581 if (left_info
&& !left_info
->bitmap
&&
1582 left_info
->offset
+ left_info
->bytes
== offset
) {
1584 unlink_free_space(ctl
, left_info
);
1586 __unlink_free_space(ctl
, left_info
);
1587 info
->offset
= left_info
->offset
;
1588 info
->bytes
+= left_info
->bytes
;
1589 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
1596 int __btrfs_add_free_space(struct btrfs_free_space_ctl
*ctl
,
1597 u64 offset
, u64 bytes
)
1599 struct btrfs_free_space
*info
;
1602 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
1606 info
->offset
= offset
;
1607 info
->bytes
= bytes
;
1609 spin_lock(&ctl
->tree_lock
);
1611 if (try_merge_free_space(ctl
, info
, true))
1615 * There was no extent directly to the left or right of this new
1616 * extent then we know we're going to have to allocate a new extent, so
1617 * before we do that see if we need to drop this into a bitmap
1619 ret
= insert_into_bitmap(ctl
, info
);
1627 ret
= link_free_space(ctl
, info
);
1629 kmem_cache_free(btrfs_free_space_cachep
, info
);
1631 spin_unlock(&ctl
->tree_lock
);
1634 printk(KERN_CRIT
"btrfs: unable to add free space :%d\n", ret
);
1635 BUG_ON(ret
== -EEXIST
);
1641 int btrfs_remove_free_space(struct btrfs_block_group_cache
*block_group
,
1642 u64 offset
, u64 bytes
)
1644 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1645 struct btrfs_free_space
*info
;
1646 struct btrfs_free_space
*next_info
= NULL
;
1649 spin_lock(&ctl
->tree_lock
);
1652 info
= tree_search_offset(ctl
, offset
, 0, 0);
1655 * oops didn't find an extent that matched the space we wanted
1656 * to remove, look for a bitmap instead
1658 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1666 if (info
->bytes
< bytes
&& rb_next(&info
->offset_index
)) {
1668 next_info
= rb_entry(rb_next(&info
->offset_index
),
1669 struct btrfs_free_space
,
1672 if (next_info
->bitmap
)
1673 end
= next_info
->offset
+
1674 BITS_PER_BITMAP
* ctl
->unit
- 1;
1676 end
= next_info
->offset
+ next_info
->bytes
;
1678 if (next_info
->bytes
< bytes
||
1679 next_info
->offset
> offset
|| offset
> end
) {
1680 printk(KERN_CRIT
"Found free space at %llu, size %llu,"
1681 " trying to use %llu\n",
1682 (unsigned long long)info
->offset
,
1683 (unsigned long long)info
->bytes
,
1684 (unsigned long long)bytes
);
1693 if (info
->bytes
== bytes
) {
1694 unlink_free_space(ctl
, info
);
1696 kfree(info
->bitmap
);
1697 ctl
->total_bitmaps
--;
1699 kmem_cache_free(btrfs_free_space_cachep
, info
);
1703 if (!info
->bitmap
&& info
->offset
== offset
) {
1704 unlink_free_space(ctl
, info
);
1705 info
->offset
+= bytes
;
1706 info
->bytes
-= bytes
;
1707 link_free_space(ctl
, info
);
1711 if (!info
->bitmap
&& info
->offset
<= offset
&&
1712 info
->offset
+ info
->bytes
>= offset
+ bytes
) {
1713 u64 old_start
= info
->offset
;
1715 * we're freeing space in the middle of the info,
1716 * this can happen during tree log replay
1718 * first unlink the old info and then
1719 * insert it again after the hole we're creating
1721 unlink_free_space(ctl
, info
);
1722 if (offset
+ bytes
< info
->offset
+ info
->bytes
) {
1723 u64 old_end
= info
->offset
+ info
->bytes
;
1725 info
->offset
= offset
+ bytes
;
1726 info
->bytes
= old_end
- info
->offset
;
1727 ret
= link_free_space(ctl
, info
);
1732 /* the hole we're creating ends at the end
1733 * of the info struct, just free the info
1735 kmem_cache_free(btrfs_free_space_cachep
, info
);
1737 spin_unlock(&ctl
->tree_lock
);
1739 /* step two, insert a new info struct to cover
1740 * anything before the hole
1742 ret
= btrfs_add_free_space(block_group
, old_start
,
1743 offset
- old_start
);
1748 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
1753 spin_unlock(&ctl
->tree_lock
);
1758 void btrfs_dump_free_space(struct btrfs_block_group_cache
*block_group
,
1761 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1762 struct btrfs_free_space
*info
;
1766 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
1767 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1768 if (info
->bytes
>= bytes
)
1770 printk(KERN_CRIT
"entry offset %llu, bytes %llu, bitmap %s\n",
1771 (unsigned long long)info
->offset
,
1772 (unsigned long long)info
->bytes
,
1773 (info
->bitmap
) ? "yes" : "no");
1775 printk(KERN_INFO
"block group has cluster?: %s\n",
1776 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
1777 printk(KERN_INFO
"%d blocks of free space at or bigger than bytes is"
1781 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache
*block_group
)
1783 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1785 spin_lock_init(&ctl
->tree_lock
);
1786 ctl
->unit
= block_group
->sectorsize
;
1787 ctl
->start
= block_group
->key
.objectid
;
1788 ctl
->private = block_group
;
1789 ctl
->op
= &free_space_op
;
1792 * we only want to have 32k of ram per block group for keeping
1793 * track of free space, and if we pass 1/2 of that we want to
1794 * start converting things over to using bitmaps
1796 ctl
->extents_thresh
= ((1024 * 32) / 2) /
1797 sizeof(struct btrfs_free_space
);
1801 * for a given cluster, put all of its extents back into the free
1802 * space cache. If the block group passed doesn't match the block group
1803 * pointed to by the cluster, someone else raced in and freed the
1804 * cluster already. In that case, we just return without changing anything
1807 __btrfs_return_cluster_to_free_space(
1808 struct btrfs_block_group_cache
*block_group
,
1809 struct btrfs_free_cluster
*cluster
)
1811 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1812 struct btrfs_free_space
*entry
;
1813 struct rb_node
*node
;
1815 spin_lock(&cluster
->lock
);
1816 if (cluster
->block_group
!= block_group
)
1819 cluster
->block_group
= NULL
;
1820 cluster
->window_start
= 0;
1821 list_del_init(&cluster
->block_group_list
);
1823 node
= rb_first(&cluster
->root
);
1827 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1828 node
= rb_next(&entry
->offset_index
);
1829 rb_erase(&entry
->offset_index
, &cluster
->root
);
1831 bitmap
= (entry
->bitmap
!= NULL
);
1833 try_merge_free_space(ctl
, entry
, false);
1834 tree_insert_offset(&ctl
->free_space_offset
,
1835 entry
->offset
, &entry
->offset_index
, bitmap
);
1837 cluster
->root
= RB_ROOT
;
1840 spin_unlock(&cluster
->lock
);
1841 btrfs_put_block_group(block_group
);
1845 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl
*ctl
)
1847 struct btrfs_free_space
*info
;
1848 struct rb_node
*node
;
1850 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
1851 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1852 if (!info
->bitmap
) {
1853 unlink_free_space(ctl
, info
);
1854 kmem_cache_free(btrfs_free_space_cachep
, info
);
1856 free_bitmap(ctl
, info
);
1858 if (need_resched()) {
1859 spin_unlock(&ctl
->tree_lock
);
1861 spin_lock(&ctl
->tree_lock
);
1866 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
1868 spin_lock(&ctl
->tree_lock
);
1869 __btrfs_remove_free_space_cache_locked(ctl
);
1870 spin_unlock(&ctl
->tree_lock
);
1873 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
*block_group
)
1875 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1876 struct btrfs_free_cluster
*cluster
;
1877 struct list_head
*head
;
1879 spin_lock(&ctl
->tree_lock
);
1880 while ((head
= block_group
->cluster_list
.next
) !=
1881 &block_group
->cluster_list
) {
1882 cluster
= list_entry(head
, struct btrfs_free_cluster
,
1885 WARN_ON(cluster
->block_group
!= block_group
);
1886 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
1887 if (need_resched()) {
1888 spin_unlock(&ctl
->tree_lock
);
1890 spin_lock(&ctl
->tree_lock
);
1893 __btrfs_remove_free_space_cache_locked(ctl
);
1894 spin_unlock(&ctl
->tree_lock
);
1898 u64
btrfs_find_space_for_alloc(struct btrfs_block_group_cache
*block_group
,
1899 u64 offset
, u64 bytes
, u64 empty_size
)
1901 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1902 struct btrfs_free_space
*entry
= NULL
;
1903 u64 bytes_search
= bytes
+ empty_size
;
1906 spin_lock(&ctl
->tree_lock
);
1907 entry
= find_free_space(ctl
, &offset
, &bytes_search
);
1912 if (entry
->bitmap
) {
1913 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
1915 free_bitmap(ctl
, entry
);
1917 unlink_free_space(ctl
, entry
);
1918 entry
->offset
+= bytes
;
1919 entry
->bytes
-= bytes
;
1921 kmem_cache_free(btrfs_free_space_cachep
, entry
);
1923 link_free_space(ctl
, entry
);
1927 spin_unlock(&ctl
->tree_lock
);
1933 * given a cluster, put all of its extents back into the free space
1934 * cache. If a block group is passed, this function will only free
1935 * a cluster that belongs to the passed block group.
1937 * Otherwise, it'll get a reference on the block group pointed to by the
1938 * cluster and remove the cluster from it.
1940 int btrfs_return_cluster_to_free_space(
1941 struct btrfs_block_group_cache
*block_group
,
1942 struct btrfs_free_cluster
*cluster
)
1944 struct btrfs_free_space_ctl
*ctl
;
1947 /* first, get a safe pointer to the block group */
1948 spin_lock(&cluster
->lock
);
1950 block_group
= cluster
->block_group
;
1952 spin_unlock(&cluster
->lock
);
1955 } else if (cluster
->block_group
!= block_group
) {
1956 /* someone else has already freed it don't redo their work */
1957 spin_unlock(&cluster
->lock
);
1960 atomic_inc(&block_group
->count
);
1961 spin_unlock(&cluster
->lock
);
1963 ctl
= block_group
->free_space_ctl
;
1965 /* now return any extents the cluster had on it */
1966 spin_lock(&ctl
->tree_lock
);
1967 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
1968 spin_unlock(&ctl
->tree_lock
);
1970 /* finally drop our ref */
1971 btrfs_put_block_group(block_group
);
1975 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache
*block_group
,
1976 struct btrfs_free_cluster
*cluster
,
1977 struct btrfs_free_space
*entry
,
1978 u64 bytes
, u64 min_start
)
1980 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1982 u64 search_start
= cluster
->window_start
;
1983 u64 search_bytes
= bytes
;
1986 search_start
= min_start
;
1987 search_bytes
= bytes
;
1989 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
);
1994 __bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
2000 * given a cluster, try to allocate 'bytes' from it, returns 0
2001 * if it couldn't find anything suitably large, or a logical disk offset
2002 * if things worked out
2004 u64
btrfs_alloc_from_cluster(struct btrfs_block_group_cache
*block_group
,
2005 struct btrfs_free_cluster
*cluster
, u64 bytes
,
2008 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2009 struct btrfs_free_space
*entry
= NULL
;
2010 struct rb_node
*node
;
2013 spin_lock(&cluster
->lock
);
2014 if (bytes
> cluster
->max_size
)
2017 if (cluster
->block_group
!= block_group
)
2020 node
= rb_first(&cluster
->root
);
2024 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2026 if (entry
->bytes
< bytes
||
2027 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
2028 node
= rb_next(&entry
->offset_index
);
2031 entry
= rb_entry(node
, struct btrfs_free_space
,
2036 if (entry
->bitmap
) {
2037 ret
= btrfs_alloc_from_bitmap(block_group
,
2038 cluster
, entry
, bytes
,
2041 node
= rb_next(&entry
->offset_index
);
2044 entry
= rb_entry(node
, struct btrfs_free_space
,
2049 ret
= entry
->offset
;
2051 entry
->offset
+= bytes
;
2052 entry
->bytes
-= bytes
;
2055 if (entry
->bytes
== 0)
2056 rb_erase(&entry
->offset_index
, &cluster
->root
);
2060 spin_unlock(&cluster
->lock
);
2065 spin_lock(&ctl
->tree_lock
);
2067 ctl
->free_space
-= bytes
;
2068 if (entry
->bytes
== 0) {
2069 ctl
->free_extents
--;
2070 if (entry
->bitmap
) {
2071 kfree(entry
->bitmap
);
2072 ctl
->total_bitmaps
--;
2073 ctl
->op
->recalc_thresholds(ctl
);
2075 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2078 spin_unlock(&ctl
->tree_lock
);
2083 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache
*block_group
,
2084 struct btrfs_free_space
*entry
,
2085 struct btrfs_free_cluster
*cluster
,
2086 u64 offset
, u64 bytes
, u64 min_bytes
)
2088 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2089 unsigned long next_zero
;
2091 unsigned long search_bits
;
2092 unsigned long total_bits
;
2093 unsigned long found_bits
;
2094 unsigned long start
= 0;
2095 unsigned long total_found
= 0;
2099 i
= offset_to_bit(entry
->offset
, block_group
->sectorsize
,
2100 max_t(u64
, offset
, entry
->offset
));
2101 search_bits
= bytes_to_bits(bytes
, block_group
->sectorsize
);
2102 total_bits
= bytes_to_bits(min_bytes
, block_group
->sectorsize
);
2106 for (i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, i
);
2107 i
< BITS_PER_BITMAP
;
2108 i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, i
+ 1)) {
2109 next_zero
= find_next_zero_bit(entry
->bitmap
,
2110 BITS_PER_BITMAP
, i
);
2111 if (next_zero
- i
>= search_bits
) {
2112 found_bits
= next_zero
- i
;
2126 total_found
+= found_bits
;
2128 if (cluster
->max_size
< found_bits
* block_group
->sectorsize
)
2129 cluster
->max_size
= found_bits
* block_group
->sectorsize
;
2131 if (total_found
< total_bits
) {
2132 i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, next_zero
);
2133 if (i
- start
> total_bits
* 2) {
2135 cluster
->max_size
= 0;
2141 cluster
->window_start
= start
* block_group
->sectorsize
+
2143 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2144 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2145 &entry
->offset_index
, 1);
2152 * This searches the block group for just extents to fill the cluster with.
2155 setup_cluster_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2156 struct btrfs_free_cluster
*cluster
,
2157 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2160 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2161 struct btrfs_free_space
*first
= NULL
;
2162 struct btrfs_free_space
*entry
= NULL
;
2163 struct btrfs_free_space
*prev
= NULL
;
2164 struct btrfs_free_space
*last
;
2165 struct rb_node
*node
;
2169 u64 max_gap
= 128 * 1024;
2171 entry
= tree_search_offset(ctl
, offset
, 0, 1);
2176 * We don't want bitmaps, so just move along until we find a normal
2179 while (entry
->bitmap
) {
2180 if (list_empty(&entry
->list
))
2181 list_add_tail(&entry
->list
, bitmaps
);
2182 node
= rb_next(&entry
->offset_index
);
2185 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2188 window_start
= entry
->offset
;
2189 window_free
= entry
->bytes
;
2190 max_extent
= entry
->bytes
;
2195 while (window_free
<= min_bytes
) {
2196 node
= rb_next(&entry
->offset_index
);
2199 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2201 if (entry
->bitmap
) {
2202 if (list_empty(&entry
->list
))
2203 list_add_tail(&entry
->list
, bitmaps
);
2208 * we haven't filled the empty size and the window is
2209 * very large. reset and try again
2211 if (entry
->offset
- (prev
->offset
+ prev
->bytes
) > max_gap
||
2212 entry
->offset
- window_start
> (min_bytes
* 2)) {
2214 window_start
= entry
->offset
;
2215 window_free
= entry
->bytes
;
2217 max_extent
= entry
->bytes
;
2220 window_free
+= entry
->bytes
;
2221 if (entry
->bytes
> max_extent
)
2222 max_extent
= entry
->bytes
;
2227 cluster
->window_start
= first
->offset
;
2229 node
= &first
->offset_index
;
2232 * now we've found our entries, pull them out of the free space
2233 * cache and put them into the cluster rbtree
2238 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2239 node
= rb_next(&entry
->offset_index
);
2243 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2244 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2245 &entry
->offset_index
, 0);
2247 } while (node
&& entry
!= last
);
2249 cluster
->max_size
= max_extent
;
2255 * This specifically looks for bitmaps that may work in the cluster, we assume
2256 * that we have already failed to find extents that will work.
2259 setup_cluster_bitmap(struct btrfs_block_group_cache
*block_group
,
2260 struct btrfs_free_cluster
*cluster
,
2261 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2264 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2265 struct btrfs_free_space
*entry
;
2266 struct rb_node
*node
;
2269 if (ctl
->total_bitmaps
== 0)
2273 * First check our cached list of bitmaps and see if there is an entry
2274 * here that will work.
2276 list_for_each_entry(entry
, bitmaps
, list
) {
2277 if (entry
->bytes
< min_bytes
)
2279 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
2286 * If we do have entries on our list and we are here then we didn't find
2287 * anything, so go ahead and get the next entry after the last entry in
2288 * this list and start the search from there.
2290 if (!list_empty(bitmaps
)) {
2291 entry
= list_entry(bitmaps
->prev
, struct btrfs_free_space
,
2293 node
= rb_next(&entry
->offset_index
);
2296 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2300 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
), 0, 1);
2305 node
= &entry
->offset_index
;
2307 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2308 node
= rb_next(&entry
->offset_index
);
2311 if (entry
->bytes
< min_bytes
)
2313 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
2315 } while (ret
&& node
);
2321 * here we try to find a cluster of blocks in a block group. The goal
2322 * is to find at least bytes free and up to empty_size + bytes free.
2323 * We might not find them all in one contiguous area.
2325 * returns zero and sets up cluster if things worked out, otherwise
2326 * it returns -enospc
2328 int btrfs_find_space_cluster(struct btrfs_trans_handle
*trans
,
2329 struct btrfs_root
*root
,
2330 struct btrfs_block_group_cache
*block_group
,
2331 struct btrfs_free_cluster
*cluster
,
2332 u64 offset
, u64 bytes
, u64 empty_size
)
2334 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2335 struct list_head bitmaps
;
2336 struct btrfs_free_space
*entry
, *tmp
;
2340 /* for metadata, allow allocates with more holes */
2341 if (btrfs_test_opt(root
, SSD_SPREAD
)) {
2342 min_bytes
= bytes
+ empty_size
;
2343 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2345 * we want to do larger allocations when we are
2346 * flushing out the delayed refs, it helps prevent
2347 * making more work as we go along.
2349 if (trans
->transaction
->delayed_refs
.flushing
)
2350 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 1);
2352 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 4);
2354 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
2356 spin_lock(&ctl
->tree_lock
);
2359 * If we know we don't have enough space to make a cluster don't even
2360 * bother doing all the work to try and find one.
2362 if (ctl
->free_space
< min_bytes
) {
2363 spin_unlock(&ctl
->tree_lock
);
2367 spin_lock(&cluster
->lock
);
2369 /* someone already found a cluster, hooray */
2370 if (cluster
->block_group
) {
2375 INIT_LIST_HEAD(&bitmaps
);
2376 ret
= setup_cluster_no_bitmap(block_group
, cluster
, &bitmaps
, offset
,
2379 ret
= setup_cluster_bitmap(block_group
, cluster
, &bitmaps
,
2380 offset
, bytes
, min_bytes
);
2382 /* Clear our temporary list */
2383 list_for_each_entry_safe(entry
, tmp
, &bitmaps
, list
)
2384 list_del_init(&entry
->list
);
2387 atomic_inc(&block_group
->count
);
2388 list_add_tail(&cluster
->block_group_list
,
2389 &block_group
->cluster_list
);
2390 cluster
->block_group
= block_group
;
2393 spin_unlock(&cluster
->lock
);
2394 spin_unlock(&ctl
->tree_lock
);
2400 * simple code to zero out a cluster
2402 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
2404 spin_lock_init(&cluster
->lock
);
2405 spin_lock_init(&cluster
->refill_lock
);
2406 cluster
->root
= RB_ROOT
;
2407 cluster
->max_size
= 0;
2408 INIT_LIST_HEAD(&cluster
->block_group_list
);
2409 cluster
->block_group
= NULL
;
2412 int btrfs_trim_block_group(struct btrfs_block_group_cache
*block_group
,
2413 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
2415 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2416 struct btrfs_free_space
*entry
= NULL
;
2417 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2419 u64 actually_trimmed
;
2424 while (start
< end
) {
2425 spin_lock(&ctl
->tree_lock
);
2427 if (ctl
->free_space
< minlen
) {
2428 spin_unlock(&ctl
->tree_lock
);
2432 entry
= tree_search_offset(ctl
, start
, 0, 1);
2434 entry
= tree_search_offset(ctl
,
2435 offset_to_bitmap(ctl
, start
),
2438 if (!entry
|| entry
->offset
>= end
) {
2439 spin_unlock(&ctl
->tree_lock
);
2443 if (entry
->bitmap
) {
2444 ret
= search_bitmap(ctl
, entry
, &start
, &bytes
);
2447 spin_unlock(&ctl
->tree_lock
);
2450 bytes
= min(bytes
, end
- start
);
2451 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
2452 if (entry
->bytes
== 0)
2453 free_bitmap(ctl
, entry
);
2455 start
= entry
->offset
+ BITS_PER_BITMAP
*
2456 block_group
->sectorsize
;
2457 spin_unlock(&ctl
->tree_lock
);
2462 start
= entry
->offset
;
2463 bytes
= min(entry
->bytes
, end
- start
);
2464 unlink_free_space(ctl
, entry
);
2465 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2468 spin_unlock(&ctl
->tree_lock
);
2470 if (bytes
>= minlen
) {
2472 update_ret
= btrfs_update_reserved_bytes(block_group
,
2475 ret
= btrfs_error_discard_extent(fs_info
->extent_root
,
2480 btrfs_add_free_space(block_group
, start
, bytes
);
2482 btrfs_update_reserved_bytes(block_group
,
2487 *trimmed
+= actually_trimmed
;
2492 if (fatal_signal_pending(current
)) {
2504 * Find the left-most item in the cache tree, and then return the
2505 * smallest inode number in the item.
2507 * Note: the returned inode number may not be the smallest one in
2508 * the tree, if the left-most item is a bitmap.
2510 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
2512 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
2513 struct btrfs_free_space
*entry
= NULL
;
2516 spin_lock(&ctl
->tree_lock
);
2518 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
2521 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
2522 struct btrfs_free_space
, offset_index
);
2524 if (!entry
->bitmap
) {
2525 ino
= entry
->offset
;
2527 unlink_free_space(ctl
, entry
);
2531 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2533 link_free_space(ctl
, entry
);
2539 ret
= search_bitmap(ctl
, entry
, &offset
, &count
);
2543 bitmap_clear_bits(ctl
, entry
, offset
, 1);
2544 if (entry
->bytes
== 0)
2545 free_bitmap(ctl
, entry
);
2548 spin_unlock(&ctl
->tree_lock
);
2553 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
2554 struct btrfs_path
*path
)
2556 struct inode
*inode
= NULL
;
2558 spin_lock(&root
->cache_lock
);
2559 if (root
->cache_inode
)
2560 inode
= igrab(root
->cache_inode
);
2561 spin_unlock(&root
->cache_lock
);
2565 inode
= __lookup_free_space_inode(root
, path
, 0);
2569 spin_lock(&root
->cache_lock
);
2570 if (!btrfs_fs_closing(root
->fs_info
))
2571 root
->cache_inode
= igrab(inode
);
2572 spin_unlock(&root
->cache_lock
);
2577 int create_free_ino_inode(struct btrfs_root
*root
,
2578 struct btrfs_trans_handle
*trans
,
2579 struct btrfs_path
*path
)
2581 return __create_free_space_inode(root
, trans
, path
,
2582 BTRFS_FREE_INO_OBJECTID
, 0);
2585 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2587 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2588 struct btrfs_path
*path
;
2589 struct inode
*inode
;
2591 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
2593 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2597 * If we're unmounting then just return, since this does a search on the
2598 * normal root and not the commit root and we could deadlock.
2600 if (btrfs_fs_closing(fs_info
))
2603 path
= btrfs_alloc_path();
2607 inode
= lookup_free_ino_inode(root
, path
);
2611 if (root_gen
!= BTRFS_I(inode
)->generation
)
2614 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
2617 printk(KERN_ERR
"btrfs: failed to load free ino cache for "
2618 "root %llu\n", root
->root_key
.objectid
);
2622 btrfs_free_path(path
);
2626 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
2627 struct btrfs_trans_handle
*trans
,
2628 struct btrfs_path
*path
)
2630 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2631 struct inode
*inode
;
2634 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2637 inode
= lookup_free_ino_inode(root
, path
);
2641 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, trans
, path
, 0);
2643 printk(KERN_ERR
"btrfs: failed to write free ino cache "
2644 "for root %llu\n", root
->root_key
.objectid
);